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Moreira and Muir (2017) challenge this by showing that investors can increase

Sharpe ratios by reducing exposure to risk factors when their volatility is high.

However, Cederburg, O’Doherty, Wang, and Yan (2020) show these strategies fail

out of sample and Barroso and Detzel (2020) show they do not survive transaction

costs. We propose a novel conditional multifactor portfolio whose weights on each

factor change with market volatility and outperforms its unconditional counterpart

even out of sample and net of costs, and during both low- and high-sentiment

periods. Our results demonstrate that the breakdown of the risk-return tradeoff is

even more puzzling than previously thought.
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1 Introduction

A fundamental insight in finance is that there is a strong risk-return tradeoff. Moreira

and Muir (2017) challenge this by showing that investors can increase Sharpe ratios by

reducing exposure to risk factors when their volatility is high. The intuition underlying

their findings is that, in the absence of a strong risk-return tradeoff for factor returns,

factor exposure can be scaled back during times of high volatility without a proportional

reduction in returns. This is a challenge to structural models of time-varying expected

returns, which typically predict that the risk-return tradeoff improves during periods

of high volatility. However, Cederburg et al. (2020) show that the utility gains from

volatility management are not achievable out of sample, and Barroso and Detzel (2020)

show that transaction costs erode these gains for every risk factor except the market.

Moreover, Barroso and Detzel (2020) show that the volatility-managed market portfolio

outperforms only during high-sentiment periods.

While the aforementioned papers focus on volatility-managed individual-factor

portfolios, we provide a multifactor perspective by proposing a novel conditional mean-

variance multifactor portfolio whose weights on each factor change with market volatility.

We show that this strategy outperforms the unconditional multifactor portfolio even out

of sample and net of costs, and during both low- and high-sentiment periods. Our

findings show that estimation error, transaction costs, and sentiment do not explain the

gains from volatility management, and hence, the breakdown of the risk-return relation

is even more puzzling than previously thought.

Our approach to volatility management differs in four ways from those in the ex-

isting literature. First, we focus on multifactor portfolios, whereas the existing literature

focuses on volatility-managed portfolios of individual factors. For instance, the bulk of

the analysis by Moreira and Muir (2017, sections I.B and I.D) focuses on a portfolio of

only an individual factor and its volatility-managed counterpart. Second, our conditional

multifactor portfolios allow the relative weights on the different factors to vary with mar-

ket volatility. In contrast, Moreira and Muir (2017, section I.E) consider a conditional

fixed-weight multifactor portfolio whose relative weight on each factor does not vary with

volatility and Barroso and Detzel (2020, ftn. 12) consider a portfolio that assigns an equal
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relative weight to each factor. Third, we calculate conditional multifactor portfolios that

are optimized accounting for transaction costs. Fourth, we account for the reduction in

transaction costs associated with the netting of trades across the different factors that

are combined in the multifactor portfolio, a phenomenon termed trading diversification

by DeMiguel, Martin-Utrera, Nogales, and Uppal (2020).

Our conditional mean-variance multifactor portfolio outperforms in terms of out-

of-sample and net-of-costs Sharpe ratio the unconditional mean-variance multifactor port-

folio by about 16% and the conditional fixed-weight multifactor portfolio of Moreira and

Muir (2017) by around 10%. There are three main drivers of the favorable performance of

our portfolio. The first driver is trading diversification. In particular, although both the

unconditional and conditional multifactor portfolios benefit from the netting of trades

across multiple factors, the benefits are larger for the conditional portfolios because the

transaction costs of the volatility-managed factors are much larger than those of the un-

managed factors. For instance, while the net mean return of four of the nine managed

factors is negative if one ignores trading diversification, all nine managed factors have

positive net mean returns with trading diversification. Our analysis shows that account-

ing for trading diversification is necessary for the conditional multifactor portfolio to

outperform its unconditional counterpart.

The second driver of the performance of our portfolios is that optimizing the

conditional multifactor portfolios taking transaction costs into account significantly im-

proves their performance relative to the unconditional multifactor portfolio. Again, even

though the performance of both the conditional and unconditional portfolios improves

when they are optimized taking transaction costs into account, the benefits are larger for

the conditional portfolios because the transaction costs of trading the managed factors

are relatively larger.

The third driver of the performance of our conditional portfolios is that they

allow the relative weight on each factor to vary with market volatility, which offers

two benefits. One, our conditional portfolio optimally assigns a relative average weight

to each factor that differs substantially from that of the unconditional and conditional

3



fixed-weight portfolios.1 For instance, our conditional multifactor portfolio has a much

larger average exposure to the value (HML), momentum (UMD), and betting-against-

beta (BAB) factors than the unconditional and conditional fixed-weight portfolios. Two,

our conditional multifactor portfolio optimally times some of the factors aggressively

(HML, UMD, and BAB), while assigning a stable weight to others (MKT, SMB, and

CMA). To understand the rationale for this differential timing strategy, we regress the

monthly returns of each risk factor on realized market volatility and find that the relation

between risk and return varies substantially across factors, with some of the factors

(HML, UMD, and BAB) exhibiting a negative relation, and others exhibiting a flat or

weakly positive relation. Consequently, our conditional portfolio takes advantage of the

opportunity to time factors differentially, which is ruled out for the conditional fixed-

weight portfolio.

Our results contrast with the findings of Cederburg et al. (2020) and Barroso

and Detzel (2020) that the gains from volatility managing individual factors do not

survive out of sample or in the presence of transaction costs.2 We find that the favorable

performance of the conditional multifactor portfolio compared to that of the volatility-

managed individual-factor portfolios is driven mainly by the benefits of trading and

risk diversification across multiple factors. In particular, we find that while trading

diversification across an individual factor and its managed counterpart leads to only a

modest reduction in transaction costs, trading diversification across multiple factors leads

to a substantial reduction in the transaction costs of the conditional multifactor portfolio.

We also find that the market and size factors are negatively correlated to the other seven

factors, and thus, multifactor portfolios benefit from risk diversification across factors.

Barroso and Detzel (2020) show that the volatility-managed market portfolio out-

performs the market during high-sentiment periods, but it underperforms the market dur-

ing low-sentiment periods. This suggests that, consistent with Yu and Yuan (2011), the

performance of the volatility-managed market portfolio is driven by sentiment traders

who undermine the positive risk-return tradeoff during high-sentiment periods. Moti-

1Note that the conditional fixed-weight multifactor portfolios assign the same relative weight to each
factor as the unconditional multifactor portfolio.

2Liu, Tang, and Zhou (2019) also highlight the problems in achieving the gains from volatility-
managed portfolios out of sample.
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vated by this finding, we assess the performance of the conditional mean-variance multi-

factor portfolio in low- and high-sentiment periods. Consistent with Barroso and Detzel

(2020, panel E of table 8), we find that sentiment also explains the in-sample performance

of the conditional multifactor portfolio, which significantly outperforms its unconditional

counterpart only during high-sentiment periods. In contrast, the out-of-sample perfor-

mance of the conditional multifactor portfolio is significantly better than that of the

unconditional portfolio during both high- and low-sentiment periods. We conclude that

sentiment does not explain the out-of-sample and net-of-costs performance of our pro-

posed multifactor strategy.

Our work is related to the literature on factor timing. Ehsani and Linnainmaa

(2019) and Gupta and Kelly (2019) study the performance of factor-momentum strate-

gies, which rely on the positive autocorrelation of factor returns. Gómez-Cram (2021)

shows that the market can be timed using a business-cycle predictor derived from macroe-

conomic data. There are also papers that, like ours, study the timing of combinations

of factors. For instance, Miller, Li, Zhou, and Giamouridis (2015) develop a dynamic

portfolio approach using classification-tree analysis. Bass, Gladstone, and Ang (2017),

Hodges, Hogan, Peterson, and Ang (2017), Amenc, Esakia, Goltz, and Luyten (2019),

and Bender, Sun, and Thomas (2019) study factor portfolios conditional on macroe-

conomic state variables. Blin, Ielpo, Lee, and Teiletche (2018) study alternative risk

premia conditional on macroeconomic regimes identified using Nowcasting. De Franco,

Guidolin, and Monnier (2017) consider a multivariate Markov regime-switching model for

the three traditional Fama-French factors. Haddad, Kozak, and Santosh (2020) time the

market and the first five principal components of a large set of equity factors using the

book-to-market spread of the principal components as the timing variable. In contrast

to these papers, our focus is on multifactor portfolios whose weights change with market

volatility, which allows us to examine the risk-return tradeoff.

Our work is also related to the literature on the relation between market risk and

return across time. While a number of papers find a positive relation between market

risk and return (French, Schwert, and Stambaugh, 1987; Campbell and Hentschel, 1992),

others find a negative relation (Breen, Glosten, and Jagannathan, 1989; Nelson, 1991;

Glosten, Jagannathan, and Runkle, 1993). We study the risk-return relation for all nine
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factors in our dataset and find that it varies substantially across factors. Our conditional

multifactor portfolio exploits this by timing some of the factors more aggressively than

others.

The rest of the paper is organized as follows. Section 2 describes our data and

methodology for constructing conditional mean-variance multifactor portfolios. Section 3

reports performance gains from using conditional mean-variance multifactor portfolios.

Section 4 investigates the source of the gains from using the conditional mean-variance

multifactor portfolios. Section 5 concludes. The Internet Appendix reports the following

robustness checks and additional results: evaluating performance during periods of high

market volatility, excluding the market factor from the conditional multifactor portfolios,

constraining the conditional multifactor portfolio leverage, timing each factor using its

own volatility instead of market volatility, exploiting each factor’s value spread in addi-

tion to market volatility as a conditioning variable, exploiting business-cycle variables in

addition to market volatility as conditioning variables, using a less parsimonious condi-

tional multifactor portfolio, evaluating performance using alternative measures of risk,

considering the out-of-sample factor weights to explain performance, and studying the

correlation of returns across individual factors.

2 Data and methodology

In this section, we first describe the data used for our empirical analysis and then explain

how we construct conditional multifactor portfolios and account for transaction costs.

2.1 Data

We combine data from CRSP and Compustat for every stock traded on the NYSE,

AMEX, and NASDAQ exchanges from January 1967 to December 2020.3 We then drop

stocks for firms with negative book-to-market ratio.

3Moreira and Muir (2017) use data from 1926 to 2015 for MKT, SMB, HML, and MOM, from 1963
to 2015 for RMW and CMA, and from 1967 to 2015 for ROE and IA. Our multifactor analysis exploits
all nine factors, so in order to ensure that we have data for all the factors over the entire sample period,
our sample spans from 1967 to 2020.
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We download from the authors’ websites gross returns for the market (MKT),

small-minus-big (SMB), high-minus-low (HML), robust-minus-weak (RMW), and con-

servative-minus-aggressive (CMA) factors of Fama and French (2015), the momentum

(MOM) factor of Carhart (1997), the profitability (ROE) and investment (IA) factors

of Hou, Xue, and Zhang (2015), and the betting-against-beta (BAB) factor of Frazzini

and Pedersen (2014).4 We then replicate these nine value-weighted long-short portfolios

in order to estimate the transaction costs required to trade the stocks comprising the

factor portfolios. In unreported results, we confirm that the returns of our factors have

a correlation of more than 90% with those of the original factors.

For the out-of-sample analysis, we use an expanding-window approach, with the

first estimation window consisting of 120 months starting from January 1967. Thus,

the out-of-sample results are for the period January 1977 to December 2020. In order to

ensure a fair comparison with the out-of-sample results, the in-sample results are reported

for the same period, January 1977 to December 2020.

2.2 Conditional mean-variance multifactor portfolios

An individual volatility-managed factor can be defined as

fσt+1 =
c

(σft )2
ft+1, (1)

where ft+1 is the unmanaged factor return in month t+ 1, (σft )2 is the monthly variance

of the factor at time t estimated using the daily returns of month t, and c is a scalar

that ensures that the volatility of the managed factor fσt+1 coincides with that of the

unmanaged factor ft+1.

