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WP3: Progress and current work

* Resourse characterisation

SmartWave wave prediction (collaboration with Dr. Evdokia Tapoglou, European Commission) —a
research article draft is to be submitted

Wave power resource evaluation in Atlantic Europe’s NorthWest seas gcollaboration with Dr.
Charlklﬁ_la Oikonomou, Hellenic Centre for Marine Research) — a confterence paper is under
preparation

Wave prediction via Machine Learning (collaboration with Prof. Carrie Hall, Illinois Institute of
Technology) — the dataset is in preparation

Wave climate dynamics in Atlantic Europe’s NorthWest seas (incl. Machine Learning) — design and
theoretical part completed, numerical calculations are under preparation

SAR imaging of sea waves: Theoretical analysis of Sentinel 1 imagery — future work

« WEC efficiency calculations in wave tanks —a TEAMER funding application _
(collaboration with National Renewable Energy Laboratory NREL) — has been submitted

 Array effects — future work
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SmartWave — High accuracy & high spatial fidelity wave prediction

Motivation: Development of SmartWave to simulate parameters useful for marine renewables.

ANN based system

Example results —
Burbo Bank

Tapoglou, E., Forster, R. M., Dorrell, R. M., &
Parsons, D. (2021).

Machine learning for satellite-based sea-state
prediction in an offshore windfarm.

Ocean Engineering, 235, 109280.
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Data Acquisition

+ Sentinel 1 - SAR Initial processing, Correlate sea r;ughr;ess Apply Am.is to de;‘weA
Images Extract parameters related to parameters to buoy data sea state in any location
+ Buoy data

Data processing

Artificial neural
networks (ANNs)

sea roughness from

Spatial
distribution

different SAR image bands

Comparison of Sea state conditions at 2/4/2019 06:32:16am

Buoy data: 0.89m (6:30am) — 1.07m (7:00am)

Numerical model at the buoy: 0.92m

ANN Ensemble: 0.95m

* Same trend of significant wave

Woca"“’“»

height for both hindcasts

* Higher resolution for machine

learning-satellite image o L

methodology

* Possible to identify pattens like
sheltering in the inner wind
turbines compared to the ones
that are at the edge of the wind

farm.
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Sea state derived by (a) Copernicus freely available numerical model
(b) Machine learning — Satellite image methodology processing SAR

(a) CMEMS-NWS-0.016deg images

© Burbo Bank Extension

© Burbo Bank
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Wave power resource evaluation in Atlantic Europe’s NorthWest seas

Mapping of shallow, intermediate, and deep-water areas

'

Bathymetry
(EMODnet and GEBCO)

122,728 modeled wave measurements ranging from 1980 to 2021

Atlantic- European NorthWest Shelf-
Wave Physics Reanalysis
NWSHELF_REANALYSIS WAV _ 004
_ 015 (Copernicus)
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mm Intermediate waves
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Daily mean wave power density (28.01.2022) e
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Wave climate dynamics in Atlantic Europe

Determination of uniform
waves zones

Bathymetry offshore model of the UK
(EMODnet and GEBCO)

Map of waves based on

Wave type dominance —_— simulation
Torsethaugen'’s Swell energy I \
method weight method JONSWAP for TMA for
deep water shallow water
YV peak
W' enhancement
WAY. 004 factor
; Wave
) steepness Goda's method
method
v

Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira
Goncalves, J., Green, S., ... & Ottesen, D. (2016). Seabed
geomorphology: a two-part classification system.

VARIABLES
sea_surface_wave_significant_height (SWH)
sea_surface_wave_mean_period_from_variance_spectral_density_second_frequency_moment (MWT)
sea_surface_wave_period_at_variance_spectral_density_maximum (MWT)
sea_surface_wave_mean_period_from_variance_spectral_density_inverse_frequency_moment (MWT)
sea_surface_wave_from_direction (VMDR)
sea_surface_wave_from_direction_at_variance_spectral_density_maximum (VMDR)
sea_surface_wave_stokes_drift_x_velocity (VSDXY)
sea_surface_wave_stokes_drift_y_velocity (VSDXY)
sea_surface_wind_wave_significant_height (WW)
sea_surface_wind_wave_from_direction (WW)
sea_surface_wind_wave_mean_period (WW)
sea_surface_primary_swell_wave_significant_height (SW1)
sea_surface_primary_swell_wave_mean_period (SW1)
sea_surface_primary_swell_wave_from_direction (SW1)

swell

sea_surface_secondary_swell_wave_mean_period (SW2)
sea_surface_secondary_swell_wave_from_direction (SW2)

sea_surface_secondary_swell_wave_significant_height (SW2) Wi n d
TEMPORAL COVERAGE from 1980-01-01 to present CLiliasd
TEMPORAL RESOLUTION 3 hourly instantaneous

