WP3: Sea State Forecasting and Resource Evaluation

3rd Advisory Board Meeting

Igor Rizaev, PhD

i.g.rizaev@hull.ac.uk

Energy and Environment Institute, University of Hull

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

WP3: Progress and current work

- Resourse characterisation
 - SmartWave wave prediction (collaboration with Dr. Evdokia Tapoglou, *European Commission*) a research article draft is to be submitted
 - Wave power resource evaluation in Atlantic Europe's NorthWest seas (collaboration with Dr. Charikleia Oikonomou, *Hellenic Centre for Marine Research*) a conference paper is under preparation
 - Wave prediction via Machine Learning (collaboration with Prof. Carrie Hall, *Illinois Institute of Technology*) the dataset is in preparation
 - Wave climate dynamics in Atlantic Europe's NorthWest seas (incl. Machine Learning) design and theoretical part completed, numerical calculations are under preparation
 - SAR imaging of sea waves: Theoretical analysis of Sentinel 1 imagery future work
- WEC efficiency calculations in wave tanks a TEAMER funding application (*collaboration with National Renewable Energy Laboratory NREL*) has been submitted
- Array effects future work

SmartWave – High accuracy & high spatial fidelity wave prediction

Motivation: Development of SmartWave to simulate parameters useful for marine renewables.

Example results – **Burbo Bank**

Parsons, D. (2021).

Wave power resource evaluation in Atlantic Europe's NorthWest seas

Mapping of shallow, intermediate, and deep-water areas

Daily mean wave power density (28.01.2022)

Engineering and Physical Sciences Research Council ♥♥★★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

only; height

height constant

Wave climate dynamics in Atlantic Europe's NorthWest seas

Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira Goncalves, J., Green, S., ... & Ottesen, D. (2016). Seabed geomorphology: a two-part classification system.

VARIABLES

- sea_surface_wave_significant_height (SWH) sea_surface_wave_mean_period_from_variance_spectral_density_second_frequency_moment (MWT) sea_surface_wave_period_at_variance_spectral_density_maximum (MWT) sea_surface_wave_mean_period_from_variance_spectral_density_inverse_frequency_moment (MWT) sea_surface_wave_from_direction (VMDR) sea_surface_wave_from_direction_at_variance_spectral_density_maximum (VMDR) sea surface wave stokes drift x velocity (VSDXY) sea_surface_wave_stokes_drift_y_velocity (VSDXY) sea surface wind wave significant height (WW) sea surface wind wave from direction (WW) sea_surface_wind_wave_mean_period (WW) sea_surface_primary_swell_wave_significant_height (SW1) sea_surface_primary_swell_wave_mean_period (SW1) sea surface primary swell wave from direction (SW1) sea_surface_secondary_swell_wave_mean_period (SW2) sea_surface_secondary_swell_wave_from_direction (SW2) sea_surface_secondary_swell_wave_significant_height (SW2) TEMPORAL COVERAGE from 1980-01-01 to present
- TEMPORAL RESOLUTION 3 hourly instantaneous SPATIAL RESOLUTION $0.017^{\circ} \times 0.017^{\circ}$

Engineering and Physical Sciences Research Council

SAR imaging of sea waves: Theoretical analysis of Sentinel 1 imagery

Preprocessing

SLC products are generated for all acquisition modes:

- StripMap SLC
- Interferometric Wide swath SLC
- Extra Wide swath SLC
- Wave SLC

Stripmap SLC

Beam	S1	S 2	S 3	S4	S 5	S 6
Spatial Resolution rg x az m	1.7 x 4.9	2.0x4.9	2.5x4.9	3.3x4.9	3.3x3.9	3.6x4.9
Pixel spacing rg x az m	1.5x3.6	1.8x4.2	2.2x3.5	2.6x4.1	2.9x3.6	3.1x4.1
Incidence angle <u>°</u>	22.3	25.6	31.2	36.4	41.0	43.8

Interferometric Wide Swath SLC

Beam ID	IW1	IW2	IW3
Spatial Resolution rg x az m	2.7x22.5	3.1x22.7	3.5x22.6
Pixel spacing rg x az m	2.3x14.1	2.3x14.1	2.3x14.1
Incidence angle <u>°</u>	32.9	38.3	43.1

Wave SLC

Beam ID	WV1	WV2	
Spatial Resolution rg x az m	2.0x4.8	3.1x4.8	
Pixel spacing rg x az m	1.8x4.1	2.7x4.1	
Incidence angle <u>°</u>	23.4	36.4	

Using SAR images has benefits:

- · Unaffected by weather
- Unaffected by cloud cover
- Larger datasets

Revisit frequency ~ 2 days (IW mode)

♥♥★★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Sea Surface Modelling - Linear theory

The irregular sea surface elevation model can be expressed as:

$$Z_{sea}(x, y, z, t) = \sum_{i} \sum_{j} A_{ij} \cos[k_i (x \cos \theta_j + y \sin \theta_j) - \omega_i t + r_{ij}]$$

Wind speed Vw = 7 m/s

$$A_{ij} = \sqrt{2S(k_i)D(k_i,\theta_j)dk_id\theta_j}$$

Omnidirectional spectrum

Directional spreading function

Engineering and Physical Sciences Research Council

Sea Surface Modelling – Time domain

Vw = 7 m/s, F = 20 km

Vw = 7 m/s, F = 105 km

♥♥★★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

SAR image simulation – velocity bunching of gravity waves

$$I(x,y) = \frac{\pi T_i}{2V} \iint \delta(y-y_0) \frac{\overline{\sigma}(x_0,y_0)}{p_a^1(x_0,y_0)} \times \exp\left\{-\pi^2 \left[\frac{x-x_0 - \frac{R}{V}u_r(x_0,y_0)}{p_a^1(x_0,y_0)}\right]^2\right\} dx_0 dy_0$$

$$p'_a(x,y) = N_l p_a \left[1 + \frac{\pi^2 T_i^4}{N_l^2 \lambda^2} \overline{A}_r(x,y) + \frac{1}{N_l^2} \frac{T_i^2}{\tau_c^2}\right]^{1/2}$$
Degraded azimuthal resolution
$$p_a = \frac{\lambda R}{2VT_i}$$
Single-look azimuthal resolution
$$R/V \text{ is the range-to-velocity ratio}$$

SAR scanning geometry

♥♥★★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

SAR simulation

The important limitation of SAR imaging of waves moving in flight direction which is associated with the velocity bunching is the azimuthal cut-off effect.

The minimal detectable wavelength of the surface waves can be approximated as

UNIVERSITY

OF HULL

 $\lambda_{\min} = C_0 \frac{R}{V} \sqrt{H_s}$

(c)

University

ENERGY AND

ENVIRONMENT INSTITUTE

CNN based system

Deep learning

Strategies: Training from scratch Transfer learning with real data

Automated classification and estimation of sea state parameters: wave height direction frequency speed

Bayesian optimization to find optimal network hyperparameters

♥♥★★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

Thank you!

♥♥■♥♥ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

