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Abstract
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emerges as the best momentum strategy. Finally, we find that the alpha stemming from
volatility-scaling is distinctive from the idiosyncratic momentum alpha.

Keywords: Momentum, Momentum Scaling, Idiosyncratic Momentum, Risk Manage-
ment

JEL Classifications: G12, G14, G15

*Chair of Financial Management and Capital Markets, Technische Universitat Miinchen (TUM), Arcis-
str. 21, 80333 Munich, Germany.
Email: matthias.hanauer@tum.de, steffen.windmueller@tum.de
We thank Pedro Barroso, David Blitz, Winfried Hallerbach, Christoph Kaserer, Martin Martens, Laurens
Swinkels, Milan Vidojevic, Florian Weigert, and the conference and seminar participants at the 36" Inter-
national Conference of the French Finance Association (AFFI), the Mutual Funds, Hedge Funds and Factor
Investing Conference, TUM, Robeco, and the University of Miinster for helpful comments. Furthermore, we
are grateful for the provision of Matlab code to conduct the Bayesian tests by Francisco Barillas. Disclosures:
Matthias is also employed by Robeco, an asset management firm that among other strategies also offers active
factor investing strategies. The views expressed in this paper are those of the authors and not necessarily
shared by Robeco or TUM. Earlier versions of this paper were circulated under the title “Managing the Risk
of Momentum”. Any remaining errors are our own.



1 Introduction

The evidence for momentum is pervasive: Jegadeesh and Titman (1993) discover that past
winner (loser) stocks tend to have relatively high (low) future returns. Momentum poses an
explanatory problem on the Capital Asset Pricing model (CAPM) of Sharpe (1964), Lintner
(1965), and Mossin (1966), as well as on the Fama and French (1993, 2015) three- and
five-factor models. Within the U.S., a long-short momentum factor generates an average
raw return of 0.60% (Fama-French three-factor model (FF3FM) alpha of 0.87%) per month
between January 1930 and December 2017. Positive momentum returns have also been
identified for other equity markets and asset classes.!

Besides the relatively high profitability, momentum has occasionally experienced large
drawdowns (crashes), i.e., persistent strings of negative returns. In 1932, the momentum fac-
tor for the U.S. equity market exhibited a drawdown of -67.10%. Also in 2009, the momentum
factor for both the U.S. and international (ex-U.S.) equity markets experienced large losses.
Grundy and Martin (2001) explain the risks of momentum by time-varying factor exposures.
For instance, after bear markets the market betas of loser stocks tend to be higher than those
of winner stocks. When the market rebounds after a bear state, the overall negative market
sensitivity of the winner-minus-loser strategy generates negative strategy returns.?> Grundy
and Martin (2001) show that hedging out the momentum strategy’s dynamic market and size

exposures substantially reduces the volatility of the strategy without a loss in return, but

'Rouwenhorst (1998, 1999) finds that momentum strategies earn high abnormal returns in equity markets
internationally, both in developed and in emerging markets. Moskowitz and Grinblatt (1999) document
momentum for industry portfolios, Asness, Liew, and Stevens (1997) and Chan, Hameed, and Tong (2000)
for country equity indices, Okunev and White (2003) and Menkhoff, Sarno, Schmeling, and Schrimpf (2012)
for currency markets, and Erb and Harvey (2006) for commodity futures. Asness, Moskowitz, and Pedersen
(2013) confirm these findings and uncover a common factor structure among momentum returns across asset
classes. Chui, Titman, and Wei (2010) show that momentum is persistent worldwide except for Asia, and
propose cross-country differences in individualism an explanation while Docherty and Hurst (2018) document
that momentum is stronger in more myopic countries. Griffin, Ji, and Martin (2003) find that momentum
returns cannot be attributed to macroeconomic risk factors, whereas Fama and French (2012) show that local
momentum factors are superior to a global momentum factor in pricing regional size-momentum portfolios.

