OptiFrame for Trajectory Based Operations (TBO) Decisions Support

OptiFrame Consortium

Brussels, 14th February 2018

Demonstrate the OptiFrame's decision support capabilities

Table of contents

- 1. The nature of the OptiFrame solutions
- 2. Description of test instances
- 3. Exact versus heuristic solutions
- 4. Using OptiFrame for Decisions Support

The nature of the OptiFrame solutions

The nature of the OptiFrame solutions (1/3)

An OptiFrame solution provides a 4D trajectory for each flight:

- a trajectory in 3D space,
- the departure time.

Each solution achieves specific values of the three objective functions (delay, flight efficiency, route charges).

In the presence of a trade-off between objectives, there are multiple efficient solutions.

Non-dominated (efficient) solution: solution that is not outperformed by any other solution in terms of all objectives

The nature of the OptiFrame ... (2/3) OptiFrame SESAR

Value path graph: a graphical representation of non-dominated solutions

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

The nature of the OptiFrame solutions (3/3)

Pareto Frontier: the collection of all non-dominated solutions.

Each point in the 3D plot – identified by total delay, total flight efficiency, total route charges for all flights – is a non-dominated solution.

Description of the test instances

Description of test instances (1/2)

Data extracted from DDR2 database :

- Choice of a busy day (3rd October 2016)
- <u>two major airports</u>: EGLL & EDDF
- 10 flights operated at peak hours (9am - 3pm)
- 21 sectors
- 269 relevant waypoints
- 2 airlines

- <u>four major airports</u>: EGLL, LFCG, EHAM, EDDF
- 186 flights operated during the whole day
- 60 sectors
- 694 relevant waypoints
- 6 airlines
- Sectors and airports capacity profiles over time horizon

Description of test instances (1/2)

Realistic instances: built on the basis of real data.

- 4 airports
- 694 waypoints
- 60 sectors
- 24 hours time horizon (10 minutes intervals)
- Instance I: 186 flights
- Instance II: 300 flights (~ +50%)

Exact versus heuristic solutions

Exact vs heuristic solutions (1/3)

Comparison of computational times

Comparison of quality of solutions

Exact vs heuristic solutions (2/3)

 $\times 10^4$ 1.07 1.06 80.1 Soute Charges 1.02 1.04 Charges 1.03 20 1.02 10 1.01 1.49 1.5 1.51 1.52 1.53 1.54 1.55 1.56 Delay $\times 10^4$ Flight Efficiency

- Instance with 186 flights
- 4 airports
- 232 exact solutions
- 257 heuristic solutions
- Good coverage of the frontier (in terms of spread)
- Fairly close to the exact solutions values
- Consistent number of solutions with Pareto Frontier

Comparison of quality of solutions

Exact vs heuristic solutions (3/3)

 $\times 10^4$ 1.6 1.59 Route Charges 1.52 1.52 1.52 1.55 20 0 00 0 00 00 00 10 1.54 -0 2.4 2.41 2.42 2.43 2.44 2.45 Delay $\times 10^4$ Flight Efficiency

- Instance with 300 flights
- 4 airports
- 185 exact solutions
- 216 solutions
- Good coverage of the frontier (in terms of spread)
- Fairly close to the exact solutions values
- Consistent number of solutions with Pareto Frontier

Using OptiFrame for Decisions Support

OptiFrame for decisions support (1/17) Sesare Sesare Results for EGLL and EDDF instance

• 56 efficient solutions

- (Min, Max) Delay: (0, 11)
- (Min, Max) Deviation: (4620, 10764)
- (Min, Max) Route Charges: (800, 1126)

OptiFrame for decisions support (2/17) SESAR Trajectories for a flight

OptiFrame for decisions support (3/17) SESA Advantages of the multi-objective approach

- The importance to be given to each objective is not decided in advance
- Trade-off between objectives can be investigated to better choose a solution to be implemented

A priori choice: give a reasonable importance to all objectives, according to goals of Stakeholders

A posteriori evaluation: if I give less importance to the minimization of diglay, efficiency, places places places by the terms of the totge in abject with sins the totelevant objectives

Stakeholders may adjust their views on objectives' importance according to the solutions.

OptiFrame for decisions support (4/17) SESAR A guide to results

- Pareto frontiers identify a large number of candidate solutions.
- Filtering criteria can be used to limit the set candidate solutions.

