EPSRC NHP-WEC Research Project 2nd Advisory Board Meeting

Professor George Aggidis

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering

g.aggidis@lancaster.ac.uk

Wednesday 4 May 2022

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

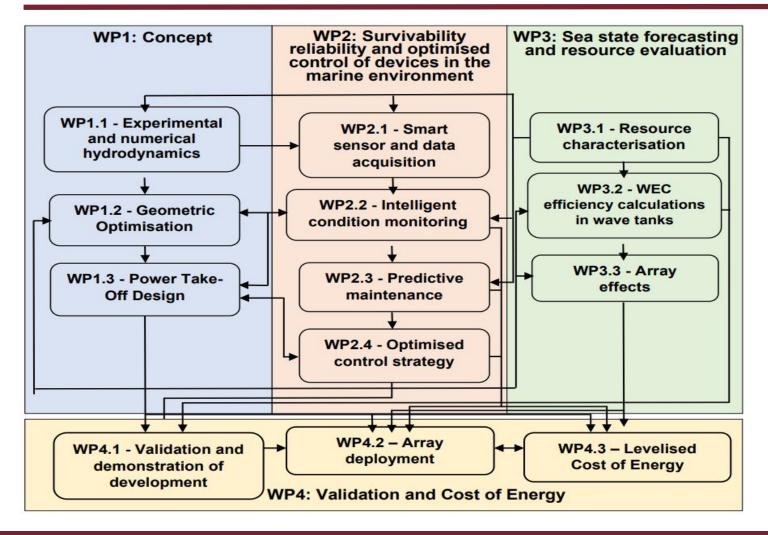
Engineering and Physical Sciences Research Council

Project Team

Lancaster

- P-I Professor George AGGIDIS
- Co-I Dr Xiandong MA
- Co-I Professor C. James TAYLOR
- PDRA1 SRA Dr Wanan SHENG
- PDRA2 RA Dr Yueqi WU

- Co-I Dr Robert DORRELL
- Co-I Professor Daniel PARSONS
- PDRA3–SRA Dr Igor RIZAEV



Engineering and Physical Sciences Research Council

Work Package Structure

Engineering and Physical Sciences Research Council

Work Package Tasks Timeline

Tasks	Quarter	1	2	3	4	5	6	7	8	9	10	11	12
WP1: Concept optimisation													
Experimental and numeric	cal hydrodynamic analysis												
Geometric Optimisation													
Power Take-Off Design													
WP2: Survivability, Reliab	ility and Optimised Control of	Devic	ces in t	the Ma	irine E	nviron	ment						
Smart sensor and data ac	quisition system												
Intelligent condition monited	oring												
Predictive maintenance													
Optimised control strategy	/												
WP3: Sea state forecastin	g and resource evaluation												
Resource characterisation	1												
WEC efficiency calculation	ns in wave tanks												
Array effects													
WP4 – Validation and Cost of Energy													
Validation and demonstrat	tion of development												
Array deployment													
Levelised Cost of Energy													

\$\$\$

ENERGY AND ENVIRONMENT INSTITUTE **UNIVERSITY OF HULL**

Engineering and **Physical Sciences Research Council**

Tasks, Management

Tasks	1	2	3	4	5	6	7	8	9	10	11	12
Determined hydrodynamic characteristics												
Validation of numerical model/s												
Advanced optimisation of geometry												
Manufacturing of final model												
PTO design incorporation and model												
Established data acquisition framework												
Established condition monitoring method												
Predictive maintenance methods												
Optimised control method												
Machine learning model for wave evaluation from satellite images												
Model for the calculation of the efficiency of the device in tank tests												
Determination of array effects from tank tests												
Numerical data to validate development												
Experimental data to validate development												
Levelised cost of energy and potential												
Array deployment potential												

Project Management	1	2	3	4	5	6	7	8	9	10	11	12
Progress Meetings	Twice monthly											
Group face-to-face meetings	Quarterly											
Advisory Board meetings												
Workshops												

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

EPSRC NHP-WEC Research Project Website

TALOS wave energy converter (LU):

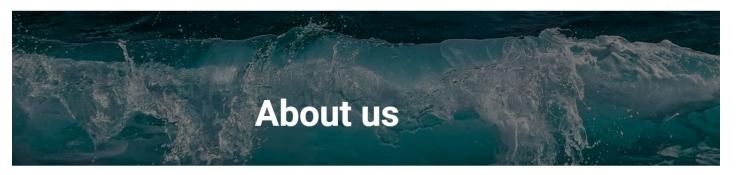
The research proposed is simultaneously generic while significantly contributing to the development of a concept device that has shown potential, namely the multi-axis TALOS that has been developed and tank tested at Lancaster University.