2Asem and Tian (2010) investigate the effect of market dynamics on momentum returns and document
that there are higher momentum returns when markets continue in the same state than when they transition
to a different states, i.e., market up (down) movements following bull (bear) markets, are associated with
higher momentum returns.



Daniel and Moskowitz (2016), however, show that the superior performance of the dynamic
hedged strategy depends on using ex-post factor betas to hedge these exposures. Daniel and
Moskowitz (2016) more generally isolate this behavior by conditioning momentum on a stress
dummy that indicates both past bear market states and high market volatility. The stress
dummy has significant negative loadings when regressing momentum returns on it, indicating
the conditional nature of momentum returns. Momentum crashes put extreme pressure on
mean-variance optimizing momentum investors, both through the strategy’s conditionally
negative returns and its heightened volatility during these phases. The rationale to opti-
mize the expected Sharpe is to either limit momentum return downturns, reduce the risk of
momentum, or both.

The recent literature has focused on volatility-scaling of factors. This idea is based on the
empirical observation that factor-return volatility is positively autocorrelated in the short
term and that returns are relatively low when volatility is high, named the leverage effect.?
Volatility-scaling strategies have been tested for single assets, factors, and asset classes.
Barroso and Santa-Clara (2015) study momentum strategies that are deflated by their realized
volatility and scaled to a constant target volatility level. Realized volatility is calculated from
past daily momentum returns and a proxy of future volatility. They find that Sharpe ratios
more than double, while portfolio turnover only marginally increases. Daniel and Moskowitz
(2016) extend the constant volatility-scaling approach by additionally taking the forecasted
momentum return into account. The weights of their dynamic scaling are different than those

of constant volatility-scaling because they can take on negative values. Daniel and Moskowitz

3See, among others, Engle (1982); Bollerslev (1987) for volatility autocorrelation and Bekaert and Wu
(2000) for asymmetry in the risk to return relation.

4Moskowitz, Ooib, and Pedersen (2012) test volatility scaling at the security, not at the portfolio level.
The goal is to prevent portfolios being dominated by only few assets with high volatility. Moreira and Muir
(2017) highlight the advantage for mean-variance investors when scaling different equity long-short strategies
by realized variance. Grobys, Ruotsalainen, and Aijo (2018) compare risk management strategies for industry
momentum in the U.S. They find that industry momentum exhibits no time-varying beta (as standard
momentum does) and that volatility-scaling improves its performance. du Plessis and Hallerbach (2016) find
that the volatility-scaling of U.S. industries both lowers the industry momentum strategy’s volatility and
heightens its returns. Recently, Harvey, Hoyle, Korgaonkar, Rattray, Sargaison, and Van Hemert (2018)
compare volatility-targeting strategies across different asset classes.



(2016) show that the dynamic strategy exceeds the Sharpe ratio achieved with the constant
volatility-scaling strategy.®

Instead of scaling the standard momentum factor, a different way to potentially increase
the risk-to-return relation is to change the portfolio sort criteria at the stock-level, yielding
differently composed long-short portfolios. Gutierrez and Prinsky (2007) use orthogonalized
stock returns (firm-specific abnormal returns) relative to a Fama-French three-factor model
instead of raw returns during the formation period. They find that firm-specific momentum -
or idiosyncratic momentum (iMOM)® - experiences no long-term reversals. In addition, Blitz
et al. (2011) document that idiosyncratic momentum exhibits only half of the volatility of
standard momentum without any significant decrease in returns. Finally, Blitz, Hanauer, and
Vidojevic (2018) show that idiosyncratic momentum cannot be explained by the commonly-
used asset pricing factors both in the U.S. (1926 to 2015) and internationally, claiming that
idiosyncratic momentum is a separate factor that expands the efficient frontier comprised
of already established asset pricing factors, including standard momentum.” Even though
idiosyncratic momentum is conceptually different from standard momentum as shown by
spanning test alphas, we aim to motivate idiosyncratic momentum as an additional strategy
(besides the scaled versions of standard momentum) to manage momentum drawdowns and
respectively maximize the performance of momentum.