SPATIAL RESOLUTION

0.017°%x0.017°

Bay of Biscay~

Daily mean sea state dominance (28.01.2022)
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’s NorthWest seas

Hindcast wave parameters
(1980-2022)
Total: Hs, Tp, Tz, Dp
Components: Tm_w, Tm_s1,
T_ms2, Dw, Ds1, Ds2

Wave power

I

Sea level anomaly Model of wavelength

(1993-2021)
Tm based on
Deep partitioned

GEBCO bathymetry components

Intermediary

Shallow

Long-term trends
SLT
decomposition

Climate Toolbox

/r\\\

(January, July)

Mann—Kendall and
Wang Swail method

\\

Climatological
mean

» Multiscale analysis

/

Months Annual

Moving window
correlation

t

Local
variance
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SAR imaging of sea waves: Theoretical analysis of Sentinel 1 imagery

|

}

SLC products are generated for all acquisition modes: Preprocessing

¢ StripMap SLC

¢ |nterferometric Wide swath SLC
e Extra Wide swath SLC

¢ Wave SLC

Stripmap SLC

Spatial Resolution rg x az m

Using SAR images has benefits:

SerEreREn » Unaffected by weather
Sopericds w9 Hub » Unaffected by cloud cover

Pixel spacing rg x az m

Incidence angle 2

Beam ID

Spatial Resolution rg x az m 2.7x22.5 |3.1x22.7 |3.5x22.6

Pixel spacing rg x az m 2.3x14.1  [2.3x14.1 | 2.3x14.1

Incidence angle ° 329 383 431

Wave SLC

Spatial Resolution rg x az m

Pixel spacing rg x az m

Incidence angle °
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* Larger datasets
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Sentinel-1 GRDH oo
Sigma0 dB Revisit frequency ~ 2

days (IW mode)
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Sea Surface Modelling - Linear theory

Omnidirectional spectrum

The irregular sea surface elevation model can be expressed as: Joint North Sea Wave S,
Project JONSWAP) 5+ f —om
Zsea(x;y;Z: t) — Z Al] COS[kl-(x COS 6] +ySin 9]) — (l)it +T'ij] J ( ) “E
: . P L[ ﬁ -2 §‘°'5
L J S(ky) =S ki p[ 1.25 (kp) ] %
Wind speed Vw =7 m/s {1 [_ (W)Zl} §
Aij = \/ZS(kl)D(kl, Qj)dkldgj exp | Inyexp 252 mw‘

Directional spreading function
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Sea Surface Modelling — Time domain

Vw =7 m/s, F =20 km Vw =7 m/s, F =105 km
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SAR image simulation — velocity bunching of gravity waves

R 2
nly o(x 0(Xo,Yo) Yo) o [x —Xo — Vur(xOrYO)] }
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(z,y) = Nipa |:1 +

Degraded azimuthal resolution

AR
2V

Single-look azimuthal resolution

Pa —

R/V is the range-to-velocity ratio

SAR scanning geometry
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SAR simulation

The important limitation of SAR imaging of waves moving in flight direction which is
associated with the velocity bunching is the azimuthal cut-off effect.

The minimal detectable wavelength of the surface waves can be approximated as )\, = GOE\/HS

m 1

145
450

120
400

95 1350

Range, km

1300
1250

45 1200 0

Azimuth, km
(b)

150

100

20

25 50 75 100 125 150 175 200 225 250
RNV, s

(a)
Simulated SAR images of the sea surface with Vw = 10.7 m/s and Ad = 95.5 m for (b)

airborne (R/V = 23.1 s) and (c) satellite (R/V = 107.1 s) platforms.

Range, km

Rizaev, I. G., Karakus, O., Hogan, S. J., & Achim, A. (2022). Modeling and SAR Imaging of the Sea Surface: a Review of the
State-of-the-Art with Simulations. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 120-140.
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CNN based system

Deep learning

SAR imagery synthetic database creation

Different parameters: Training CNN (AlexNet) Strategies:
wind directions ..
wind speeds Training from scratch

fetch size \ T = Transfer learning with real data

incidence angles : N .
polarizations 224 e foo0
I ] pooling 4096 4098

Automated classification and
estimation of sea state parameters:
wave height

direction

frequency

speed
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Baye5|an optlmlzatlon to flnd optimal network hyperparameters
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Thank you!
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