Although the bulk of their analysis focuses on individual factors, Moreira and

Muir (2017) also consider timing the unconditional mean-variance multifactor portfolio.

In particular, they construct the optimal combination of the unconditional mean-variance

multifactor portfolio and its managed counterpart, obtained by scaling the unconditional

portfolio by the inverse of its past-month return variance. The resulting portfolio assigns

4All factors are returns of long-short portfolios. This is true also for MKT because we use returns on
the market in excess of the risk-free return.
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the same relative weight to each factor as the unconditional mean-variance multifactor

portfolio, and thus, we refer to it as the “conditional fixed-weight multifactor portfolio.”

In contrast to timing individual factors or a conditional fixed-weight multifactor

portfolio, we consider a conditional mean-variance multifactor portfolio that allows the

relative weights of the different factors to vary over time and that uses inverse mar-

ket volatility as the conditioning variable. We employ a common conditioning variable

across all factors for simplicity, but our results are robust to using the inverse volatility

of each factor as its own conditioning variable, as shown in Section IA.4 of the Internet

Appendix.5 Also, we use market volatility instead of market variance as our condi-

tioning variable because Moreira and Muir (2017, section II.B) and Barroso and Detzel

(2020, section 3.3) point out that using volatility can help reduce the transaction costs

of volatility-managed factor portfolios.6

A conditional multifactor portfolio at time t, wt(θt) ∈ RNt , can be expressed as

wt(θt) =
K∑
k=1

xk,tθk,t, (2)

where xk,t ∈ RNt is the long-short portfolio associated to the kth factor at time t. For

parsimony, we parameterize each factor weight, θk,t, as an affine function of the inverse

of market volatility,

θk,t = ak + bk
1

σt
, (3)

where σt is the market volatility estimated from daily market returns realized over the

previous month and ak, bk ∈ R for k = 1, 2, . . . , K. Note that this specification allows for

the weight of each factor to vary differently with market volatility because, in general,

bi 6= bj for i 6= j. Defining rk,t+1 ≡ x>k,trt+1 ∈ R to be the return of the kth long-short

5This finding is consistent with Moreira and Muir (2017), who find that “because realized volatility
is highly correlated across factors, normalizing by a common volatility factor does not drastically change
our results.” Indeed, we find that in our dataset the first principal component of the nine factor variances
explains 75% of the total variability, and the correlations of the different factor variances with the first
principal component are all above 35%, with the market variance having a correlation of 96% with the
first principal component.

6Moreover, Cejnek and Mair (2021) show that using volatility also reduces leverage.
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portfolio at time t+ 1, the return of a conditional multifactor portfolio is

rp,t+1(θt) =
K∑
k=1

rk,t+1θk,t =
K∑
k=1

rk,t+1

(
ak + bk

1

σt

)
, (4)

where the second equality follows from substituting (3) into (2).

For convenience, we also define the “extended” long-short portfolio-weight matrix

Xext,t, factor-return vector rext,t+1, and factor-weight vector η as:

Xext,t ≡



x>1t
x>2t
...
x>Kt

x>1t × 1
σt

x>2t × 1
σt

...
x>Kt × 1

σt



>

, rext,t+1 ≡



r1,t+1

r2,t+1
...

rK,t+1

r1,t+1 × 1
σt

r2,t+1 × 1
σt

...
rK,t+1 × 1

σt


, and η ≡



a1

a2
...
aK
b1

b2
...
bK


, (5)

respectively. Then, the conditional mean-variance multifactor portfolio is given by the

extended factor-weight vector, η, that optimizes the mean-variance utility net of trans-

action costs of an investor with risk-aversion parameter γ:

max
η≥0

µ̂>c η − TC(η)− γ

2
η>Σ̂cη, (6)

in which µ̂>c η and η>Σ̂cη are the mean and variance of the conditional multifactor port-

folio return, respectively, Σ̂c and µ̂c are the sample covariance matrix and mean of the

extended factor-return vector, and TC(η) is its transaction cost. To alleviate the impact

of estimation error, we discipline the conditional multifactor portfolios by assigning a

nonnegative weight to each unmanaged factor ak ≥ 0 and a higher weight to each factor

when volatility is low bk ≥ 0; that is, we impose the constraint that η ≥ 0.

2.3 Modeling transaction costs

We now explain how we model the transaction costs of a conditional multifactor portfolio.

Given an estimation window with T historical observations of stock returns and factor
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long-short portfolios, the average transaction cost incurred by rebalancing the conditional

multifactor portfolio can be estimated as

TC(η) =
1

T − 1

T−1∑
t=1

‖Λt(wt+1(η)− wt(η)+)‖1, (7)

where ‖a‖1 =
∑N

i=1 |ai| denotes the 1-norm of the N -dimensional vector a, wt(η)+ is the

conditional multifactor portfolio before rebalancing at time t+ 1, that is

wt(η)+ = wt(η) ◦ (et + rt+1), (8)

et is the Nt-dimensional vector of ones, and x ◦ y is the Hadamard or componentwise

product of vectors x and y. The transaction-cost matrix at time t, Λt, is the diagonal

matrix whose ith diagonal element contains the transaction cost parameter κi,t of stock

i at time t. Note that the transaction-cost term in Equation (7) accounts for the netting

of the rebalancing trades across multiple factors; that is, for the trading diversification

effect identified by DeMiguel et al. (2020). In particular, the transaction-cost term is

computed by first aggregating the rebalancing trades of the K factor portfolios and then

charging the transaction cost at the individual-stock level.

To disentangle the benefit from trading diversification, we also compute the trans-

action costs ignoring the netting of trades across factors. In this case, in contrast to (7),

we estimate the transaction costs of the conditional multifactor portfolio by charging for

the transaction cost before aggregating the rebalancing trades across the K factors:

TC(η) =
1

T − 1

T−1∑
t=1

K∑
k=1

‖Λt

(
xk,t+1θk,t+1 − x+

k,tθk,t
)
‖1, (9)

where x+
k,t = xk,t ◦ (et + rt+1).

To estimate the stock-level transaction costs parameter κi,t, we use the two-day

corrected method proposed in Abdi and Ranaldo (2017) to estimate the monthly bid-ask

spread of the ith stock as:

ŝi,t =
1

D

D∑
d=1

ŝi,d, ŝi,d =
√

max{4(clsi,d −midi,d)(clsi,d −midi,d+1), 0}, (10)
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Figure 1: Proportional transaction costs

This figure depicts several descriptive statistics of the transaction costs for stocks (Panel A)
and factors (Panel B) estimated using the method of Abdi and Ranaldo (2017) described in
equation (10) for the out-of-sample period January 1977 to December 2020.

Panel A: Individual-stock level

Panel B: Factor level



where D is the number of days in month t, ŝi,d is the two-day bid-ask spread estimate,

clsi,d is the closing log-price on day d, and midi,d is the mid-range log-price on day d; that

is, the mean of daily high and low log-prices. Finally, because the effective trading cost

is half the bid-ask spread, the transaction-cost parameter for the ith stock is κi,t = ŝi,t/2.

Figure 1 depicts transaction costs for the period January 1977 to December 2020 at

the individual-stock level (Panel A) and at the factor level (Panel B). There are several

interesting observations from these two panels. First, transaction costs of individual

stocks are highly time varying, with the variation being particularly strong for less liquid

stocks. The transaction cost of equity factors is also time varying. The most prominent

example is momentum (UMD), whose average transaction cost is the highest among the

factors we consider. We also observe that the transaction costs of the accounting-based

factors, such as CMA and RMW, are cyclical because we update the accounting-based

factors when new accounting information becomes available, which leads to substantial

rebalancing of the portfolio.

3 Performance gains from volatility management

In this section, we study the economic gains from volatility management. Section 3.1

evaluates the performance of the volatility-managed individual-factor portfolios, which

are the focus of the existing literature. Section 3.2 evaluates the performance of our

proposed conditional mean-variance multifactor potfolio. Finally, Section 3.3 studies

whether sentiment explains the out-of-sample and net-of-costs gains from the conditional

multifactor portfolios.

3.1 Volatility-managed individual-factor portfolios

To set the stage for the analysis of our multifactor portfolios, we first evaluate the per-

formance of the volatility-managed individual-factor portfolios, which are the focus of

Moreira and Muir (2017). We then evaluate the performance of these strategies net of

transaction costs and out of sample, which allows us to confirm the findings of Barroso

and Detzel (2020) and Cederburg et al. (2020), respectively.
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Table 1: Performance of volatility-managed individual-factor portfolios

For each of the nine factors we consider, this table reports the annualized Sharpe ratios of the
unmanaged factor, SR(f), and the volatility-managed individual-factor portfolio, SR(f, fσ), which
is the mean-variance combination of the unmanaged factor with its managed counterpart given in
(1), and the p-value for the difference in Sharpe ratios. We consider an investor with risk-aversion
parameter γ = 5. Panel A reports performance in-sample and ignoring transaction costs, Panel B
in-sample and net of costs but ignoring trading diversification, Panel C out-of-sample and ignoring
costs, Panel D out-of-sample and net of costs but ignoring trading diversification, and Panel E out-
of-sample and net of costs considering trading diversification. Our sample spans January 1967 to
December 2020 and we evaluate out-of-sample performance using an expanding window with the
first estimation window containing the first 120 months of data. Thus, the out-of-sample results are
for the period January 1977 to December 2020. The out-of-sample return of each volatility-managed
individual-factor portfolio is evaluated for the month following the last month of each estimation
window. In order to ensure a fair comparison with the out-of-sample results, the in-sample results
are reported for the same period, January 1977 to December 2020.

MKT SMB HML RMW CMA UMD ROE IA BAB

Panel A: In-sample without transaction costs
SR(f) 0.530 0.208 0.170 0.506 0.399 0.474 0.722 0.508 0.880
SR(f, fσ) 0.585 0.246 0.215 0.739 0.419 1.088 1.153 0.621 1.397
p-value(SR(f, fσ)-SR(f)) 0.244 0.376 0.338 0.038 0.308 0.000 0.001 0.099 0.000

Panel B: In-sample net of transaction costs but without trading diversification
SR(f) 0.519 0.126 0.054 0.357 0.162 0.117 0.313 0.109 0.627
SR(f, fσ) 0.521 0.126 0.054 0.357 0.162 0.261 0.335 0.109 0.740
p-value(SR(f, fσ)-SR(f)) 0.464 0.500 0.500 0.500 0.500 0.223 0.389 0.500 0.127

Panel C: Out-of-sample without transaction costs
SR(f) 0.530 0.208 0.170 0.506 0.399 0.474 0.722 0.508 0.880
SR(f, fσ) 0.408 0.068 0.194 0.527 0.355 1.035 1.094 0.605 1.321
p-value(SR(f, fσ)-SR(f)) 0.900 0.933 0.390 0.452 0.897 0.000 0.001 0.063 0.000

Panel D: Out-of-sample net of transaction costs but without trading diversification
SR(f) 0.519 0.126 0.054 0.357 0.162 0.117 0.313 0.109 0.627
SR(f, fσ) 0.325 −0.292 −0.038 −0.442 −0.043 0.204 0.274 −0.122 0.727
p-value(SR(f, fσ)-SR(f)) 0.979 1.000 0.879 0.999 1.000 0.324 0.672 1.000 0.249

Panel E: Out-of-sample net of transaction costs with trading diversification
SR(f) 0.519 0.126 0.054 0.357 0.162 0.117 0.313 0.109 0.627
SR(f, fσ) 0.432 0.033 0.090 0.229 0.155 0.216 0.328 0.196 0.773
p-value(SR(f, fσ)-SR(f)) 0.925 0.873 0.256 0.965 0.561 0.091 0.402 0.031 0.059

For each of the nine factors we consider, Table 1 reports the annualized Sharpe

ratio of the unmanaged factor, SR(f), and the volatility-managed individual-factor port-

folio, SR(f, fσ), which is the mean-variance combination of the unmanaged factor with its

managed counterpart given in (1), and the p-value for the difference in Sharpe ratios. We

consider an investor with risk-aversion parameter γ = 5. Panel A reports performance

in-sample and ignoring transaction costs, Panel B in-sample and net of costs but ignoring

trading diversification, Panel C out-of-sample and ignoring costs, Panel D out-of-sample
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and net of costs but ignoring trading diversification, and Panel E out-of-sample and net of

costs with trading diversification. Our sample spans January 1967 to December 2020 and,

similar to the base-case analysis in Cederburg et al. (2020), we evaluate out-of-sample

performance using an expanding window with the first estimation window containing the

first 120 months of data.7 Thus, the out-of-sample results are for the period January 1977

to December 2020. The out-of-sample return of each volatility-managed individual-factor

portfolio is evaluated for the month following the last month of each estimation window.

