
Enhanced Momentum Strategies

Matthias X. Hanauer, Steffen Windmüller ∗

This draft: August 14, 2019

Abstract

This paper compares the performance of three momentum risk management tech-

niques proposed in the literature — idiosyncratic momentum, constant volatility-scaling

and dynamic scaling. Using data for individual stocks from the U.S. and across 48 in-

ternational countries, we find that all three approaches decrease momentum crashes,

lead to higher risk-adjusted returns and raise break-even transaction costs. In a multi-

ple model comparison test that also controls for other factors, idiosyncratic momentum

emerges as the best momentum strategy. Finally, we find that the alpha stemming from

volatility-scaling is distinctive from the idiosyncratic momentum alpha.
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1 Introduction

The evidence for momentum is pervasive: Jegadeesh and Titman (1993) discover that past

winner (loser) stocks tend to have relatively high (low) future returns. Momentum poses an

explanatory problem on the Capital Asset Pricing model (CAPM) of Sharpe (1964), Lintner

(1965), and Mossin (1966), as well as on the Fama and French (1993, 2015) three- and

five-factor models. Within the U.S., a long-short momentum factor generates an average

raw return of 0.60% (Fama-French three-factor model (FF3FM) alpha of 0.87%) per month

between January 1930 and December 2017. Positive momentum returns have also been

identified for other equity markets and asset classes.1

Besides the relatively high profitability, momentum has occasionally experienced large

drawdowns (crashes), i.e., persistent strings of negative returns. In 1932, the momentum fac-

tor for the U.S. equity market exhibited a drawdown of -67.10%. Also in 2009, the momentum

factor for both the U.S. and international (ex-U.S.) equity markets experienced large losses.

Grundy and Martin (2001) explain the risks of momentum by time-varying factor exposures.

For instance, after bear markets the market betas of loser stocks tend to be higher than those

of winner stocks. When the market rebounds after a bear state, the overall negative market

sensitivity of the winner-minus-loser strategy generates negative strategy returns.2 Grundy

and Martin (2001) show that hedging out the momentum strategy’s dynamic market and size

exposures substantially reduces the volatility of the strategy without a loss in return, but
1Rouwenhorst (1998, 1999) finds that momentum strategies earn high abnormal returns in equity markets

internationally, both in developed and in emerging markets. Moskowitz and Grinblatt (1999) document
momentum for industry portfolios, Asness, Liew, and Stevens (1997) and Chan, Hameed, and Tong (2000)
for country equity indices, Okunev and White (2003) and Menkhoff, Sarno, Schmeling, and Schrimpf (2012)
for currency markets, and Erb and Harvey (2006) for commodity futures. Asness, Moskowitz, and Pedersen
(2013) confirm these findings and uncover a common factor structure among momentum returns across asset
classes. Chui, Titman, and Wei (2010) show that momentum is persistent worldwide except for Asia, and
propose cross-country differences in individualism an explanation while Docherty and Hurst (2018) document
that momentum is stronger in more myopic countries. Griffin, Ji, and Martin (2003) find that momentum
returns cannot be attributed to macroeconomic risk factors, whereas Fama and French (2012) show that local
momentum factors are superior to a global momentum factor in pricing regional size-momentum portfolios.

2Asem and Tian (2010) investigate the effect of market dynamics on momentum returns and document
that there are higher momentum returns when markets continue in the same state than when they transition
to a different states, i.e., market up (down) movements following bull (bear) markets, are associated with
higher momentum returns.
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Daniel and Moskowitz (2016), however, show that the superior performance of the dynamic

hedged strategy depends on using ex-post factor betas to hedge these exposures. Daniel and

Moskowitz (2016) more generally isolate this behavior by conditioning momentum on a stress

dummy that indicates both past bear market states and high market volatility. The stress

dummy has significant negative loadings when regressing momentum returns on it, indicating

the conditional nature of momentum returns. Momentum crashes put extreme pressure on

mean-variance optimizing momentum investors, both through the strategy’s conditionally

negative returns and its heightened volatility during these phases. The rationale to opti-

mize the expected Sharpe is to either limit momentum return downturns, reduce the risk of

momentum, or both.

The recent literature has focused on volatility-scaling of factors. This idea is based on the

empirical observation that factor-return volatility is positively autocorrelated in the short

term and that returns are relatively low when volatility is high, named the leverage effect.3

Volatility-scaling strategies have been tested for single assets, factors, and asset classes.4

Barroso and Santa-Clara (2015) study momentum strategies that are deflated by their realized

volatility and scaled to a constant target volatility level. Realized volatility is calculated from

past daily momentum returns and a proxy of future volatility. They find that Sharpe ratios

more than double, while portfolio turnover only marginally increases. Daniel and Moskowitz

(2016) extend the constant volatility-scaling approach by additionally taking the forecasted

momentum return into account. The weights of their dynamic scaling are different than those

of constant volatility-scaling because they can take on negative values. Daniel and Moskowitz
3See, among others, Engle (1982); Bollerslev (1987) for volatility autocorrelation and Bekaert and Wu

(2000) for asymmetry in the risk to return relation.
4Moskowitz, Ooib, and Pedersen (2012) test volatility scaling at the security, not at the portfolio level.

The goal is to prevent portfolios being dominated by only few assets with high volatility. Moreira and Muir
(2017) highlight the advantage for mean-variance investors when scaling different equity long-short strategies
by realized variance. Grobys, Ruotsalainen, and Äijö (2018) compare risk management strategies for industry
momentum in the U.S. They find that industry momentum exhibits no time-varying beta (as standard
momentum does) and that volatility-scaling improves its performance. du Plessis and Hallerbach (2016) find
that the volatility-scaling of U.S. industries both lowers the industry momentum strategy’s volatility and
heightens its returns. Recently, Harvey, Hoyle, Korgaonkar, Rattray, Sargaison, and Van Hemert (2018)
compare volatility-targeting strategies across different asset classes.
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(2016) show that the dynamic strategy exceeds the Sharpe ratio achieved with the constant

volatility-scaling strategy.5

Instead of scaling the standard momentum factor, a different way to potentially increase

the risk-to-return relation is to change the portfolio sort criteria at the stock-level, yielding

differently composed long-short portfolios. Gutierrez and Prinsky (2007) use orthogonalized

stock returns (firm-specific abnormal returns) relative to a Fama-French three-factor model

instead of raw returns during the formation period. They find that firm-specific momentum -

or idiosyncratic momentum (iMOM)6 - experiences no long-term reversals. In addition, Blitz

et al. (2011) document that idiosyncratic momentum exhibits only half of the volatility of

standard momentum without any significant decrease in returns. Finally, Blitz, Hanauer, and

Vidojevic (2018) show that idiosyncratic momentum cannot be explained by the commonly-

used asset pricing factors both in the U.S. (1926 to 2015) and internationally, claiming that

idiosyncratic momentum is a separate factor that expands the efficient frontier comprised

of already established asset pricing factors, including standard momentum.7 Even though

idiosyncratic momentum is conceptually different from standard momentum as shown by

spanning test alphas, we aim to motivate idiosyncratic momentum as an additional strategy

(besides the scaled versions of standard momentum) to manage momentum drawdowns and

respectively maximize the performance of momentum.

This paper contributes to the literature in at least four aspects. First, we compare

three momentum risk management strategies proposed in the literature — idiosyncratic mo-

mentum, constant volatility-scaling and dynamic scaling — using a uniform data set and

methodology. We use both a long sample of U.S. and a broad sample of international stocks.
5However, Daniel and Moskowitz (2016) exploit ex-post information for calibrating their baseline model,

disregarding the optimization set of a real-world investor. This forward-looking bias is addressed only per-
functory, giving rise to the question of a practical implementation.

6Gutierrez and Prinsky (2007) and Blitz, Huij, and Martens (2011) use the terms abnormal return mo-
mentum and residual momentum, respectively, but the definitions are identical.

7Chaves (2016) in this regard shows that also a simplified version of idiosyncratic momentum that is based
on one-factor (market) unscaled residuals works. Blitz et al. (2018) confirm that most of the performance
improvement comes from orthogonalizing returns with the market factor and that the inclusion of additional
Fama-French factors leads to small further improvements as more of the stock specific momentum is isolated.
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We then evaluate the momentum risk management strategies in different dimensions: re-

turn and risk characteristics including higher moments and maximum drawdowns, ex-post

and Bayesian Sharpe ratio tests, as well as their implementability by avoiding look-ahead

biases and investigating the break-even transaction cost, i.e., round-trip transaction costs

that would render the strategy returns insignificant.

Second, we add to the replication literature by a large replication of standard momentum

as well as strategies to improve its performance. According to Hou, Xue, and Zhang (2018),

replication provides a contribution when extending existing studies out-of-sample. In this

regard, the majority of asset pricing studies are covering solely the U.S. market. Karolyi

(2016) argue that this implicitly creates a “home bias” for the U.S. market. Harvey (2017)

gives additional rise to the replication argument by stating that many published results would

not hold in the future, because of unreported tests, testing of multiple hypotheses, and data

snooping. Harvey, Liu, and Zhu (2016) link data snooping concerns with the incentive to

publish, generating a publication bias, and propose higher t-statistic hurdles. Lastly, Novy-

Marx and Velikov (2016) state that most published factors with above a 50% turnover per

month are not profitable after trading costs. Thus, transaction costs have the ability to

subsume factors’ profitability and even heighten the concerns for data snooping. Since we

are conducting a comparison study, we do not aim at “p-hacking” to report significant results,

but rather test already published volatility-management strategies. We use a uniform global

dataset, an identical factor construction approach, and proceed with the same statistical

tests (including the factors’ transaction costs), reporting the results homogeneously across

countries and strategies (factors). In this way, we overcome potential concerns of data mining,

multiple hypothesis testing and Type I error concerns.

Third, we contribute to the ongoing debate about whether volatility-managed investment

strategies yield higher Sharpe ratios than non-managed factors do.8 Cederburg et al. (2019)

examine 103 factors and find that volatility-management generates statistically significant
8See Cederburg, O’Doherty, Wang, and Yan (2019) for a literature overview about the volatility manage-

ment of trading strategies.
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Sharpe ratio improvements for only eight out of 103. Importantly, the authors show that the

eight trading strategies all relate to momentum strategies.

Finally, we add to the current literature that looks for a parsimonious factor model that

spans the tangency portfolio for traded factors, that does not retain redundant factors.

Our main findings can be summarized as follows. First, using a long sample of U.S. stocks

from 1930 to 2017 and a broad sample of stocks from 48 international markets from 1991

to 2017, we show that all risk management strategies substantially increase Sharpe ratios.

Furthermore, both skewness and kurtosis as well as maximum drawdowns decrease compared

to standard momentum so that their distributions become more normal. Comparing the in-

dividual risk management strategies within samples, we find similar improvements for the

long U.S. sample for Sharpe ratios and t-statistics (both roughly double compared to stan-

dard momentum) for all three approaches, while maximum drawdowns are reduced most by

idiosyncratic momentum. For the broad sample, we document that idiosyncratic momen-

tum outperforms all other strategies, as the improvements in Sharpe ratio and t-statistic

for idiosyncratic momentum are more than twice as the improvements of volatility-scaling

strategies and the reduction in maximum drawdowns is highest.

Second, maximum Sharpe ratio and factor comparison tests of the risk management

strategies further confirm our results in favor of idiosyncratic momentum. Idiosyncratic mo-

mentum is assigned the highest weight in ex-post maximum Sharpe ratio tests for both the

long and the broad sample, meaning that mean-variance optimizing investors would allocate

most to the idiosyncratic momentum factor next to traditional factors such as the market,

size, and value. Furthermore, the Bayesian Sharpe ratio tests as in Barillas and Shanken

(2018) show that the models with the highest model probabilities include idiosyncratic mo-

mentum, and that idiosyncratic momentum shows the highest cumulative factor probability

among the three momentum risk management approaches for both the long and the broad

sample.

Third, our findings indicate that risk-managed momentum strategies should be at least
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as implementable as standard momentum. By calculating the transaction (break-even) costs

that theoretically would render the strategies insignificant, we are able to directly compare

the risk-managed momentum strategies with each other after taking portfolio turnover into

account. Although all risk management strategies have higher average portfolio turnover

compared to standard momentum, we document higher break-even costs due to higher (risk-

adjusted) strategy returns.9

Finally, we find that the alpha generated by scaled momentum strategies is distinct from

the idiosyncratic momentum alpha, as indicated by the economically and statistically signif-

icant alphas in pairwise mean-variance spanning tests. Furthermore, we show that scaling

idiosyncratic momentum by its realized volatility further increases its Sharpe ratio. We find

that even though residualizing of returns reduces the systematic exposure of the constructed

idiosyncratic momentum factor, scaling the factor by its volatility generates even higher risk-

adjusted returns, undermining the conceptual difference of the risk management approaches.