TALOS is a novel multi-axis moving parts, and the internal PTO system is made up of an inertial mass (a ball) with hydraulic cylinders that attach it to the hull. The motion of the ball moves the hydraulic cylinders causing them to pump hydraulic fluid through a circuit, thus to generate electricity i.e. an inertial mass PTO approach.

Key strengths of TALOS device include:

- Fully enclosed wave energy converter, so to avoid the harsh sea environments on the energy conversion system;
- The arrangement of the rams allows for the ball to move in multiple directions, allowing energy to be captured from multiple degrees of freedom;
- The flow of hydraulic fluid will change as the ball's motion changes, so an internal hydraulic smoothing circuit is utilised to regulate the output.

SmartWave (UoH):


SmartWave is a tool capable of deriving high resolution sea state conditions from satellite images using machine learning. It integrates recent advances in all-weather satellite monitoring to map and study the temporal and spatial distribution of sea surface wave characteristics.

Key strengths:

- based on a novel forecasting methodology;
- · capable of resolving sea state within offshore windfarms for sector O&M logistics.

The NHP-WEC project aims to advance data-driven monitoring and control in connection to both device technology and sea state predictions for WEC arrays, combining the TALOS technologies of Lancaster University (LU) and the SmarWave technologies of University of Hull (UoH). The NHP-WEC project aims to optimise the design of the wave energy converter and the PTO system (TALOS) in response to time-varying inputs from waves (SmartWave). as such, the operational conditions, including wave characteristics, must be quantified to estimate dynamic loads, constraining manufacturing techniques and materials, so to improve wave energy production as well as the survivability of the wave energy system.

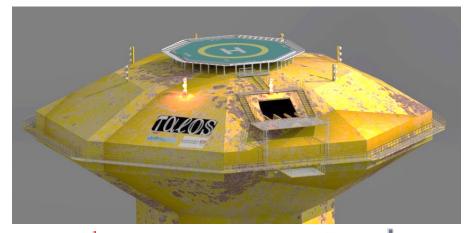
EPSRC NHP-WEC project: A TALOS and SmartWave Project (lancs.ac.uk)

Engineering and Physical Sciences Research Council

1st Workshop

ne About Impact Funding Research Landscape ORE Facilities ECR Community News & Events	Y	
EPSRC Project Workshop: NHP-WEC Marine Energy Project	#	LancasterEngineering @LancsUniEng
<page-header></page-header>		Prof George Aggidis is holding the EPSRC Wave Energy NHP-WEC Project Workshop on TALOS Wave Energy Converter and SmartWave online (Mon 25 Oct 2021 at 14:00 UK Time). To book click
Location: Virtually (via Microsoft Teams) <u>Please find the link to join the meeting in the PDF here</u> Agenda 14:00 Welcome & Introduction to NHP-WEC - George Aggidis (Lancaster University - LU)		
14:05 TALOS & WP4 - George Aggidis (LU)		supergen-ore.net
14:10 SmartWave - Robert Dorrell (University of Hull - UoH) 14:15 WP2: Survivability, reliability and optimized control of devices in the marine environment -		Supergen ORE - Supergen ORE
Next Softward (LU)		We provide research leadership to connect academia, industry, policy and public stakeholders, inspire innovation and maximise societal value in offshore wind,
14:20 WP1: Concept Wanan Sheng (LU)		
14:35 WP3: Sea state forecasting and resource evaluation - Evdokia Tapoglou (UoH)		10:27 AM · Oct 20, 2021 · Twitter Web App
14:50 Q&A Panel Discussion - All		

Engineering and Physical Sciences Research Council


Engineering

Lancaster 283 University

1st Advisory Board Meeting, 25/10/2021

Chair of the Advisory Board:

Neil Kermode EMEC Managing Director

ADVANCED MANUFACTURING RESEARCH CENTRE

Lancaster Star University

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

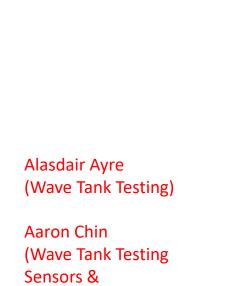
Supergen ORE, Annual Assembly, January 2022

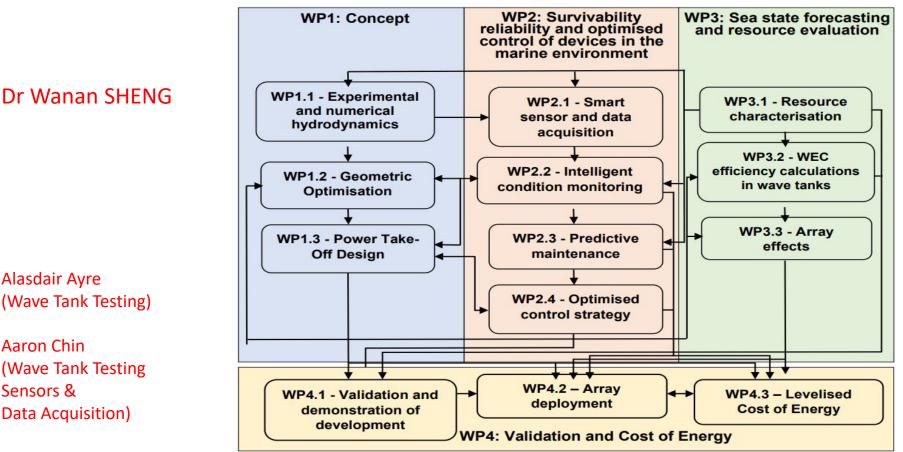
Offshore Renewable Energy

ANNUAL ASSEMBLY

18, 19 & 20 January 2022 University of Plymouth & online

#SupergenORE2022


♥♥♥♥ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE


Engineering and Physical Sciences Research Council Engineering

Lancaster University

Work Package Structure – WP1

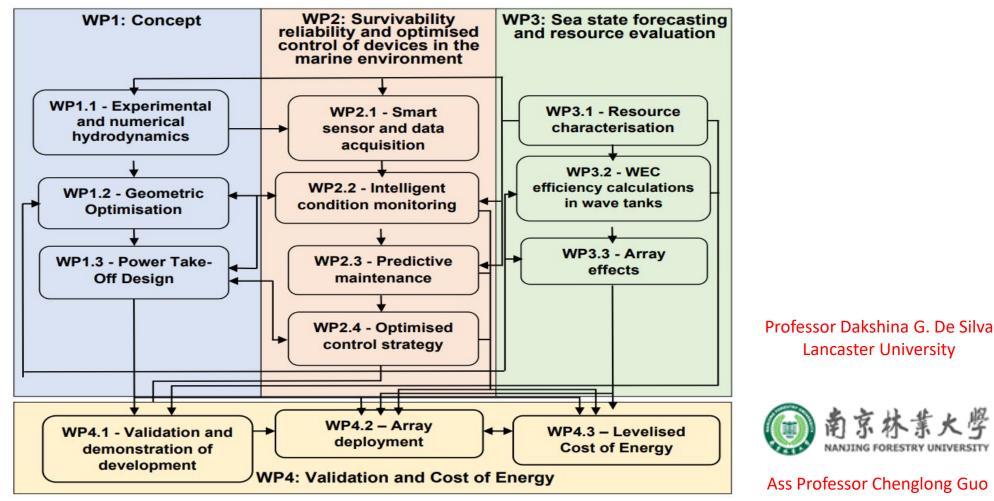
Data Acquisition)

Professor Spyros Mavrakos Professor John Anagnostopoulos INTERNATIONAL HELLENIC UNIVERSITY Ass Professor Constantine Michaelides ARISTOTIE

Ass Professor Eva Loukogeorgaki

Ass Professor Carrie Hall

Sheng, W., Tapoglou, E., Ma, X., Taylor, C.J., Dorrell, R.M., Parsons, D.R. and Aggidis, G., 2022. Hydrodynamic studies of floating structures: Comparison of wave-structure interaction modelling. Ocean Engineering, 249, p.110878.