This paper contributes to the literature in at least four aspects. First, we compare
three momentum risk management strategies proposed in the literature — idiosyncratic mo-
mentum, constant volatility-scaling and dynamic scaling — using a uniform data set and

methodology. We use both a long sample of U.S. and a broad sample of international stocks.

®However, Daniel and Moskowitz (2016) exploit ex-post information for calibrating their baseline model,
disregarding the optimization set of a real-world investor. This forward-looking bias is addressed only per-
functory, giving rise to the question of a practical implementation.

6Gutierrez and Prinsky (2007) and Blitz, Huij, and Martens (2011) use the terms abnormal return mo-
mentum and residual momentum, respectively, but the definitions are identical.

"Chaves (2016) in this regard shows that also a simplified version of idiosyncratic momentum that is based
on one-factor (market) unscaled residuals works. Blitz et al. (2018) confirm that most of the performance
improvement comes from orthogonalizing returns with the market factor and that the inclusion of additional
Fama-French factors leads to small further improvements as more of the stock specific momentum is isolated.



We then evaluate the momentum risk management strategies in different dimensions: re-
turn and risk characteristics including higher moments and maximum drawdowns, ex-post
and Bayesian Sharpe ratio tests, as well as their implementability by avoiding look-ahead
biases and investigating the break-even transaction cost, i.e., round-trip transaction costs
that would render the strategy returns insignificant.

Second, we add to the replication literature by a large replication of standard momentum
as well as strategies to improve its performance. According to Hou, Xue, and Zhang (2018),
replication provides a contribution when extending existing studies out-of-sample. In this
regard, the majority of asset pricing studies are covering solely the U.S. market. Karolyi
(2016) argue that this implicitly creates a “home bias” for the U.S. market. Harvey (2017)
gives additional rise to the replication argument by stating that many published results would
not hold in the future, because of unreported tests, testing of multiple hypotheses, and data
snooping. Harvey, Liu, and Zhu (2016) link data snooping concerns with the incentive to
publish, generating a publication bias, and propose higher t-statistic hurdles. Lastly, Novy-
Marx and Velikov (2016) state that most published factors with above a 50% turnover per
month are not profitable after trading costs. Thus, transaction costs have the ability to
subsume factors’ profitability and even heighten the concerns for data snooping. Since we
are conducting a comparison study, we do not aim at “p-hacking” to report significant results,
but rather test already published volatility-management strategies. We use a uniform global
dataset, an identical factor construction approach, and proceed with the same statistical
tests (including the factors’ transaction costs), reporting the results homogeneously across
countries and strategies (factors). In this way, we overcome potential concerns of data mining,
multiple hypothesis testing and Type I error concerns.

Third, we contribute to the ongoing debate about whether volatility-managed investment
strategies yield higher Sharpe ratios than non-managed factors do.® Cederburg et al. (2019)

examine 103 factors and find that volatility-management generates statistically significant

8See Cederburg, O’Doherty, Wang, and Yan (2019) for a literature overview about the volatility manage-
ment of trading strategies.



Sharpe ratio improvements for only eight out of 103. Importantly, the authors show that the
eight trading strategies all relate to momentum strategies.

Finally, we add to the current literature that looks for a parsimonious factor model that
spans the tangency portfolio for traded factors, that does not retain redundant factors.

