EPSRC NHP-WEC Research Project 3rd Advisory Board Meeting

Professor George Aggidis

Monday 7 November 2022

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering

g.aggidis@lancaster.ac.uk

Project Team & WP Structure

♥♥♥★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council Engineering

Lancaster University **Techno-economic assessment of wave energy converter -the case study of TALOS**

> Chenglong Guo, George A Aggidis Lancaster University

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

1. Summary of wave energy converter

- (1) Classification
- (2) Characteristics

Classification	Location	Structure	Device example	Characteristics
Oscillating water column	Nearshore	Floating	Mighty whale BBDB power	low installation and maintenance costs;
(OWC)	shoreline	Fixed	Limpet	securing the coastline
Oscillating bodies(OB)	Offshore	Floating	AquaBuoy	
			TALOS II multi-DOF WEC	high wave energy extraction efficiency; the more complex structure, costly devices,
			Pelamis	high repair cost
		submerged	AWS	
Overtopping WECs (OW)	Shoreline	Floating	Wave Dragon	simple and portable OW devices, low cost of
		Breakwater	U-OWC devices	installation and maintenance;
		Fixed	Sea-wave Slot-cone	the costly structure, impacting on sea
			Generator (SSG)	environment in the degree

♥♥★♥ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

2.Techno-economic appraisal model

(1) Basic LCOE model

\$\$\$\$\$\$

OF HULL

UNIVERSITY

(2) Model variation

$$LCOE = \frac{\sum_{t=1}^{n} \frac{PC_t + CAPEX_t + OPEX_t + DC_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{AEP_t}{(1+r)^t}}$$
$$LCOE = \frac{\sum_{t=1}^{n} \frac{CAPEX + OPEX_t + DC_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{AEP_t}{(1+r)^t}}$$

Engineering and Physical Sciences Research Council Engineering

Lancaster 273 University

3.Component in the models

• (1) CAPEX structure and its estimation method

Sub-cost	Measure method	Prescription
Pre-installment	proportion method	Percentage of CAPEX
Structure	Mass cost method	Mass of materials*commercial price
РТО	proportion method	Percentage of CAPEX
Connection	Flexible cost method	Unit value *consumption quantity
Foundations	Mass cost method	Mass of materials*commercial price
Moorings	Flexible cost method	Unit value *consumption quantity
Installation	Flexible cost method	Unit value *consumption quantity
Electrical systems cost	Flexible cost method	Unit value *consumption quantity
•••••	•••••	•••••

♥♥★★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

4.Component in the models

• (2) OPEX structure and its estimation method

Sub-cost	Measure method	Prescription
Replacement	proportion method/ Fixed cost method	Percentage OPEX/ Expenditure at every year
Overhaul	proportion method/ Fixed cost method	Percentage OPEX/ Expenditure at every year
Annual O&M	proportion method	Percentage OPEX
Repair	Fixed cost method	Expenditure at every year
Management	proportion method/ Flexible cost method	Percentage OPEX/ Unit value *consumption quantity
Site lease and insurance	Fixed cost method	Expenditure at every year
Checking and adjustment of tension	proportion method	Percentage OPEX
Intangible cost	proportion method	Percentage OPEX
DC	proportion method	Percentage OPEX

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

3.Component in the models

- (3) Annual Energy Production
 - Special technological WEC
 - Simplified method
 - AEP = PCF * DCF * DAF * 8766 hour/year

- (4) Discount rate and life span
 - Discount rate
 - 5% -15%
 - 8% and 10%
 - life span
 - 30-50 years

Engineering and Physical Sciences Research Council

Engineering

Lancaster University

4. Case study and discussions

- (1) Case study of TALOS
- Cost estimation and other variables
- Commercial scenes
- Calculation
- (2) Discussion of results

Engineering and Physical Sciences Research Council

Tasks

- 1. A review of the levelized cost of wave energy based on technoeconomic model (in the process of submission)
- Techno-economic assessment of wave energy converter -the case study of TALOS (proceeding)
- 3. Optimization of key device's parts influencing on the levelized cost of wave energy-the case study of TALOS (to consider)

Engineering and Physical Sciences Research Council

Thank You

Engineering and Physical Sciences Research Council

