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A motivating example
Consider the response times (in log ms) from 168 trials of a lexical decision experiment.



A motivating example
In mixture models, all the states  are independent. But if a set of observations 
comes from a limited number of people, or is a time-series, this assumption is likely
invalid.
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A motivating example
To account for the sequential nature of observations, we can allow for dependence
between the latent states.

A hidden Markov model can be viewed as an extension of mixture models in which we also
account for the process according to which the latent states develop over time. In
particular, we model the sequence of states  as a first-order Markov process.S1:T



Markov models
In a first-order Markov process, the current state  depends on the history of the process
only through the previous state, i.e.

In a homogeneous first-order Markov process, the state transition probabilities are
independent of the time index, i.e.

for all .
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Markov models
A homogeneous first-order Markov process is completely defined by the initial state
probabilities

and the transition matrix

(note: in the transition matrix, rows are the current state, and columns the next state)
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Markov models
As an example, consider a Markov process with initial state probabilities

and transition matrix

We can then compute the probability  as

π = (0.5, 0.5)

A = ( )
0.8
0.4

0.2
0.6

P( = 2)St=2

P( = 2)St=2 = P( = 2| = i)P( = i)∑
i=1

N

St=2 St=1 St=1

= .2 × .5 + .6 × .5 = .4



or, using a little matrix algebra

p2 = π ⋅ A

= (.6, .4)



Markov models
This computation is recursive, e.g.:

and more generally

p3 = ⋅ Ap2
= π ⋅ A ⋅ A

= π ⋅pt At−1

For many models, the matrix power  will converge (as ) to a matrix with identical rows. As a result,  will also
converge to a value  called the stationary distribution, defined as

For the example, the stationary distribution is:

At−1 t → ∞ pt
pstat

= ⋅ Apstat pstat

= (2/3, 1/3)pstat



Hidden Markov models
As in a mixture model, in a hidden Markov model, the states are not directly observable
(latent). Hidden Markov models usually model the state sequence as a homogenous first-
order Markov process.

Such a hidden Markov model is defined by the

observation distributions/densities: 

state-transition distributions: 

initial state distribution 

This means that in addition to estimating the parameters of the component distributions
and prior probabilities , we also need to determine the transition probabilities

.
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Estimation and inference



The HMM likelihood
Let  denote a general vector of parameters with in addition to
those for MMs also elements  for the transition probabilities. The complete-data
likelihood can be written as

To obtain the observed data likelihood function  we could sum over all possible
state sequences, but that is computationally infeasible. The number of possible state
sequences is ; for a 2-state model with , this is already . The
likelihood can be efficiently computed via the Forward-Backward algorithm.

Obtaining MLEs is conceptually similar to estimation for mixture models, and proceeds
either through numerical optimization or the EM algorithm.

θ = ( , , )θresp θtrans θprior
θtrans
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EM for HMM
As for MMs, the EM algorithm for HMMs works with the expected complete-data log
likelihood

Q(θ, )θ′ = [ log P( | ) + log p( | , )Eθ′ S1 θprior y1 S1 θresp

+ log P( | , ) + log P( | , )]∑
t=2
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EM for HMM
This can be written as

where  as before and

Q(θ, )θ′ = (j) log P( = j| )∑
j=1

N
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Posterior state distribution
The posterior distribution of the state sequence, , conditional upon observations ,
can be defined recursively as

where *  is the posterior distribution at the previous time point *
 is the state transition distribution *  is the conditional density of the

observation *  is the observation prediction distribution

S1:t y1:t

P( | ) = P( | )S1:t Y1:t S1:(t−1) Y1:(t−1)
P( | )p( | )St St−1 Yt St
p( | )Yt Y1:(t−1)

P( | )S1:(t−1) Y1:(t−1)
P( | )St St−1 p( | )Yt St

p( | )Yt Y1:(t−1)



Forward-Backward algorithm
The posterior distribution  of the state at time  conditional upon all observed
data  is called the smoothing distribution. Smoothing distributions can be effectively
computed by the Forward-Backward algorithm. This algorithm first makes a forwards
pass through the data to compute the forward variables

for , and then makes a backwards pass through the data to compute the
backwards variables

for . Smoothing probabilities are then easily computed as
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Computing the likelihood
Using the forward variables, the likelihood is easily computed as

L(θ| )y1:T = p( |θ)y1:t

= p( , = i|θ)∑
i=1

N
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Estimating latent states: Viterbi
We can estimate the value of a state  as the state with the maximum smoothing
probability . However, the resulting sequence of estimated states may not be
identical to the maximum a posteriori (MAP) state sequence:

Rather than searching over all possible state sequences, the MAP state sequence can be
efficiently determined by the so-called Viterbi algorithm. In words, this algorithm uses
ideas from dynamical programming to first determine the final element  in , and
passes backwards to determine which preceding state makes that one most probable.
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Model selection
Model selection is similar to model selection in MMs.

As for MMs, while a -state HMM is theoretically nested under a -state HMM, the
nesting relation is not unique and also involves fixing parameters to the bound of the
parameter space. Hence, standard likelihood-ratio tests are not directly applicable,
although approximate -values can be obtained from a parametric bootstrap.

Alternatively, model selection criteria such as the AIC and BIC can be used.
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