Our main findings can be summarized as follows. First, using a long sample of U.S. stocks
from 1930 to 2017 and a broad sample of stocks from 48 international markets from 1991
to 2017, we show that all risk management strategies substantially increase Sharpe ratios.
Furthermore, both skewness and kurtosis as well as maximum drawdowns decrease compared
to standard momentum so that their distributions become more normal. Comparing the in-
dividual risk management strategies within samples, we find similar improvements for the
long U.S. sample for Sharpe ratios and t-statistics (both roughly double compared to stan-
dard momentum) for all three approaches, while maximum drawdowns are reduced most by
idiosyncratic momentum. For the broad sample, we document that idiosyncratic momen-
tum outperforms all other strategies, as the improvements in Sharpe ratio and t-statistic
for idiosyncratic momentum are more than twice as the improvements of volatility-scaling
strategies and the reduction in maximum drawdowns is highest.

Second, maximum Sharpe ratio and factor comparison tests of the risk management
strategies further confirm our results in favor of idiosyncratic momentum. Idiosyncratic mo-
mentum is assigned the highest weight in ex-post maximum Sharpe ratio tests for both the
long and the broad sample, meaning that mean-variance optimizing investors would allocate
most to the idiosyncratic momentum factor next to traditional factors such as the market,
size, and value. Furthermore, the Bayesian Sharpe ratio tests as in Barillas and Shanken
(2018) show that the models with the highest model probabilities include idiosyncratic mo-
mentum, and that idiosyncratic momentum shows the highest cumulative factor probability
among the three momentum risk management approaches for both the long and the broad
sample.

Third, our findings indicate that risk-managed momentum strategies should be at least



as implementable as standard momentum. By calculating the transaction (break-even) costs
that theoretically would render the strategies insignificant, we are able to directly compare
the risk-managed momentum strategies with each other after taking portfolio turnover into
account. Although all risk management strategies have higher average portfolio turnover
compared to standard momentum, we document higher break-even costs due to higher (risk-
adjusted) strategy returns.’

Finally, we find that the alpha generated by scaled momentum strategies is distinct from
the idiosyncratic momentum alpha, as indicated by the economically and statistically signif-
icant alphas in pairwise mean-variance spanning tests. Furthermore, we show that scaling
idiosyncratic momentum by its realized volatility further increases its Sharpe ratio. We find
that even though residualizing of returns reduces the systematic exposure of the constructed
idiosyncratic momentum factor, scaling the factor by its volatility generates even higher risk-
adjusted returns, undermining the conceptual difference of the risk management approaches.

The following sections are structured as followed: Section 2 describes the data, factors, risk
management strategies, and research methodologies. Section 3 presents our empirical results
for the implemented strategies, maximum ex-post and conditional Sharpe ratio comparisons,
turnover analyses, as well as mean-variance spanning tests and results for the scaled versions
of idiosyncratic momentum to disentangle the effects of volatility scaling and residualizing.
In Section 4 we assess the robustness of our results by applying the Fama-French five-factor
model as a benchmark, using alternative portfolio construction methods (one-dimensional
sorted decile/quintile portfolios), and investigating the momentum strategies on a country

level. Section 5 concludes.

9Novy-Marx and Velikov (2016) find momentum to deliver significant after-transaction cost returns.



2 Data and Methodology

2.1 Data

The data analyzed in this paper is collected from various sources. We use a sample consisting
of 58,431 stocks for 49 equity markets from July 1926 to December 2017. We refer to U.S.
and ex-U.S. (international) equity data as long and broad sample with respect to differences
in sample period availability and regional coverage. Both monthly and daily returns are
measured in USD. The U.S. data comes from the Center for Research on Security Prices
(CRSP) and covers July 1926 to December 2017. International data is collected from Thom-
son Reuters for the sample period July 1987 to December 2017. The country selection follows
the Morgan Stanley Capital International (MSCI) Developed and Emerging Markets Indices.
We include all countries that are classified as a developed or an emerging market at some
point during the sample period.!® More precisely, the countries are only part of the actual
sample in those years in which they are part of the MSCI Developed and Emerging Markets
Indices. The following countries are included: Argentina, Australia, Austria, Belgium, Brazil,
Canada, Chile, China, Colombia, Czech Republic, Denmark, Egypt, Finland, France, Ger-
many, Greece, Hong Kong, Hungary, Indonesia, India, Ireland, Israel, Italy, Japan, (Republic
of) Korea, Morocco, Mexico, Malaysia, Netherlands, Norway, New Zealand, Pakistan, Peru,
Philippines, Poland, Portugal, Qatar, Russia, Singapore, South Africa, Spain, Switzerland,
Sweden, Thailand, Turkey, Taiwan, United Arab Emirates, U.K. and U.S.

