“How to Differentiate a Computer Program”

Daniel Grose

November 21, 2017

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

o Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....
@ The list of elementary functions is not very long.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

@ The sequence can be written using function composition e.g.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

@ The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) = (log o (+cos) o sin o 1)(x)

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

@ The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) = (log o (+cos) o sin o 1)(x)

@ Sequences of function compositions can be differentiated
using the chain rule.

Daniel Grose “How to Differentiate a Computer Program”

What AD is ...

What AD is ...

e Computer programs execute sequences of elementary
arithmetic operations.+,-,sin,exp,log,|,.....

@ The list of elementary functions is not very long.

@ Each of these elementary arithmetic operations can easily be
differentiated (in terms of each other).

@ The sequence can be written using function composition e.g.

log(sin(x) + cos(x)) = (log o (+cos) o sin o 1)(x)

@ Sequences of function compositions can be differentiated
using the chain rule.

@ This has been automated - it is called Algorithmic (or
Automatic) Differentiation, or AD for short.

Daniel Grose “How to Differentiate a Computer Program”

What AD is not ...

What AD is not ...

Daniel Grose “How to Differentiate a Computer Program”

What AD is not ...

What AD is not ...

@ Numerical differentiation e.g finite differences etc.

Daniel Grose “How to Differentiate a Computer Program”

What AD is not ...

What AD is not ...

@ Numerical differentiation e.g finite differences etc.

e Symbolic differentiation (other than a small number of
elementary functions).

Daniel Grose “How to Differentiate a Computer Program”

What AD is not ...

What AD is not ...

@ Numerical differentiation e.g finite differences etc.

e Symbolic differentiation (other than a small number of
elementary functions).

@ An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is not ...

What AD is not ...

@ Numerical differentiation e.g finite differences etc.

e Symbolic differentiation (other than a small number of
elementary functions).

@ An approximation - it is as accurate as the compiler can allow.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

@ Rapid development - no need to code the

m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to ky, order.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

@ Rapid development - no need to code the
m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to k¢, order. Example - n=4, m=3
and k = 2 requires 42 additional functions !!

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

@ Rapid development - no need to code the
m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to k¢, order. Example - n=4, m=3
and k = 2 requires 42 additional functions !!

o Efficiency - for k =2, AD takes the equivalent of about 4
evaluations of f.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

e Rapid development - no need to code the
m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to k¢, order. Example - n=4, m=3
and k = 2 requires 42 additional functions !!

o Efficiency - for k =2, AD takes the equivalent of about 4
evaluations of f. With n =4, m = 3 and k = 2, finite
differences would require 243 evaluations of f.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

@ Rapid development - no need to code the
m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to k¢, order. Example - n=4, m=3
and k = 2 requires 42 additional functions !!

o Efficiency - for k =2, AD takes the equivalent of about 4
evaluations of f. With n =4, m = 3 and k = 2, finite
differences would require 243 evaluations of f.

@ Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is good at ...

What AD is good at ...

@ AD is at its best for functions f : R” — R, particularly when
n and/or m is large.

@ Rapid development - no need to code the
m> 5 (7) = mEK, ("TI71) functions needed to compute
the partial derivatives to k¢, order. Example - n=4, m=3
and k = 2 requires 42 additional functions !!

o Efficiency - for k =2, AD takes the equivalent of about 4
evaluations of f. With n =4, m = 3 and k = 2, finite
differences would require 243 evaluations of f.

@ Accuracy - machine precision.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

@ Optimisation.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

@ Optimisation. When does f(x,y,....) =07

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,...) =07

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?
Implicit Function Theorem.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?
Implicit Function Theorem.

@ Quants love the last one !l

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?
Implicit Function Theorem.

@ Quants love the last one !! Perhaps the biggest application
area.

Daniel Grose “How to Differentiate a Computer Program”

What AD is useful for ...

What AD is useful for ...

@ Jacobians, Hessians and higher order derivatives of
f:R" — R™, particularly when n and/or m is large.

e Optimisation. When does f(x,y,.....) =0 7 When does
f'(x,y,.....) = 0 ? Newton—Raphson.

@ Sensitivity / Robustness tests. If f’(x,y) = 0 what is % ?
Implicit Function Theorem.

@ Quants love the last one !! Perhaps the biggest application
area. Not much in public domain !!

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

e Start R.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Start R. Load library.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Start R. Load library. Define function.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Start R. Load library. Define function. Use function.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Start R. Load library. Define function. Use function.

> library(adlaComp)
> f<-adlaComp(’
adlaMat f(const adlaMat& X)
{
Eigen::EigenSolver<adlaMat> es(X);
return es.pseudoEigenvectors();
}
”)
> x<-matrix(c(1,2,3,4),2,2)
> £(x)
[,11 [,2]
[1,] -0.9093767 -0.4159736
[2,] 0.4159736 -0.9093767

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Calculate Jacobian.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

@ Calculate Jacobian.

> J(£) (x)

[,1] [,2] [,3] [,4]
[1,] 0.02739166 -0.01252969 0.05988202 -0.02739166
[2,] -0.05988202 0.02739166 -0.13091051 0.05988202
[3,] 0.05988202 -0.02739166 0.13091051 -0.05988202
[4,] 0.02739166 -0.01252969 0.05988202 -0.02739166

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

e Calculate (stacked) Hessian.

Daniel Grose “How to Differentiate a Computer Program”

Time permitting ... An example

Time permitting ... An example using R

e Calculate (stacked) Hessian.

> H(E) (x)
[,1] [,2] [,3] [,4] [,5]
[1,] 0.009551480 -0.006550244 0.0104567584 -0.009551480 -0.0104567584
[2,] -0.006550244 0.003993971 -0.0095514802 0.006550244 0.0095514802
[3,]1 0.010456758 -0.009551480 0.0000713503 -0.010456758 -0.0000713503
[4,] -0.009551480 0.006550244 -0.0104567584 0.009551480 0.0104567584
[,6] [,71 [,8] [,91 [,10]
[1,] 0.009551480 -0.0000713503 0.0104567584 0.0104567584 -0.009551480
[2,] -0.006550244 0.0104567584 -0.0095514802 -0.0095514802 0.006550244
[3,] 0.010456758 0.0496630913 0.0000713503 0.0000713503 -0.010456758
[4,] -0.009551480 0.0000713503 -0.0104567584 -0.0104567584 0.009551480
[,11] [,12] [,13] [,14] [,15]
[1,] 0.0000713503 -0.0104567584 0.009551480 -0.006550244 0.0104567584
[2,] -0.0104567584 0.0095514802 -0.006550244 0.003993971 -0.0095514802
[3,] -0.0496630913 -0.0000713503 0.010456758 -0.009551480 0.0000713503
[4,] -0.0000713503 0.0104567584 -0.009551480 0.006550244 -0.0104567584
[,16]
[1,] -0.009551480
[2,] 0.006550244
[3,] -0.010456758
[4,1 0.009551480

pa}

“How to Differentiate a Computer Program”

	What AD is ...
	What AD is not ...
	What AD is good at ...
	What AD is useful for ...
	Time permitting ... An example

