Dimensional Change Card Sort task

Binomial mixture model
Ingmar Visser (with contributions by Maarten Speekenbrink \& Bianca van Bers)

DCCS mixture model: assumptions

1. Model with two components for the sum scores
2. Assume that the data are binomial (with $n=6$ items)

DCCS mixture model: specification

$$
\mathrm{P}\left(\mathrm{y}_{\mathrm{t}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \pi_{\mathrm{i}} \mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \theta_{\mathrm{i}}\right)
$$

where:

- π_{i} are the mixture proportions
- $P\left(y_{t} \mid \theta_{i}\right)$ are the component specific distributions:

$$
\mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \theta_{\mathrm{i}}\right)=\operatorname{Binom}\left(\theta_{\mathrm{i}}, \mathrm{n}=6\right), \mathrm{i}=1,2,
$$

with

- θ_{i} the success probabilities for the binomial distribution in each component

Fitting the mixture model with depmixS4

[^0]

Fitting the mixture model with depmixS4

$1 \mathrm{~m} 2<-\operatorname{mix}(r e s p o n s e=c b i n d(n C o r P o s t, 6-n C o r P o s t) \sim 1, n s t a t e s=2$, data=dccs,family=binomial())
The mix () function takes the following arguments:

1. response: a formula specifying the response models
2. nstates: the number of states/components
3. data: the data frame containing the variables in the response models
4. family: the family of the response models (as in the glm function), in this case a binomial distribution with, by default, a logit link

Fitting the mixture model with depmixS4

```
    1 seed <- 1234
    2 set.seed(seed)
    3 fm2 <- fit(m2)
converged at iteration 11 with logLik: -147
    1 fm2
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -147 (df=3)
AIC: 300
BIC: 308
```


DCCS mixture model: results

1 depmixS4::summary(fm2)
Mixture probabilities model
pr1 pr2
0.3280 .672

Response parameters
Resp 1 : binomial
Re1.(Intercept)
St1
-1.86
2.70

Note that the response parameters are in terms of the logit link. They can be transformed into probabilities as

$$
\begin{aligned}
& \theta_{1}=\frac{-1.857}{1+\exp (-1.857)}=0.135 \\
& \theta_{2}=\frac{2.699}{1+\exp (2.699)}=0.937
\end{aligned}
$$

DCCS mixture model: model checking

The 2-component mixture model gives a good description of the data

Post-switch scores ($\mathrm{n}=93$)

Model predicted data

Posterior state probabilities

```
1 pst <- posterior(fm2)
```

2 head(pst,12)

	state	S 1	S 2
1	2	$4.38 \mathrm{e}-06$	1.00000
2	2	$4.38 \mathrm{e}-06$	1.00000
3	2	$4.38 \mathrm{e}-06$	1.00000
4	2	$4.16 \mathrm{e}-04$	0.99958
5	2	$4.38 \mathrm{e}-06$	1.00000
6	2	$4.38 \mathrm{e}-06$	1.00000
7	2	$4.38 \mathrm{e}-06$	1.00000
8	1	$9.97 \mathrm{e}-01$	0.00278
9	2	$4.16 \mathrm{e}-04$	0.99958
10	2	$4.38 \mathrm{e}-06$	1.00000
11	1	$9.97 \mathrm{e}-01$	0.00278
12	2	$4.38 \mathrm{e}-06$	1.00000

Average posterior state probabilities

1 mpost <- aggregate(posterior(fm2)[,2],by=list(age=dccs\$ageY),mean)

age	n	$\mathrm{P}(\mathrm{S}=1)$	$\mathrm{P}(\mathrm{S}=2)$
3	43	0.571	0.429
4	27	0.22	0.78
5	23	0	1

Table of posterior state assignments

age	n	$\mathrm{S}=\mathbf{1}$	$\mathrm{S}=\mathbf{2}$
3	43	25	18
4	27	6	21
5	23	0	23

Is a 2-component mixture model enough?

nstates	AIC	BIC
1	566.45	568.99
2	300.15	307.74
3	294.9	307.57
4	298.7	316.43
5	302.68	325.47

A 3-component model fits best according to the AIC and BIC. In addition, a bootstrap LR test rejects the 2-component model in favour of a 3-component model, $\mathrm{P}(\mathrm{LR} \geq 9.24)=.001$.

Results of a 3-component mixture

Mixture probabilities model
 pr1 pr2 pr3
 0.1630 .1860 .650

Response parameters
Resp 1 : binomial
Re1.(Intercept)
St1 -8.149
St2 -0.793
St3 2.877

$$
\begin{aligned}
& \theta_{1}=\frac{-8.149}{1+\exp (-8.149)}=0 \\
& \theta_{2}=\frac{-0.793}{1+\exp (-0.793)}=0.312 \\
& \theta_{3}=\frac{2.877}{1+\exp (2.877)}=0.947
\end{aligned}
$$

Model check 3-component mixture

The 3-component mixture model gives an excellent description of the data!

Post-switch scores (n=93)

Model predicted data

Average posterior state probabilities

age	n	$\mathrm{P}(\mathrm{S}=1)$	$\mathrm{P}(\mathrm{S}=2)$	$\mathrm{P}(\mathrm{S}=3)$
3	43	0.311	0.27	0.418
4	27	0.066	0.211	0.723
5	23	0	0.001	0.999

DCCS mixture model with covariate on class membership

```
    1 m2a <- mix(cbind(nCorPost,6-nCorPost)~1,ns=2,data=dccs,
        family=binomial(),prior=~scale(ageM))
    3 fm2a <- fit(m2a)
converged at iteration 10 with logLik: -129
    1 fm2a
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -129 (df=4)
AIC: 266
BIC: 276
    fm2
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -147 (df=3)
AIC: 300
BIC: 308
```


DCCS mixture model with covariate on class membership: results

summary(fm2a)

Mixture probabilities model
Model of type multinomial (mlogit), formula: ~scale(ageM)
Coefficients:
St1 St2
(Intercept) 01.35
scale(ageM) 02.00
Probalities at zero values of the covariates.
0.2070 .793

Response parameters
Resp 1 : binomial
Re1. (Intercept)
St1 -1.84
St2 2.72

$$
\begin{aligned}
& \theta_{1}=\frac{-1.841}{1+\exp (-1.841)}=0.137 \\
& \theta_{2}=\frac{2.722}{1+\exp (2.722)}=0.938
\end{aligned}
$$

DCCS mixture model: conclusions

1. It is correct to say that more 5 year olds than 3 year olds pass the task
2. It is not correct to say that average 3 year olds are worse at the DCCS than 4 and 5 year olds: the average 3 year old does not exist (it is like saying that the average sex is m / f)
3. In the 2-component model, there are two clear states (types) reflecting those who can and those who can not switch. In all age groups children either perform mostly correct or mostly incorrect and a mixture model captures that aspect of the data very well.
4. In the 3-component model, a third state (type) may reflect guessing behaviour. Alternatively, this could be people who learn to switch during the task. This possibility will be explored later with a hidden Markov model.

[^0]: 1 library(depmixS4)
 2 library(hmmr)
 3 data(dccs)
 4 head(dccs)

