Dimensional Change Card Sort task

Binomial mixture model

Ingmar Visser (with contributions by Maarten Speekenbrink & Bianca van Bers)

DCCS mixture model: assumptions

- 1. Model with two components for the sum scores
- 2. Assume that the data are binomial (with n=6 items)

DCCS mixture model: specification

$$P(y_t) = \sum_{i=1}^{N} \pi_i P(y_t | \theta_i)$$

where:

- π_i are the mixture proportions
- $P(y_t | \theta_i)$ are the component specific distributions:

$$P(y_t | \theta_i) = Binom(\theta_i, n = 6), i = 1, 2,$$

with

• θ_i the success probabilities for the binomial distribution in each component

Fitting the mixture model with depmixS4

- 1 library(depmixS4)
- 2 library(hmmr)
- 3 data(dccs)
- 4 head(dccs)

	рр	ageM	ageY	ageGr	sex	nTrPre	nCorPre	t1Post	t2Post	t3Post	t4Post	t5Post
1	1	71	5	4	female	6	6	1	1	1	1	1
2	4	66	5	4	female	6	6	1	1	1	1	-
3	5	70	5	4	female	7	6	1	1	1	1	-
4	6	62	5	4	male	6	6	0	1	1	1	1
5	7	66	5	4	male	6	6	1	1	1	1	-
6	8	66	5	4	male	7	6	1	1	1	1	1
	t61	Post 1	nCorPo	ost pas	ssPost							
1		1		6	1							
2		1		6	1							
3		1		6	1							
4		1		5	1							
5		1		6	1							
6		1		6	1							

6 1 1

Fitting the mixture model with depmixS4

1 m2 <- mix(response=cbind(nCorPost,6-nCorPost)~1,nstates=2,data=dccs,family=binomial())</pre>

The mix() function takes the following arguments:

- 1. **response**: a formula specifying the response models
- 2. nstates: the number of states/components
- 3. data: the data frame containing the variables in the response models
- 4. family: the family of the response models (as in the glm function), in this case a binomial distribution with, by default, a logit link

Fitting the mixture model with depmixS4

- 1 seed <- 1234
- 2 set.seed(seed)
- 3 fm2 <- fit(m2)

converged at iteration 11 with logLik: -147

1 fm2

```
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -147 (df=3)
AIC: 300
BIC: 308
```

DCCS mixture model: results

1 depmixS4::summary(fm2)

Mixture probabilities model pr1 pr2 0.328 0.672

Response parameters Resp 1 : binomial Rel.(Intercept) St1 -1.86 St2 2.70 Note that the response parameters are in terms of the logit link. They can be transformed into probabilities as

$$\theta_1 = \frac{-1.857}{1 + \exp(-1.857)} = 0.135$$
$$\theta_2 = \frac{2.699}{1 + \exp(2.699)} = 0.937$$

DCCS mixture model: model checking

The 2-component mixture model gives a good description of the data

Posterior state probabilities

- 1 pst <- posterior(fm2)</pre>
- 2 head(pst,12)

	state	S1	S2
1	2	4.38e-06	1.00000
2	2	4.38e-06	1.00000
3	2	4.38e-06	1.00000
4	2	4.16e-04	0.99958
5	2	4.38e-06	1.00000
6	2	4.38e-06	1.00000
7	2	4.38e-06	1.00000
8	1	9.97e-01	0.00278
9	2	4.16e-04	0.99958
10	2	4.38e-06	1.00000
11	1	9.97e-01	0.00278
12	2	4.38e-06	1.00000

Average posterior state probabilities

1 mpost <- aggregate(posterior(fm2)[,2],by=list(age=dccs\$ageY),mean)</pre>

age	n	P(S = 1)	P(S = 2)
3	43	0.571	0.429
4	27	0.22	0.78
5	23	0	1

Table of posterior state assignments

age	n	S = 1	S = 2
3	43	25	18
4	27	6	21
5	23	0	23

Is a 2-component mixture model enough?

nstates	AIC	BIC
1	566.45	568.99
2	300.15	307.74
3	294.9	307.57
4	298.7	316.43
5	302.68	325.47

A 3-component model fits best according to the AIC and BIC. In addition, a bootstrap LR test rejects the 2-component model in favour of a 3-component model, $P(LR \ge 9.24) = .001$.

Results of a 3-component mixture

Mixture probabilities model pr1 pr2 pr3 0.163 0.186 0.650

Response parameters Resp 1 : binomial Rel.(Intercept) St1 -8.149 St2 -0.793 St3 2.877

$$\theta_{1} = \frac{-8.149}{1 + \exp(-8.149)} = 0$$

$$\theta_{2} = \frac{-0.793}{1 + \exp(-0.793)} = 0.312$$

$$\theta_{3} = \frac{2.877}{1 + \exp(2.877)} = 0.947$$

Model check 3-component mixture

The 3-component mixture model gives an excellent description of the data!

Average posterior state probabilities

age	n	P(S = 1)	P(S = 2)	P(S = 3)
3	43	0.311	0.27	0.418
4	27	0.066	0.211	0.723
5	23	0	0.001	0.999

DCCS mixture model with covariate on class membership

1 m2a <- mix(cbind(nCorPost,6-nCorPost)~1,ns=2,data=dccs, 2 family=binomial(),prior=~scale(ageM))

```
3 fm2a <- fit(m2a)
```

converged at iteration 10 with logLik: -129

1 fm2a

```
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -129 (df=4)
AIC: 266
BIC: 276
```

1 fm2

```
Convergence info: Log likelihood converged to within tol. (relative change)
'log Lik.' -147 (df=3)
AIC: 300
BIC: 308
```

DCCS mixture model with covariate on class membership: results

1 summary(fm2a)

$$\theta_1 = \frac{-1.841}{1 + \exp(-1.841)} = 0.137$$
$$\theta_2 = \frac{2.722}{1 + \exp(2.722)} = 0.938$$

Response parameters Resp 1 : binomial Rel.(Intercept) St1 -1.84 St2 2.72

DCCS mixture model: conclusions

- 1. It is correct to say that more 5 year olds than 3 year olds pass the task
- 2. It is *not* correct to say that *average* 3 year olds are worse at the DCCS than 4 and 5 year olds: the *average* 3 year old does not exist (it is like saying that the average sex is m/f)
- 3. In the 2-component model, there are two clear states (types) reflecting those who *can* and those who *can not* switch. In all age groups children *either* perform mostly correct *or* mostly incorrect and a mixture model captures that aspect of the data very well.
- 4. In the 3-component model, a third state (type) may reflect guessing behaviour. Alternatively, this could be people who learn to switch during the task. This possibility will be explored later with a hidden Markov model.