In order to ensure a fair comparison with the out-of-sample results, the in-sample results

are reported for the same period, January 1977 to December 2020.

Panel A of Table 1 confirms the main finding by Moreira and Muir (2017):

in-sample and ignoring transaction costs, the Sharpe ratio of each volatility-managed

individual-factor portfolio, SR(f, fσ), is greater than that of the unmanaged factor,

SR(f), for all nine factors, with the difference being statistically significant at the 10%

level for five of the factors (RMW, UMD, ROE, IA, and BAB).8

Panel B reports the performance in-sample and net of transaction costs but, con-

sistent with Barroso and Detzel (2020), ignoring the trading-diversification benefits from

combining the unmanaged and managed factors. Comparing Panels A and B, we ob-

serve that transaction costs greatly diminish the performance of the volatility-managed

individual-factor portfolios. In fact, the transaction cost of the managed factor is so

large for five of the nine factors—SMB, HML, RMW, CMA, and IA—that when con-

sidering the optimal combination of the unmanaged and the volatility-managed factors,

the investor assigns a zero weight to the managed factor, which explains why the Sharpe

ratio of the individual-factor portfolio is equal to that of the unmanaged factor. For the

other four factors, the improvement in Sharpe ratio from volatility management is not

statistically significant. Thus, we conclude that even in sample the gains from volatility

7Cederburg et al. (2020) report that their results are not sensitive to the length of the estimation
window: “We therefore consider specifications with 20-year (K = 240) and 30-year (K = 360) initial
estimation periods. These designs produce roughly the same number of positive Sharpe ratio and CER
differences that the base case does.” They also report that their results are not sensitive to the value
chosen for the risk aversion parameter: “Using a lower (γ = 2) or higher (γ = 10) risk aversion parameter
leads to almost identical results to the base case with γ = 5.”

8In unreported results, we also observe that the alphas of the nine volatility-managed individual-
factor portfolios with respect to their unmanaged counterparts are positive, and they are statistically
significant for the same five factors.
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management are completely eroded by transaction costs, confirming the result in Barroso

and Detzel (2020).

Panel C shows that the out-of-sample Sharpe ratio of the volatility-managed

individual-factor portfolios in the absence of transaction costs is lower than the in-sample

Sharpe ratio in Panel A for all nine factors. We also observe that the optimal combination

of the unmanaged and volatility-managed factors delivers an out-of-sample Sharpe ratio,

SR(f, fσ), that can be smaller than that of even the unmanaged factor, SR(f); this is

the case for the MKT, SMB, and CMA factors.9 The out-of-sample gains from volatility

management are statistically significant at the 10% level for only four of the nine factors

(UMD, ROE, IA, BAB). Overall, our results show that, consistent with Cederburg et al.

(2020), estimation error diminishes the gains from volatility management.

Panel D shows that transaction costs erode the out-of-sample performance further.

In particular, once we account for both transaction costs and estimation risk, the Sharpe

ratio for five out of the nine volatility-managed individual-factor portfolios becomes neg-

ative. Moreover, the Sharpe ratio of the optimal combination of the unmanaged and

volatility-managed factor is lower than that of the corresponding unmanaged factor for

all factors except UMD and BAB, with neither being statistically significant, which drives

home the point that estimation risk and transaction costs erode entirely the gains from

volatility-managing individual factors.

Comparing the Sharpe ratios of the volatility-managed individual-factor portfo-

lios, SR(f, fσ), in Panels D and E, we find that accounting for the netting of trades across

the unmanaged and managed factors improves the performance of all nine portfolios.

Moreover, with trading diversification, volatility management improves the performance

for five out of the nine factors, with the improvement being statistically significant at

the 10% level for three factors (UMD, IA, BAB). Thus, trading diversification alleviates

partially the concerns raised by Barroso and Detzel (2020) and Cederburg et al. (2020),

but it does not fully resurrect the gains from volatility managing individual factors.

9Note that the unmanaged factors do not require any estimation and thus their in-sample and out-of-
sample Sharpe ratios coincide. Moreover, there are no trading-diversification benefits from trading the
unmanaged factors in isolation, and thus, their Sharpe ratio with costs is the same whether accounting
for trading diversification or not.
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Figure 2: Cumulative returns of individual factors

The nine graphs in this figure depict the out-of-sample cumulative returns net of transaction costs of
each unmanaged factor (blue line) and its associated volatility-managed individual factor portfolio
(red line) scaled to have the same volatility as the unmanaged factor. The cumulative returns
are depicted on a logarithmic scale for the out-of-sample period from January 1977 to December 2020.

To illustrate these results, Figure 2 depicts the out-of-sample cumulative returns

net of transaction costs with trading diversification of each unmanaged factor (blue line)

and its associated volatility-managed individual-factor portfolio (red line) scaled to have

the same volatility as the unmanaged factor over the out-of-sample period January 1977

to December 2020. These plots show again that, with trading diversification, volatility

management improves the performance for five out the nine factors, although (as shown

in Table 1) the difference is statistically significant for only three factors.

We conclude from the evidence presented above that, consistent with the findings

of Barroso and Detzel (2020) and Cederburg et al. (2020), a volatility-managed portfolio

based on an individual factor typically fails to significantly outperform its unmanaged

counterpart when performance is measured out of sample and net of transaction costs.
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3.2 Conditional mean-variance multifactor portfolio

In the previous section, we evaluated the performance of the volatility-managed individual-

factor portfolios, which are the focus of the existing literature. In this section, we pro-

vide a multifactor perspective on volatility management by evaluating the benefits from

volatility management for an investor who has access to multiple factors. To do this,

we compare the out-of-sample and net-of-costs performance of two portfolios: the condi-

tional mean-variance multifactor portfolio (CMV) obtained by solving problem (6) and

the unconditional mean-variance multifactor portfolio (UMV) obtained by solving prob-

lem (6) under the additional constraint that bk = 0 for k = 1, 2, . . . , K; that is, under

the constraint that its weights on the K factors do not vary with market volatility.

For each multifactor portfolio, Table 2 reports the out-of-sample annualized mean,

standard deviation, Sharpe ratio of returns net of transaction costs, and p-value for the

difference between the Sharpe ratios of the conditional and unconditional portfolios.10

For completeness, the table also reports the alpha of the time-series regression of the

conditional portfolio out-of-sample returns net of transaction costs on those of the un-

conditional portfolio, the Newey-West t-statistic for the alpha, and the out-of-sample

transaction costs accounting for trading diversification of the unconditional and condi-

tional portfolios. The portfolios are constructed exploiting all nine factors in our dataset.

We use an expanding-window approach and the out-of-sample period spans from January

1977 to December 2020.

Table 2 shows that the conditional mean-variance multifactor portfolio delivers

an out-of-sample Sharpe ratio of net returns that is significantly larger than that of the

unconditional portfolio. In particular, the conditional portfolio achieves a Sharpe ratio

of 1.126, which is around 16% higher than that of the unconditional portfolio, with the

difference being statistically significant at the 1% level. The conditional portfolio also

has an annualized alpha of 8.195%, with a significant t-statistic of 4.416. The table

10Consistent with the conditional multifactor portfolio problem (6), we compute the annualized net
mean return as the difference between the out-of-sample gross mean return and the transaction cost,
E[rp,t+1] − TC, the standard deviation as stdev(rp,t+1), and the Sharpe ratio as the ratio of these two
quantities. We construct one-sided p-values for the difference in Sharpe ratios from 10,000 bootstrap
samples using the stationary block-bootstrap method of Politis and Romano (1994) with an average block
size of five and the procedure of Ledoit and Wolf (2008, Remark 3.2) to produce the resulting p-values.

17



Table 2: Performance of conditional mean-variance multifactor portfolio

This table reports the out-of-sample and net-of-costs performance of two multifactor portfolios: the
conditional mean-variance multifactor portfolio (CMV) obtained by solving problem (6) and the
unconditional mean-variance multifactor portfolio (UMV) obtained by solving problem (6) under
the additional constraint that bk = 0 for k = 1, 2, . . . ,K; that is, under the constraint that its
weights on the K factors are constant over time. For each multifactor portfolio, the table reports
the out-of-sample annualized mean, standard deviation, Sharpe ratio of returns net of transaction
costs accounting for trading diversificaqtion, and p-value for the difference between the Sharpe ratios
of the conditional and unconditional portfolios. The table also reports the alpha of the time-series
regression of the conditional portfolio out-of-sample returns net of transaction costs on those of the
unconditional portfolio, alpha Newey-West t-statistic, and out-of-sample transaction costs of the
unconditional and conditional portfolios. The portfolios are constructed exploiting all nine factors
in our dataset. Our sample spans January 1967 to December 2020 and we evaluate out-of-sample
performance using an expanding window with the first estimation window containing the first 120
months of data. Thus, the out-of-sample results are for the period January 1977 to December 2020.
The out-of-sample return of each multifactor portfolio is evaluated for the month following the last
month of each estimation window.

UMV CMV

Mean 0.446 0.507
Standard deviation 0.459 0.450
Sharpe ratio 0.971 1.126
p-value(SRCMV-SRUMV) − 0.001
α − 8.195
t(α) − 4.416
TC 0.149 0.188

shows that the conditional portfolio has a slightly lower volatility than its unconditional

counterpart and, although the conditional portfolio incurs larger transaction costs, its

gross mean return more than compensates for the additional trading costs associated

with factor timing.

Figure 3 plots the cumulative out-of-sample net returns of three portfolios: (1) the

market, (2) the unconditional mean-variance multifactor portfolio (UMV), and (3) the

conditional mean-variance multifactor portfolio (CMV). The returns are reported in

logarithmic scale and the conditional and unconditional portfolios are standardized so

that their returns have the same volatility as the market return. Figure 3 shows that the

strategies that exploit all nine factors dramatically outperform the market. In addition,

the conditional multifactor portfolio outperforms the unconditional portfolio. Investing

$1 in January 1977 generates about $21 for the market portfolio (equivalent to a per

annum return of 7.16%), $445 for the unconditional mean-variance multifactor portfolio
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Figure 3: Cumulative returns of multifactor portfolios

This figure depicts the return from investing in the market portfolio and the out-of-sample
cumulative returns net of transaction costs of the unconditional and conditional mean-variance
multifactor portfolios over the out-of-sample period January 1977 to December 2020. The returns
are reported in logarithmic scale and the conditional and unconditional portfolios are standardized
so that their returns have the same volatility as the market return.

(equivalent to a per annum return of 14.87%), and about $1,253 for the conditional mean-

variance multifactor portfolio that exploits market volatility (equivalent to an annual

return of 17.60%). Overall, there are substantial economic gains from investing in the

conditional mean-variance multifactor portfolio relative to its unconditional counterpart.

Finally, comparing the performance of the conditional mean-variance multifac-

tor portfolio in Table 2 with the performance of the volatility-managed individual -factor

portfolios in Panel E of Table 1, we see that, not surprisingly, the conditional multi-

factor portfolio also outperforms substantially the volatility-managed individual-factor

portfolios out of sample and net of transaction costs.