Our long U.S. sample includes all common equity stocks from NYSE, NYSE MKT (for-
merly: AMEX), and NASDAQ within the CRSP universe. We exclude all stocks with a
CRSP share code (SHRCD) different than 10 or 11. If available, we use Fama-French fac-
tors from Kenneth French’s website for the long sample, which leaves us with constructing
momentum, idiosyncratic momentum, and a timely value factor.!!

The broad international sample comprises market data from Datastream and accounting

10See https://www.msci.com/market-classification for details.
Uhttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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data from Worldscope. We process data through static and dynamic screens to ensure data
quality. As a first step, we identify stocks by Thomson Reuters Datastream’s constituent
lists. We use Worldscope lists, research lists and, to eliminate survivorship bias, dead lists.
Following Ince and Porter (2006), Griffin, Kelly, and Nardari (2010), and Schmidt, Von Arx,
Schrimpf, Wagner, and Ziegler (2017), we apply generic as well as country-specific static
screens to eliminate non-common equity stocks as well as dynamic screens for stock return
and price data as described in Appendix A.1. The emerging market data is restricted to
start only in July 1994.'2 1In order for a security to be a regarded for the market, size,
and value portfolios within the broad sample, securities are required to have a valid market
capitalization for June y and December ¢t —1 as well a positive book equity value for December
t—1.

For both the long and the broad sample, we calculate momentum and idiosyncratic mo-
mentum and additionally require valid returns from ¢t — 36 to ¢t — 1.13

Finally, the countries are only part of the final sample in those months for which at least
30 stock-month observations are available after filters.'* We end up with a total of 7,402,291

firm-month observations. Table 1 shows the descriptive statistics for the stocks in the final

sample.

[Table 1 about here.]

2.2 Factor construction

Our approach for constructing the factor portfolios follows Fama and French (1993, 2012). We

calculate the portfolio breakpoints for each country separately to ensure that the results are

12Griffin et al. (2010) and Jacobs (2016) apply the same sample starting point for emerging markets data,
relying on the increased integration of emerging markets with world markets by 1994.

13The momentum factor requires return data from ¢t — 12 to t — 2. We use this extended requirement to
have a uniform data set for the construction of both standard and idiosyncratic momentum.

M Following Jacobs (2016), we thereby ensure that the six size-momentum portfolios contain at least five
stocks on average. As a consequence, some countries (such as India, Hong Kong and Spain) are excluded
from the sample for certain months. Jordan, Sri Lanka, Slovakia and Venezuela are excluded from the whole
sample.



not driven by country effects. The market factor, RMRF, consists of value-weighted returns
of all available (and valid) securities less the risk-free rate. All returns are in USD and excess
returns are relative to the one-month U.S. Treasury bill rate. The size and value factors are
constructed by six value-weighted portfolios using breakpoints on market capitalization and
book-to-market. For every end-of-June of year y, we assign stocks among two size-sorted
and three book-to-market sorted portfolios based on their market capitalization and book-
to-market ratio, respectively. Market capitalization is from end of June of year y and the
book-to-market ratio is calculated with market capitalization from end of December of year
y — 1 and book value from the fiscal year end of y — 1. For the U.S., the size breakpoints
are based on the NYSE median market capitalization and stocks are classified as big or
small, indicated by B and S. For the broad sample, we follow Fama and French (2012,
2017) and define size breakpoints so that the largest (smallest) stocks cover 90% (10%) of
a country’s market capitalization. Moreover, all stocks are independently sorted into three
portfolios (Growth, Neutral, and Value, indicated by G, N, and V') based on the country-
specific 70% and 30% percentile breakpoints of book-to-market ratios. The breakpoints on
book-to-market are calculated from NYSE (big) stocks only for the long (broad) sample. For
the resulting six portfolios (BV, BN, BG, SV, SN, and SG), we calculate monthly value-
weighted returns and construct the size (SMB) and value (HML) factor as zero-investment