The following sections are structured as followed: Section 2 describes the data, factors, risk

management strategies, and research methodologies. Section 3 presents our empirical results

for the implemented strategies, maximum ex-post and conditional Sharpe ratio comparisons,

turnover analyses, as well as mean-variance spanning tests and results for the scaled versions

of idiosyncratic momentum to disentangle the effects of volatility scaling and residualizing.

In Section 4 we assess the robustness of our results by applying the Fama-French five-factor

model as a benchmark, using alternative portfolio construction methods (one-dimensional

sorted decile/quintile portfolios), and investigating the momentum strategies on a country

level. Section 5 concludes.
9Novy-Marx and Velikov (2016) find momentum to deliver significant after-transaction cost returns.
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2 Data and Methodology

2.1 Data

The data analyzed in this paper is collected from various sources. We use a sample consisting

of 58,431 stocks for 49 equity markets from July 1926 to December 2017. We refer to U.S.

and ex-U.S. (international) equity data as long and broad sample with respect to differences

in sample period availability and regional coverage. Both monthly and daily returns are

measured in USD. The U.S. data comes from the Center for Research on Security Prices

(CRSP) and covers July 1926 to December 2017. International data is collected from Thom-

son Reuters for the sample period July 1987 to December 2017. The country selection follows

the Morgan Stanley Capital International (MSCI) Developed and Emerging Markets Indices.

We include all countries that are classified as a developed or an emerging market at some

point during the sample period.10 More precisely, the countries are only part of the actual

sample in those years in which they are part of the MSCI Developed and Emerging Markets

Indices. The following countries are included: Argentina, Australia, Austria, Belgium, Brazil,

Canada, Chile, China, Colombia, Czech Republic, Denmark, Egypt, Finland, France, Ger-

many, Greece, Hong Kong, Hungary, Indonesia, India, Ireland, Israel, Italy, Japan, (Republic

of) Korea, Morocco, Mexico, Malaysia, Netherlands, Norway, New Zealand, Pakistan, Peru,

Philippines, Poland, Portugal, Qatar, Russia, Singapore, South Africa, Spain, Switzerland,

Sweden, Thailand, Turkey, Taiwan, United Arab Emirates, U.K. and U.S.

Our long U.S. sample includes all common equity stocks from NYSE, NYSE MKT (for-

merly: AMEX), and NASDAQ within the CRSP universe. We exclude all stocks with a

CRSP share code (SHRCD) different than 10 or 11. If available, we use Fama-French fac-

tors from Kenneth French’s website for the long sample, which leaves us with constructing

momentum, idiosyncratic momentum, and a timely value factor.11

The broad international sample comprises market data from Datastream and accounting
10See https://www.msci.com/market-classification for details.
11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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data from Worldscope. We process data through static and dynamic screens to ensure data

quality. As a first step, we identify stocks by Thomson Reuters Datastream’s constituent

lists. We use Worldscope lists, research lists and, to eliminate survivorship bias, dead lists.

Following Ince and Porter (2006), Griffin, Kelly, and Nardari (2010), and Schmidt, Von Arx,

Schrimpf, Wagner, and Ziegler (2017), we apply generic as well as country-specific static

screens to eliminate non-common equity stocks as well as dynamic screens for stock return

and price data as described in Appendix A.1. The emerging market data is restricted to

start only in July 1994.12 In order for a security to be a regarded for the market, size,

and value portfolios within the broad sample, securities are required to have a valid market

capitalization for June y and December t−1 as well a positive book equity value for December

t− 1.

For both the long and the broad sample, we calculate momentum and idiosyncratic mo-

mentum and additionally require valid returns from t− 36 to t− 1.13

Finally, the countries are only part of the final sample in those months for which at least

30 stock-month observations are available after filters.14 We end up with a total of 7,402,291

firm-month observations. Table 1 shows the descriptive statistics for the stocks in the final

sample.

[Table 1 about here.]

2.2 Factor construction

Our approach for constructing the factor portfolios follows Fama and French (1993, 2012). We

calculate the portfolio breakpoints for each country separately to ensure that the results are
12Griffin et al. (2010) and Jacobs (2016) apply the same sample starting point for emerging markets data,

relying on the increased integration of emerging markets with world markets by 1994.
13The momentum factor requires return data from t − 12 to t − 2. We use this extended requirement to

have a uniform data set for the construction of both standard and idiosyncratic momentum.
14Following Jacobs (2016), we thereby ensure that the six size-momentum portfolios contain at least five

stocks on average. As a consequence, some countries (such as India, Hong Kong and Spain) are excluded
from the sample for certain months. Jordan, Sri Lanka, Slovakia and Venezuela are excluded from the whole
sample.
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not driven by country effects. The market factor, RMRF, consists of value-weighted returns

of all available (and valid) securities less the risk-free rate. All returns are in USD and excess

returns are relative to the one-month U.S. Treasury bill rate. The size and value factors are

constructed by six value-weighted portfolios using breakpoints on market capitalization and

book-to-market. For every end-of-June of year y, we assign stocks among two size-sorted

and three book-to-market sorted portfolios based on their market capitalization and book-

to-market ratio, respectively. Market capitalization is from end of June of year y and the

book-to-market ratio is calculated with market capitalization from end of December of year

y − 1 and book value from the fiscal year end of y − 1. For the U.S., the size breakpoints

are based on the NYSE median market capitalization and stocks are classified as big or

small, indicated by B and S. For the broad sample, we follow Fama and French (2012,

2017) and define size breakpoints so that the largest (smallest) stocks cover 90% (10%) of

a country’s market capitalization. Moreover, all stocks are independently sorted into three

portfolios (Growth, Neutral, and Value, indicated by G, N , and V ) based on the country-

specific 70% and 30% percentile breakpoints of book-to-market ratios. The breakpoints on

book-to-market are calculated from NYSE (big) stocks only for the long (broad) sample. For

the resulting six portfolios (BV , BN , BG, SV , SN , and SG), we calculate monthly value-

weighted returns and construct the size (SMB) and value (HML) factor as zero-investment

long-short portfolios from July y to end-of-June t+ 1:

SMB = (SV + SN + SG) /3− (BV +BN +BG) /3

HML = (BV + SV ) /2− (BG+ SG) /2
(1)

Analogously to value, we categorize stocks based on the 70% and 30% percentiles of the

past 12-2 month cumulative returns as Winner, Neutral and Loser (W , N , and L) stocks to

form the momentum factor. We then calculate the monthly value-weighted returns for the

2x3 portfolios (BW , BN , BL, SW , SN , SL). Momentum is constructed by the long-short

portfolio as MOM = (BW + SW ) /2− (BL+ SL) /2 and - in contrast to SMB and HML -
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rebalanced every month. Asness and Frazzini (2013) introduce the so-called HML-devil factor

(denoted as HMLd). HMLd is comparable to HML but updates the market capitalization

for the sorting criteria every month. Thus, stocks are sorted into portfolios based on their

monthly updated book-to-market ratio. As stated above, we use the Fama-French factors

from Kenneth French’s website for the long U.S. sample. The momentum factor and risk

management strategies, however, are constructed by ourselves based on independent double

sort portfolios in order to ensure comparability. The sorts on the past 12-2 month returns

are based on NYSE (big) stocks.

2.3 Risk management strategies

Volatility scaling aims to manage the realized volatility of an investment strategy. For cross-

sectional (here: standard) momentum, realized volatility has been shown to have a positive

(negative) correlation with future volatility (returns) and to be relatively high compared to

other factors.15 In this study we identify two potential channels for Sharpe ratio improve-

ments by volatility scaling: volatility scaling lowers the overall ex-post volatility (named

volatility smoothing) and heightens strategy returns due to negative correlation between

volatility and returns (named volatility timing).16 We apply the realized volatility of momen-

tum strategy returns to control for volatility.17 Combining these two channels, forecasted

returns and variances (or volatilities) at the factor-level can generate scaling weights that

increase the Sharpe ratio of momentum compared to a non-scaled strategy. Moreover, as a

net-zero investment long-short strategy, momentum can be scaled without assuming leverage

costs and the scaling can be interpreted as having a time-varying weight in the long and short
15See, among other, Barroso and Santa-Clara (2015) or Moreira and Muir (2017).
16Both channels do not directly consider the positive autocorrelation of momentum strategy returns, which

is utilized for the dynamic momentum strategies.
17Alternatively one could use the individual volatility of all current holdings of the momentum strategy.

However, using volatility at the strategy level is preferable for momentum due to the possibility of volatility
timing (i.e., the negative relation between volatility and strategy returns, as shown in Bekaert and Wu, 2000).
Individual volatilities are rather useful to control for realized volatility (volatility smoothing) of time-series
momentum strategies (see, e.g., also du Plessis and Hallerbach, 2016, for U.S. industry portfolios). These
strategies are scaled upward by volatility (not the inverse, as for cross-sectional momentum) due to the
positive relation between volatility and returns.
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legs. We explicitly distinguish between constant volatility-scaling and dynamic scaling.

Constant volatility-scaling, as proposed in Barroso and Santa-Clara (2015), adjusts the

momentum portfolio to a constant target volatility level. The corresponding scaling weight

for momentum in month t is defined as:

wcvol,t = σtarget
σ̂t

(2)

where σtarget is the full sample volatility of momentum and σ̂t = Et−1[σt] is the forecasted

respective expected volatility.18 Since the forecasted volatility varies over time, the weights

for the constant volatility-scaled momentum portfolio can take values between 0 (for σ̂t =∞)

and infinity (for σ̂t = 0). Following Barroso and Santa-Clara (2015), we calculate the monthly

volatility forecast for month t from past daily realized returns of momentum in the previous

six months (126 trading days):

σ̂2
MOM,t = 21 ·

126∑
j=1

R2
MOM,d−j,t

126 (3)

where R2
MOM,d−j,t is the squared realized daily return of momentum returns summed over

the last 126 trading days. For robustness, we also use a one month look-back window (21

trading days) as in Moreira and Muir (2017). Constant volatility-scaled momentum over six

months (cvol6M) and constant volatility-scaled momentum over one month (cvol1M) show the

correspondingly weighted momentum strategies, where the return in month t is calculated

using realized volatility:

Rcvol,t = RMOM,t · wcvol,t (4)

The dynamic strategy enhances the volatility forecasting of constant volatility strategies by

additionally forecasting the expected return. Mean-variance optimizing investors optimize

momentum as their investment asset according to the dynamic scaling weight that refers to
18By choosing the full-sample volatility of momentum as a target level, we (i) ensure that the strategy

targets a constant risk over time and (ii) make the returns of the scaled and unscaled strategy comparable.
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their expected Sharpe ratio.19 We apply the dynamic approach from Daniel and Moskowitz

(2016) and define the dynamic scaling weight for momentum in month t as:

wdyn,t =
( 1

2λ

)
· µ̂t
σ̂2
t

(5)

where µ̂t = Et−1[µt] (σ̂2
t = Et−1[σ2

t ]) is the forecasted respective the conditional expected

return (variance) of momentum, and λ is a static scalar scaling the dynamic strategy to

the average volatility of momentum. The estimation of µ̂t and σ̂2
t can be conducted either

in-sample or out-of-sample. We apply both approaches to compare the performance, even

though the in-sample estimation suffers from a look-ahead bias.20 The return of momentum

is forecasted, both in- and out-of-sample, with the following time-series regression:

RMOM,t = γ0 + γint · IBear,t−1 · σ2
RMRF,t−1 + εt (6)

where IBear,t−1 is a bear-market indicator that equals one if the cumulative past two year

market return is negative (and zero otherwise), σ2
RMRF,t−1 is the realized variance of RMRF

over the past 126 days, γint is the regression coefficient on the interaction term of the two

independent variables, and γ0 is the regression intercept. The expected return (µ̂t) is defined

as the fitted values from the regression. Distinguishing between in-sample and out-of-sample

estimation, the former refers to the whole momentum sample available for estimation of the

regression and yields the mentioned look-ahead bias. The latter also uses fitted values but

estimates Equation 6 on a monthly updating expanding-window basis.21 To estimate the
19It is, however, an underlying assumption how investors end up with their return and variances forecasts

respective how their expectations align for the weight components. Daniel and Moskowitz (2016) mention that
investors optimize their objective function in-sample and unconditionally, which implies a forward-looking
bias. In this regard, we additionally estimate return and variance out-of-sample.

20The estimation approaches will later on refer to the two strategies: dynamic in-sample-scaled momentum
(dynIS) and dynamic out-of-sample-scaled momentum (dyn).