3.3 Does sentiment explain performance?

Barroso and Detzel (2020) document that the volatility-managed market portfolio out-

performs the market only following months of high sentiment, and it underperforms

the market during low-sentiment periods. This suggests that, consistent with Yu and
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Yuan (2011), the performance of the volatility-managed market portfolio is driven by

sentiment traders who undermine the positive risk-return tradeoff during high-sentiment

periods. Motivated by this finding, we now assess the performance of the conditional

mean-variance multifactor portfolio in low- and high-sentiment regimes.

Table 3 compares the Sharpe ratios of the unconditional and conditional versions

of the market portfolio and the multifactor portfolio for the entire sample, for high-

sentiment periods, and for low-sentiment periods. Panels A and B, respectively, report the

in-sample and out-of-sample Sharpe ratios of returns net of transaction costs accounting

for trading diversification. We consider the Baker and Wurgler (2006) sentiment index

orthogonalized to economic conditions and, like Barroso and Detzel (2020), we define

high-sentiment (low-sentiment) years as those for which the sentiment index at the end of

the prior year is above its median value for the entire sample. Our sample spans January

1967 to December 2018, for which the sentiment index of Baker and Wurgler (2006) is

available, and we evaluate out-of-sample performance using an expanding window with

the first estimation window containing the first 120 months of data. Thus, the out-of-

sample results are for the period January 1977 to December 2018. In order to ensure a

fair comparison with the out-of-sample results, the in-sample results are reported for the

same period, January 1977 to December 2018.

Consistent with Barroso and Detzel (2020, panel E of table 8), Panel A of Table 3

shows that the in-sample performance of the volatility-managed market portfolio is bet-

ter than that of the unmanaged market factor only during high-sentiment periods, with

a p-value that is significant at the 10% confidence level. Panel A shows that sentiment

also explains the in-sample gains from the conditional multifactor portfolio, which sig-

nificantly outperforms its unconditional counterpart during high-sentiment periods but

not low-sentiment periods. However, the out-of-sample results in Panel B are markedly

different. The volatility-managed market portfolio underperforms out of sample the un-

managed market factor during both low- and high-sentiment periods. In contrast, the

out-of-sample performance of the conditional multifactor portfolio is significantly better

than that of the unconditional multifactor portfolio during both high- and low-sentiment

periods. We conclude that sentiment does not explain the out-of-sample and net-of-costs

performance of our conditional multifactor portfolio.
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Table 3: Performance for high- and low-sentiment periods

This table compares the Sharpe ratios of the unconditional and conditional versions of the market
portfolio and the multifactor portfolio for the entire sample, for high-sentiment periods, and for
low-sentiment periods. Panels A and B, respectively, report the in-sample and out-of-sample Sharpe
ratios of returns net of transaction costs accounting for trading diversification. We consider the
Baker and Wurgler (2006) sentiment index orthogonalized to economic conditions and, like Barroso
and Detzel (2020), we define high-sentiment (low-sentiment) years as those for which the sentiment
index at the end of the prior year is above its median value for the entire sample. Our sample spans
January 1967 to December 2018, for which the the sentiment index of Baker and Wurgler (2006)
is available, and we evaluate out-of-sample performance using an expanding window with the first
estimation window containing the first 120 months of data. Thus, the out-of-sample results are for
January 1977 to December 2018. In order to ensure a fair comparison with the out-of-sample results,
the in-sample results are reported for the same period, January 1977 to December 2018.

Entire sample High sentiment Low sentiment

Uncond. Cond. p-val. Uncond. Cond. p-val. Uncond. Cond. p-val.

Panel A: In sample
Market 0.519 0.532 0.295 0.178 0.217 0.093 0.954 0.940 0.656
Multifactor 1.130 1.339 0.000 1.250 1.594 0.000 1.102 1.150 0.282

Panel B: Out of sample
Market 0.519 0.449 0.889 0.178 0.082 0.887 0.954 0.952 0.496
Multifactor 0.971 1.126 0.001 1.403 1.600 0.003 0.412 0.569 0.016

4 Understanding conditional multifactor portfolios

The results in the previous section demonstrate that the conditional mean-variance mul-

tifactor portfolio significantly outperforms its unconditional counterpart out of sample

and net of transaction costs, and during both low- and high-sentiment periods. In this

section, we undertake various experiments to understand the sources of the favorable

performance of the conditional multifactor portfolio.

4.1 Disentangling the source of the gains

Each of the four panels of Table 4 reports the performance of a different method for choos-

ing multifactor portfolio weights: Panel A for the conditional fixed-weight multifactor

portfolio that ignores transaction costs, as considered by Moreira and Muir (2017);11

Panel B for the conditional mean-variance multifactor portfolio that ignores transaction

costs, which is obtained by solving problem (6) ignoring the transaction-cost term TC(η);

11Specifically, this portfolio is the optimal combination of the unconditional mean-variance multifactor
portfolio and its managed counterpart, obtained by scaling the unconditional portfolio by the inverse of
its past-month return variance, ignoring transaction costs.
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Panel C for the conditional fixed-weight multifactor portfolio considered by Moreira and

Muir (2017) extended to account for transaction costs and trading diversification; Panel D

for the conditional mean-variance multifactor portfolio obtained by solving problem (6)

accounting for transaction costs and trading diversification.

For each panel, each of the four columns reports the performance of the chosen

weights evaluated in a different way: (1) in sample ignoring transaction costs, (2) out of

sample ignoring transaction costs, (3) out of sample net of transaction costs but ignoring

trading diversification, and (4) out of sample with transaction costs and accounting for

trading diversification.

Column (1) in Panel A of Table 4 confirms the finding in Moreira and Muir (2017)

that, in-sample and ignoring transaction costs, timing the unconditional mean-variance

portfolio leads to a substantial increase in the Sharpe ratio and an economically and

statistically significant alpha.12 Column (2) shows that these gains are significant even

out of sample, if one ignores transaction costs, although they are smaller than those in

sample. This is in contrast to the result in Table 1 that the volatility-managed individual-

factor portfolios typically fail to significantly outperform the unmanaged factor out of

sample. However, Column (3) shows that accounting for transaction costs while ignoring

trading diversification eliminates the gains from volatility-managing the unconditional

mean-variance portfolio. Finally, Column (4) shows that if one accounts for trading

diversification by netting out the rebalancing trades across the multiple factors, then

timing the unconditional mean-variance portfolio leads to performance gains even out of

sample and net of transaction costs. Thus, a key takeaway from Panel A is that it is

crucial to net out trades when accounting for the transaction costs of volatility-managed

multifactor portfolios.

In Panel B of Table 4, instead of using the conditional fixed-weight multifactor

portfolio of Moreira and Muir (2017), we consider the conditional mean-variance multi-

factor portfolios obtained by solving problem (6), but ignoring transaction costs. Unlike

the conditional fixed-weight multifactor portfolios in Panel A, these portfolios allow the

12Cederburg et al. (2020, ftn. 17) point out that the positive unconditional alphas of the individual-
factor volatility-managed portfolios can be explained by the volatility-timing effects discussed by Lewellen
and Nagel (2006) and Boguth, Carlson, Fisher, and Simutin (2011). A similar argument can be made
for the unconditional alpha of the conditional fixed-weight multifactor portfolio.
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Table 4: Understanding the performance of the multifactor portfolios

Each of the four panels of this table reports the performance of a different method for choosing
multifactor portfolio weights: Panel A for the conditional fixed-weight multifactor portfolio that
ignores transaction costs, as considered by Moreira and Muir (2017); Panel B for the conditional
mean-variance multifactor portfolio that ignores transaction costs, which is obtained by solving
problem (6) ignoring the transaction-cost term TC(η); Panel C for the conditional fixed-weight
multifactor portfolio considered by Moreira and Muir (2017) extended to account for transaction
costs and trading diversification; Panel D for the conditional mean-variance multifactor portfolio
obtained by solving problem (6) accounting for transaction costs and trading diversification. For
each panel, each of the four columns reports the performance of the chosen weights evaluated in a
different way: (1) in sample ignoring transaction costs, (2) out of sample ignoring transaction costs,
(3) out of sample net of transaction costs but ignoring trading diversification, and (4) out of sample
with transaction costs and trading diversification. The sample period and quantities reported for
each portfolio are the same as in Table 2.

(1) (2) (3) (4)
In-sample Out-of-sample Out-of-sample Out-of-sample

without TC without TC with TC with TC
without trad. div. with trad. div.

UMV Cond. UMV Cond. UMV Cond. UMV Cond.

Panel A: Conditional fixed-weight multifactor portfolio ignoring transaction costs
Mean 0.415 0.602 0.753 0.783 0.413 0.316 0.531 0.530
Standard deviation 0.288 0.347 0.580 0.520 0.580 0.520 0.580 0.520
Sharpe ratio 1.441 1.735 1.299 1.506 0.713 0.608 0.916 1.019
p-value(SRCMV-SRUMV) 0.000 0.000 0.985 0.012
α 18.724 13.986 −3.338 7.806
t(α) 5.738 5.012 −1.529 3.322
TC 0.340 0.467 0.222 0.253

Panel B: Conditional mean-variance multifactor portfolio ignoring transaction costs
Mean 0.415 0.680 0.753 0.925 0.413 0.354 0.531 0.615
Standard deviation 0.288 0.369 0.580 0.569 0.580 0.569 0.580 0.569
Sharpe ratio 1.441 1.844 1.299 1.625 0.713 0.622 0.916 1.080
p-value(SRCMV-SRUMV) 0.000 0.000 0.922 0.023
α 21.293 23.855 −2.352 13.030
t(α) 6.684 5.797 −0.631 3.479
TC 0.340 0.571 0.222 0.310

Panel C: Conditional fixed-weight multifactor portfolio optimizing transaction costs
Mean 0.301 0.315 0.595 0.628 0.349 0.345 0.446 0.473
Standard deviation 0.219 0.223 0.459 0.445 0.459 0.445 0.459 0.445
Sharpe ratio 1.379 1.416 1.296 1.410 0.761 0.775 0.971 1.061
p-value(SRCMV-SRUMV) 0.005 0.001 0.333 0.001
α 0.957 5.938 1.240 4.782
t(α) 3.075 3.831 0.970 3.507
TC 0.246 0.283 0.149 0.155

Panel D: Conditional mean-variance multifactor portfolio optimizing transaction costs
Mean 0.301 0.436 0.595 0.695 0.349 0.337 0.446 0.507
Standard deviation 0.219 0.252 0.459 0.450 0.459 0.450 0.459 0.450
Sharpe ratio 1.379 1.729 1.296 1.543 0.761 0.748 0.971 1.126
p-value(SRCMV-SRUMV) 0.000 0.000 0.682 0.001
α 10.914 12.882 0.357 8.193
t(α) 7.625 6.433 0.193 4.416
TC 0.246 0.358 0.149 0.188



relative weight of each factor to vary with market volatility. Comparing the Sharpe ra-

tios of the conditional strategies in Panels A and B, we see that for all four evaluation

methods the conditional mean-variance multifactor portfolio in Panel B outperforms the

conditional fixed-weight multifactor portfolio in Panel A. For instance, under the most

realistic evaluation method, which is the one given in Column (4), the conditional mean-

variance multifactor portfolio achieves a Sharpe ratio that is around 6% higher than that

of the conditional fixed-weight multifactor portfolio. Thus, the takeaway from Panel B

is that allowing the relative weight of the different factors to vary with market volatility

allows one to improve performance.13

In Panel C of Table 4, we consider the transaction-cost-optimized conditional

fixed-weight multifactor portfolio. Comparing the results in Column (4) for Panels A

and C, we observe that, optimizing the conditional fixed-weight multifactor portfolios for

transaction costs increases the out-of-sample and net-of-costs Sharpe ratio by around 4%.