Examples:

- All objectives between 10% and 90% of extreme values
- All objectives between 20% and 80% of extreme values
- Sequential restriction of objectives
 - delay between 20% and 50% of extreme values
 - deviation between 20% and 40%
 - route charges between 20% and 25%

Instance I, Nominal Scenario

OptiFrame for decisions support (5/17) OptiFrame SESAR Instance I

- Ai

Ai

Ai

Ai

Value-Paths 1.2 Difference between the objectives (%) 1 80 0.8 0.6 40 0.4 0.2 20 0 Delay Deviation R. Charges Delay Deviation Route Charges

line 1		#flights	Delay	Deviation	RouteCharges
rline 2 rline 3	Airline 1	25	2	1805	1387
	Airline 2	29	0	2088	1676
	Airline 3	38	0	3257	2114
fine 4	Airline 4	36	0	3176	1984
rline 5	Airline 5	27	0	2155	1439
line 6	Airline 6	31	0	2548	1792

Minimum Deviation. Total: Delay = 10, Deviation = 14936, R. Charges = 10590

Minimum Delay. Total: Delay = 2, Deviation = 15029, R. Charges = 10392

- Airline 1		#flights	Delay	Deviation	RouteCharges
- Airline 2	Airline 1	25	0	1837	1335
Airline 3	Airline 2	29	3	2115	1619
- Airline 3	Airline 3	38	3	3302	2090
- Airline 4	Airline 4	36	0	3224	1973
- Airline 5	Airline 5	27	0	2167	1421
- Airline 6	Airline 6	31	1	2632	1733

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

20

X

OptiFrame for decisions support (6/17) OptiFrame SESAR

Random1. Total: Delay = 5, Deviation = 15091, R. Charges = 10260

	#flights	Delay	Deviation	RouteCharges
Airline 1	25	0	1809	1344
Airline 2	29	3	2103	1635
Airline 3	38	1	3272	2104
Airline 4	36	1	3193	1983
Airline 5	27	0	2149	1422
Airline 6	31	0	2565	1772

Random2. Total: Delay = 3, Deviation = 15116, R. Charges = 10268

	#flights	Delay	Deviation	RouteCharges
Airline 1	25	0	1820	1361
Airline 2	29	1	2099	1637
Airline 3	38	1	3272	2104
Airline 4	36	0	3182	1989
Airline 5	27	0	2174	1424
Airline 6	31	1	2569	1753

X

OptiFrame for decisions support (7/17) OptiFrame SESAR Instance I : airlines perspective

Airlines' share in total objectives for different solutions

OptiFrame for decisions support (8/17) OptiFrame SESAR Disturbance Scenarios

- Airport Closure (AC): one airport is closed for one hour, both for departures and arrivals.
- Airport Restriction (AR): the capacity at one airport is reduced for one hour at take off and landing.
- Sector Restriction (SR): a sector has reduced capacity throughout the day.

OptiFrame for decision support (9/17) Sesal Sesal Instance I: Airport Closure

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

OptiFrame for decisions support (10/17) OptiFrame SESAR Instance I: Airport Restriction

Minimum Delay. Total: Delay = 2, Deviation = 15078, R. Charges = 10355

Minimum Deviation. Total: Delay = 11, Deviation = 14936, R. Charges = 10590

Minimum Route Charges. Total: Delay = 7, Deviation = 15243, R. Charges = 10173

		Delay	Devi	iation	Route	Charges
Airline 1	0	1	1837	1819	1335	1337
Airline 2	3	2	2115	2127	1619	1620
Airline 3	3	2	3302	3290	2090	2103
Airline 4	0	2	3224	3179	1973	1977
Airline 5	0	0	2167	2185	1421	1420
Airline 6	1	0	2632	2643	1733	1716

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

X

OptiFrame for decisions support (11/17) OptiFrame SESAR Instance I: Sector Restriction

Minimum Delay. Total: Delay = 2, Deviation = 150293 R. Charges = 10457

Minimum Deviation. Total: Delay = 10, Deviation = 14936, R. Charges = 10590

Minimum Route Charges. Total: Delay = 8, Deviation = 15278, R. Charges = 10170

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

X

Application of the FDR priorities scheme (1/2)