21In contrast to Daniel and Moskowitz (2016), we estimate an out-of-sample regression using the prior
36 months that are already necessary to constructing idiosyncratic momentum but drop the restriction of
requiring at least one non-zero bear-market indicator observation to define the sample starting point. This
was done to keep the same sample start date. In case the bear-market indicator is always zero within a
subsample, the fitted values of the time-series regression simply equal the momentum returns on the LHS of
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variance of momentum for the in-sample approach, we first estimate the generalized autore-

gressive conditional heteroskedasticity (GARCH) model introduced in Glosten, Jagannathan,

and Runkle (1993). A feature of the model is that the variance process of the residuals is fitted

while conditioning on the residual being negative, indicating a negative deviation of momen-

tum returns from the return trend. We estimate the parameters within the GJR-GARCH

model using maximum likelihood over the whole sample. In the second step, µ̂t is eventually

estimated from the fitted values of an autoregressive model extended by the forecast of the

calibrated GJR-GARCH. The processes of the model and details on the time-series regression

in order to derive the in-sample volatility forecast (σ̂t) are provided in Appendix A.2. For

the out-of-sample variance forecast of the dynamic strategy, we rely on the same approach as

for the constant volatility-scaling strategies to overcome the look-ahead bias of the GARCH

model forecast and use Equation 3 with a 126 day look-back window for wdyn,t. We eventually

derive dynIS and dyn as the dynamically weighted momentum strategies with their return

in month t given by:

Rdyn(IS),t = RMOM,t · wdyn(IS),t
(7)

Comparing cvol6M and dyn as examples for the constant volatility-scaling and the dynamic

strategy, the weights solely differ by Et−1[µt] = µ̂t. Hence, the scaling weights of the dynamic

strategies can take on negative values when µ̂t < 0. Figure 1 plots the corresponding weights

for the whole sample and sub-samples. As expected, the dynamic weights vary more strongly

than the constant volatility-scaling weights for both the long and broad sample. Figure 1b

shows the weights during the Great Depression. Between July and August 1932, momentum

in the U.S. exhibited returns of -41.90% and -37.19%.22 The highly negative momentum

returns in July 1932 drive down the weight for dyn from 0.79 to 0.14 by end-of-August 1932,

the regression equation.
22In previous months (March, April, and May 1932), the U.S. market factor rebounded from negative

returns (-11.05%, -17.85% and -20.45%) to positive returns in July and August 1932 (33.87% and 37.09%).
After strings of negative market returns, stocks assigned to the loser portfolio of momentum have on average
higher market betas than stocks in the winner portfolio. Thus, after the positive market reversal in July
1932, short positions in the high beta stocks (within the loser portfolio) that yielded higher returns than
low-beta stocks in the winner portfolio caused the long-short momentum portfolio to crash.
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while the weight for cvol6M only slightly decreases (0.44 to 0.41). Hence, an implemented dyn

(cvol6M) strategy effectively would have lowered momentum losses from -37.19% to -5.19%

(-15.32%) in August 1932. For the broad sample, Figure 1d drafts a similar picture: the

downward-scaled of dyn (assigning even negative weights) compared to cvol6M is enhanced

during periods of serially-autocorrelated momentum returns. This is especially the case after

a bear market state turns positive (reversal).

Idiosyncratic momentum does not scale the standard momentum factor but applies a

different sorting criterion at the individual stock level. The construction of idiosyncratic

momentum is technically distinct from momentum (and volatility-scaled strategies) in that

stocks within the long and short portfolios potentially differ. Instead of using the individual

stocks’ raw returns from t−12 to t−2, we orthogonalize them with respect to a Fama-French

three-factor model. Thereby, stock returns are adjusted for their risk factor exposure. We

follow Gutierrez and Prinsky (2007), Blitz et al. (2011), and Blitz et al. (2018) and regress

the past 36 months’ returns of all valid stocks within the investment universe on country-

specific factors of the Fama-French three-factor model. Thus, the following time-series model

is estimated for every stock i and month t using a rolling-window approach:

Ri,t −Rf,t = αi + βRMRF,i ∗RMRFt + βSMB,i ∗ SMBt + βHML,i ∗HMLt + εi,t (8)

The residuals of the time-series regressions, ε̂i,t , can be interpreted as stock-specific idiosyn-

cratic returns for stock i during month t. As in Gutierrez and Prinsky (2007), Blitz et al.

(2011), and Blitz et al. (2018), we calculate the cumulative idiosyncratic return for each stock

by scaling the 12-2 month idiosyncratic returns with their volatility:

ε̂12−1i,t
=

12∑
j=2

ε̂i,t−j√
12∑
j=2

(ε̂i,t−j − ε̄i)2
(9)

We categorize each stock as a Winner, Neutral and Loser stock based on its cumulative
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idiosyncratic returns ε̂12−1i,t
. Therefore, every stock is independently sorted into one of the

2x3 portfolios on size and cumulative idiosyncratic returns, namely BWidio, BNidio, BLidio,

SWidio, SNidio, and SLidio. As for standard momentum, the 70% and 30% quantile break-

points of cumulative idiosyncratic returns are calculated using big stocks only. The portfolios

are rebalanced monthly and portfolio returns are value-weighted. Idiosyncratic momentum

is then constructed as a factor analogously to momentum: long in 1
2 (BWidio + SWidio) and

short in 1
2 (BLidio + SLidio).23

2.4 Methodology

We investigate the improvement of risk-management strategies for momentum returns based

on a comprehensive set of methodologies. First, we evaluate different factors by means, t-

statistics, higher moments (skewness and kurtosis) as well as maximum drawdowns. Second,

we conduct ex-post and Bayesian maximum Sharpe ratio tests. Third, we compare risk-

adjusted strategy returns with respect to the Fama-French three-factor model and conduct

pairwise mean-variance spanning tests. Finally, we contrast the profitability of the differ-

ent momentum strategies with their portfolio turnover to assess their capacity for potential

transaction costs. This section presents the testing procedures:

With the ex-post Sharpe ratio maximization as in Ball, Gerakos, Linnainmaa, and Niko-

laev (2016), we test which combination of factor sets has the highest ex-post Sharpe ratios.

In the mean-variance efficient portfolio optimization, the economic significance of our factors

is quantified by comparing how much an investor could gain from adding a certain factor to

his investment opportunity set.

The ex-post optimization, however, does not test if the factors span each other in a time-

conditional manner. Barillas and Shanken (2018) propose a Bayesian test to compare factor
23Within Section 4, we scale iMOM by its realized volatility with a six month look-back window to dis-

entangle the alpha generating signals. To sustain homogeneity across analyses, all risk management strate-
gies/factors are only used six months after their initial construction month. These six months correspond to
the look-back window in order to scale iMOM by its realized volatility. Eventually, the long (broad) sample
starts in 01/1930 (01/1991) although strategy returns are available from 07/1929 (07/1990) on.
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models over time. In short, the posterior probabilities for models and/or factors are derived

by evaluating the null hypothesis (H0 : α = 0) against the alternative (H1 : α 6= 0) under

consideration of the expected Sharpe ratio increases by adding a factor. The methodology is

structured in the following way: First, prior beliefs about potential increases in Sharpe ratios

when adding factors to the investment opportunity set are assigned to the factors, considering

the alternative hypothesis. The prior expected value for the increase in the squared Sharpe

ratio, k, is:

k =
(
Sh2

max − Sh (f)2
)
/N (10)

where Shmax is the target Sharpe value, Shf is the Sharpe of the market factor (ShRMRF )

when taking the CAPM as a baseline model, and N is the number of factors. The prior

for each factor is set so that Shmax equals the sample Sharpe ratio of the market factor

(ShRMRF ) times 1.5 (4) for the long (broad) sample as baseline Sharpe multiple.24 The

benchmark scenario implies that the square root of the squared tangency portfolio’s Sharpe

ratio (spanned by the included factors) is 50% higher than the market’s squared Sharpe

ratio. Second, to see if a test asset (here: a factor) expands the efficient frontier, a so

called Bayes factor (BF ) is motivated.25 By a derived regression density, the probability of

a factor of generating alpha (H1), and to be priced by factors in the current model (H0),

can be expressed as marginal likelihoods ML (H1) and ML (H0), respectively. The Bayesian

factor relates the null hypothesis to the alternative by application of the Gibbons, Ross, and

Shanken (1989) F-statistic. Hence, the ability of a factor to generate statistically significant

alpha, under consideration of the prior beliefs and relative to other factors, is translated

into posterior probabilities. Finally, the methodology yields two posterior results: model
24We choose a higher multiple for the broad sample as international factors benefit from diversification in

regional factor returns. Cf. Fama and French (2012) and Hanauer and Linhart (2015) for the diversification
potential in developed and emerging markets factor returns, respectively.

25The Bayes factor is defined as:
BF = ML (H0)

ML (H1) (11)

where marginal likelihoods depend on the prior value k. For details on the methodology, see Barillas and
Shanken (2018).
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probabilities for all models under consideration with values between 0 and 1 (where the

weights across all models sum up to one), and cumulative probabilities for every factor that

assign values between 0 and 1 for every factor. The posterior probabilities give insights on

a model’s ability to price other factors, and on which factors are essential to build up the

model in the first place.26

We apply a categorical model (not factor) perspective for the tests. The factors are

restricted in a way where only one value and only one risk-managed momentum factor is

allowed per model. This approach differs from the categorization in Barillas and Shanken

(2018): we also prevent factors of the same category from being included in one model,

however, we did not aggregate the results per factor category after all. The categorization (i)

prevents overfitting since constant volatility-scaled momentum over six months and dynamic

in-sample-scaled momentum are highly correlated, and (ii) enables us to measure the effect

of installing solely one risk-management strategy for momentum.

To see the strategies’ risk-adjusted performance, we calculate alphas for momentum and

all risk-management strategies relative to a Fama-French three-factor model. Moreover,

we conduct one-by-one comparisons of the strategies within mean-variance spanning tests

including the Fama-French three-factor model factors. Hence, we regress returns of the test

asset (e.g. momentum) on returns of the benchmark asset (e.g. idiosyncratic momentum) and

the Fama-French factors within a linear time-series regression model.27 The null hypothesis

states that the test asset returns are spanned, i.e., that the intercept equals zero. If the null

hypothesis is rejected and the intercept is statistically significantly different from zero, the

test asset does outperform the benchmark asset as well as the Fama-French risk factors and
26For example, applying the methodology on the FF3FM model, Barillas and Shanken (2018) test all

combinations obtainable from the three factors (RMRF, SMB, and HML) simultaneously against each other.
The four factor combinations - {RMRF}, {RMRF HML}, {RMRF SMB}, and {RMRF HML SMB} - get
assigned a prior probability of 1/4 and the value of k for the prior is implicitly given by Equation 11. For a
baseline Sharpe multiple of 1.5 is chosen, Barillas and Shanken (2018) find posterior probabilities of 55.6%
for {RMRF HML}, 43.4% for {RMRF HML SMB}, and less than 1% for the two remaining models. Thus,
the FF3FM model is outperformed by the two-factor model without the size factor for the data tested. The
Bayesian results are in line with the time-series regression results: there are highly significant and positive
(insignificant) alphas when regressing HML (SMB) on RMRF.

27See, among others, Huberman and Kandel (1987).
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extends the efficient portfolio frontier.

As in Grundy and Martin (2001) and Barroso and Santa-Clara (2015), we calculate the

round-trip costs that would render the profits of the different momentum strategies insignif-

icant at a certain α-significance level as

Round-trip costsα=5% =
(

1− 1.96
t-stats

)
µ̄s
¯TOs

28 (12)

where µ̄s is the average monthly return, ¯TOs is the average monthly turnover and t-stats is

the t-statistic of strategy s. Round-trip costs are advantageous since they define an upper

border for the potential transaction costs instead of quantifying them directly. Only the

strategy returns as well as the associated portfolio turnover are necessary input factors.29

Moreover, statistical significance can be incorporated within the round-trip costs measure.

Importantly, holding turnover fix, round-trip costs with reliance on the α-significance level

increase for strategies with higher t-statistics and therefore, lead to a higher upper border.

3 Empirical results

3.1 Performance of the Strategies

In this section, we compare the risk-to-return performance improvement of risk management

strategies for momentum in global markets. Table 2 depicts the return characteristics for the

momentum strategies.

[Table 2 about here.]

For the long U.S. sample, the average monthly return of the standard momentum factor

amounts to 0.60% with a highly significant t-statistic of 4.42. However, as Barroso and

Santa-Clara (2015) and Daniel and Moskowitz (2016) already show, momentum has also a
28We choose the Z-value of 2.58 (instead of 1.96 for the 5% level) for the 1% significance level.
29We calculate portfolio turnover as the sum of changes in the securities’ weights within assigned long-short

factor portfolios. The details of the turnover calculation are presented in Appendix A.3.
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dark side. The high returns come with a very high kurtosis and a negative skewness, implying

large drawdowns (fat left tails) such as the maximum drawdown for the momentum factor in

1932 of -67.10%. The returns of the standard momentum factor for the broad international

sample show similar features. The average monthly return is 0.52% with a t-statistic of 2.99.

The higher t-statistics for the U.S. sample can be attributed to the larger number of monthly

observations, as indicated by almost similar Sharpe ratios (0.47 vs. 0.57). The momentum

returns for the broad sample also exhibit a high kurtosis and a negative skewness but are

more normal compared to their counterparts for the long sample. This is also reflected in

the lower maximum drawdown in 2009 of -36.96%.