In Panel D of Table 4, we consider the conditional mean-variance multifactor port-

folios whose weights are optimized accounting for transaction costs. Column (4) shows

that the conditional mean-variance multifactor portfolio that accounts for transaction

costs achieve the best out-of-sample and net-of-cost performance, with a Sharpe ratio

that is around 10% higher than that of the conditional fixed-weight multifactor portfolio

that ignores transaction costs and 5% higher than the conditional fixed-weight multi-

factor portfolio extended to account for transaction costs. The conditional portfolio in

Panel D also incurs a lower transaction cost than the corresponding strategies in Panels A

and B, where the factor weights are optimized ignoring transaction costs.

Summarizing, Table 4 shows that the favorable performance of our conditional

multifactor portfolio compared to the unconditional and fixed-weight portfolios is ex-

plained by three elements: (i) taking trading diversification into account when evaluat-

ing performance, (ii) accounting for transaction costs and trading diversification when

13Note also that Cederburg et al. (2020, table 5, panel B) find that adding each managed factor to
a portfolio that already includes its unmanaged counterpart plus the market, size, and value factors
of Fama and French (1993) is often harmful. In contrast, we find that the conditional mean-variance
portfolios that combine all nine managed factors with their unmanaged counterparts outperform the
unconditional mean-variance portfolio.
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Figure 4: Gross and net-of-costs mean factor returns

This barplot depicts the monthly average factor returns (in percentage) of the nine unmanaged and volatility-managed
factors over the period January 1977 to December 2020. For each factor, we depict the gross mean return, the net
mean return when the factor is exploited in isolation, that is, ignoring trading diversification, and the net mean
return when the factor is exploited in combination with all the unmanaged and managed factors. For the case
when the factors are exploited in combination, we use the factor weights that solve problem (6) in sample, that is,
optimized accounting for transaction costs and trading diversification.

optimizing portfolio weights, and (iii) allowing the relative weights on different factors

to vary with market volatility. In the rest of this section, we examine these elements.

4.2 Trading diversification of multifactor portfolios

We now investigate the source of the trading-diversification benefits that are one of the

key drivers of the favorable performance of the conditional multifactor portfolios. To

do this, Figure 4 compares three quantities for each factor: (i) its mean gross return,

(ii) its mean return net of transaction costs when the factor is exploited in isolation,

that is, ignoring trading diversification, and (iii) its mean return net of transaction costs

when the factor is exploited in combination with all other factors, that is, taking trading

diversification into account. For the case when the factors are exploited in combination,

we use the factor weights that solve problem (6) in sample, that is, optimized accounting

for transaction costs and trading diversification.

We highlight four findings from Figure 4. First, comparing the mean gross return

of each factor (red bar) with its mean net return when considered in isolation (grey bar),
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we observe that transaction costs substantially reduce mean returns. For instance, the

mean net returns when trading in isolation of three of the unmanaged factors (HML,

UMD, and IA) are less than half their mean gross returns.

Second, transaction costs are even more critical for the profitability of the managed

factors, with four of them (SMB, HML, CMA, and IA) having negative mean net returns

when traded in isolation.

Third, trading diversification helps to explain why the conditional multifactor

portfolio outperforms the unconditional multifactor portfolio even in the presence of

transaction costs. In particular, although both multifactor portfolios benefit from the

netting of trades across factors, the benefits are relatively larger for the conditional

portfolios because they exploit managed factors that are expensive to trade in isolation.14

Fourth, most of the benefits from trading diversification arise from the netting

of trades across different factors rather than across just the managed and unmanaged

versions of each individual factor. To demonstrate this, Table 5 reports the out-of-

sample performance of the conditional multifactor portfolio evaluated in three different

ways: (1) taking trading diversification fully into account (that is, netting trades across

all unmanaged and managed factors), (2) taking trading diversification into account

only partially (netting trades only across the unmanaged and managed versions of each

individual factor, but not across different factors), and (3) ignoring trading diversification

altogether.

Column (3) in Table 5 shows that the out-of-sample Sharpe ratio of the conditional

multifactor portfolio when ignoring trading diversification is 0.748, which is smaller than

that of the unconditional multifactor portfolio shown in Column (3) of Panel D in Table 4,

0.761. Allowing for trading diversification just across the unmanaged and managed ver-

sions of each individual factor, increases the Sharpe ratio of the conditional multifactor

portfolio only marginally from 0.748 to 0.790. However, allowing for trading diversi-

fication across all unmanaged and managed factors substantially increases the Sharpe

ratio of the conditional multifactor portfolio from 0.790 to 1.126, making it significantly

14Note that the managed SMB factor achieves a mean net return when traded in combination that
is larger than its mean gross return. This is because the rebalancing trades of the conditional mean-
variance multifactor portfolio are negatively correlated with those of the managed SMB factor, and thus
one can effectively exploit the managed SMB factor at a negative transaction cost.
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Table 5: Sources of trading-diversification benefits

This table reports the out-of-sample and net-of-costs performance of the unconditional (UMV) and
conditional (CMV) mean-variance multifactor portfolios. We evaluate the performance of the con-
ditional multifactor portfolio in three different ways: (1) taking trading diversification fully into
account (that is, netting trades across all unmanaged and managed factors), (2) taking trading di-
versification into account only partially (netting trades only across the unmanaged and managed
versions of each individual factor, but not across different factors), and (3) ignoring trading diversifi-
cation altogether. For each multifactor portfolio, we report the annualized mean, standard deviation,
Sharpe ratio of out-of-sample net returns, and p-value for the difference between the Sharpe ratios
of the unconditional and conditional multifactor portfolio. The table also reports the alpha of the
time-series regression of the conditional portfolio out-of-sample net returns on the returns of the
unconditional portfolio, the Newey-West t-statistic for this alpha, and the out-of-sample transaction
costs of the conditional portfolios. The portfolios are constructed exploiting all nine factors in our
dataset. For the UMV and CMV portfolios, we use an expanding-window approach and the out-of-
sample period spans from January 1977 to December 2020.

(1) (2) (3)
with full trading div. with trading div. without

within & across factors only within factors any trading div.

UMV CMV CMV CMV

Mean 0.446 0.507 0.356 0.337
Standard deviation 0.459 0.450 0.450 0.450
Sharpe ratio 0.971 1.126 0.790 0.748
p-value(SRCMV-SRUMV) 0.000 1.000 1.000
α 8.193 −7.028 −8.879
t(α) 4.416 −3.664 −4.589
TC 0.149 0.188 0.339 0.358

higher than that of the unconditional portfolio, 0.971. One can make a similar inference

by comparing instead the alphas or the transaction costs of these three portfolios.

In summary, most of the trading-diversification benefits enjoyed by the conditional

multifactor portfolio arise from the netting of trades across different factors. Thus, the

favorable performance of the conditional multifactor portfolio compared to the volatility-

managed individual-factor portfolios is explained partly also by the benefits of trading

diversification across multiple factors.15

15Of course, another reason that the multifactor portfolio outperforms the individual-factor portfolios
is that it takes advantage of the risk-diversification benefits from combining multiple factors. Sec-
tion IA.10 of the Internet Appendix shows that the market and size factors are negatively correlated to
the other seven factors and thus, multifactor portfolios benefit from risk diversification across factors.

27



4.3 Time variation of multifactor portfolio weights

In this section, we study how the conditional multifactor portfolios benefit from the ability

to time the various factors differentially, which is ruled out for the conditional fixed-weight

portfolios. Figure 5 plots the in-sample weights from January 1977 to December 2020 of

the unconditional mean-variance multifactor portfolio (UMV, blue line), the conditional

mean-variance multifactor portfolio (CMV, solid red line), and the conditional fixed-

weight multifactor portfolio (CFW, solid black line) that account for transaction costs and

trading diversification.16 The figure also depicts the average weights of the conditional

mean-variance multifactor portfolio (E[CMV], dashed red line) and conditional fixed-

weight multifactor portfolio (E[CFW], dashed black line).

Figure 5 shows that the unconditional mean-variance portfolio assigns a strictly

positive weight to every factor except value (HML), to which it assigns a zero weight.

This is not surprising given that Table 1 shows that the Sharpe ratio of net returns of the

HML factor is only 5.2%, the smallest across the nine factors. As explained before, the

conditional fixed-weight portfolio is obtained by timing the unconditional portfolio, and

thus, its relative weight on each factor coincides with that of the unconditional portfolio.

Consequently, the conditional fixed-weight portfolio has zero weight on HML, just like the

unconditional portfolio. For the rest of the factors, the average weight of the conditional

fixed-weight portfolio is only slightly higher than that of the unconditional portfolio.

Therefore, the gains from using the conditional fixed-weight multifactor portfolio do not

arise from having a much larger average exposure to the factors, or from assigning a

different relative weight to the factors, but rather from timing the unconditional mean-

variance portfolio as a function of its variance.

Figure 5 also shows that the average weight on each of the factors of the condi-

tional mean-variance portfolio differs substantially from those of the unconditional and

conditional fixed-weight portfolios. In particular, the conditional mean-variance portfo-

lio assigns a much higher average weight to the value (HML), momentum (UMD), and

16We consider in-sample weights in this section so that the weights of the unconditional mean-variance
portfolio are constant over time, which allows us to interpret the time variation of the conditional mul-
tifactor portfolio weights. However, we show in Section IA.9 of the Internet Appendix that our insights
are robust to considering the out-of-sample weight of the conditional and unconditional multifactor
portfolios.
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betting-against-beta (BAB) factors than the unconditional and conditional fixed-weight

portfolios. Interestingly, allowing the relative weight of each factor to vary with market

volatility “resurrects” the value (HML) factor, to which the conditional mean-variance

portfolio assigns a substantial average weight of 0.34.17 However, the conditional mean-

variance portfolio assigns a substantially lower average weight to the investment factors

(CMA and IA), compared to the unconditional and conditional fixed-weight portfolios.

Thus, the optimal average exposure to the different factors changes when the relative

weight of each factor is allowed to vary with market volatility.

Finally, Figure 5 shows that the conditional mean-variance portfolio times some

of the factors aggressively (HML, UMD, BAB), while assigning a stable weight to other

factors (MKT, SMB, CMA). Thus, our conditional portfolio takes advantage of the op-

portunity to time factors differentially, which is ruled out for the conditional fixed-weight

portfolio. Interestingly, the weight of the conditional mean-variance portfolio on the

HML, UMD, and BAB factors drops dramatically during the Great Recession and after

the Early 2000’s Recession, but it increases substantially during periods of low market

volatility such as the 1992–1997 period.

4.4 Market volatility and factor returns

Moreira and Muir (2017) show that the favorable performance of the volatility-managed

individual-factor portfolios is explained by a weak risk-return tradeoff at the individual-

factor level. In particular, they provide empirical evidence that the expected returns of

individual factors do not significantly increase following an increase in the realized factor

volatility. In this section, we study the tradeoff between realized market volatility and

the returns of the the nine individual factors in our dataset as well as the unconditional

multifactor portfolio.

17This is consistent with Panel A of Table 1, which shows that the in-sample Sharpe ratios of gross
returns of the managed HML, UMD, and BAB factors are much higher than those of their unmanaged
counterparts. Note that the in-sample Sharpe ratio of net returns of the managed HML factor is negative,
however the transaction costs of trading the managed HML factor are much smaller when combined with
the rest of the factors in the conditional multifactor portfolio.
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Table 6: Predictive regressions of factor returns on market volatility

This table reports the intercept and slope coefficients of predictive regressions of factor returns net
of transaction costs on realized market volatility. In particular, we report the slope coefficients
of model (11). We consider nine factors: market (MKT), size (SMB), value (HML), profitability
(RMW), investment (CMA), momentum (UMD), profitability (ROE), investment (IA) and betting-
against-beta (BAB). In addition, in the last column we also report the results for the unconditional
mean-variance multifactor portfolio (UMV) . The numbers in square brackets correspond to Newey-
West t-statistics.

