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DCCS mixture model: assumptions
1. Model with two components for the sum scores

2. Assume that the data are binomial (with n=6 items)



DCCS mixture model: specification
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Fitting the mixture model with
depmixS4

library(depmixS4)1
library(hmmr)2
data(dccs)3
head(dccs)4

  pp ageM ageY ageGr    sex nTrPre nCorPre t1Post t2Post t3Post t4Post t5Post
1  1   71    5     4 female      6       6      1      1      1      1      1
2  4   66    5     4 female      6       6      1      1      1      1      1
3  5   70    5     4 female      7       6      1      1      1      1      1
4  6   62    5     4   male      6       6      0      1      1      1      1
5  7   66    5     4   male      6       6      1      1      1      1      1
6  8   66    5     4   male      7       6      1      1      1      1      1
  t6Post nCorPost passPost
1      1        6        1
2      1        6        1
3      1        6        1
4      1        5        1
5      1        6        1
6      1        6        1



Fitting the mixture model with
depmixS4

m2 <- mix(response=cbind(nCorPost,6-nCorPost)~1,nstates=2,data=dccs,family=binomial())1

The mix() function takes the following arguments:

1. response: a formula specifying the response models

2. nstates: the number of states/components

3. data: the data frame containing the variables in the response models

4. family: the family of the response models (as in the glm function), in this case a
binomial distribution with, by default, a logit link



Fitting the mixture model with
depmixS4

seed <- 12341
set.seed(seed)2
fm2 <- fit(m2)3

converged at iteration 11 with logLik: -147 

fm21

Convergence info: Log likelihood converged to within tol. (relative change) 
'log Lik.' -147 (df=3)
AIC:  300 
BIC:  308 



DCCS mixture model: results
depmixS4::summary(fm2)1

Mixture probabilities model 
  pr1   pr2 
0.328 0.672 

Response parameters 
Resp 1 : binomial 
    Re1.(Intercept)
St1           -1.86
St2            2.70

Note that the response parameters are in
terms of the logit link. They can be
transformed into probabilities as

θ1

θ2

=

=

= 0.135−1.857
1 + exp(−1.857)

= 0.9372.699
1 + exp(2.699)



DCCS mixture model: model checking
The 2-component mixture model gives a good description of
the data



Posterior state probabilities
pst <- posterior(fm2)1
head(pst,12)2

   state       S1      S2
1      2 4.38e-06 1.00000
2      2 4.38e-06 1.00000
3      2 4.38e-06 1.00000
4      2 4.16e-04 0.99958
5      2 4.38e-06 1.00000
6      2 4.38e-06 1.00000
7      2 4.38e-06 1.00000
8      1 9.97e-01 0.00278
9      2 4.16e-04 0.99958
10     2 4.38e-06 1.00000
11     1 9.97e-01 0.00278
12     2 4.38e-06 1.00000



Average posterior state probabilities

age n P(S = 1) P(S = 2)

3 43 0.571 0.429

4 27 0.22 0.78

5 23 0 1

mpost <- aggregate(posterior(fm2)[,2],by=list(age=dccs$ageY),mean)1



Table of posterior state assignments
age n S = 1 S = 2

3 43 25 18

4 27 6 21

5 23 0 23



Is a 2-component mixture model
enough?

nstates AIC BIC

1 566.45 568.99

2 300.15 307.74

3 294.9 307.57

4 298.7 316.43

5 302.68 325.47

A 3-component model fits best according to the AIC and BIC. In addition, a bootstrap LR
test rejects the 2-component model in favour of a 3-component model,

.P(LR ≥ 9.24) = .001



Results of a 3-component mixture
Mixture probabilities model 
  pr1   pr2   pr3 
0.163 0.186 0.650 

Response parameters 
Resp 1 : binomial 
    Re1.(Intercept)
St1          -8.149
St2          -0.793
St3           2.877

θ1

θ2

θ3

=

=

=

= 0
−8.149

1 + exp(−8.149)

= 0.312
−0.793

1 + exp(−0.793)

= 0.947
2.877

1 + exp(2.877)



Model check 3-component mixture
The 3-component mixture model gives an excellent description
of the data!



Average posterior state probabilities
age n P(S = 1) P(S = 2) P(S = 3)

3 43 0.311 0.27 0.418

4 27 0.066 0.211 0.723

5 23 0 0.001 0.999



DCCS mixture model with covariate
on class membership

m2a <- mix(cbind(nCorPost,6-nCorPost)~1,ns=2,data=dccs,1
           family=binomial(),prior=~scale(ageM))2
fm2a <- fit(m2a)3

converged at iteration 10 with logLik: -129 

fm2a1

Convergence info: Log likelihood converged to within tol. (relative change) 
'log Lik.' -129 (df=4)
AIC:  266 
BIC:  276 

fm21

Convergence info: Log likelihood converged to within tol. (relative change) 
'log Lik.' -147 (df=3)
AIC:  300 
BIC:  308 



DCCS mixture model with covariate
on class membership: results

summary(fm2a)1

Mixture probabilities model 
Model of type multinomial (mlogit), formula: 
~scale(ageM)
Coefficients: 
            St1  St2
(Intercept)   0 1.35
scale(ageM)   0 2.00
Probalities at zero values of the covariates.
0.207 0.793 

Response parameters 
Resp 1 : binomial 
    Re1.(Intercept)
St1           -1.84
St2            2.72

θ1

θ2

=

=

= 0.137
−1.841

1 + exp(−1.841)

= 0.938
2.722

1 + exp(2.722)



DCCS mixture model: conclusions
1. It is correct to say that more 5 year olds than 3 year olds pass the task

2. It is not correct to say that average 3 year olds are worse at the DCCS than 4 and 5 year
olds: the average 3 year old does not exist (it is like saying that the average sex is m/f)

3. In the 2-component model, there are two clear states (types) reflecting those who can
and those who can not switch. In all age groups children either perform mostly correct
or mostly incorrect and a mixture model captures that aspect of the data very well.

4. In the 3-component model, a third state (type) may reflect guessing behaviour.
Alternatively, this could be people who learn to switch during the task. This possibility
will be explored later with a hidden Markov model.