Comparing risk-management momentum strategies with standard momentum for both

samples, all of them show significantly improved performance of momentum measured by the

t-statistic and Sharpe ratio. Furthermore, skewness, kurtosis and as maximum drawdowns

decrease as compared to standard momentum so that their distributions become more normal.

For the long U.S. sample, we find similar improvements for Sharpe ratios and t-statistics (both

roughly double compared to standard momentum) for all five approaches, with the highest

Sharpe ratio of 0.95 for dynamic in-sample-scaled momentum and idiosyncratic momentum,

while the maximum drawdowns are reduced most by idiosyncratic momentum. For the broad

sample, we document that idiosyncratic momentum outperforms all other strategies, as the

improvements in Sharpe ratio and t-statistic for idiosyncratic momentum are more than

twice that of the improvements of volatility-scaling strategies and the reduction in maximum

drawdowns is the highest.30

One main goal of this paper is to identify the risk-management strategy best suited for

mean-variance optimizing momentum investors. As mentioned in Subsection 2.3, volatil-

ity scaling strategies are technically very similar. We observe that the results for constant

volatility-scaled momentum over one month and constant volatility-scaled momentum over

six months are very similar, with constant volatility-scaled momentum over six months having
30We additionally scale momentum for every country in the broad sample individually rather than scaling

the aggregated time-series of all countries within the broad strategy. The results remain unchanged.
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a slightly lower Sharpe ratio but also a suffering from slightly lower drawdowns. A differ-

ent picture emerges for dynamic in-sample-scaled momentum and dynamic out-of-sample-

scaled momentum. The forward-looking bias in dynamic in-sample-scaled momentum leads

to higher returns and lower drawdowns for both the long and the broad sample. To further

shed light on the similarity of returns, Table 3 shows pairwise correlation coefficients for both

samples.

[Table 3 about here.]

As expected, cvol1M , cvol6M are highly correlated, as are dynIS and dyn, with correla-

tion coefficients above 88%. The strong co-movement can be traced back to similar weights

scaling the identical standard momentum factor. iMOM is not particularly correlated with

the volatility-scaled strategies. We argue that it is plausible to categorize similar factors and

thereby omit informationally-redundant factors. Besides redundancy, dynIS suffers from a

forward-looking bias, sustaining the idea of focusing on dyn instead. Thus, we henceforth

exclude cvol1M and dynIS from our analyses, and only analyze cvol6M and dyn as categorical

factors for constant volatility-scaling and the dynamic strategy, as well as iMOM. This ex-

clusion simplifies the interpretation of one-by-one comparisons, enables cross-validation with

existing studies and eliminates the forward-looking bias of dynIS. We moreover include a

monthly updated so-called HML-devil factor (HMLd) in our correlation analysis. Daniel and

Moskowitz (2016) state that HMLd captures more variation of momentum than standard

HML.31 The more negative correlation between MOM and HMLd (compared to HML) is also

shown for both our long and broad sample. Hence, we test our strategy returns against the

FF3FM or the FF3FM and substitute HML by HMLd (denoted as FFd).

Figure 2 displays the buy-and-hold returns of momentum and the proposed risk-management

strategies for the long sample. All strategies are scaled to the average volatility of standard

momentum for comparability reasons. For the U.S., all strategies increase in returns com-

pared to momentum, with a clear outperformance of idiosyncratic momentum and dynIS.
31Cf. Daniel and Moskowitz (2016), p. 244.

21



The dynIS manages to hedge the momentum downturns in 2001 and 2008 and generates

stable returns from the 1950s on. Idiosyncratic momentum has a steady return evolution, as

expected by hedging out style exposure to the FF3FM factors. Both cvol6M and dyn show a

similar performance by construction, differing solely by the numerator in the scaling weight of

dyn. In the global sample, idiosyncratic momentum clearly outperforms all volatility-scaling

strategies, as shown in Figure 3.

3.2 Comparison of Factor Models

In this section, we analyze the factors from the viewpoint of a Sharpe-maximizing investors

trading different momentum strategies and the FF3FM (resp. FFd) factors. To measure the

economic significance of factors, we calculate the ex-post maximum Sharpe ratios associated

with different combinations. This approach distributes weights from zero to one to the

regarded factors, where the weights in total sum up to one. Table 4 shows the weights and

Sharpe ratios for the long U.S. sample in Panel A.

[Table 4 about here.]

The (annualized) Sharpe ratio of the market factor (RMRF) is 0.42 and it increases to

0.52 when extending it with the size factor (SMB) and both value factors (HML and HMLd).

When adding momentum (MOM), the Sharpe ratio more than doubles (1.07) and the weight

from HML is shifted to HMLd. A one-by-one inclusion of risk-management strategies to

the size, value and momentum factors yields similar Sharpe ratios for all investment sets

(about 1.24). However, cvol6M and iMOM have the highest factor weights of 45% and 47%,

respectively. Allowing all factors to be invested in, the Sharpe ratio peaks at 1.37 annually.

Importantly, within the momentum strategies, iMOM contributes almost solely to the max

Sharpe portfolio with an investment weight of 42%.

The following indications can be derived: (1) If an investor trades the base factors and at

least one risk-managed momentum strategy, the achievable ex-post maximum Sharpe ratio
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of the investor is higher than if she traded the base factors along with the momentum factor.

Depending on the base factors chosen (FF3FM or FFd), adding a risk-managed factor yields

similar Sharpe ratios across all risk-managed factors for the same base factors. Thus, an

investor would do better by adding a risk-managed momentum factor to the investment

opportunity set than by trading standard momentum. (2) In a comprehensive comparison,

iMOM is assigned the highest weight, suggesting that iMOM substantially drives the achieved

(ex post) mean-variance efficient portfolio with a Sharpe ratio of 1.45. Hence, an investor

who is restricted to picking only one momentum strategy might favor iMOM over the other

strategies.

A clearer picture emerges for the global sample, as depicted in Panel B of Table 4. iMOM

clearly generates the highest Sharpe ratio (2.42) in one-by-one comparisons with other risk-

management strategies. In the comprehensive factor comparison, iMOM is assigned an even

higher weight than for the U.S. sample (52%), sustaining the implication that iMOM is

superior in maximizing risk-adjusted returns for the overall (long and broad) sample.

Next, we investigate if the results also hold for time-conditional maximum Sharpe ratio

tests. We apply the methodology of Barillas and Shanken (2018) to our factor time-series

set. As mentioned earlier, we conduct categorical tests for value and the risk-management

strategies. The results are thus comparable to the ex-post maximum Sharpe tests where

we compare the FF3FM factors, momentum and one of the risk-management strategies. As

a benchmark scenario, we use 1.5 (4) for the Sharpe multiple in our long (broad) sample,

leading to Shmax = 1.5(4) × ShRMRF . Thus, the square root of the prior expected squared

Sharpe ratio of the tangency portfolio from all eight factors32 is assumed to be 50% (300%)

higher than the Sharpe ratio of the CAPM. By increasing the Sharpe multiple to a maximum

of six, the investors are assumed to believe in stronger mispricing, assigning relatively large

probability to extreme Sharpe ratios. Figure 4 shows the posterior model probabilities and
32We consider RMRF, SMB, HML, HMLd, MOM, cvol6M , dyn and iMOM, where HML and HMLd as well

as cvol6M , dyn and iMOM are treated as factors for categorical models. Thus, only one categorical factor is
allowed to be included in within a model.
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cumulative factor probabilities over time for the U.S. sample.33 By starting with equal prior

probabilities for every model, it takes some time until a substantial difference in the posterior

probabilities emerges. The top panel shows the time-series of posterior model probabilities

for the seven models with the highest probability by December 2017 (the end of the U.S.

sample). We find that the model {RMRF HMLd MOM iMOM} performed best, ranking as

the first after outperforming {RMRF iMOM} in the mid-1980s. Of the top seven models,

five include iMOM as a factor. This hierarchy is further visualized by the bottom panel of

Figure 4, which plots the sum of posterior probability for the models including the respective

factor. Table 5 depicts the end-of-sample posterior model probabilities for the U.S. sample

within Panel A. Even when increasing the Sharpe multiple, the best-performing model stays

unchanged whereas weights even increase. Thus, when investors’ prior mispricing beliefs are

extremely high, among all risk-management strategies iMOM is solely picked as a factor and

generates significant alpha relative to other factors. Stated differently, iMOM is also picked

when extremely large Sharpe ratios are targeted.

[Table 5 about here.]

The time-conditional maximum Sharpe ratio tests for the broad sample provide even

stronger evidence for idiosyncratic momentum. The top panel of Figure 5 shows that the

model {RMRF HMLd iMOM} performed best with only a single downward peak after 2000.

Importantly, idiosyncratic momentum is part of all the top seven models for the global sample.

The bottom panel of Figure 1 highlights the importance of idiosyncratic momentum in terms

of cumulative factor probability: its probability is close to one from the end of the 1990s to the

end of the sample period. Table 5, Panel B depicts the end-of-sample global posterior model

probabilities. Irrespective of the prior Sharpe multiple chosen, idiosyncratic momentum is

part of the top-performing model, incorporating HMLd for the top three models. Overall,

the model comparison tests as in Barillas and Shanken (2018) highlight the importance
33The U.S. (global) sample begins only in 03/1930 (03/1991) since the methodology requires 9 (=8 factors

+ 1) months to get the initial values. We end up with 48 models (since we categorize) and 8 factors for our
analyses.

24



of idiosyncratic momentum both as a factor for asset pricing models, and as a profitable

investment strategy. Clearly, for the broad sample, the stronger negative correlation with

HMLd is key to the results obtained. As a potential caveat of the time-conditional maximum

Sharpe ratio tests, it is noteworthy that we only consider the Fama-French-Carhart four-

factor model (FFC4FM) either with HML or HMLd to proxy for value for the factor set,

omitting other potential factors such as profitability or investment, as in Fama and French

(2015) or Hou, Xue, and Zhang (2015). Nevertheless, our approach is valid in a sense that (i)

we are only comparing risk-managed momentum strategies as additional factors and (ii) we

start in January 1930 for the U.S. sample where data for other factors is limited. To ensure

that our results are not driven by this choice, we add the profitability and investment factors

to the factor set in Section 4.

3.3 Turnover and Transaction Costs

All momentum strategies — including idiosyncratic momentum — are constructed as zero-

cost long-short strategies. The returns reported in Table 2, however, ignore transaction

costs for implementing the strategies. As mentioned in Barroso and Santa-Clara (2015),

“[o]ne relevant issue is whether time-varying weights induce such an increase in turnover that

eventually offsets the benefits of the strategy after transaction costs.” Table 6 shows the

average (over time) one-way portfolio turnover of the long leg plus the short leg. We find

that for all strategies, the legs on average generate a turnover of more than 50% per month

when using value-weighted returns.34 For the U.S. sample in Panel A, turnover increases

for all risk-management strategies, especially for volatility-scaled strategies with a maximum

of 82.22% monthly for dynamic out-of-sample-scaled momentum. The increase in turnover

when investing in dynamic out-of-sample-scaled momentum but not in momentum yields a

significant increase in turnover of 28.43 (82.22-53.79) percentage points. Similar results hold
34Our monthly turnover for momentum however is lower than the 74% in Barroso and Santa-Clara (2015).

We trace back the difference to not using decile momentum portfolios, but forming HML-style portfolios
based on 70/30% percentile breakpoints and double-sorts including size. We are able to validate the turnover
for the equivalent sub-sample period using the more extreme decile breakpoints and single sorts.
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true for the shorter global sample (from 01/1991 to 12/2017) in Panel B, where dynamic out-

of-sample-scaled momentum generates a maximum average monthly turnover of 81.06%.35

Idiosyncratic momentum also incurs higher portfolio turnover than standard momentum.

Hence, we aim to investigate whether the increase in turnover offsets the benefits of volatility-

scaling.

Round-trip costs describe transaction cost levels (in percent) that would render the strate-

gies’ returns statistically insignificant at confidence levels of 5% and 1%. Panel A of Table 6

shows that momentum investors within the U.S. are only 5% sure that their strategy will

have positive net profits when transaction costs do not exceed 0.62% per month. Comparing

the risk-management strategies, the transaction costs that would remove the statistical sig-

nificance of profits (at the 5% level) are higher than for conventional momentum and highest

for dynamic out-of-sample-scaled momentum (1.03%). When increasing the confidence level,

a similar picture emerges. Panel B shows that for the global sample, idiosyncratic momentum

clearly gives the highest bounds for all types of round-trip costs.

