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A motivating example, response times
The data below are response times (in log ms) from 168 trials of a lexical decision
experiment.



A motivating example, response times
A normal distribution does not seem very plausible…



A motivating example, response times
The bimodal nature of the data can be captured through two Normal distributions:



Mixture models
each observation is assumed to be drawn from one of a number of distinct
subpopulations (component distributions)

which subpopulation an observation is drawn from is not directly observable (latent).

within each subpopulation, observations are assumed to be relatively homogeneous,
while there is more heterogeneity between subpopulations.

The term “subpopulation” should be understood in its statistical meaning as reflecting a probability distribution. For our



Mixture models: formal definition
A mixture distribution over observations , , is defined as

where

 denotes the latent state (a.k.a. “class”, “component”) of observation 

 denotes the probability that the latent state at  equals 

 denotes the density of observation  (evaluated at ), conditional
upon the latent state

being ; i.e., it is the value of the -th component density (evaluated at ).
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Mixture models: applied to RT data
Mixture distribution:

Model components:
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Mixture models: applied to RT data
Mixture distribution:

Model components:

p( ) = p( | = i)P( = i)Yt ∑
i=1

N

Yt St St

p( | = 1) = N(5.48, 0.13)Yt St
P( = 1) = 0.33St
p( | = 2) = N(6.31, 0.32)Yt St
P( = 2) = 0.67St
p( )Yt
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Estimation
Estimating a mixture model consists of estimating the parameters of each component
distribution, and the component probabilities. Two main methods of estimation are

Maximum likelihood estimation (MLE)

Bayesian estimation

We will mainly focus on MLE. Maximum likelihood estimates have well-known desirable
properties:

Consistency
(as sample size increases, the estimate converges in probability to the true value)

Asymptotic normality
(as sample size increases, the distribution of the estimate tends to a (multivariate) Normal distribution with
covariance matrix equal to the inverse Fisher information matrix)

Efficiency
(no consistent estimator has lower asymptotic mean squared error)



The mixture likelihood
Let  denote a general vector of parameters with elements  for the
component distributions and elements  for the component probabilities. The
likelihood function of the model parameters  of general mixture model can be written as

where e.g., for the previous example

 contains the means and standard deviations of two mixture
components

 contains the two mixture probabilities.

θ = ( , )θresp θprior θresp
θprior
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Maximising the mixture likelihood
The maximum likelihood estimates  (MLEs) of the model parameters  are defined as

i.e. as the values of the parameters at the maximum of the likelihood function.

There are generally no analytical expressions to obtain the MLEs. Two popular methods
for MLE are numerical optimization and the Expectation-Maximization (EM) algorithm.

θ ̂ θ

= arg L(θ| )θ ̂ max
θ

y1:T



Numerical optimization of the
likelihood
Numerical optimization routines are iterative procedures which, from provided starting
values, change parameter values in the direction of a (local) minimum.



Expectation-Maximization (EM)
If we knew the value of the states , MLE would be easy. The EM algorithm can be viewed
as a method which iteratively (1) imputes expected values for the unknown states to (2)
computes MLEs, a�er which latent states are imputed with new values, etc.

Formally, the EM algorithm works with the joint or complete-data log likelihood

St

log p( , |θ) = log P( | ) + log p( | , )y1:T S1:T ∑
t=1

T

St θprior ∑
t=1

T

yt St θresp



Expectation-Maximization (EM)
EM uses the expected value of the complete-data log-likelihood under initial parameters

:

where  are the posterior state probabilities under .
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Expectation-Maximization (EM)
The EM algorithm starts with an initial guess for the parameters, . On each iteration

, an improved parameter vector  is then determined as

The algorithm is stopped when either the difference between  and , or the
difference between  and , is sufficiently small.

θ(0)
k = 1,… θ(k)

= arg Q(θ, )θ(k) max
θ

θ(k−1)

θ(k) θ(k−1)
Q( , )θ(k) θ(k−1) Q( , )θ(k−1) θ(k−2)



Numerical optimization or EM?
Both are guaranteed to arrive at a local maximum of the likelihood. This means that the
results are dependent on the starting values. It is good practice to try a range of starting
values.

EM can be more robust, but needs analytical expressions for the conditional MLEs

The generalized EM algorithm only requires conditional estimates which increase
the likelihood

EM is difficult (or impossible) when parameters are constrained. Constraining
parameters is much easier in numerical optimization.

Generally, EM makes larger jumps at the start, while numerical optimization converges
quicker near the (local) maximum.

The methods can be combined, starting with EM and then using numerical
optimization when EM iterations make small changes



Inference



Inference
Inference in mixture models:

Determining the value of a particular parameter

Determining the number of mixture components (model selection)

While the first inference problem is relatively straightforward, the second is tricky.



Testing parameters
Testing whether a parameter in a mixture model has a particular value is generally done
through a likelihood ratio test. Let  denote the parameter vector and let  denote the
parameter vector with the respective elements fixed to the test values. Then

asymptotically follows a -distribution with degrees of freedom
, provided that *  is an interior point of the parameter space of

; e.g., the test values should not lie on the bounds of the parameter space.