Factor MKT SMB HML RMW CMA UMD ROE IA BAB UMV

Intercept 0.709 −0.221 0.567 0.127 0.108 1.248 0.622 0.188 1.471 2.670
t-stat [1.311] [−1.046] [2.200] [0.735] [0.741] [2.472] [2.547] [1.434] [4.965] [4.578]

Slope −0.041 0.361 −0.569 0.118 −0.018 −1.202 −0.426 −0.141 −0.904 −0.742
t-stat [−0.064] [1.593] [−1.953] [0.554] [−0.121] [−1.861] [−1.389] [−1.055] [−2.503] [−1.145]

To examine the tradeoff between market volatility and future factor returns, we

estimate the following regression:

rk,t+1 = α + β σt + εt+1, (11)

where rk,t+1 is the return net of proportional transaction costs of factor k during month

t+1, and σt is the realized market volatility for month t. We also run a similar regression

with the return of the unconditional multifactor portfolio as the dependent variable.

Table 6 reports the results from the above regressions for the nine individual

factors and also the unconditional mean-variance multifactor portfolio (UMV). Our first

observation is that the slope for the unconditional multifactor portfolio is negative with a

t-statistic of −1.145. This explains why the conditional fixed-weight multifactor portfolio

outperforms the unconditional multifactor portfolio; there is a negative tradeoff between

the return of the unconditional multifactor portfolio and market volatility. Moreover,

none of the positive slope coefficients for the individual factors are significant, indicating

that an increase in market volatility does not lead to an increase in the next-month return

of any of the considered individual factors, consistent with the findings of Moreira and

Muir (2017). Furthermore, the slope coefficients for the HML, UMD, and BAB factors

are negative with t-statistics of −1.953, −1.861, −2.503, respectively. Thus, there is a

significant or nearly significant negative tradeoff between the returns of these three factors

and market volatility, which explains why the conditional multifactor portfolios time

HML, UMD, and BAB aggressively. Because of this aggressive timing, our conditional
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multifactor portfolio also assigns a higher average relative weight to these three factors

compared to the unconditional and conditional fixed-weight multifactor portfolios.

5 Conclusion

We develop a new strategy that exploits market volatility to time investment in pop-

ular asset-pricing factors. Instead of timing an individual equity factor conditional on

its variance or timing a fixed combination of factors conditional on the variance of that

combination, we consider a conditional mean-variance multifactor portfolio whose rela-

tive weight on each factor varies with market volatility. We show that the conditional

multifactor portfolio outperforms volatility-managed individual-factor portfolios, condi-

tional fixed-weight multifactor portfolios, and unconditional multifactor portfolios. The

performance gains of the conditional multifactor portfolio are present even out of sample,

net of transaction costs, and for both low- and high-sentiment periods.

There are three main drivers of the favorable performance of the conditional mul-

tifactor portfolio. First, we find that accounting for trading diversification is necessary

for the conditional multifactor portfolios to outperform their unconditional counterparts.

Second, we find that optimizing the conditional multifactor portfolios taking transaction

costs into account significantly improves their performance relative to the unconditional

multifactor portfolio. Third, the conditional multifactor portfolio allows the relative

weight on each factor to vary with market volatility. As a result, our portfolio optimally

assigns a relative average weight to each factor that differs substantially from that of the

unconditional mean-variance portfolio. Moreover, our portfolio optimally times some of

the factors more aggressively than others.

The success of our volatility-managed multifactor portfolio even out of sample and

net of transaction costs, and for both low- and high-sentiment periods, suggests that the

breakdown of the most fundamental relation in finance, that between risk and return, is

even more puzzling than originally thought.
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Internet Appendix to

A Multifactor Perspective on
Volatility-Managed Portfolios



This Internet Appendix reports the following robustness checks and additional results:

(i) evaluating performance during periods of high market volatility, (ii) excluding the

market factor from the conditional multifactor portfolios, (iii) constraining the condi-

tional multifactor portfolio leverage, (iv) timing each factor using its own volatility in-

stead of market volatility, (v) exploiting each factor’s value spread in addition to market

volatility as a conditioning variable, (vi) exploiting business-cycle variables in addition

to market volatility as conditioning variables, (vii) using a less parsimonious conditional

multifactor portfolio, (viii) evaluating performance using alternative measures of risk,

(ix) considering the out-of-sample factor weights to explain performance, and (x) the

risk-diversification benefits that arise because the returns on the nine factors are less

than perfectly correlated.

IA.1 Performance in high-volatility periods

Table IA.1 reports annualized mean return, standard deviation, and Sharpe ratio of the

unconditional mean-variance multifactor portfolio (UMV), the conditional fixed-weight

multifactor portfolio (CFW), and the conditional mean-variance multifactor portfolio

(CMV) during high market volatility and crises periods. We report the performance

of these three multifactor portfolios evaluated in three different ways: in-sample ignor-

ing transaction costs, out-of-sample ignoring transaction costs, and out-of-sample net of

transaction costs and taking trading diversification into account. We consider periods

with market volatility above the 80th, 85th, and 90th percentiles, as well as the Early

2000’s Recession, the Great Recession of 2007–09, and the COVID-crisis periods.18

Table IA.1 shows that the performance of the conditional mean-variance multi-

factor portfolio is robust during periods of high market volatility. In particular, the

out-of-sample Sharpe ratio net of transaction costs of the conditional mean-variance

multifactor portfolio is higher than that of the unconditional portfolio by about 13%,

18%, and 16% for subperiods where volatility is greater than the 80th, 85th, and 90th

percentile, respectively, and higher than that of the conditional fixed-weight portfolio by

about 6%, 24%, and 27%, respectively. The conditional mean-variance portfolio also out-

performs the unconditional and conditional fixed-weight portfolios for the Early 2000’s

18We define the Early 2000’s Recession as spanning from February to November 2001, the Great
Recession from December 2007 to June 2009, and the COVID crisis from January to December 2020.
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Table IA.1: Performance during high-volatility periods

This table reports annualized average return, standard deviation, and Sharpe ratio of the uncondi-
tional mean-variance multifactor portfolio (UMV), the conditional fixed-weight multifactor portfolio
(CFW), and the conditional mean-variance multifactor portfolio (CMV) during high market volatil-
ity and crises periods. We report the performance of these three multifactor portfolios evaluated in
three different ways: (1) in-sample ignoring transaction costs, (2) out-of-sample ignoring transaction
costs, and (3) out-of-sample net of transaction costs and taking trading diversification into account.
We consider periods with market volatility above the 80th, 85th, and 90th percentiles, as well as the
2000-Recession, the Great-Recession, and the COVID-Crisis periods.

(1) (2) (3)
In-sample Out-of-sample Out-of-sample

without TC without TC with TC & trad. div.

UMV CFW CMV UMV CFW CMV UMV CFW CMV

Panel A: Mean
σt >80th percentile 0.353 0.415 0.455 0.531 0.501 0.613 0.251 0.243 0.260
σt >85th percentile 0.327 0.367 0.390 0.380 0.348 0.450 0.130 0.111 0.139
σt >90th percentile 0.288 0.304 0.347 0.367 0.315 0.402 0.124 0.100 0.125
2000 Recession 0.893 0.437 1.239 1.373 0.762 1.731 0.914 0.631 1.088
Great Recession −0.310 −0.165 −0.221 −0.322 −0.145 −0.075 −0.441 −0.327 −0.285
COVID Crisis −0.138 −0.211 −0.086 −0.326 −0.345 −0.316 −0.241 −0.205 −0.309

Panel B: Standard deviation
σt >80th percentile 0.336 0.331 0.381 0.664 0.528 0.588 0.525 0.479 0.482
σt >85th percentile 0.352 0.331 0.390 0.684 0.527 0.590 0.543 0.485 0.492
σt >90th percentile 0.372 0.313 0.393 0.704 0.528 0.574 0.558 0.493 0.487
2000 Recession 0.526 0.248 0.508 0.951 0.530 0.713 0.692 0.481 0.568
Great Recession 0.223 0.181 0.269 0.369 0.278 0.306 0.257 0.193 0.220
COVID Crisis 0.387 0.237 0.433 0.354 0.252 0.447 0.364 0.249 0.400

Panel C: Sharpe ratio
σt >80th percentile 1.050 1.253 1.194 0.799 0.950 1.043 0.478 0.508 0.540
σt >85th percentile 0.930 1.109 1.000 0.555 0.661 0.763 0.240 0.228 0.283
σt >90th percentile 0.773 0.970 0.883 0.521 0.597 0.699 0.222 0.203 0.257
2000 Recession 1.698 1.763 2.437 1.444 1.438 2.427 1.320 1.314 1.916
Great Recession −1.389 −0.911 −0.823 −0.873 −0.521 −0.245 −1.721 −1.693 −1.293
COVID Crisis −0.356 −0.890 −0.200 −0.922 −1.367 −0.708 −0.661 −0.824 −0.772

Recession and the Great Recession. For instance, during the Early 2000s Recession, the

out-of-sample Sharpe ratio net of transaction costs of the conditional mean-variance mul-

tifactor portfolio is around 45% higher than those of the unconditional and conditional

fixed-weight portfolios. During the Great Recession, all three multifactor portfolios at-

tain a negative out-of-sample Sharpe ratio of returns net of costs, but the conditional

mean-variance portfolio has a substantially larger mean return than the unconditional

and conditional fixed-weight portfolios, with a standard deviation of returns that is be-

tween those of the unconditional and conditional fixed-weight portfolios. An exception
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to the overall favorable performance of the conditional mean-variance portfolio is the

COVID-crisis period, where its out-of-sample and net-of-costs performance is worse than

that of the unconditional and fixed-weight conditional portfolios.

IA.2 Excluding the market in multifactor portfolios

Barroso and Detzel (2020) find that the volatility-managed market portfolio outperforms

its unmanaged counterpart even net of transaction costs. Therefore, a legitimate concern

one may have is whether it is just the performance of the market factor that drives

entirely the good performance of the conditional mean-variance multifactor portfolio,

especially because our conditioning variable is market volatility. To address this concern,

Table IA.2 reports the performance of the conditional mean-variance multifactor portfolio

that excludes the market factor and exploits only the other eight factors.

The results in Table IA.2 show that the conditional mean-variance multifactor

portfolio delivers economic gains even when it does not exploit the market factor. Col-

umn (4) in Panels A and C show that if one takes advantage of trading diversification,

then the conditional fixed-weight multifactor portfolio improves the out-of-sample net-of-

transaction-costs Sharpe ratio by about 6%, with an alpha that is marginally significant.

Panels B and D show, for the same experimental setting, that the conditional mean-

variance multifactor portfolio delivers an improvement in Sharpe ratio of about 20% and

an annual alpha that is statistically significant.

IA.3 Leverage constraints

In the main body of the manuscript, our conditional mean-variance multifactor portfolio

is optimized to invest in nine equity factors that require one dollar of shorting (i.e.

leverage) to fund each dollar invested in the factor’s long leg. One concern is that

our conditional mean-variance portfolio requires a much larger degree of leverage than

the unconditional mean-variance multifactor portfolio to be profitable. We address this

concern by rescaling the conditional multifactor portfolio so that the dollar investment on

its short and long legs is at most 20% higher than that of the unconditional multifactor
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Table IA.2: Performance without the market factor

This table reports the performance of the multifactor portfolios constructed using every factor in
our database except the market factor. Each of the four panels of this table reports the performance
of a different method for choosing multifactor portfolio weights: Panel A for the conditional fixed-
weight multifactor portfolio that ignores transaction costs as considered by Moreira and Muir (2017);
Panel B for the conditional mean-variance multifactor portfolio that ignores transaction costs, which
is obtained by solving problem (6) ignoring the transaction-cost term TC(η); Panel C for the condi-
tional fixed-weight multifactor portfolio considered by Moreira and Muir (2017) extended to account
for transaction costs; Panel D for the conditional mean-variance multifactor portfolio obtained by
solving problem (6) accounting for transaction costs. For each panel, each of the four columns re-
ports the performance of the chosen weights evaluated in a different way: (1) in sample ignoring
transaction costs, (2) out of sample ignoring transaction costs, (3) out of sample net of transaction
costs but ignoring trading diversification, and (4) out of sample with transaction costs with trading
diversification. The sample period and quantities reported for each portfolio are the same as in
Table 2.