Our approach does not explicitly test the after-trading cost performance of the differ-

ent momentum strategies nor does it analyze the effectiveness of transaction cost mitigation

techniques.36 Rather, this break-even cost study reveals how profitable each strategy remains

when assuming a certain level of transaction costs. Stated differently, it simply defines an

upper transaction cost bound for momentum investors. In this regard, Frazzini, Israel, and

Moskowitz (2014) and Novy-Marx and Velikov (2016) show for the U.S. that even standard

momentum, which reveals the lowest break-even round-trip costs within our analysis, is a

profitable and thus implementable trading strategy. We transfer the profitability argument

to standard momentum from the U.S. to the global sample and eventually argue that all

risk management strategies are — as indicated by higher round-trip costs — are indeed
35The high turnover of dynamic out-of-sample-scaled momentum, for which scaling weights can also take on

negative values (when return forecasts are negative), besides the high transaction costs implies that an investor
would require considerably more leverage than for momentum or constant volatility-scaled momentum over
six months to set up the strategy. Daniel and Moskowitz (2016) do not report any turnover or break-even
cost statistics for their dynamic strategies.

36See Novy-Marx and Velikov (2016) for details on these two subjects.
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implementable. Notably, we are aware of the following caveats with respect to our argu-

mentation: the potential interaction effects between stock market volatility (and thus also

realized volatility of momentum) and transaction costs (esp. bid-ask spreads) due to liquid-

ity reasons, and differently-filled long and short portfolios for iMOM compared to standard

momentum respective of its scaled versions.37

3.4 Disentangling the Strategy Effects

By comparing Sharpe ratios of momentum strategies, we only account for strategy-specific

risk-to-return characteristics. However, Sharpe ratios give no insight on the risk-adjusted

strategy return relative to a standard asset-pricing model. We conduct time-series regressions

of momentum strategies on the FFC4FM including HMLd for value, as well as pairwise

mean-variance factor spanning tests to better understand the relative importance of risk

management strategies to check which factors are redundant. We proceed as follows: the

test asset (factor 1) is regressed on the FFC4FMd model and the benchmark asset (factor 2),

whereby the FFC4FMd factors plus factor 2 state the asset pricing model. In case the

model generates an economically and statistically significant alpha, there is an omitted factor

containing information relevant to price factor 1. In case the alpha is not significant, factor 1

is spanned by the respective asset pricing model, not generating any unexplained returns.

[Table 7 about here.]

Table 7 depicts momentum strategy alphas and corresponding t-statistics. The first col-

umn shows that cvol6M , dynIS and iMOM generate significantly positive FFC4FMd alphas

for both the long and the broad sample. Factor spanning tests for the U.S. shown in Panel A

reveal that cvol6M and dynIS span each other, so that the alphas at least partially subsume

each other. For the global sample in Panel B, dynIS is spanned by cvol6M . The statistically

significant spanning alphas for the remaining pairwise tests suggest that part of the strate-
37However, the long and short portfolio of the iMOM factor contains, as shown by Blitz et al. (2018), on

average larger stocks with higher idiosyncratic volatility, indicating higher liquidity and lower transaction
costs.
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gies’ returns cannot be explained by neither the FFC4FMd nor by other risk management

strategies. This raises two questions: (i) whether the autocorrelation of returns, i.e., the

difference in scaling weights between both scaled strategies, eventually matters in order to

maximize Sharpe ratios, and (ii) to what extent are the alphas of volatility scaled strategies

distinct from the alphas of the residualized momentum (iMOM). To tackle the latter issue,

we disentangle the alphas of volatility scaling and residualizing. To accomplish this, we scale

idiosyncratic momentum by its realized volatility to see if it yields another Sharpe ratio im-

provement. Table 8 shows the summary statistics for idiosyncratic momentum as well as the

constant volatility-scaled and dynamic versions.

[Table 8 about here.]

The constant volatility-scaling of idiosyncratic momentum increases the Sharpe ratio by

24.21% (15.76%) for the U.S. (global) sample and also decreases both kurtosis and maxi-

mum drawdown returns. The reduced exposure of idiosyncratic momentum with respect to

the market, size and value factors due to residualizing does not dissect the first time-series

pattern observed for standard momentum: the negative volatility-to-return relation. This

enables both volatility smoothing and timing for idiosyncratic momentum and motivates the

constant volatility-scaling. Column three shows that the performance improvement is lower

for the dynamic strategy than for the constantly-scaled version of idiosyncratic momentum.

At least to some extent, the autocorrelation of returns (second pattern for momentum re-

turns) seems to be neutralized by the style exposure reduction of residualizing. We find

evidence that the alphas of volatility-scaled strategies are distinct from the alphas of idiosyn-

cratic momentum, and both generic approaches can be independently applied for the risk

management of momentum.
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4 Robustness

4.1 Controlling for Profitability and Asset Growth

As Figure 4a shows for the time-conditional maximum Sharpe ratio tests, the cumulative

factor probabilities vary substantially over time. In this regard, Barillas and Shanken (2018)

use an even larger base set of 6 categorized factors (market, size, value, profitability, in-

vestment, and momentum) for their factor comparison. This begs the questions whether

including profitability and investment as additional factors would affect our results.

Tackling the question of potentially omitted factors, we recalculate the maximum Sharpe

ratio tests in Subsection 3.1 by extending the investment set by the profitability and invest-

ment factors: robust minus weak (RMW) and conservative minus aggressive (CMA). For the

long sample, we use the data provided from Kenneth French, which restricts our sample to

start in July 1963, when both factors became available. For the broad sample, we construct

both factors country-neutral and analogous to the value factor using independent 2x3 sorts

on size and the particular sorting criteria. Fortunately, the factors can be constructed from

the original starting point of the broad sample in July 1990 on. Table 9 shows the results for

a base set of 10 factors.

[Table 9 about here.]

For both the long and broad sample, idiosyncratic momentum is included in every one of

the best seven investment sets for the corresponding baseline Sharpe multiple. This means

that none of the other risk management strategies is considered to extend the investment

opportunity set more than idiosyncratic momentum.

4.2 Single Sorts and Equal-Weighted Portfolio Returns

Up to this point, the analyses have aimed to compare momentum strategies based on 2x3

double sorts and value-weighted portfolio returns. Studies such as Jegadeesh and Titman
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(2001), Rouwenhorst (1998), or Blitz et al. (2011) choose to construct equally-weighted decile

portfolios to ensure that the resulting portfolios have sufficient breadth. In other words, value-

weighted portfolio returns may be heavily driven by the returns of few very large stocks. The

resulting up minus down strategy is even more concise in terms of return and crash behavior.

This raises the question of whether idiosyncratic momentum also holds in a single-sorted

long-short strategy and with equally weighted stock returns.

Hence, we construct momentum portfolios based on decile (quintile) sorts for the long

(broad) sample. To prevent that the results are driven by micro stocks, we exclude them

for every country.38 For the U.S., we exclude all stocks with a market capitalization below

the 20th percentile of the market capitalization distribution among NYSE stocks. For the

global sample, we exclude the smallest stocks that jointly subsume 3% of the total market

capitalization in the home country. The risk management strategies are installed as before,

i.e., UMD is scaled based on its realized volatility (and predicted return for dynamically-

scaled strategies) and iMOM is constructed from single sorts based on the scaled 12-2 month

idiosyncratic returns from Equation 9. The results appear in Table 10.

[Table 10 about here.]

A similar pattern emerges for the one-dimensional sorted portfolios as for the standard set-

ting: all risk management strategies roughly double the Sharpe ratios of UMD, both skewness

and kurtosis are lowered, and the maximum drawdowns decrease significantly. Compared to

the long sample, the broad sample yields especially pronounced differences across strategies

with a more than 400% increase in the Sharpe ratio for the single sorted iMOM as compared

to UMD.
38Fama and French (2008) note that micro stocks cover about 60% of the whole stock universe, but subsume

only about 3% if the total market capitalization.
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4.3 Country-Level Analysis

As highlighted by Chui et al. (2010), momentum is a persistent phenomenon around the

world, except in Asia. To answer the question whether our results are driven by non-Asian

countries or countries with high market capitalizations within the market cap-weighted broad

international sample, we investigate the Sharpe ratios of momentum and risk management

strategies as well as the maximum ex-post Sharpe ratio weights for every country individually.

Panel A of Table 11 shows the factors’ annualized Sharpe ratios analogously to Table 2.

[Table 11 about here.]

The factors with the highest (second highest) value are highlighted in dark (bright) grey.

For developed markets, iMOM clearly has the highest or second highest Sharpe ratio for most

of the countries. In contrast, the emerging market countries reveal no clear pattern. Panel B

shows the country-specific results for the ex-post Sharpe ratio maximization test analogously

to Table 4. More specifically, we only plot the weights for momentum and the three strategies

for the specification where all eight factors enter the maximization test. In contrast to pure

Sharpe ratios, the results also control for the FF3FM factors. The maximum weights are

distributed equally between cvol6M and iMOM for developed markets. In emerging market

countries, cvol6M clearly contributes mostly to the factor combination with the highest Sharpe

ratio. We find that standard momentum is outperformed by all strategies, irrespective of the

country or when controlling for other common factors.

From the list of individual countries, Japan might be the most interesting to examine in

detail, because conventional momentum is considered ineffective in Japan. Similar to other

studies (e.g. Griffin et al., 2003; Fama and French, 2012), we find that the performance of

momentum is weak in Japan. This weakness presents a challenge for our momentum risk

management strategies. Based on our analysis, idiosyncratic momentum emerges as the best

momentum strategy by providing the highest Sharpe ratio. These results are even more

compelling for the assigned maximum ex-post Sharpe ratio weight of 37%. In contrast, the
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two scaling approaches lead to smaller performance improvements.

5 Conclusion

The aim of examining volatility-scaling and residualizing momentum in this study is fourfold.

First, we construct risk management strategies for momentum proposed in the literature

that are found to work in the U.S. but have not yet been documented in a comprehensive

international setting. Second, we assess the performance improvement of the strategies as

compared to momentum in an absolute versus relative as well as in an unconditional versus

conditional manner. Third, we investigate if momentum or risk-management strategy profits

are robust to trading costs and calculate turnover and round-trip costs. Fourth, motivated

by pairwise mean-variance spanning tests, we disentangle the potential Sharpe improvement

of risk management strategies and additionally scale the residualized momentum strategy by

its own volatility.

Using monthly stock returns for a total of 49 developed and emerging market countries

and a sample period of about 28 years (89 years for the U.S.), our main findings can be

summarized as follows: First, we show that all risk-management strategies substantially in-

crease Sharpe ratios. Furthermore, higher moments and maximum drawdowns decrease as

compared to standard momentum so that their distributions become more normal. Compar-

ing the individual risk-management strategies within samples, we find similar improvements

within the long U.S. sample for Sharpe ratios and t-statistics (both roughly double com-

pared to standard momentum) across all three approaches, while maximum drawdowns are

reduced mostly by idiosyncratic momentum. For the broad sample, we document that id-

iosyncratic momentum outperforms all other strategies, as the improvements in Sharpe ratio

and t-statistic for idiosyncratic momentum are more than twice as the improvements of

volatility-scaling strategies and the reduction in maximum drawdowns is highest.

Second, maximum Sharpe ratio and factor comparison tests of the risk-management
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strategies further confirm our results in favor of idiosyncratic momentum. Idiosyncratic

momentum is assigned the highest weight in ex-post maximum Sharpe ratio tests for both

the long and the broad sample, meaning that mean-variance optimizing investors would al-

locate most to the idiosyncratic momentum factor next to traditional factors such as the

market, size, and value. Furthermore, the Bayesian Sharpe ratio tests as in Barillas and

Shanken (2018) show that the models with the highest model probabilities include idiosyn-

cratic momentum and that idiosyncratic momentum shows the highest cumulative factor

probability among the three momentum risk-management approaches for both the long and

the broad sample. However, pairwise factor spanning tests show that alphas generated by

the volatility-scaled strategies are different from the alpha when using residualized returns.

Third, we tackle the difficulty of quantifying implied transaction costs. We apply the

break-even round-trip cost metric of Grundy and Martin (2001). By calculating the transac-

tion costs that theoretically would render the strategies unprofitable, we are able to directly

compare the risk-managed momentum strategies with each other and relate them to existing

quantifications of momentum trading costs. We find that all risk management strategies have

higher average portfolio turnover compared to standard momentum but still higher break-

even costs, driven by the increased strategy returns. Relying on the insights from research

on transaction costs in the U.S., we conclude that all strategies should deliver significant

after-transaction cost returns for the long U.S. sample.39 For countries other than the U.S.,

studies have not comprehensively quantified transaction costs of anomalies.

Finally, scaling iMOM with its realized volatility enables us to investigate if (i) the auto-

correlation of the strategy’s returns and (ii) the negative risk-to-return relation known from

standard momentum is also featuring residual momentum. In case solely the latter (both)

feature(s) occur for iMOM, the constant volatility-scaled (dynamic) strategy would further

improve its performance. We find that constant volatility-scaling of iMOM maximizes its

performance.

