

Messy Energy Data. Sense-making via change-point and anomaly detection

Sept 2024 Paul Smith & Idris Eckley

Acknowledge Colleagues

- Avery Chong
- Christian Remy
- Adam Tyler
- Oliver Bates
- Adrian Friday

Collective and Point Anomalies

Determining Anomalies

Consider the observed data $\mathbf{y}_{1:T} = (y_1, \dots, y_T)$ with K collective anomalies $\mathbf{y}_{s_1:e_1}, \dots, \mathbf{y}_{s_k:e_k}$

- The background cost of an observation is $C(y_t)$
- An anomalous period $\mathbf{y}_{s:e}$ has parameter perturbation $\hat{\psi}_{s:e} = \min_{\psi} \sum_{t=s}^{e} C(\mathbf{y}_t, \psi)$ giving cost $\sum_{t=s}^{e} C(\mathbf{y}_t, \hat{\psi}_{s:e})$.
- Penalties for introducing point (β_P) and collective (β_C) anomalies that do not depend on K

Identification of Anomalies

Select $K, s_1, e_1, \ldots, s_K, e_K$ by minimising

$$F_{T} = \sum_{t \notin \bigcup_{i=1}^{K} s_{i}: e_{i}} \min \left\{ \mathcal{C}\left(\boldsymbol{y}_{t}\right), \mathcal{C}\left(\boldsymbol{y}_{t}, \hat{\psi}_{t}\right) + \beta_{P} \right\} + \sum_{i=1}^{K} \left\{ \sum_{t=s_{i}}^{e_{i}} \mathcal{C}\left(\boldsymbol{y}_{t}, \hat{\psi}_{s_{i}: e_{i}}\right) + \beta_{C} \right\}$$

General dynamic programming solution is $\mathcal{O}(n^2)$

Identification of Anomalies

Under conditions

- min $(F_T) \geq \min (F_{T-1})$
- $\exists \kappa \text{ s.t. } \min(F_T) \leq \min(F_{T-1}) + \kappa$

the solution is $\mathcal{O}(n)^1$

Satisfied if cost is taken to be the Deviance.

¹Fisch et al. 2022. https://doi.org/10.1002/sam.11586

LU Campus Energy Data

- 75 Buildings / Building Groups
- 1594 sensors

Substance	Numbe
Electricity	1028
Gas	71
Water	181
Heat	313
Oil	1

Contextual Data for Meters

- Location in building
- Textual description of monitored area
 - · No record of what was going on in that area
- Unknown hierarchy
- Loggers record as a count every ten minutes
 - variable resolution
- Historically(?) fragile data pipeline

Data Screening

- Assign each observation to one of four Classes
 - Positive
 - Zero
 - Negative
 - Missing

then aggregate the data to Daily

- · Costs derived from the Multinomial distribution
- Background cost is based on parameters representing performance

Data Screening (Heatmaps)

Data Screening (Intervention)

Condition	Num. Sensors
P(Missing) > 0.1	221
P(Zero) > 0.9	514

Changes in Daily Usage Patterns

- Uniqueness of place and process
- For day *n*, use days $n 1, \ldots, n 14$ to build the background distribution
 - Discard anything identified and explained as anomalous
- Treat the data as counts
 - Costs based on the Poisson distribution
- · Propose the kind of anomalous change
 - Proportional increase in rate

Estimating the Background

Anomalies

Gathering Context

To learn we need to understand why...

Summary

- Introduced an efficient method for detecting anomalies
 - · Extensions e.g. multivariate series not covered here
- Outlined some challenges of working with energy data in the wild
- Shown how the anomaly techniques can inform an exploratory data analysis

Thanks!

p.j.smith@lancaster.ac.uk