long-short portfolios from July y to end-of-June ¢ + 1:

SMB = (SV + SN + SG) /3 — (BV + BN + BG) /3 "
HML = (BV +5V)/2—(BG+ SG) /2

Analogously to value, we categorize stocks based on the 70% and 30% percentiles of the
past 12-2 month cumulative returns as Winner, Neutral and Loser (W, N, and L) stocks to
form the momentum factor. We then calculate the monthly value-weighted returns for the

2x3 portfolios (BW, BN, BL, SW, SN, SL). Momentum is constructed by the long-short
portfolio as MOM = (BW + SW) /2 — (BL+ SL) /2 and - in contrast to SMB and HML -

10



rebalanced every month. Asness and Frazzini (2013) introduce the so-called HML-devil factor
(denoted as HMLy). HML, is comparable to HML but updates the market capitalization
for the sorting criteria every month. Thus, stocks are sorted into portfolios based on their
monthly updated book-to-market ratio. As stated above, we use the Fama-French factors
from Kenneth French’s website for the long U.S. sample. The momentum factor and risk
management strategies, however, are constructed by ourselves based on independent double

sort portfolios in order to ensure comparability. The sorts on the past 12-2 month returns

are based on NYSE (big) stocks.

2.3 Risk management strategies

Volatility scaling aims to manage the realized volatility of an investment strategy. For cross-
sectional (here: standard) momentum, realized volatility has been shown to have a positive
(negative) correlation with future volatility (returns) and to be relatively high compared to
other factors.!® In this study we identify two potential channels for Sharpe ratio improve-
ments by volatility scaling: volatility scaling lowers the overall ex-post volatility (named
volatility smoothing) and heightens strategy returns due to negative correlation between
volatility and returns (named volatility timing).'> We apply the realized volatility of momen-
tum strategy returns to control for volatility.!” Combining these two channels, forecasted
returns and variances (or volatilities) at the factor-level can generate scaling weights that
increase the Sharpe ratio of momentum compared to a non-scaled strategy. Moreover, as a
net-zero investment long-short strategy, momentum can be scaled without assuming leverage

costs and the scaling can be interpreted as having a time-varying weight in the long and short

15See, among other, Barroso and Santa-Clara (2015) or Moreira and Muir (2017).

16Both channels do not directly consider the positive autocorrelation of momentum strategy returns, which
is utilized for the dynamic momentum strategies.

17 Alternatively one could use the individual volatility of all current holdings of the momentum strategy.
However, using volatility at the strategy level is preferable for momentum due to the possibility of volatility
timing (i.e., the negative relation between volatility and strategy returns, as shown in Bekaert and Wu, 2000).
Individual volatilities are rather useful to control for realized volatility (volatility smoothing) of time-series
momentum strategies (see, e.g., also du Plessis and Hallerbach, 2016, for U.S. industry portfolios). These
strategies are scaled upward by volatility (not the inverse, as for cross-sectional momentum) due to the
positive relation between volatility and returns.