39Research has found momentum to deliver significant after-transaction cost returns. Since round-trip costs
of all risk management strategies are above those of momentum, we can derive the indication of profitability.
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Table 2: Summary statistics for MOM and risk management strategies
The table presents the following summary statistics for MOM, cvol1M , cvol6M , dynIS, dyn and
iMOM: (1) Average monthly returns (in %), (2) Corresponding t-statistics, (3) Annualized
Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum drawdown (in %), defined as the
maximum cumulative loss between a peak and subsequent downturn during the buy-and-hold
resp. sample period. The analysis is performed from 01/1930 (01/1991) to 12/2017 for the
long (broad) sample.

MOM cvol1M cvol6M dynIS dyn iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

Avg. Returns (in %) 0.60 1.12 1.09 1.21 1.11 0.64
t-Stat 4.42 8.27 8.07 8.93 8.24 8.90

Sharpe (annualized) 0.47 0.88 0.86 0.95 0.88 0.95
Skewness -1.91 -0.15 -0.23 0.22 0.11 0.14
Kurtosis 19.46 1.22 2.08 4.32 7.23 10.50

Max. Drawdown (in %) -67.10 -39.80 -35.88 -33.30 -39.66 -25.52

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.52 0.92 0.88 0.97 0.76 0.71
t-Stat 2.99 5.33 5.09 5.64 4.42 8.57

Sharpe (annualized) 0.57 1.03 0.98 1.08 0.85 1.65
Skewness -1.00 -0.14 -0.17 0.87 0.66 0.09
Kurtosis 5.50 1.53 0.37 3.80 7.52 1.16

Max. Drawdown (in %) -36.96 -19.49 -15.11 -10.26 -23.74 -7.04
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Table 3: Correlation coefficients
The table reports the time-series averages of the cross-sectional spearman correlation coeffi-
cients for the global sample between the following variables: RMRF (market factor), SMB,
HML, HMLd, MOM, cvol1M , cvol6M , dynIS, dyn, and iMOM. For details regarding variable
construction, see Section 2.2. The sample is described in Table 1. The analysis is performed
from 01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample and depicted within the
upper (lower) triangle.

RMRF SMB HML HMLd MOM cvol1M cvol6M dynIS dyn iMOM
RMRF 0.27 0.02 0.07 -0.05 -0.02 -0.03 0.10 0.00 -0.09
SMB -0.04 0.01 0.08 -0.03 -0.04 -0.04 0.00 -0.02 -0.04
HML -0.01 -0.13 0.84 -0.18 -0.16 -0.15 -0.08 -0.13 0.02
HMLd 0.08 -0.11 0.74 -0.45 -0.42 -0.42 -0.29 -0.36 -0.18
MOM -0.18 0.00 -0.10 -0.57 0.94 0.96 0.77 0.85 0.64
cvol1M -0.12 -0.03 -0.10 -0.55 0.94 0.98 0.87 0.93 0.62
cvol6M -0.12 -0.05 -0.09 -0.55 0.95 0.96 0.88 0.95 0.64
dynIS 0.11 0.00 -0.13 -0.42 0.64 0.71 0.75 0.92 0.54
dyn 0.01 -0.04 -0.10 -0.43 0.71 0.78 0.83 0.88 0.58
iMOM -0.09 0.02 -0.05 -0.38 0.66 0.62 0.64 0.45 0.44

Table 4: Maximum ex-post Sharpe ratios
The table presents the maximum ex-post Sharpe ratios that can be achieved by using different
combinations of long-short portfolios (factors) and the weights required on each long-short
portfolio to achieve the maximum Sharpe ratio. The following factors are included: RMRF
(market factor), SMB, HML, HMLd, MOM, cvol6M , dyn, and iMOM. For details regarding
variable construction, see Section 2.2. The analysis is performed at monthly frequency from
01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample.

RMRF SMB HML HMLd MOM cvol6M dyn iMOM SR

Panel A: U.S. (Long) (01/1930 - 12/2017)

1.00 0.42
0.31 0.24 0.45 0.00 0.52
0.13 0.00 0.00 0.39 0.48 1.07
0.09 0.03 0.00 0.35 0.08 0.45 1.24
0.10 0.00 0.00 0.35 0.27 0.27 1.23
0.11 0.00 0.00 0.24 0.18 0.47 1.24
0.08 0.00 0.00 0.23 0.00 0.12 0.14 0.42 1.37

Panel B: Global (Broad) (01/1991 - 12/2017)

1.00 0.30
0.12 0.18 0.70 0.00 0.98
0.09 0.12 0.00 0.45 0.34 1.67
0.06 0.14 0.00 0.43 0.03 0.34 1.91
0.08 0.12 0.00 0.42 0.27 0.11 1.79
0.05 0.04 0.00 0.30 0.03 0.57 2.42
0.05 0.05 0.00 0.29 0.00 0.02 0.07 0.52 2.53
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Table 5: Prior Sensitivity for the Model Probabilities with 8 Factors
The table displays changes in the prior and corresponding percentage model probabilities as
in Barillas and Shanken (2018) for the seven models with the highest probability by December
2017 (the end of the sample period). The analysis is performed at monthly frequency from
01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample in Panel A (B). The following
prior multiples for the market Sharpe ratio, ShRMRF , are considered: 1.5, 2.0, 3.0, 4.0, 5.0
and 6.0. Models are based on the following factors: RMRF, SMB, HML, HMLd, MOM,
cvol6M , dyn, and iMOM. Models are restricted to contain not more than one factor from
the following categories: value (HML or HMLd), risk-managed momentum (cvol6M , dyn,
or iMOM). The prior for each factor is set the following: Shmax = priormultiple × ShMkt,
where ShMkt is the Sharpe ratio of RMRF within the sample and the mentioned prior Sharpe
multiples are used. Shmax is the square root of the squared tangency portfolio’s expected
Sharpe ratio (spanned by the factors included), implying the alphas of factors other than
RMRF are non-zero. In line with the expected Sharpe ratios, we choose 1.5 (4.0) as the
baseline Sharpe multiple for the U.S. (Global) sample.

Prior Sharpe Multiple

1.5 2 3 4 5 6

Panel A: U.S. (Long) (01/1930 - 12/2017)

RMRF HMLd MOM iMOM 67.86 74.15 75.46 74.22 72.35 70.27
RMRF SMB HMLd MOM iMOM 7.98 6.26 4.13 3.02 2.34 1.89

RMRF HMLd iMOM 7.76 6.12 6.47 7.55 8.74 9.90
RMRF HMLd MOM cvol6M 5.99 6.16 6.04 5.87 5.69 5.51

RMRF HML iMOM 2.92 1.49 1.21 1.3 1.45 1.61
RMRF HMLd cvol6M 2.40 3.29 4.85 6.29 7.63 8.87

RMRF iMOM 1.75 0.57 0.45 0.56 0.73 0.94

Panel B: Global (Broad) (01/1991 - 12/2017)

RMRF HMLd iMOM 47.88 67.00 73.85 77.60 80.54 82.88
RMRF HMLd MOM iMOM 11.85 14.97 13.40 11.61 10.15 8.97
RMRF SMB HMLd iMOM 8.64 11.13 10.28 9.08 8.04 7.16

RMRF SMB HMLd MOM iMOM 2.49 2.95 2.27 1.68 1.26 0.98
RMRF HML iMOM 13.09 2.60 0.14 0.02 0.01 0.00

RMRF HML MOM iMOM 1.93 0.50 0.04 0.01 0.00 0.00
RMRF SMB HML iMOM 2.42 0.44 0.02 0.00 0.00 0.00
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Table 6: Turnover and break-even round-trip costs
The table presents the following turnover resp. trading cost measures for MOM, cvol1M ,
cvol6M , dynIS, dyn and iMOM: (1) Average long-short portfolio turnover (monthly, in %),
(2) break-even round-trip costs significant at the 5% level, stating the upper border for trading
costs so that the strategy is profitable with 5% significance, and (3) break-even round-trip
costs significant at the 1% level. For details regarding measure construction, see Section 2.4.
The analysis is performed from 01/1930 (01/1991) to 12/2017 for the long (broad) sample.

MOM cvol6M dyn iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

Turnover (in %) 53.79 80.63 82.22 65.32
Round-trip costs at 5% sign. level (in %) 0.62 1.02 1.03 0.77
Round-trip costs at 1% sign. level (in %) 0.46 0.92 0.93 0.70

Panel B: Global (Broad) (01/1991 - 12/2017)

Turnover (in %) 50.32 70.69 81.06 62.59
Round-trip costs at 5% sign. level (in %) 0.35 0.76 0.52 0.87
Round-trip costs at 1% sign. level (in %) 0.14 0.61 0.39 0.79
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Table 7: Factor spanning tests
The table presents alphas and corresponding t-statistics from mean-variance spanning tests
for the U.S. and Global sample. The dependent variables are the risk management momentum
strategies as depicted in Panel A to C: cvol6M , dyn, and iMOM. Independent variables are:
RMRF (market factor), SMB, HMLd and MOM, as well as the risk management momentum
strategies as benchmark assets. The independent factor set for each spanning test is shown
above the respective results. For details regarding variable construction, see Section 2.2. The
analysis is performed at monthly frequency over the time-series from 01/1930 (01/1991) to
12/2017 for the U.S. (Global) sample.

Ind. var. FFd+MOM FFd+MOM FFd+MOM FFd+MOM
+cvol6M +dyn +iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

cvol6M

α 0.42 0.06 0.37
t(α) 5.60 1.74 4.91

dyn
α 0.60 0.06 0.55
t(α) 5.43 1.11 4.96

iMOM
α 0.32 0.28 0.29
t(α) 5.67 4.99 5.21
Panel B: Global (Broad) (01/1991 - 12/2017)

cvol6M

α 0.39 0.20 0.28
t(α) 4.34 3.18 2.86

dyn
α 0.50 -0.04 0.56
t(α) 2.92 -0.34 2.97

iMOM
α 0.54 0.49 0.55
t(α) 8.17 7.37 8.18
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Table 8: Summary statistics for iMOM and scaled iMOM strategies
The table presents the following summary statistics for iMOM, and the corresponding scaled
versions of iMOM: (1) Average monthly returns (in %), (2) Corresponding t-statistics, (3)
Annualized Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum drawdown (in %),
defined as the maximum cumulative loss between a peak and subsequent downturn during
the buy-and-hold resp. sample period. The analysis is performed from 01/1930 (01/1991) to
12/2017 for the long (broad) sample.

iMOM iMOMcvol iMOMdyn

Panel A: U.S. (Long) (01/1930 - 12/2017)

Avg. Returns (in %) 0.64 0.80 0.74
t-Stat 8.90 11.11 10.23

Sharpe (annualized) 0.95 1.18 1.09
Skewness 0.14 0.16 0.96
Kurtosis 10.50 2.06 6.74

Max. Drawdown (in %) -25.52 -14.25 -12.99

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.71 0.82 0.77
t-Stat 8.57 9.93 9.31

Sharpe (annualized) 1.65 1.91 1.79
Skewness 0.09 0.64 1.57
Kurtosis 1.16 1.12 4.48

Max. Drawdown (in %) -7.04 -5.17 -4.17
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Table 9: Prior Sensitivity for the Model Probabilities with 10 Factors
The table displays changes in the prior and corresponding percentage model probabilities as
in Barillas and Shanken (2018) for the seven models with the highest probability by December
2017 (the end of the sample period). The analysis is performed at monthly frequency from
07/1963 (01/1991) to 12/2017 for the U.S. (Global) sample in Panel A (B). The following prior
multiples for the market Sharpe ratio, ShRMRF , are considered: 1.5, 2.0, 3.0, 4.0, 5.0 and
6.0. Models are based on the following factors: RMRF, SMB, HML, HMLd, MOM, RMW,
CMA, cvol6M , dyn, and iMOM. Models are restricted to contain not more than one factor
from the following categories: value (HML or HMLd), risk-managed momentum (cvol6M , dyn,
or iMOM). The prior for each factor is set the following: Shmax = priormultiple × ShMkt,
where ShMkt is the Sharpe ratio of RMRF within the sample and the mentioned prior Sharpe
multiples are used. Shmax is the square root of the squared tangency portfolio’s expected
Sharpe ratio (spanned by the factors included), implying the alphas of factors other than
RMRF are non-zero. In line with the expected Sharpe ratios, we choose 1.5 (4.0) as the
baseline Sharpe multiple for the U.S. (Global) sample.

