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e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

@ The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) = (log o (+cos) o sin o 1)(x)

@ Sequences of function compositions can be differentiated
using the chain rule.

@ This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.
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@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?
Implicit Function Theorem.

@ Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!
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Time permitting ... An example using R

@ Start R. Load library. Define function. Use function.

> library(adlaComp)
> f<-adlaComp(’
adlaMat f(const adlaMat& X)
{
Eigen::EigenSolver<adlaMat> es(X);
return es.pseudoEigenvectors();
}
”)
> x<-matrix(c(1,2,3,4),2,2)
> £(x)
[,11 [,2]
[1,] -0.9093767 -0.4159736
[2,] 0.4159736 -0.9093767
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Time permitting ... An example using R

@ Calculate Jacobian.

> J(£) (x)

[,1] [,2] [,3] [,4]
[1,] 0.02739166 -0.01252969 0.05988202 -0.02739166
[2,] -0.05988202 0.02739166 -0.13091051 0.05988202
[3,] 0.05988202 -0.02739166 0.13091051 -0.05988202
[4,] 0.02739166 -0.01252969 0.05988202 -0.02739166
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Time permitting ... An example using R

e Calculate (stacked) Hessian.

> H(E) (x)
[,1] [,2] [,3] [,4] [,5]
[1,] 0.009551480 -0.006550244 0.0104567584 -0.009551480 -0.0104567584
[2,] -0.006550244 0.003993971 -0.0095514802 0.006550244 0.0095514802
[3,]1 0.010456758 -0.009551480 0.0000713503 -0.010456758 -0.0000713503
[4,] -0.009551480 0.006550244 -0.0104567584 0.009551480 0.0104567584
[,6] [,71 [,8] [,91 [,10]
[1,] 0.009551480 -0.0000713503 0.0104567584 0.0104567584 -0.009551480
[2,] -0.006550244 0.0104567584 -0.0095514802 -0.0095514802 0.006550244
[3,] 0.010456758 0.0496630913 0.0000713503 0.0000713503 -0.010456758
[4,] -0.009551480 0.0000713503 -0.0104567584 -0.0104567584 0.009551480
[,11] [,12] [,13] [,14] [,15]
[1,] 0.0000713503 -0.0104567584 0.009551480 -0.006550244 0.0104567584
[2,] -0.0104567584 0.0095514802 -0.006550244 0.003993971 -0.0095514802
[3,] -0.0496630913 -0.0000713503 0.010456758 -0.009551480 0.0000713503
[4,] -0.0000713503 0.0104567584 -0.009551480 0.006550244 -0.0104567584
[,16]
[1,] -0.009551480
[2,] 0.006550244
[3,] -0.010456758
[4,1 0.009551480

pa}
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