(1) (2) (3) (4)
In-sample Out-of-sample Out-of-sample Out-of-sample

without TC without TC with TC with TC
without trad. div. with trad. div.

UMV Cond. UMV Cond. UMV Cond. UMV Cond.

Panel A: Conditional fixed-weight multifactor portfolio ignoring transaction costs
Mean 0.268 0.417 0.674 0.690 0.357 0.245 0.465 0.445
Standard deviation 0.232 0.289 0.572 0.512 0.572 0.512 0.572 0.512
Sharpe ratio 1.158 1.443 1.180 1.348 0.625 0.478 0.814 0.868
p-value(SRCMV-SRUMV) 0.002 0.000 0.999 0.163
α 14.852 10.693 −6.365 4.161
t(α) 5.772 4.479 −2.725 1.877
TC 0.317 0.446 0.209 0.246

Panel B: Conditional mean-variance multifactor portfolio ignoring transaction costs
Mean 0.268 0.564 0.674 0.863 0.357 0.324 0.465 0.563
Standard deviation 0.232 0.336 0.572 0.559 0.572 0.559 0.572 0.559
Sharpe ratio 1.158 1.679 1.180 1.543 0.625 0.579 0.814 1.007
p-value(SRCMV-SRUMV) 0.000 0.000 0.768 0.007
α 22.756 24.887 −0.035 14.022
t(α) 7.550 6.298 −0.010 3.867
TC 0.317 0.539 0.209 0.299

Panel C: Conditional fixed-weight multifactor portfolio optimizing transaction costs
Mean 0.174 0.227 0.526 0.606 0.297 0.261 0.385 0.427
Standard deviation 0.159 0.188 0.449 0.469 0.449 0.469 0.449 0.469
Sharpe ratio 1.090 1.209 1.172 1.292 0.661 0.557 0.857 0.911
p-value(SRCMV-SRUMV) 0.005 0.000 0.998 0.086
α 2.904 6.404 −4.479 3.001
t(α) 3.722 4.636 −2.792 2.200
TC 0.230 0.344 0.141 0.179

Panel D: Conditional mean-variance multifactor portfolio optimizing transaction costs
Mean 0.174 0.328 0.526 0.633 0.297 0.292 0.385 0.450
Standard deviation 0.159 0.207 0.449 0.439 0.449 0.439 0.449 0.439
Sharpe ratio 1.090 1.581 1.172 1.441 0.661 0.665 0.857 1.026
p-value(SRCMV-SRUMV) 0.000 0.000 0.514 0.000
α 12.427 13.550 1.137 8.643
t(α) 8.249 6.734 0.614 4.632
TC 0.230 0.341 0.141 0.182



Table IA.3: Performance with leverage constraints

This table reports the out-of-sample and net-of-costs performance of the conditional multifactor
portfolio (CMV) subject to the constraint that its leverage is at most 20% higher than that of the
unconditional multifactor portfolio (UMV). For each multifactor portfolio, the table reports the
annualized mean, standard deviation, Sharpe ratio of out-of-sample net returns, and p-value for the
difference between the Sharpe ratios of the conditional and unconditional portfolios. The table also
reports the alpha of the time-series regression of the conditional portfolio out-of-sample net returns
on those of the unconditional portfolio, alpha Newey-West t-statistic, and out-of-sample transaction
costs of the unconditional and conditional portfolios. The portfolios are constructed exploiting all
nine factors in our dataset. We use an expanding-window approach and the out-of-sample period
spans from January 1977–December 2020.

UMV CMV

Mean 0.446 0.506
Standard deviation 0.459 0.446
Sharpe ratio 0.971 1.134
p-value(SRCMV-SRUMV) 0.000
α 8.447
t(α) 4.912
TC 0.149 0.175

portfolio.19 Table IA.3 shows that after imposing a leverage constraint on the conditional

mean-variance multifactor the performance is not only robust but it also delivers a higher

Sharpe ratio and abnormal return (alpha) relative to the unconstrained case.

IA.4 Exploiting each factor’s own volatility

We now study the robustness of the performance of the conditional mean-variance mul-

tifactor portfolios to timing each factor using its own volatility. Table IA.4 shows that

the performance of the conditional mean-variance portfolio is similar to that when using

market volatility to time the factors. In particular, the out-of-sample and net-of-costs

Sharpe ratio of the conditional mean-variance multifactor portfolio that uses each fac-

tor’s own volatility as conditioning variable is 1.168, only slightly higher than that of the

portfolio that uses market volatility as conditioning variable, which is 1.126.

19Moreira and Muir (2017) consider a 50% limit on the extra leverage that the volatility-managed
portfolios can have over that of the unconditional factors and find that their results are robust to this
leverage constraint. In unreported results, we confirm that our results are virtually unchanged when we
consider a 50% constraint on the leverage that the conditional mean-variance portfolio can have over
that of the unconditional multifactor portfolio. However, in this section we present the results for the
more restrictive case with a 20% leverage constraint.
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Table IA.4: Performance exploiting each factor’s own volatility

This table reports the performance of the multifactor portfolios constructed timing each factor using
its own volatility. Each of the four panels of this table reports the performance of a different method
for choosing multifactor portfolio weights: Panel A for the conditional fixed-weight multifactor
portfolio that ignores transaction costs as considered by Moreira and Muir (2017); Panel B for the
conditional mean-variance multifactor portfolio that ignores transaction costs, which is obtained by
solving problem (6) ignoring the transaction-cost term TC(η), but timing each factor using its own
volatility; Panel C for the conditional fixed-weight multifactor portfolio considered by Moreira and
Muir (2017) extended to account for transaction costs; Panel D for the conditional mean-variance
multifactor portfolio obtained by solving problem (6) accounting for transaction costs, but timing
each factor using its own volatility. For each panel, each of the four columns reports the performance
of the chosen weights evaluated in a different way: (1) in sample ignoring transaction costs, (2) out
of sample ignoring transaction costs, (3) out of sample net of transaction costs but ignoring trading
diversification, and (4) out of sample with transaction costs with trading diversification. The sample
period and quantities reported for each portfolio are the same as in Table 2.

(1) (3) (4) (5)
In-sample Out-of-sample Out-of-sample Out-of-sample

without TC without TC with TC with TC
without trad. div. with trad. div.

UMV Cond. UMV Cond. UMV Cond. UMV Cond.

Panel A: Conditional fixed-weight multifactor portfolio ignoring transaction costs
Mean 0.415 0.602 0.753 0.783 0.413 0.316 0.531 0.530
Standard deviation 0.288 0.347 0.580 0.520 0.580 0.520 0.580 0.520
Sharpe ratio 1.441 1.735 1.299 1.506 0.713 0.608 0.916 1.019
p-value(SRCMV-SRUMV) 0.000 0.000 0.986 0.012
α 18.724 13.986 −3.338 7.806
t(α) 5.738 5.012 −1.529 3.322
TC 0.340 0.467 0.222 0.253

Panel B: Conditional mean-variance multifactor portfolio ignoring transaction costs
Mean 0.415 0.807 0.753 0.957 0.413 0.361 0.531 0.629
Standard deviation 0.288 0.402 0.580 0.542 0.580 0.542 0.580 0.542
Sharpe ratio 1.441 2.008 1.299 1.768 0.713 0.667 0.916 1.161
p-value(SRCMV-SRUMV) 0.000 0.000 0.718 0.012
α 33.003 35.058 2.693 20.137
t(α) 8.135 5.830 0.551 3.893
TC 0.340 0.596 0.222 0.329

Panel C: Conditional fixed-weight multifactor portfolio optimizing transaction costs
Mean 0.301 0.315 0.595 0.628 0.349 0.345 0.446 0.473
Standard deviation 0.219 0.223 0.459 0.445 0.459 0.445 0.459 0.445
Sharpe ratio 1.379 1.416 1.296 1.410 0.761 0.775 0.971 1.061
p-value(SRCMV-SRUMV) 0.006 0.001 0.329 0.002
α 0.957 5.938 1.240 4.782
t(α) 3.075 3.831 0.970 3.507
TC 0.246 0.283 0.149 0.155

Panel D: Conditional mean-variance multifactor portfolio optimizing transaction costs
Mean 0.301 0.505 0.595 0.698 0.349 0.348 0.446 0.510
Standard deviation 0.219 0.267 0.459 0.437 0.459 0.437 0.459 0.437
Sharpe ratio 1.379 1.892 1.296 1.598 0.761 0.796 0.971 1.168
p-value(SRCMV-SRUMV) 0.000 0.000 0.306 0.000
α 17.567 15.501 2.690 10.216
t(α) 8.687 6.167 1.262 4.547
TC 0.246 0.350 0.149 0.188



IA.5 Exploiting value spreads

In the main body of the manuscript, we use market volatility as the only conditioning

variable for the conditional mean-variance multifactor portfolios. In this section, we

show that exploiting each factor’s value spread as a conditioning variable in addition to

market volatility does not help to significantly improve the out-of-sample and net-of-costs

performance of the conditional multifactor portfolios.

The value spread can be computed as the difference between the (lagged) aggregate

book-to-market ratio of the stocks in the factor’s long leg minus that of the stocks in

the factor’s short leg.20 We then define the weight assigned to the kth factor in our

parametric portfolio as

θk,t = ak + bk
1

σt
+ ckBMk,t,

where σt is the market volatility in month t and BMk,t is the kth factor’s value spread in

month t. Parameters ak, bk and ck are jointly estimated for the nine factors we consider

as the solution of the mean-variance optimization problem in (6).

Table IA.5 reports the performance of the conditional mean-variance multifactor

portfolios that exploit as conditioning variable each factor’s value spread in addition

to market volatility. The table shows that the conditional mean-variance multifactor

portfolio that exploits each factor’s value spread in addition to market volatility attains

an out-of-sample and net-of-costs Sharpe ratio of 1.145, which is only 1.7% larger than

that of the conditional mean-variance multifactor portfolio that exploits only market

volatility (1.126). Therefore, our results show that using each factor’s value spread as

a conditioning variable does not improve substantially the performance of the portfolios

that use only market volatility.

IA.6 Exploiting business-cycle variables

This section assesses whether the performance of our conditional mean-variance mul-

tifactor portfolio can be improved by exploiting factors related to the business cycle.

We entertain this possibility by accounting for the four business cycle macroeconomic

20Like Fama and French (1992), the book-to-market for June of year t is the book equity for the last
fiscal year end in t− 1 divided by market capitalization for December of year t− 1.
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Table IA.5: Conditioning on value spread and market volatility

This table reports the performance of the conditional mean-variance multifactor portfolios that ex-
ploit as conditioning variable each factor’s value spread in addition to market volatility. Each of the
four panels of this table reports the performance of a different method for choosing multifactor port-
folio weights: Panel A for the conditional fixed-weight multifactor portfolio that ignores transaction
costs as considered by Moreira and Muir (2017); Panel B for the conditional mean-variance multifac-
tor portfolio that ignores transaction costs, but exploits both each factor’s value spread and market
volatility as conditioning variables; Panel C for the conditional fixed-weight multifactor portfolio
considered by Moreira and Muir (2017) extended to account for transaction costs; Panel D for the
conditional mean-variance multifactor portfolio that accounts for transaction costs and exploits both
each factor’s value spread and market volatility as conditioning variables. For each panel, each of
the four columns reports the performance of the chosen weights evaluated in a different way: (1) in
sample ignoring transaction costs, (2) out of sample ignoring transaction costs, (3) out of sample
net of transaction costs but ignoring trading diversification, and (4) out of sample with transaction
costs with trading diversification. The sample period and quantities reported for each portfolio are
the same as in Table 2.