11



legs. We explicitly distinguish between constant volatility-scaling and dynamic scaling.
Constant volatility-scaling, as proposed in Barroso and Santa-Clara (2015), adjusts the
momentum portfolio to a constant target volatility level. The corresponding scaling weight

for momentum in month ¢ is defined as:

Weyol,t = Ut?.‘]@t (2)
t

where 04,4 s the full sample volatility of momentum and 6; = E,_;[oy] is the forecasted
respective expected volatility.'® Since the forecasted volatility varies over time, the weights
for the constant volatility-scaled momentum portfolio can take values between 0 (for 6, = 00)
and infinity (for 6, = 0). Following Barroso and Santa-Clara (2015), we calculate the monthly
volatility forecast for month ¢ from past daily realized returns of momentum in the previous

six months (126 trading days):

126
MOMd
O—MOMt - 21 Z 126 ]t (3)

where R2,, M.d—j¢ 18 the squared realized daily return of momentum returns summed over
the last 126 trading days. For robustness, we also use a one month look-back window (21
trading days) as in Moreira and Muir (2017). Constant volatility-scaled momentum over six
months (cvolgys) and constant volatility-scaled momentum over one month (cvoly ) show the
correspondingly weighted momentum strategies, where the return in month ¢ is calculated

using realized volatility:

Rcvol,t = RMOM,t * Wepol,t (4)

The dynamic strategy enhances the volatility forecasting of constant volatility strategies by
additionally forecasting the expected return. Mean-variance optimizing investors optimize

momentum as their investment asset according to the dynamic scaling weight that refers to

8By choosing the full-sample volatility of momentum as a target level, we (i) ensure that the strategy
targets a constant risk over time and (ii) make the returns of the scaled and unscaled strategy comparable.

12



their expected Sharpe ratio.'® We apply the dynamic approach from Daniel and Moskowitz

(2016) and define the dynamic scaling weight for momentum in month ¢ as:

Ly f
Wdyn,t = <2>\) : T; (5>

where iy = By 1[us] (62 = Ei_1[0?]) is the forecasted respective the conditional expected
return (variance) of momentum, and \ is a static scalar scaling the dynamic strategy to
the average volatility of momentum. The estimation of fi; and 67 can be conducted either
in-sample or out-of-sample. We apply both approaches to compare the performance, even
though the in-sample estimation suffers from a look-ahead bias.?’ The return of momentum

is forecasted, both in- and out-of-sample, with the following time-series regression:

2
RMOM,t =Y + Vint * ]Bear,t—l "ORMRFt—1 + € (6>

where Ipeqri—1 is a bear-market indicator that equals one if the cumulative past two year
market return is negative (and zero otherwise), ohy pp_ is the realized variance of RMRF
over the past 126 days, v, is the regression coefficient on the interaction term of the two
independent variables, and 7, is the regression intercept. The expected return (jfi;) is defined
as the fitted values from the regression. Distinguishing between in-sample and out-of-sample
estimation, the former refers to the whole momentum sample available for estimation of the
regression and yields the mentioned look-ahead bias. The latter also uses fitted values but

1

estimates Equation 6 on a monthly updating expanding-window basis.?! To estimate the

9Tt is, however, an underlying assumption how investors end up with their return and variances forecasts
respective how their expectations align for the weight components. Daniel and Moskowitz (2016) mention that
investors optimize their objective function in-sample and unconditionally, which implies a forward-looking
bias. In this regard, we additionally estimate return and variance out-of-sample.

20The estimation approaches will later on refer to the two strategies: dynamic in-sample-scaled momentum
(dynrs) and dynamic out-of-sample-scaled momentum (dyn).

2n contrast to Daniel and Moskowitz (2016), we estimate an out-of-sample regression using the prior
36 months that are already necessary to constructing idiosyncratic momentum but drop the restriction of
requiring at least one non-zero bear-market indicator observation to define the sample starting point. This
was done to keep the same sample start date. In case the bear-market indicator is always zero within a
subsample, the fitted values of the time-series regression simply equal the momentum returns on the LHS of