θu θr

LR = −2 log L( | )θu y1:T
L( | )θr y1:T

= −2(log L( | ) − log L( | ))θu y1:T θr y1:T

(ν)χ2
ν = dim( ) − dim( )θu θr θr
θu



Determining the number of states
While a 2-component mixture is formally nested under a 3-component mixture, the
nesting relation is not unique (the 2-component mixture can be derived from the 3
component mixture by fixing a component probability to 0, or by fixing the parameters of
two components to be identical to each other.)

In addition, the restriction involves fixing parameters on the bound of the space, e.g.,
setting .

This means that the likelihood-ratio statistic  does not asymptotically follow a -
distribution.

Solutions:

“Empirically” determine the actual distribution (e.g., parametric bootstrap)

Use model selection criteria (e.g., AIC, BIC)

P( = i) = 0St
LR χ2



The parametric bootstrap
Rather than approximating the distribution of the LR statistic with a known distribution,
we can use sampling techniques to obtain an “empirical” estimate of the distribution.

The parametric bootstrap LR test to compare a -component mixture to a -
component mixture (with ) is as follows:

1. Fit the  and -component mixture models to obtain maximum likelihood
estimates  and  and compute the likelihood ratio .

2. For :

Use the fitted -component model to simulate a bootstrap sample 

Fit the  and -component mixture models to the bootstrap data  and
calculate the likelihood ratio  for these models

3. The estimated exceedence probability  is the proportion of bootstrap
values  which are larger.

k (k + l)
l ≥ 1

k (k + l)
θ ̂k θ ̂k+l LRobs

i = 1,… ,M

k ∼ p(⋅| )y(i)1:T θ ̂k
k (k + l) y(i)1:T

LR(i)

P(LR ≥ L )Robs
LR(i)



Parametric bootstrap example
Compare a 2-component to a 3-component mixture.

Observed L = 10.062Robs



Parametric bootstrap example
Compare a 2-component to a 3-component mixture.

Observed 

Estimated 

L = 10.062Robs
P(LR ≥ 10.062) = 0.053



Parametric bootstrap example
Compare a 2-component to a 3-component mixture.

Observed 

Estimated 

Using a  distribution, the -value would be

The 2-component mixture is rejected when
assuming a  distribution, but not when using the
parametric bootstrap!

L = 10.062Robs
P(LR ≥ 10.062) = 0.053
(3)χ2 p

P(LR ≥ 10.062) = 0.018

χ2



Akaike Information Criterion (AIC)
A good model  minimizes the Kullback-Leibler discrepancy between the “true” model

 and the approximating model 

 is a constant that is identical for each model. The Akaike Information
criterion (Akaike, 1973) is an asymptotic approximation of (twice) the important part of

:

where  is the number of freely estimated parameters in the ML estimate 

M
(Y)p∗ M = p(Y| )θM

( ||M)DKL p∗ = ∫ (y) log dyp∗
(y)p∗

p(Y| , M)θM
= [log (y)] − [log p(Y| , M)]Ep∗ p∗ Ep∗ θM

[log (y)]Ep∗ p∗

DKL

AIC = −2 log L( | ) + 2kθ ̂M y1:T
≈ −2 [log p(Y| , M)]Ep∗ θM

k θ ̂M



Bayesian Information Criterion (BIC)
Main idea: a good model obtains the maximum posterior probability

The key quantity is the marginal likelihood

The Bayesian Information Criterion (Schwarz, 1978) is an asymptotic approximation to the
-2 log marginal likelihood

where  is the number of freely estimated parameters in the ML estimate  and  is the
total number of observations.

p(M|y) ∝ p(y|M)p(M)

p(y|M) = p(y| , M)p( |M)dθ∫θ θM θM

BIC = −2 log L( | ) + k log Tθ ̂M y1:T
≈ −2 log p( |M)y1:T

k θ ̂M T



Which to use?
Both the AIC and BIC are widely used and neither the AIC nor the BIC require that the true
model be in the set of models under consideration.

BIC is consistent: if the true model is in the set, it will pick this model with probability 1
as . The AIC is not consistent.

The AIC is asymptotically efficient: if the true model has infinite parameters, the AIC
will asymptotically select the model which minimizes the mean squared error of
prediction. The BIC is not asymptotically efficient.

The empirical bootstrap works well, but is computationally expensive.

Nylund, Asparouhov, & Muthén (2007): BIC works best out of information measures, the
parametric bootstrap works best overall.

T → ∞



State classification
A�er estimating the parameters of a mixture model, we are o�en interested in
determining which component each observation belongs to. This is usually done with the
posterior probabilities. Each observation is assigned to the component with the
maximum posterior probability:

s ̂t = arg P( = s| , )max
s

St yt θ ̂

= arg P( = s| )p( | = s, )max
s

St θ ̂prior yt St θ ̂resp