Prior Sharpe Multiple

1.5 2 3 4 5 6

Panel A: U.S. (Long) (07/1963 - 12/2017)

RMRF HMLd MOM iMOM CMA RMW 34.62 45.75 47.13 46.51 45.47 44.15
RMRF HMLd iMOM CMA RMW 23.28 18.40 15.29 16.02 17.58 19.31

RMRF iMOM CMA RMW 10.08 2.46 0.99 0.92 1.04 1.23
RMRF HML iMOM CMA RMW 7.33 1.48 0.43 0.31 0.28 0.28

RMRF SMB HMLd iMOM CMA RMW 6.94 10.22 11.45 11.65 11.56 11.31
RMRF SMB HMLd MOM iMOM CMA RMW 6.79 13.55 16.04 14.51 12.47 10.62

RMRF HMLd MOM iMOM RMW 2.31 3.41 4.60 5.76 6.87 7.91

Panel B: Global (Broad) (01/1991 - 12/2017)

RMRF HMLd iMOM CMA RMW 22.89 48.90 48.77 43.97 40.33 37.69
RMRF HMLd iMOM RMW 7.96 18.66 22.59 24.47 26.48 28.68

RMRF SMB HMLd iMOM CMA RMW 3.17 8.72 13.21 15.38 16.08 15.83
RMRF SMB HMLd iMOM RMW 1.07 3.25 6.09 8.64 10.75 12.33

RMRF HMLd MOM iMOM CMA RMW 3.18 6.23 5.17 3.91 3.06 2.47
RMRF HMLd MOM iMOM RMW 0.84 1.79 1.78 1.60 1.46 1.36

RMRF SMB HMLd MOM iMOM CMA RMW 0.48 1.19 1.45 1.39 1.22 1.03
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Table 10: Summary statistics for UMD and risk management strategies
The table presents the following summary statistics for UMD, and the corresponding cvol1M ,
cvol6M , dynIS, dyn and iMOM: (1) Average monthly returns (in %), (2) Corresponding
t-statistics, (3) Annualized Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum
drawdown (in %), defined as the maximum cumulative loss between a peak and subsequent
downturn during the buy-and-hold resp. sample period. The analysis is performed from
01/1930 (01/1991) to 12/2017 for the long (broad) sample.

UMD cvol1M cvol6M dynIS dyn iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

Avg. Returns (in %) 1.11 2.11 2.05 2.39 2.11 0.92
t-Stat 4.98 9.45 9.18 10.69 9.43 8.82

Sharpe (annualized) 0.53 1.01 0.98 1.14 1.01 0.94
Skewness -2.80 -0.62 -0.65 0.47 0.15 -1.52
Kurtosis 27.22 4.27 3.84 3.34 7.28 10.47

Max. Drawdown (in %) -93.62 -51.89 -59.49 -45.18 -60.55 -42.73

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.48 0.79 0.73 0.80 0.55 0.71
t-Stat 1.98 3.24 3.01 3.30 2.26 9.96

Sharpe (annualized) 0.38 0.62 0.58 0.64 0.44 1.92
Skewness -0.53 -0.21 -0.28 2.99 -1.23 -0.12
Kurtosis 3.50 0.85 1.99 33.14 19.47 1.00

Max. Drawdown (in %) -44.63 -32.31 -39.96 -39.76 -34.15 -8.58
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Table 11: Sharpe ratios and Maximum ex-post Sharpe ratio weights
The table presents annualized Sharpe ratios as well as the weights required on each factor
to achieve the maximum ex-post Sharpe ratio by using different factor combinations. The
following factors are included: RMRF (market factor), SMB, HML, HMLd, MOM, cvol6M ,
dyn, and iMOM. For details regarding variable construction, see Section 2.2. The analyses
are performed at monthly frequency from 01/1991 (01/1930)) to 12/2017 for (the U.S.) all
countries that have more than 120 observations for each factor. The maximum (second
highest) factor Sharpe ratios and factor weights are indicated by darker (brighter) grew.

Panel A: Sharpe ratios Panel B: Max SR weights

Country Market MOM cvol6M dyn iMOM MOM cvol6M dyn iMOM

Australia DM 1.28 1.51 1.44 1.78 0.00 0.17 0.11 0.36
Austria DM 0.45 0.74 0.38 0.40 0.00 0.24 0.08 0.01
Belgium DM 0.76 1.10 0.95 1.23 0.02 0.26 0.00 0.29
Canada DM 0.71 1.10 1.01 1.10 0.00 0.30 0.08 0.21
Denmark DM 0.61 0.88 0.65 0.92 0.00 0.29 0.01 0.29
Finland DM 0.53 0.75 0.37 0.62 0.00 0.24 0.00 0.25
France DM 0.44 0.80 0.69 0.95 0.00 0.21 0.06 0.29
Germany DM 0.57 1.01 0.96 1.28 0.00 0.10 0.10 0.40
Hong Kong DM 0.46 0.92 1.04 0.58 0.00 0.33 0.13 0.06
Ireland DM -0.02 0.32 0.20 0.34 0.00 0.22 0.06 0.33
Italy DM 0.56 0.78 0.30 0.41 0.00 0.57 0.00 0.00
Japan DM -0.01 0.15 0.04 0.49 0.12 0.00 0.02 0.37
Netherlands DM 0.31 0.61 0.51 0.42 0.00 0.37 0.02 0.11
New Zealand DM 1.18 1.32 0.82 0.92 0.00 0.41 0.00 0.19
Norway DM 0.63 0.78 0.58 1.01 0.00 0.16 0.06 0.27
Singapore DM 0.09 0.56 0.57 0.73 0.00 0.23 0.08 0.25
Spain DM 0.29 0.51 0.04 0.34 0.00 0.35 0.00 0.03
Sweden DM 0.44 0.85 0.74 0.87 0.00 0.21 0.09 0.18
Switzerland DM 0.46 0.74 0.57 0.85 0.00 0.05 0.10 0.36
U.K. DM 0.79 1.26 1.18 1.32 0.00 0.19 0.07 0.37
U.S. DM 0.47 0.86 0.88 0.95 0.00 0.12 0.14 0.42

Brazil EM 0.21 0.42 0.47 0.15 0.00 0.30 0.22 0.00
Chile EM 0.80 0.93 0.88 0.55 0.00 0.36 0.09 0.02
China EM -0.48 -0.26 -0.01 -0.01 0.00 0.16 0.00 0.11
Greece EM 0.27 0.57 0.30 0.46 0.00 0.33 0.07 0.08
India EM 0.59 0.92 1.01 1.38 0.00 0.00 0.17 0.50
Indonesia EM -0.07 0.38 0.18 0.49 0.00 0.24 0.07 0.18
Israel EM 0.65 0.92 0.57 0.62 0.00 0.38 0.01 0.00
Malaysia EM 0.20 0.86 0.88 0.74 0.00 0.39 0.00 0.15
Mexico EM 0.38 0.62 0.82 0.56 0.00 0.11 0.21 0.10
Pakistan EM 0.22 0.48 0.01 0.36 0.00 0.18 0.06 0.12
Peru EM -0.08 0.06 0.36 -0.06 0.00 0.09 0.08 0.05
Philippines EM 0.06 0.32 0.06 0.27 0.00 0.10 0.07 0.13
Poland EM 0.75 1.09 0.90 0.66 0.00 0.33 0.08 0.06
Portugal EM 0.76 0.88 0.65 0.67 0.00 0.45 0.00 0.07
South Africa EM 1.02 1.31 1.24 1.32 0.00 0.21 0.17 0.28
South Korea EM 0.11 0.40 0.01 0.44 0.00 0.26 0.13 0.13
Taiwan EM 0.21 0.46 0.63 0.37 0.00 0.14 0.32 0.22
Thailand EM 0.24 0.62 0.70 0.66 0.00 0.20 0.18 0.11
Turkey EM -0.15 0.09 0.34 0.38 0.00 0.17 0.19 0.20
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Figure 1: Static volatility-scaling and dynamic weights
This figure plots the weights on the momentum factor when scaling it to cvol6M and dyn. For
the U.S. sample, the weights range from 01/1930 to 12/2017 (Subfigure 1a) and are shown
for times of high volatility, i.e. the 1930s (Subfigure 1b). For the Global sample, the weights
range from 01/1991 to 12/2017 (Subfigure 1c) and are shown around the financial crisis in
2007/2008 (Subfigure 1d).
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Figure 2: Cumulative Performance of the momentum strategies: U.S. (Long)
This figure displays the cumulated performance of a $1 investment in each of the momentum
strategies (plus the risk-free rate since, all momentum portfolio state zero-cost strategies)
for the U.S. (Long) sample. The following strategies are comprised: MOM, cvol6M , dyn and
iMOM For details regarding variable construction, see Section 2.2. The sample period ranges
from 01/1930 to 12/2017.
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Figure 3: Cumulative Performance of the momentum strategies: Global (Broad)
This figure displays the cumulated performance of a $1 investment in each of the momentum
strategies (plus the risk-free rate since, all momentum portfolio state zero-cost strategies)
for the Global (Broad) sample. The following strategies are comprised: MOM, cvol6M , dyn
and iMOM. For details regarding variable construction, see Section 2.2. The sample period
ranges from 01/1991 to 12/2017.
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Figure 4: Model probabilities and cumulative factor probabilities for U.S. (Long)
The top panel shows the time-series for posterior model probabilities of the seven models with
the highest probability at the end of the U.S. sample. The plotted sample starts in 09/1930,
and probabilities are calculated recursively at the end of each month up to 12/2017. Models
are based on the following factors: RMRF, SMB, HML, HMLd, MOM, cvol6M , dyn, and
iMOM Models are restricted to contain not more than one factor from the following categories:
value (HML or HMLd), risk-managed momentum (cvol6M , dyn, iMOM). The bottom panel
shows the time-series of cumulative posterior probabilities for factor. The prior for each
factor is set the following: Shmax = 1.5× ShMkt, where ShMkt is the Sharpe ratio of RMRF
within the sample and the baseline Sharpe multiple (1.5) is used. Shmax is the square root
of the squared tangency portfolio’s expected Sharpe ratio (spanned by the factors included)
which is assumed to be 50% higher than the market’s squared Sharpe ratio, implying the
alphas of factors other than RMRF are non-zero.
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Figure 5: Model probabilities and cumulative factor probabilities for Global
(Broad)
The top panel shows the time-series for posterior model probabilities of the seven models
with the highest probability at the end of the Global sample. The plotted sample starts in
09/1991, and probabilities are calculated recursively at the end of each month up to 12/2017.
Models are based on the following factors: RMRF, SMB, HML, HMLd, MOM, cvol6M , dyn,
and iMOM. Models are restricted to contain not more than one factor from the following cat-
egories: value (HML or HMLd), risk-managed momentum (cvol6M , dyn, iMOM). The bottom
panel shows the time-series of cumulative posterior probabilities for factor. The prior for each
factor is set the following: Shmax = 4.0× ShMkt, where ShMkt is the Sharpe ratio of RMRF
within the sample and the baseline Sharpe multiple (4.0) is used. Shmax is the square root
of the squared tangency portfolio’s expected Sharpe ratio (spanned by the factors included)
which is assumed to be 300% higher than the market’s squared Sharpe ratio, implying the
alphas of factors other than RMRF are non-zero.
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A Appendix

A.1 Datastream sample definition

Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope lists

and (3) dead lists. By using dead lists, we ensure to obviate any survivorship bias. For

every country we use the intersection of all available lists and eliminate any duplicates. As a

result, we have one remaining list for every country, which can subsequently be used in the

static filter process. Table A.1 and Table A.2 provide an overview of the constituent lists for

developed markets and emerging markets, respectively, used in our study.

[Table A.1 about here.]

[Table A.2 about here.]

Static screens

We restrict our sample to common equity stocks by applying several static screens as shown

in Table A.3. Screen (1) to (7) are standard filters as common in the literature.

[Table A.3 about here.]

Screen (8) related to, among others, the following work: Ince and Porter (2006), Campbell,

Cowan, and Salotti (2010), Griffin et al. (2010), Karolyi, Lee, and van Dijk (2012). The

authors provide generic filter rules in order to exclude non-common equity securities from

Thomson Reuters Datastream. We apply the identified keywords and match them with the

security names provided by Datastream. A security is excluded from the sample in case a

keyword coincides with part of the security name. The following three Datastream items

store security names and are applied for the keyword filters: “NAME”, “ENAME”, and

“ECNAME”. Table A.4 gives an overview of the keywords used.
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[Table A.4 about here.]

In addition, Griffin et al. (2010) introduce specific keywords for individual countries.

Thus, the keywords are applied on the security names of single countries only. Exemplary,

German security names are parsed to contain the word “GENUSSSCHEINE”, which declares

the security to be non-common equity. In Table A.5 we give an overview of country-specific

keyword deletions conducted in our study.

[Table A.5 about here.]

Dynamic screens

For the securities, remaining from the static screens above, we obtain return and market

capitalization data from Datastream and accounting data from Worldscope. Several dynamic

screens that are common in the literature were installed in order to account for data errors

mainly within return characteristics. The dynamic screens are shown in Table A.6.

[Table A.6 about here.]

