
What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

“How to Differentiate a Computer Program”

Daniel Grose

November 21, 2017

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.

+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is ...

Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,I,.....

The list of elementary functions is not very long.

Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) ≡ (log ◦ (+cos) ◦ sin ◦ I)(x)

Sequences of function compositions can be differentiated
using the chain rule.

This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is not ...

Numerical differentiation e.g finite differences etc.

Symbolic differentiation (other than a small number of
elementary functions).

An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is not ...

Numerical differentiation e.g finite differences etc.

Symbolic differentiation (other than a small number of
elementary functions).

An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is not ...

Numerical differentiation e.g finite differences etc.

Symbolic differentiation (other than a small number of
elementary functions).

An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is not ...

Numerical differentiation e.g finite differences etc.

Symbolic differentiation (other than a small number of
elementary functions).

An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is not ...

Numerical differentiation e.g finite differences etc.

Symbolic differentiation (other than a small number of
elementary functions).

An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order.

Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f .

With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is good at ...

AD is at its best for functions f : Rn → Rm, particularly when
n and/or m is large.

Rapid development - no need to code the
m
∑k

i=1

((n
i

))
= m

∑k
i=1

(n+i−1
i

)
functions needed to compute

the partial derivatives to kth order. Example - n = 4, m = 3
and k = 2 requires 42 additional functions !!

Efficiency - for k = 2, AD takes the equivalent of about 4
evaluations of f . With n = 4, m = 3 and k = 2, finite
differences would require 243 evaluations of f .

Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation.

When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ?

When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ?

Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests.

If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !!

Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area.

Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

What AD is useful for ...

Jacobians, Hessians and higher order derivatives of
f : Rn → Rm, particularly when n and/or m is large.

Optimisation. When does f (x, y,) = 0 ? When does
f ′(x, y,) = 0 ? Newton–Raphson.

Sensitivity / Robustness tests. If f ′(x, y) = 0 what is ∂y
∂x ?

Implicit Function Theorem.

Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R. Load library. Define function. Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R.

Load library. Define function. Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R. Load library.

Define function. Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R. Load library. Define function.

Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R. Load library. Define function. Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Start R. Load library. Define function. Use function.

> library(adlaComp)

> f<-adlaComp(’

adlaMat f(const adlaMat& X)

{

Eigen::EigenSolver<adlaMat> es(X);

return es.pseudoEigenvectors();

}

’)

> x<-matrix(c(1,2,3,4),2,2)

> f(x)

[,1] [,2]

[1,] -0.9093767 -0.4159736

[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Calculate Jacobian.

> J(f)(x)

[,1] [,2] [,3] [,4]

[1,] 0.02739166 -0.01252969 0.05988202 -0.02739166

[2,] -0.05988202 0.02739166 -0.13091051 0.05988202

[3,] 0.05988202 -0.02739166 0.13091051 -0.05988202

[4,] 0.02739166 -0.01252969 0.05988202 -0.02739166

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Calculate Jacobian.

> J(f)(x)

[,1] [,2] [,3] [,4]

[1,] 0.02739166 -0.01252969 0.05988202 -0.02739166

[2,] -0.05988202 0.02739166 -0.13091051 0.05988202

[3,] 0.05988202 -0.02739166 0.13091051 -0.05988202

[4,] 0.02739166 -0.01252969 0.05988202 -0.02739166

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Calculate (stacked) Hessian.

> H(f)(x)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.009551480 -0.006550244 0.0104567584 -0.009551480 -0.0104567584

[2,] -0.006550244 0.003993971 -0.0095514802 0.006550244 0.0095514802

[3,] 0.010456758 -0.009551480 0.0000713503 -0.010456758 -0.0000713503

[4,] -0.009551480 0.006550244 -0.0104567584 0.009551480 0.0104567584

[,6] [,7] [,8] [,9] [,10]

[1,] 0.009551480 -0.0000713503 0.0104567584 0.0104567584 -0.009551480

[2,] -0.006550244 0.0104567584 -0.0095514802 -0.0095514802 0.006550244

[3,] 0.010456758 0.0496630913 0.0000713503 0.0000713503 -0.010456758

[4,] -0.009551480 0.0000713503 -0.0104567584 -0.0104567584 0.009551480

[,11] [,12] [,13] [,14] [,15]

[1,] 0.0000713503 -0.0104567584 0.009551480 -0.006550244 0.0104567584

[2,] -0.0104567584 0.0095514802 -0.006550244 0.003993971 -0.0095514802

[3,] -0.0496630913 -0.0000713503 0.010456758 -0.009551480 0.0000713503

[4,] -0.0000713503 0.0104567584 -0.009551480 0.006550244 -0.0104567584

[,16]

[1,] -0.009551480

[2,] 0.006550244

[3,] -0.010456758

[4,] 0.009551480

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...
What AD is not ...

What AD is good at ...
What AD is useful for ...

Time permitting ... An example

Time permitting ... An example using R

Calculate (stacked) Hessian.

> H(f)(x)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.009551480 -0.006550244 0.0104567584 -0.009551480 -0.0104567584

[2,] -0.006550244 0.003993971 -0.0095514802 0.006550244 0.0095514802

[3,] 0.010456758 -0.009551480 0.0000713503 -0.010456758 -0.0000713503

[4,] -0.009551480 0.006550244 -0.0104567584 0.009551480 0.0104567584

[,6] [,7] [,8] [,9] [,10]

[1,] 0.009551480 -0.0000713503 0.0104567584 0.0104567584 -0.009551480

[2,] -0.006550244 0.0104567584 -0.0095514802 -0.0095514802 0.006550244

[3,] 0.010456758 0.0496630913 0.0000713503 0.0000713503 -0.010456758

[4,] -0.009551480 0.0000713503 -0.0104567584 -0.0104567584 0.009551480

[,11] [,12] [,13] [,14] [,15]

[1,] 0.0000713503 -0.0104567584 0.009551480 -0.006550244 0.0104567584

[2,] -0.0104567584 0.0095514802 -0.006550244 0.003993971 -0.0095514802

[3,] -0.0496630913 -0.0000713503 0.010456758 -0.009551480 0.0000713503

[4,] -0.0000713503 0.0104567584 -0.009551480 0.006550244 -0.0104567584

[,16]

[1,] -0.009551480

[2,] 0.006550244

[3,] -0.010456758

[4,] 0.009551480

Daniel Grose “How to Differentiate a Computer Program”

	What AD is ...
	What AD is not ...
	What AD is good at ...
	What AD is useful for ...
	Time permitting ... An example