\$\$\$\$ UNIVERSITY ENERGY AND ENVIRONMENT INSTITUTE **OF HULL**

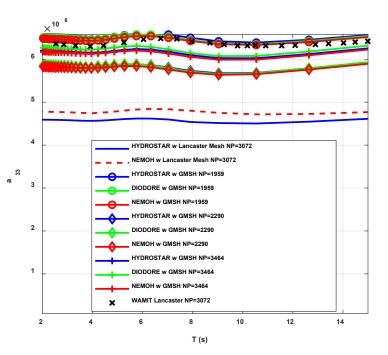
Engineering and Physical Sciences Research Council

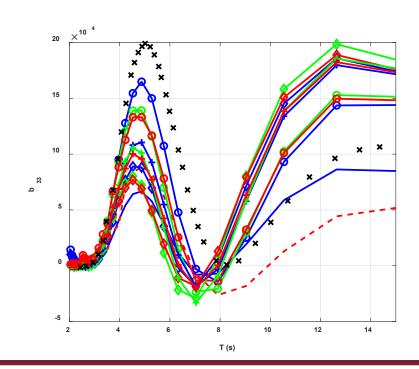
Work Package Structure – WP4

Lancaster University

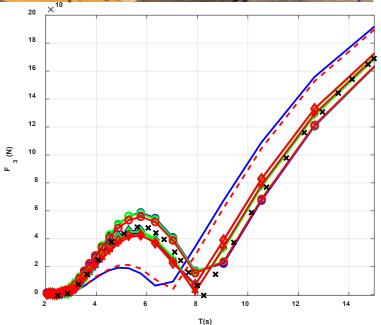
Ass Professor Chenglong Guo

Lancaster University


⁽¹⁾ ⁽¹⁾


OF HULL

Engineering and Physical Sciences Research Council



Professor Pierre Ferrant Professor Alain Clément Dr Aurélien Babarit Ass Professor Guillaume Ducrozet Dr Jean-Christophe Gilloteaux Dr Ruddy Kurnia

Lancaster University

♥♥★★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

NREL – TALOS Research Collaboration – ongoing work

TALOS /NREL Collaboration on WP1

- OpenFAST
- Capytaine Python package
- A good case for further investigation and development

TALOS /NREL Collaboration on WP2

Control

₩@**₩**₩

OF HULL

• Integrating a machine learning (primarily Reinforced learning) loop into the WECSim eco-system

Dr Jochem Weber **Dr Robert Thresher** Dr Aidan Bharath Dr David Ogden Dr Matthieu Ancellin

Lancaste

ENERGY AND VERSITY ENVIRONMENT INSTITU

Engineering and Physical Sciences Research Council

NREL – TALOS Research Collaboration - next steps

TALOS /NREL Collaboration through the TEAMER program 2022

- Computational Modelling and Control (WP1, WP2, WP3)
- Experimental Modelling using the new wave tank NREL is building this year (2022) in Denver Colorado.
- Experimental Modelling using the NREL motion platform (LAMP) specifically constructed to be able to mimic ocean wave action while being out of the water
- Experimental Modelling using the NREL motion platform (LAMP) for extended operational testing

TALOS/NREL Collaboration through the US Department of Energy (DoE) beyond the EPSRC Project timescales:

• Open-water testing

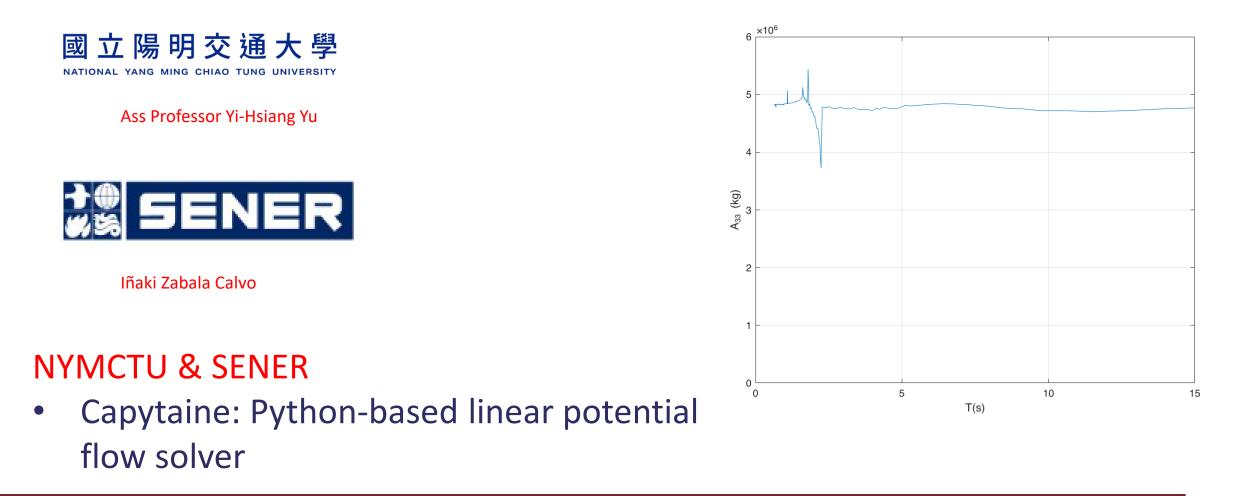
ENERGY AND

ENVIRONMENT INSTITU

\$\$\$

OF HULL

UNIVERSITY



Dr Jochem Weber Dr Robert Thresher Dr Aidan Bharath Dr David Ogden Dr Matthieu Ancellin

Lancaste

TE K

Engineering and Physical Sciences Research Council

♥♥★★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITU

Engineering and Physical Sciences Research Council

Engineering

Lancaster University

Biomimetics & TALOS Paper: Published – energies Journal

energies	S		Energies 2022, 15, 2485									
Article A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters			Table 1. Features of existing bio-WECs (All pictures are loyalty free).									
			Bio-WEC Examples	Types of WEC	Mimicked Types	Mimicked Objects	Methods of Power Extraction	Advantages	Disadvantages			
Hui Zhang 1, Wanan Shen	g 2, Zhimin Zha 1 and George Aggidis 2*											
	¹ Marine Engineering Equipment College, Zhejiang Orean University, Zhoushan 346022, China, zhanghutërjou.edu.cn (H.Z.; zhazhiminë/ed/23.com (Z.Z.) Renewable Engrue and Flaid Machiney Group, Engineering Department, Lancater University, Lancater LA1 47W, UK, we dengeliancater.acuk Componendeme gagdipullancater.acuk, Tei. 444–15-269-3052		Pelamis [10]	Attenuator	Shape, Motion	Sea Snake	Pitch, Yaw	High conversion efficiency when the wavelength matches the pitch.	Low adaptability, the pitch is fixed, and cannot adjust to sea conditions.			
	Abstact: Biominetics and creatures could combinite to novel design impiration for wave energy converters, as we have seen numerous examples in applications of other branches of engineering. However, the issue of how to obtain valuable biological entities, or biomic design cases, but could produce impiration for novel designs, may be challenging for the designers of wave energy con- verters (WCG). This shady carries out preliminary sensesh can be acquired and biological embeddy the first pict of any could engineering terminologies based on the hardion, structure, and embeddy the first pict of any could engineering terminologies based on the hardion, structure, and energy extraction principles of existing WECs. Thus, by applying WordNet, candidate biological terminologies can be obtained. Next, using Ads/Nature, along with manual selection and Bitering, biological terminologies can be acquired. The training, along with manual selection and Bitering biological terminologies can be acquired. The Last step is to use the biological terminologies to es- tablish the reference biological attentions. Along with manual selection and Bitering biological terminologies can be acquired. The Last step is to use the biological terminologies to an immover the step is a data water the step is to use the biological terminologies to and weiffed.	Wave Dragon [11]	Overtopping/Terminator	Shape	Dragon	Overtopping	High flexibility, freely up-scale, and adjust to varying wave heights.	Low conversion efficiency; optimization of the power production is required.				
			BioWAVE [13]	Oscillating Wave Surge Converter	Function, Motion	Kelp	Surge	High survivability, protected on the seabed during storm conditions.	Low adaptability; appropriate water depths required to be selected.			
Citation: Zhang, H.; Sheng, W.; Zha, Z.; Aggidis, G. A Preliminary Study on Identifying Biomimetic Entities for Convertient Energy Convertiens. Energie 2022, 15, 2485.	 Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign inspiration; biological entities; innovative design; wave energy converters Aryweids de edign; inspiration; biological entities; innovative design; wave energy converters Aryweids de edign; inspiration; wave energy converters Aryweids de edign; inspiration; wave energy converters; can use different energy converters; on the principle; such and principle; such and principle; such and principle; such energy; converters; can use different energy converters; or entropical equipsed on the horeinin; nearthouce; or off-fore, and can be on the satiface; in the wate; or on the satiface; in the wate; or on the satiface; is the wave energy; converters in innovative wave energy; converters in endicative into excellence; is to way designable to design; innovative wave energy; converters, or improve existing WEGs, to overcome all or some of the adventementers Aryweids de land vantage; Aryweids de landvantage; Aryweids de land		Centipod [14]	Attenuator	Structure	Centipod	Heave	Low environment impact.	Low cost-effectiveness; the loads and stresses on the structure require reduction.			
Integral (International International Intern			Oyster [9]	Oscillating Wave Surge Converter	Behavior	Oyster	Surge	High surviv ability.	Low conversion efficiency; need to form cluster arrays and unit field.			
		Sea Heart [8]	Point Absorber	Principle	Human Heart	Heave, Surge	High flexibility; hybridization of marine waves and sea current energy sources.	Low stability; the stability of electrical energy requires solving.				
			Anaconda [12]	Bulge Wave	Shape, Principle	Anaconda& Human Hea rt	Bulge Wave	High cost-effectiveness owing to simple structure and durable material.	Low conversion efficiency; the parameters and the performance require improvement.			
Energies 2022, 15, 2485. https://doi	.org/10.3390/en15072485 www.mdpi.com/journal/energies											