A.2 GJR-GARCH volatility forecasts

To implement the dynamic in-sample-scaled momentum strategy, volatility of Momentum is

forecasted via a GJR-GARCH model, calibrated in-sample over the whole Momentum return

time-series. Therefore, as a first step, following Daniel and Moskowitz (2016), Momentum

returns follow the process:

RMOM,t = µ+ εt (13)

where the error term εt ∼ N (0, σ2
t ) is normally distributed, and the evolution of σ2

t is

described by the process:

σ2
t = ω + βσ2

t−1 + (α + γI (εt−1 < 0)) ε2
t−1 (14)
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where (εt−1 < 0) is an indicator that equals one if the error term in t−1 equals one if εt−1 < 0,

and zero elsewise. The parameters µ, ω, α, γ and β are estimated on a country basis using a

maximum likelihood estimator. In a second step, we estimate the volatility for the upcoming

month resp. for 22 days within that month by an extended OLS autoregression including the

past 126-day volatility of Momentum and the GJR-GARCH estimate:

σ̂d22,t+1 = α̂ + γGARCH,tσ̂GARCH,t + γd126,tσ̂d126,t (15)

where σ̂d22,t+1 is the volatility forecast for month t + 1, σ̂GARCH,t is the volatility estimate

from the first step, and σ̂d126,t is the past 126-day Momentum return volatility.

A.3 Turnover calculation

Specifically, (one-way portfolio) turnover in month t for both the long or short portfolio leg

are calculated as:

Turnovert,Long(Short) = 0.5×
Nt∑
i

|xi,t − x̃i,t−1| (16)

where xi,t is the weight of stock i in the respective portfolio leg in month t (i.e., the value

proportion since we use value-weighted portfolio returns), Nt amounts to the total number

of stocks in the portfolio leg at month t, and ri,t is the return of stock i during month t, and

˜xi,t−1 is the weight at the end of month t− 1 resp. at the beginning of month t, right before

trading. We define x̃i,t−1 as:

x̃i,t−1 = xi,t−1 (1 + ri,t−1)
Nt∑
i
xi,t−1 (1 + ri,t−1)

(17)

The turnover of the long-short momentum strategies is then the sum of the average turnover

in the long and short legs, i.e., the sum of TurnoverLong and TurnoverShort. For the volatility-

scaled strategies, the turnover is derived from Equation 16 by weighting the turnover in month
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t with the corresponding strategy weight:

Turnovers,t,Long/Short = 0.5×
Nt∑
i

|wscaled,txi,t − wscaled,t−1x̃i,t−1| (18)
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Table A.1: Constituent lists: Developed markets
The table contains the Research lists, Worldscope lists and Dead lists of developed markets
countries in our sample.

Country Lists Country Lists

Australia DEADAU Italy DEADIT
FAUS FITA
WSCOPEAU WSCOPEIT

Austria DEADOE Japan DEADJP
FOST FFUKUOKA
WSCOPEOE FJASDAQ

Belgium DEADBG FOSAKA
FBEL FTOKYO
FBELAM JAPOTC
FBELCM WSCOPEJP
WSCOPEBG Netherlands DEADNL

Canada DEADCN1 FHOL
DEADCN2 WSCOPENL
DEADCN3 New Zealand DEADNZ
DEADCN4 FNWZ
DEADCN5 WSCOPENZ
DEADCN6 Norway DEADNW
FTORO FNOR
FVANC WSCOPENW
LTTOCOMP Portugal DEADPT
WSCOPECN FPOR

Denmark DEADDK WSCOPEPT
FDEN Singapore DEADSG
WSCOPEDK FSIN

Finland DEADFN FSINQ
FFIN WSCOPESG
WSCOPEFN Spain DEADES

France DEADFR FSPN
FFRA WSCOPEES
WSCOPEFR Sweden DEADSD

Germany DEADBD1 FAKTSWD
DEADBD2 FSWD
DEADBD3 WSCOPESD
DEADBD4 Switzerland DEADSW
DEADBD5 FSWA
DEADBD6 FSWS
FGER1 FSWUP
FGER2 WSCOPESW
FGERIBIS United Kingdom DEADUK
FGKURS FBRIT
WSCOPEBD LSETSCOS

Hong Kong DEADHK LSETSMM
FHKQ LUKPLUSM
WSCOPEHK WSCOPEJE

Ireland DEADIR WSCOPEUK
FIRL
WSCOPEIR

Israel DEADIS
FISRAEL
WSCOPEIS
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Table A.2: Constituent lists: Emerging markets
The table contains the Research lists, Worldscope lists and Dead lists of emerging markets
countries in our sample.

Argentina DEADAR Pakistan DEADPA
FPARGA FPAK
WSCOPEAR FPAKUP

Brazil DEADBRA WSCOPEPK
FBRA Peru DEADPE
WSCOPEBR FPERU

Chile DEADCHI WSCOPEPE
FCHILE Philippines DEADPH
FCHILE10 FPHI
WSCOPECL FPHILA

China DEADCH FPHIMN
FCHINA FPHIQ
WSCOPECH WSCOPEPH

Colombia DEADCO Poland DEADPO
FCOL FPOL
WSCOPECB WSCOPEPO

Czech Republic DEADCZ Qatar DEADQT
FCZECH FQATAR
FCZECHUP WSCOPEQA
WSCOPECZ Russia DEADRU

Egypt DEADEGY FRTSCL
EGYPTALL FRUS
FEGYPT FRUSUP
WSCOPEEY WSCOPERS

Greece DEADGR Slovakia ALLSLOV
FGREE DEADSLO
FGRMM FSLOVAK
FGRPM WSCOPESX
FNEXA South Africa DEADSAF
WSCOPEGR FSAF

Hungary DEADHU WSCOPESA
FHUN DEADKO
WSCOPEHN FKONEX

India DEADIND FKOR
FBSE WSCOPEKO
FINDIA Sri Lanka DEADSL
FINDNW FSRILA
FINDUP FSRIUP
FNSE WSCOPECY
WSCOPEIN Taiwan DEADTW

Indonesia DEADIDN FTAIQ
FINO WSCOPETA
WSCOPEID Thailand DEADTH

Jordan DEADJO FTHAQ
FJORD WSCOPETH
WSCOPEJO Turkey DEADTK

Malaysia DEADMY FTURK
FMAL FTURKUP
FMALQ WSCOPETK
WSCOPEMY United Arab Emirates DEADAB

Mexico DEADME DEADDB
FMEX FABUD
MEX101 FDUBAI
WSCOPEMX WSCOPEAE

Morocco DEADMOR Venezuela DEADVE
FMOR FVENZ
WSCOPEMC WSCOPEVE
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Table A.3: Static Screens
The table displays the static screens applied in our study, mainly following Ince and Porter
(2006), Schmidt et al. (2017) and Griffin et al. (2010). Column 3 lists the Datastream items
involved (on the left of the equality sign) and the values which we set them to in the filter
process (on the right of the equality sign). Column 4 indicates the source of the screens.

Nr. Description Datastream item(s)
involved

Source

(1) For firms with more than one
security, only the one with the
biggest market capitalization and
liquidity is used.

MAJOR = Y Schmidt et al. (2017)

(2) The type of security must be eq-
uity.

TYPE = EQ Ince and Porter (2006)

(3) Only the primary quotations of a
security are analyzed.

ISINID = P Fong, Holden, and
Trzcinka (2017)

(4) Firms are located in the respec-
tive domestic country.

GEOGN = country
shortcut

Ince and Porter (2006)

(5) Securities are listed in the respec-
tive domestic country.

GEOLN = country
shortcut

Griffin et al. (2010)

(6) Securities with quoted currency
different from the one of the as-
sociated country are disregarded.a

PCUR = currency
shortcut of the coun-
try

Griffin et al. (2010)

(7) Securities with ISIN country code
different from the one of the asso-
ciated country are disregarded.b

GGISN = country
shortcut

Annaert, Ceuster, and
Verstegen (2013)

(8) Securities whose name fields indi-
cate non-common stock affiliation
are disregarded.

NAME, ENAME,
ECNAME

Ince and Porter
(2006), Campbell
et al. (2010), Griffin
et al. (2010) and
Karolyi et al. (2012)

a In this filter rule also the respective pre-euro currencies are accepted for countries within
the euro zone. Moreover, in Russia “USD” is also accepted as currency, besides “RUB”.

b In Hong Kong, ISIN country codes equal to “BM” or “KY” and in the Czech Republic
ISIN country codes equal to “CS” are also accepted.
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Table A.4: Generic Keyword Deletions
The table reports the generic keywords, which are searched for in the names of all stocks of
all countries. If a harmful keyword is detected as part of the name of a stock, the respective
stock is removed from the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI,
DUPLICATE, XSQ, XETa

Depository Receipts ADR, GDR
Preferred Stock PF, ’PF’, PFD, PREF, PREFERRED, PRF
Warrants WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
Debt %, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
Unit Trusts .IT, .ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,

TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST
UNITS, UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT

ETFs AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
Expired securities EXPD, EXPIRED, EXPIRY, EXPY
Miscellaneous (mainly taken from
Ince and Porter (2006))

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HI.YIELD, HIGH INCOME,
IDX, INC.&GROWTH, INC.&GW, INDEX, LP, MIPS,
MITS, MITT, MPS, NIKKEI, NOTE, OPCVM, ORTF,
PARTNER, PERQS, PFC, PFCL, PINES, PRTF, PTNS,
PTSHP, QUIBS, QUIDS, RATE, RCPTS, REAL EST,
RECEIPTS, REIT, RESPT, RETUR, RIGHTS, RST,
RTN.INC, RTS, SBVTG, SCORE, SPDR, STRYPES,
TOPRS, UTS, VCT, VTG.SAS, XXXXX, YIELD, YLD
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Table A.5: Country-Specific Keyword Deletions
The table reports the country-specific keywords, which are searched for in the names of all
stocks of the respective countries. If a harmful keyword is detected as part of the name of a
stock, the respective stock is removed from the sample.

Country Keywords

Australia PART PAID, RTS DEF, DEF SETT, CDI
Austria PC, PARTICIPATION CERTIFICATE, GENUSSSCHEINE,

GENUSSCHEINE
Belgium VVPR, CONVERSION, STRIP
Brazil PN, PNA, PNB, PNC, PND, PNE, PNF, PNG, RCSA, RCTB
Canada EXCHANGEABLE, SPLIT, SPLITSHARE, VTG\\.,

SBVTG\\., VOTING, SUB VTG, SERIES
Denmark \\)CSE\\)
Finland USE
France ADP, CI, SICAV, \\)SICAV\\), SICAV-
Germany GENUSSCHEINE
Greece PR
India FB DEAD, FOREIGN BOARD
Israel P1, 1, 5
Italy RNC, RP, PRIVILEGIES
Korea 1P
Mexico ’L’, ’C’
Malaysia ’A’
Netherlands CERTIFICATE, CERTIFICATES, CERTIFICATES\\),

CERT, CERTS, STK\\.
New Zealand RTS, RIGHTS
Peru INVERSION, INVN, INV
Philippines PDR
South Africa N’, OPTS\\., CPF\\., CUMULATIVE PREFERENCE
Sweden CONVERTED INTO, USE, CONVERTED-,

CONVERTED - SEE
Switzerland CONVERTED INTO, CONVERSION, CONVERSION SEE
United Kingdom PAID, CONVERSION TO, NON VOTING,

CONVERSION ’A’
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Table A.6: Dynamic Screens
The table displays the dynamic screens applied to the data in our study, following Ince and
Porter (2006), Griffin et al. (2010), Jacobs (2016) and Schmidt et al. (2017). If screens are
adapted solely to monthly (daily) returns, this is indicated by m (d). Column 3 lists the
respective Datastream items. Column 4 refers to the source of the screens.

Nr. Description Datastream item(s)
involved

Source

(1) We delete the zero returns at
the end of the return time-series,
which exist, because in case of
a delisting Datastream displays
stale prices from the date of
delisting until the end of the re-
spective time-series. We also
delete the associated market cap-
italizations.

TRI, MV Ince and Porter (2006)

(2) We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

TRI, MV, UP The screen originally
stems from Schmidt
et al. (2017), whereby
we employ it on the
unadjusted price.

(3m)We delete monthly returns and
the associated market capitaliza-
tions in case of return spikes (re-
turns > 990%).

TRI, MV Schmidt et al. (2017)

(3d) We delete daily returns and the
associated market capitalizations
in case of return spikes (returns >
200%).

TRI, MV Griffin et al. (2010)

(4m)We delete monthly returns and
the associated market capitaliza-
tions in case of strong return re-
versals, defined as follows: Rt−1
or Rt >= 3.0 and (1 + Rt−1)(1 +
Rt)− 1 < 0.5.

TRI, MV Ince and Porter (2006)

(4d) We delete daily returns and the
associated market capitalizations
in case of strong return reversals,
defined as follows: Rt−1 or Rt >=
1.0 and (1 + Rt−1)(1 + Rt)− 1 <
0.2.

TRI, MV Ince and Porter
(2006), Griffin et al.
(2010), Jacobs (2016)

(5) We delete the associated returns
and market capitalizations in case
of a missing past-36-month return
history.

TRI, MV Blitz et al. (2011),
Blitz et al. (2018).65
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