- O Pareto Frontier
- Efficient frontier no priorities
- Efficient frontier FDR

Application of the FDR priorities scheme (2/2)

Minimum Delay. Total: Delay = 2, Deviation = 15093 R. Charges = 10321

0.4

1			Delay	Devi	ation	Route	Charges
2	Airline 1	2	2	1805	1813	1387	1349
-	Airline 2	0	0	2088	2112	1676	1646
3	Airline 3	0	0	3257	3264	2114	2114
4	Airline 4	0	0	3176	3191	1984	1989
5	Airline 5	0	0	2155	2149	1439	1419
6	Airline 6	0	0	2548	2564	1792	1804

Minimum Deviation. Total: Delay = 10, Deviation = 14936, R. Charges = 10590

Airline1

Airline2

Airline3

Airline4

Airline5

- Airline6

1			Delay	Devi	ation	Route	Charges
2	Airline 1	0	0	1795	1795	1369	1369
2	Airline 2	3	3	2077	2077	1698	1698
5	Airline 3	2	2	3237	3237	2189	2189
4	Airline 4	2	2	3167	3167	2032	2032
5	Airline 5	1	1	2136	2136	1464	1464
6	Airline 6	2	2	2524	2524	1838	1838

Minimum R. Charges. Total: Delay = 5, Deviation = 15331, R. Charges = 10168

		Delay	Devi	ation	Route	Charges
Airline 1	0	2	1837	1833	1335	1321
Airline 2	3	1	2115	2122	1619	1640
Airline 3	3	0	3302	3317	2090	2061
Airline 4	0	0	3224	3212	1973	1970
Airline 5	0	2	2167	2210	1421	1422
Airline 6	1	0	2632	2637	1733	1754

Application of the "Margins" priorities SESAR scheme (1/2)

- O Pareto Frontier
- Efficient frontier no priorities
- Efficient frontier Margins

Application of the "Margins" priorities scheme (2/2)

Minimum Delay. Total: Delay = 2, Deviation = 15249 R. Charges = 10246

1			Delay	Devi	ation	Route	Charges
2	Airline 1	2	2	1805	1813	1387	1351
2	Airline 2	0	0	2088	2112	1676	1649
3	Airline 3	0	0	3257	3333	2114	2056
4	Airline 4	0	0	3176	3237	1984	1974
5	Airline 5	0	0	2155	2184	1439	1435
6	Airline 6	0	0	2548	2570	1792	1781

Minimum Deviation. Total: Delay = 10, Deviation = 14936, R. Charges = 10590

1.2

1

0.8

0.6

0.4

0.2

0

1			Delay	Devi	ation	Route	Charges
2	Airline 1	0	0	1795	1795	1369	1369
h	Airline 2	3	3	2077	2077	1698	1698
3	Airline 3	2	2	3237	3237	2189	2189
4	Airline 4	2	2	3167	3167	2032	2032
5	Airline 5	1	1	2136	2136	1464	1464
6	Airline 6	2	2	2524	2524	1838	1838

Minimum R. Charges. Total: Delay = 9, Deviation = 15237, R. Charges = 10186

		Delay	Devi	iation	Route	Charges
Airline 1	0	1	1837	1813	1335	1319
Airline 2	3	4	2115	2127	1619	1645
Airline 3	3	1	3302	3340	2090	2063
Airline 4	0	0	3224	3204	1973	1971
Airline 5	0	2	2167	2160	1421	1418
Airline 6	1	1	2632	2593	1733	1770

- The OptiFrame framework is able to solve the ATFM problem with preferences and priorities incorporated.
- Recent priorities mechanisms are taking into account via a pre-processing phase.
- Computational results provide a set of non-dominated solutions, among which Stakeholders can identify the most suitable solution.
- A set of a posteriori criteria must be identified to select the solution to be implemented.

- 1. Data availability for further testing the framework
- 2. Other potential prioritization schemes
- 3. How the choice of the preferred solution should be made?
- 4. How useful is the presentation of information at different level of details?
- 5. Do you see any barrier for the implementation of the proposed approach?

OptiFrame for Trajectory Based Operations (TBO) Decisions Support

Thank you very much for your attention!

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No [number]

The opinions expressed herein reflect the author's view only.

Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.