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SmartWave — High accuracy & high spatial fidelity wave prediction

Motivation: Development of SmartWave to simulate parameters useful for marine renewables.

Artificial Intelligence (Artificial Neural Network — ANN and Convolutional Neural Network —
CNN) will be advanced to estimate key oceanographic parameters i.e. wave height, direction,
frequency, and speed. State-of-the-art remote sensing monitoring and in situ data from
European Space Agency satellite Sentinel 1 (Synthetic Aperture Radar — SAR) will be utilised,
whilst access to high-fidelity data from the Cefas WaveNet buoys will provide ground truth
data for validation.
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Satellite SAR images

Satellite images are capable of providing hindcast
information in very high resolution

Remote monitoring

How it works: Optical / SAR satellite

« Radar transmits a pulse

« Some of the energy in the radar pulse is reflected
back

 Every pixel of a complex SAR image contains
amplitude and phase information.

surface roughness
from back-scatter

wave-direction

Far-field wave
buoy data

Can provide information about the sea roughness |

Using SAR images has benefits:
« Unaffected by weather

» Unaffected by cloud cover
 Larger datasets
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How It works

ANN based system

Artificial neural Spatial

Data Acquisition Data processing networks (ANNs) distribution

- Sentinel 1 - SAR Initial processing, Correlate sea r::ughr:less Apply ANI.ds to derive.
Images Extract parameters related to parameters to buoy data sea state in any location
» Buoy data

sea roughness from
different SAR image bands
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Example results — Burbo Bank

Comparison of Sea state conditions at 2/4/2019 06:32:16am
Buoy data: 0.89m (6:30am) — 1.07m (7:00am) | | Numerical model at the buoy: 0.92m ANN Ensemble: 0.95m

Sea state derived by (a) Copernicus freely available numerical model

° - .« * "\
Same trend of Slgmflcant e BUOV \Ocat\o (b) Machine learning — Satellite image methodology processing SAR
height for both hindcasts (a) CMEMS-NWS-0.016deg s

e Burbo Bank Extension

* Higher resolution for machine ; o —x = p " ; 1 m * HebecSnk
learning-satellite image Y . . e ° ...' ...' .. 12
methodology o ° . . [ . S .°.. e e I

o

* Possible to identify pattens like = . i i ? ? I
sheltering in the inner wind
turbines compared to the ones

2
that are at the edge of the wind
farm. -

Tapoglou, E., Forster, R. M., Dorrell, R. M., & Parsons, D. (2021). Machine learning for satellite-based sea-state prediction in an offshore windfarm. Ocean Engineering,
235, 109280.
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CNN based system

Deep learning

SAR imagery synthetic database creation

Different parameters: Training CNN (AlexNet) Strategies:
wind directions ..
wind speeds Training from scratch

fetch size \ H O e Transfer learning with real data

incidence angles ' ; - 3§ \
polarizations 224 e =
I ] pooling 4096 4098

Automated classification and
estimation of sea state parameters:

§ : wave height

direction

frequency

; | speed

Baye5|an optlmlzatlon to flnd optimal network hyperparameters 6
6
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Relationship between wavelength and water depth

L
. -
I Depth
No wave e
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Mapping of shallow, intermediate, and deep-water areas

Cefas WaveNet buoys Bathymetry offshore model of the UK Determination of uniform
(EMODnet and GEBCO) waves zones

North Sea

Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira
Goncalves, J., Green, S., ... & Ottesen, D. (2016). Seabed
geomorphology: a two-part classification system.
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Sea Surface Modelling - Linear theory

Omnidirectional spectrum

The irregular sea surface elevation model can be expressed as: Joint North Sea Wave S,
Project JONSWAP) 5+ f —om
Zsea(x;y;Z: t) — Z Al] COS[kl-(x COS 6] +ySin 9]) — (l)it +T'ij] J ( ) “E
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Directional spreading function
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Sea Surface Modelling — Fetch length

The fetch is a significant factor in the development of wind waves

JONSWAP wave spectrum for different fetches
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Stewart, R. H. (2008). Introduction to physical oceanography.
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Sea Surface Modelling — Time domain

Vw =7 m/s, F =20 km Vw =7 m/s, F =105 km
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SAR image simulation — velocity bunching of gravity waves

R 2
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Degraded azimuthal resolution

AR
2V

Single-look azimuthal resolution

Pa —

R/V is the range-to-velocity ratio

SAR scanning geometry
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SAR simulation

The important limitation of SAR imaging of waves moving in flight direction which is
associated with the velocity bunching is the azimuthal cut-off effect.

The minimal detectable wavelength of the surface waves can be approximated as )\, = GOE\/HS
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(a)
Simulated SAR images of the sea surface with Vw = 10.7 m/s and Ad = 95.5 m for (b)

airborne (R/V = 23.1 s) and (c) satellite (R/V = 107.1 s) platforms.
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Rizaev, I. G., Karakus, O., Hogan, S. J., & Achim, A. (2022). Modeling and SAR Imaging of the Sea Surface: a Review of the State-of-
the-Art with Simulations. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 120-140.

% . Engineering and T@ZakN LancaSter

Physical Sci UNIVERSITY | ENERGY AND : ity
Fisssarebt Councll OF HULL | ENVIRONMENT INSTITUTE University




Uses of SmartWave

Historical data for On-the fly decisions Decisions about WEC
planning- location about dynamic control positioning and array
choice of the device configuration
Hindcast  Now Short-term Mid-term
forecast forecast
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Interaction with other WPs

WP1: Concept WP2: Survivability WP3: Sea state forecasting
reliability and optimised | and resource evaluation
control of devices in the

marine environment
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hydrodynamics > sensor and data characterisation
acquisition 2
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Optimisation ’L condition monitoring  [*7] in wave tanks
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development S ‘
WP4: Validation and Cost of Energy
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Thank you!
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