3 of 20

Images of Bio-WEC

Engineering

Zhang, H., Sheng, W., Zha, Z. and Aggidis, G., 2022. A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters. *Energies*, *15*(7), p.2485.

Engineering and

Physical Sciences

Research Council

\$\$\$\$

OF HULL

UNIVERSITY

ENERGY AND

ENVIRONMENT INSTI

Ass Professor Hui Zhang

Lancaster

University

\$\$\$\$

OF HULL

UNIVERSITY

ENERGY AND ENVIRONMENT INSTITUTE

Experimental Modelling and Validation of the Computational Modelling for TALOS WEC

Engineering and

Physical Sciences

Research Council

Professor Dahai Zhang Tan Ming

Engineering

Lancaster Star University

Professor Spyros Mavrakos Professor John Anagnostopoulos

Ass Professor Constantine Michaelides

Ass Professor Eva Loukogeorgaki

Professor Pierre Ferrant Professor Alain Clément Dr Aurélien Babarit Ass Professor Guillaume Ducrozet Dr Jean-Christophe Gilloteaux Dr Ruddy Kurnia

Dr Jochem Weber Dr Robert Thresher Dr Aidan Bharath Dr David Ogden Dr Matthieu Ancellin

> Maynooth University

National University of Ireland Maynooth

國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Ass Professor Yi-Hsiang Yu

Dr Evdokia Tapoglou

Ass Professor Carrie Hall

University of Victoria

Professor John Ringwood

Professor Brad Buckham Professor Curran Crawford

南京林葉大學 Ass Professor Chenglong Guo

新聞是兼

CENTRALE NANTES

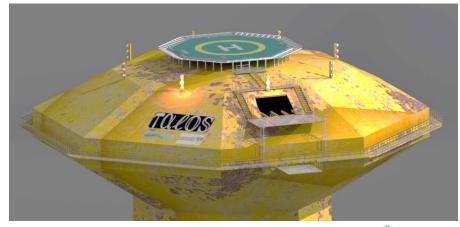
Ass Professor Hui Zhang

Iñaki Zabala Calvo

Engineering and Physical Sciences Research Council

Engineering

Professor Dahai Zhang


Lancaster Star University


Tan Ming

2nd Advisory Board Meeting, 04/05/2022

Chair of the Advisory Board:

Neil Kermode EMEC Managing Director

Transforming ENERGY

ADVANCED MANUFACTURING RESEARCH CENTRE

Lancaster Star University

♥♥★ UNIVERSITY | ENERGY AND OF HULL | ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

Thank you

Professor George Aggidis

FIMechE, FIMarEST, FEI, FIET

Head of Energy Engineering

g.aggidis@lancaster.ac.uk

 Image: Second second

ALL DE VIIII THE

Nozzle in to

Engineering and Physical Sciences Research Council