(1) (3) (4) (5)
In-sample Out-of-sample Out-of-sample Out-of-sample

without TC without TC with TC with TC
without trad. div. with trad. div.

UMV Cond. UMV Cond. UMV Cond. UMV Cond.

Panel A: Conditional fixed-weight multifactor portfolio ignoring transaction costs
Mean 0.415 0.602 0.753 0.783 0.413 0.316 0.531 0.530
Standard deviation 0.288 0.347 0.580 0.520 0.580 0.520 0.580 0.520
Sharpe ratio 1.441 1.735 1.299 1.506 0.713 0.608 0.916 1.019
p-value(SRCMV-SRUMV) 0.000 0.000 0.983 0.011
α 18.724 13.986 −3.338 7.806
t(α) 5.738 5.012 −1.529 3.322
TC 0.340 0.467 0.222 0.253

Panel B: Conditional mean-variance multifactor portfolio ignoring transaction costs
Mean 0.415 0.753 0.753 1.024 0.413 0.265 0.531 0.682
Standard deviation 0.288 0.388 0.580 0.634 0.580 0.634 0.580 0.634
Sharpe ratio 1.441 1.940 1.299 1.614 0.713 0.417 0.916 1.075
p-value(SRCMV-SRUMV) 0.000 0.000 1.000 0.036
α 28.189 29.582 −12.890 17.076
t(α) 7.593 5.388 −2.555 3.326
TC 0.340 0.759 0.222 0.342

Panel C: Conditional fixed-weight multifactor portfolio optimizing transaction costs
Mean 0.301 0.315 0.595 0.628 0.349 0.345 0.446 0.473
Standard deviation 0.219 0.223 0.459 0.445 0.459 0.445 0.459 0.445
Sharpe ratio 1.379 1.416 1.296 1.410 0.761 0.775 0.971 1.061
p-value(SRCMV-SRUMV) 0.005 0.001 0.332 0.002
α 0.957 5.938 1.240 4.782
t(α) 3.075 3.831 0.970 3.507
TC 0.246 0.283 0.149 0.155

Panel D: Conditional mean-variance multifactor portfolio optimizing transaction costs
Mean 0.301 0.506 0.595 0.758 0.349 0.339 0.446 0.568
Standard deviation 0.219 0.277 0.459 0.496 0.459 0.496 0.459 0.496
Sharpe ratio 1.379 1.827 1.296 1.529 0.761 0.684 0.971 1.145
p-value(SRCMV-SRUMV) 0.000 0.000 0.929 0.000
α 16.408 15.239 −1.502 11.498
t(α) 7.612 4.910 −0.566 4.033
TC 0.246 0.419 0.149 0.190



Table IA.6: Performance exploiting market volatility and macro variables

This table reports the performance of the conditional mean-variance multifactor portfolio that only
exploits inverse market volatility (CMV) and the performance of the conditional mean-variance
multifactor portfolios that exploit inverse market volatility and one macroeconomic variable as de-
fined in equation (IA1). For each multifactor portfolio, we report the annualized mean, standard
deviation, Sharpe ratio of out-of-sample net returns, and p-value for the difference between the
Sharpe ratios of the conditional multifactor portfolio exploiting inverse market volatility and one
macroeconomic variable (SRCMVMacro) and the conditional multifactor portfolio exploiting only in-
verse market volatility (SRCMV). The table also reports the alpha of the time-series regression of
the out-of-sample net returns of the conditional portfolio exploiting inverse market volatility and
a macroeconomic variable on those of the conditional portfolio exploiting inverse market volatility,
alpha Newey-West t-statistic, and out-of-sample transaction costs of the conditional portfolios. The
portfolios are constructed exploiting all nine factors in our dataset. We use an expanding-window
approach and the out-of-sample period spans from January 1977–December 2020.

CMV Sentiment Baa-Aaa Slope Claims Production

Mean 0.507 0.615 0.536 0.581 0.509 0.505
Standard deviation 0.450 0.559 0.469 0.489 0.458 0.454
Sharpe ratio 1.126 1.099 1.141 1.189 1.110 1.112
p-value(SRCMV-SRUMV) 0.630 0.308 0.115 0.864 0.886
α 2.445 1.410 5.400 −0.463 −0.420
t(α) 0.683 1.091 2.064 −0.832 −0.763
TC 0.188 0.199 0.194 0.192 0.196 0.196

variables considered by Herskovic, Moreira, and Muir (2020): 1) the Moody’s Baa-Aaa

spread, 2) the slope of the term structure, 3) initial claims, and 4) industrial production.

In addition, given the outperformance of the conditional mean-variance multifactor port-

folio on high-sentiment regimes (see Section 3.3), we also consider a sentiment dummy

variable based on the Baker and Wurgler (2006) index. More precisely, the weight on

each factor k is defined as

θk,t = ak + bk
1

σt
+ ckMacrolt, (IA1)

where Macrolt is the value of the macroeconomic variable l at time t. Table IA.6 shows

the Sharpe ratios of the conditional multifactor portfolio that exploits inverse market

volatility and one macroeconomic variable is not statistically different from that of the

conditional multifactor portfolio exploiting only inverse market volatility. Accordingly,

including business cycle variables does not enhance the performance of the conditional
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Table IA.7: Performance of alternative conditional multifactor portfolio

This table reports the performance of the unconditional multifactor portfolio (UMV), our conditional
multifactor portfolio that exploits inverse market volatility (CMV), and the alternative conditional
multifactor portfolio (ALT) obtained by solving problem (IA4). For each multifactor portfolio, we
report the annualized mean, standard deviation, Sharpe ratio of out-of-sample net returns, and p-
value for the difference between the Sharpe ratios of the unconditional multifactor portfolio and the
conditional multifactor portfolios. The table also reports the alpha of the time-series regression of the
conditional multifactor portfolio out-of-sample net returns on those of the unconditional portfolio,
alpha Newey-West t-statistic, and out-of-sample transaction costs of the conditional multifactor
portfolios. The portfolios are constructed exploiting all nine factors in our dataset. The out-of-
sample period spans from January 1977–December 2020.

UMV CMV ALT

Mean 0.446 0.507 1.122
Standard deviation 0.459 0.450 1.129
Sharpe ratio 0.971 1.126 0.994
p-value(SRCMV-SRUMV) 0.001 0.448
α 8.195 38.301
t(α) 4.416 2.308
TC 0.149 0.188 0.303

mean-variance portfolio that already exploits inverse market volatility as a conditioning

variable.21

IA.7 Alternative conditional multifactor portfolio

Our conditional multifactor portfolios rely on the assumption that the conditional weight

on the kth factor is an affine function of inverse market volatility:

θk,t = ak + bk
1

σt
. (IA2)

One may wonder whether a less parsimonious conditional multifactor portfolio

would perform better. To address this concern, in this section we evaluate the perfor-

mance of an alternative conditional multifactor portfolio obtained by using the estimator

of the conditional covariance matrix considered by Chernov, Lochstoer, and Lundeby

(2021):

Σt = (1− λ)Vt + λΣt−1, (IA3)

21In unreported results, we confirm that the results presented in this section are robust to considering
interactions between inverse market volatility and macroeconomic variables.

Page 11 of Internet Appendix



where Vt is the nonlinear shrinkage covariance matrix of Ledoit and Wolf (2020) using the

daily returns in month t and λ = 0.94, that is, the λ used by the RiskMetrics model. We

then compute the alternative conditional multifactor portfolio by solving the following

problem:

max
θt≥0

θ>t µ−
γ

2
θ>t Σtθt − TC(θt), (IA4)

where µ is the vector of means estimated from an expanding window of factor returns.22

Table IA.7 reports the performance of the alternative conditional multifactor port-

folio. We observe that our proposed conditional multifactor portfolio outperforms the

alternative portfolio in terms of Sharpe ratio.

IA.8 Alternative risk measures

In Section 3.2, we show that the conditional mean-variance multifactor portfolio delivers

an out-of-sample Sharpe ratio net of transaction costs larger than that of the uncondi-

tional multifactor portfolio and the volatility-managed portfolios of individual factors.

We now confirm that this insight also holds when we compute return-to-risk ratios using

the maximum drawdown and the Value-at-Risk instead of the volatility of portfolio re-

turns that is used to construct the Sharpe ratio. Figure IA.1 shows that regardless of the

risk measure we consider, the conditional multifactor portfolio offers a better risk-return

tradeoff than that of the unconditional multifactor portfolio and the volatility-managed

portfolios of individual factors.

IA.9 Out-of-sample multifactor portfolio weights

In Section 4.3, we explain that the conditional mean-variance portfolio allows us to adjust

the relative weight of each factor with market volatility. The analysis in Section 4.3

is in sample, that is, we estimate the optimal conditional multifactor portfolio using

the entire sample from January 1977 to December 2020. We now confirm that this

insight is true also for the out-of-sample factor weights computed using an expanding

window. Figure IA.2 shows that the relative weight of the factors varies with market

22It is challenging to estimate conditional mean returns, and thus, we use an unconditional estimate
of means for simplicity.
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Figure IA.1: Alternative performance measures

This figure depicts in-sample and net-of-costs mean-to-risk ratios of the unmanaged and volatility-
managed individual factor and multifactor portfolios. We consider the maximum drawdown and
the Value-at-Risk with 95% confidence level, VaR(95), as our risk measures.

Panel A: Mean to maximum drawdown

Panel B: Mean to VaR(95)

volatility. For instance, while the weight on the market factor does not seem to change

with market volatility (i.e., parameter bMKT = 0 in equation (3)), the weights on other

factors, such as momentum (UMD) and betting-against-beta (BAB), change substantially

with market volatility (i.e., parameter bk 6= 0 in equation (3)). One can observe this

from the result that the market weight is similar to that assigned by the unconditional
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Table IA.8: Correlation of factor returns

This table reports the correlation matrix of the nine unmanaged factors over the period January
1977 to December 2020. The numbers in bold font correspond with negative correlations.

MKT SMB HML RMW CMA UMD ROE IA BAB

MKT 1.00 0.26 −0.22 −0.26 −0.37 −0.14 −0.25 −0.34 −0.15
SMB 1.00 −0.20 −0.46 −0.14 0.03 −0.38 −0.21 −0.07
HML 1.00 0.20 0.67 −0.24 −0.04 0.66 0.36
RMW 1.00 0.11 0.11 0.68 0.19 0.36
CMA 1.00 −0.02 −0.01 0.91 0.33
UMD 1.00 0.52 −0.02 0.22
ROE 1.00 0.08 0.33
IA 1.00 0.34
BAB 1.00

multifactor portfolio, whereas the weights on UMD and BAB exhibit a much stronger time

variation around the weight assigned to these factors by the unconditional multifactor

portfolio. Thus, we conclude that the relative weight of each factor changes with market

volatility also out of sample.

IA.10 Risk diversification of multifactor portfolios

Compared to the volatility-managed individual-factor portfolios, the multifactor portfo-

lios reduce risk by diversifying across multiple factors. To illustrate this effect, Table IA.8

reports the correlation matrix for the returns of the nine unmanaged factors.23 The cor-

relation matrix reveals that risk diversification is an important driver of the favorable

performance of the conditional multifactor portfolios, compared to the volatility-managed

individual-factor portfolios. In particular, the market (MKT) and size (SMB) factors are

generally negatively correlated with the other factors, and thus combining MKT and SMB

with the rest of the factors helps to reduce the overall risk of the conditional multifactor

portfolio.

23In unreported results, we find that the managed factors are highly correlated with their unmanaged
counterparts (correlation in excess of 86% for every factor) and that the correlations between the managed
factors are similar to those between their unmanaged counterparts.
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