Welcome & Introduction to NHP-WEC

Professor George Aggidis

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

Who is involved

- P-I Professor George AGGIDIS
- Co-I Dr Xiandong MA
- Co-I Professor C. James TAYLOR
- PDRA1 SRA Dr Wanan SHENG
- PDRA2 RA TBC

- Co-I Dr Robert DORRELL
- Co-I Professor Daniel PARSONS
- PDRA3–SRA–Co-I Dr Evdokia TAPOGLOU

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

- 1. European Marine Energy Centre (EMEC)
- 2. Offshore Renewable Energy Catapult (OREC)
- **3**. DNV
- 4. AURA
- 5. Advanced Manufacturing Research Centre (AMRC)
- 6. The Deep

ADVANCED MANUFACTURING RESEARCH CENTRE

> Lancaster University

♥♥★★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

Project Aim & Objectives

- The project aim: Advance WEC technology by developing essential device control and monitoring systems that are integrated with high-fidelity sea state forecasting.
- Objectives:
- **1. Concept optimisation** Parameterize hydrodynamic behaviour due to the WEC geometry and PTO design to refine, optimise and maximise performance.
- 2. Operational systems Investigate and implement sensors and actuators required to develop a condition monitoring system that will improve reliability and survivability, and control methods for the multi-axis PTO system advancing overall conversion efficiency.
- **3. Resource forecasting** Develop machine-learning based forecasting tools to provide both short-term accurate predictions for the operational systems and long-term energy yield predictions for the device across various deployment sites.
- **4.** Device deployment potential Develop a wave-to-wire model to determine the Levelised Cost of Energy (LCOE) at given sites, for both standalone devices and arrays, quantifying the TRL financial baseline performance essential to stimulate commercialisation.
- 5. Marine wave energy development Develop industrial input and research impact objective, including dissemination and showcasing of all the outputs, to ensure that not only one technology develops but that the solutions proposed will benefit the wider energy community.

Engineering and Physical Sciences Research Council

OF HULL

Engineering

♥@★★ UNIVERSITY

©SmartWave

Engineering and Physical Sciences Research Council

Timeline

Tasks	Quarter	1	2	3	4	5	6	7	8	9	10	11	12
WP1: Concept optimisation													
Experimental and numerical hydro	odynamic												
analysis													
Geometric Optimisation													
Power Take-Off Design													
WP2: Survivability, Reliability and	Optimised	Cont	rol of	Devi	ces in	the I	Marin	e En	vironr	nent			
Smart sensor and data acquisition	i system												
Intelligent condition monitoring													
Predictive maintenance													
Optimised control strategy													
WP3: Sea state forecasting and re	esource eva	aluati	on										
Resource characterisation													
WEC efficiency calculations in way	ve tanks												
Array effects													
WP4 – Validation and Cost of Ene	rgy												
Validation and demonstration of													
development													
Array deployment													
Levelised Cost of Energy													

Engineering and Physical Sciences Research Council

Deliverables / Milestones

Tasks	1	2	3	4	5	6	7	8	9	10	11	12
Determined hydrodynamic characteristics												
Validation of numerical model/s												
Advanced optimisation of geometry												
Manufacturing of final model												
PTO design incorporation and model												
Established data acquisition framework												
Established condition monitoring method												
Predictive maintenance methods												
Optimised control method												
Machine learning model for wave evaluation from satellite images												
Model for the calculation of the efficiency of the device in tank tests												
Determination of array effects from tank tests												
Numerical data to validate development												
Experimental data to validate development												
Levelised cost of energy and potential												
Array deployment potential												

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

Management

Project Management	1	2	3	4	5	6	7	8	9	10	11	12
Progress Meetings	Twice monthly											
Group face-to-face meetings	Quarterly											
Advisory Board meetings												
Workshops												

♥♥★ UNIVERSITY OF HULL | ENERGY AND ENVIRONMENT INSTITUTE

Engineering and Physical Sciences Research Council