13



variance of momentum for the in-sample approach, we first estimate the generalized autore-
gressive conditional heteroskedasticity (GARCH) model introduced in Glosten, Jagannathan,
and Runkle (1993). A feature of the model is that the variance process of the residuals is fitted
while conditioning on the residual being negative, indicating a negative deviation of momen-
tum returns from the return trend. We estimate the parameters within the GJR-GARCH
model using maximum likelihood over the whole sample. In the second step, fi; is eventually
estimated from the fitted values of an autoregressive model extended by the forecast of the
calibrated GJR-GARCH. The processes of the model and details on the time-series regression
in order to derive the in-sample volatility forecast (6;) are provided in Appendix A.2. For
the out-of-sample variance forecast of the dynamic strategy, we rely on the same approach as
for the constant volatility-scaling strategies to overcome the look-ahead bias of the GARCH
model forecast and use Equation 3 with a 126 day look-back window for wgy,, ;. We eventually
derive dyn;s and dyn as the dynamically weighted momentum strategies with their return

in month ¢ given by:

Rdyn(ls),t = RMOM,t : wdyn<15),t (7>

Comparing cvolgy, and dyn as examples for the constant volatility-scaling and the dynamic
strategy, the weights solely differ by E; 1 [u¢] = fi;. Hence, the scaling weights of the dynamic
strategies can take on negative values when fi; < 0. Figure 1 plots the corresponding weights
for the whole sample and sub-samples. As expected, the dynamic weights vary more strongly
than the constant volatility-scaling weights for both the long and broad sample. Figure 1b
shows the weights during the Great Depression. Between July and August 1932, momentum
in the U.S. exhibited returns of -41.90% and -37.19%.?> The highly negative momentum

returns in July 1932 drive down the weight for dyn from 0.79 to 0.14 by end-of-August 1932,

the regression equation.

21n previous months (March, April, and May 1932), the U.S. market factor rebounded from negative
returns (-11.05%, -17.85% and -20.45%) to positive returns in July and August 1932 (33.87% and 37.09%).
After strings of negative market returns, stocks assigned to the loser portfolio of momentum have on average
higher market betas than stocks in the winner portfolio. Thus, after the positive market reversal in July
1932, short positions in the high beta stocks (within the loser portfolio) that yielded higher returns than
low-beta stocks in the winner portfolio caused the long-short momentum portfolio to crash.

14



while the weight for cvolgy, only slightly decreases (0.44 to 0.41). Hence, an implemented dyn
(cvolgys) strategy effectively would have lowered momentum losses from -37.19% to -5.19%
(-15.32%) in August 1932. For the broad sample, Figure 1d drafts a similar picture: the
downward-scaled of dyn (assigning even negative weights) compared to cvolgys is enhanced
during periods of serially-autocorrelated momentum returns. This is especially the case after
a bear market state turns positive (reversal).

Idiosyncratic momentum does not scale the standard momentum factor but applies a
different sorting criterion at the individual stock level. The construction of idiosyncratic
momentum is technically distinct from momentum (and volatility-scaled strategies) in that
stocks within the long and short portfolios potentially differ. Instead of using the individual
stocks’ raw returns from t —12 to t — 2, we orthogonalize them with respect to a Fama-French
three-factor model. Thereby, stock returns are adjusted for their risk factor exposure. We
follow Gutierrez and Prinsky (2007), Blitz et al. (2011), and Blitz et al. (2018) and regress
the past 36 months’ returns of all valid stocks within the investment universe on country-
specific factors of the Fama-French three-factor model. Thus, the following time-series model

is estimated for every stock ¢ and month ¢ using a rolling-window approach:
Ry — Rpy = a; + Prvpri ¥ RMRF, + Bsyp,i * SMBy + Buyvr; * HML +€¢,;  (8)

The residuals of the time-series regressions, €;, , can be interpreted as stock-specific idiosyn-
cratic returns for stock ¢ during month t. As in Gutierrez and Prinsky (2007), Blitz et al.
(2011), and Blitz et al. (2018), we calculate the cumulative idiosyncratic return for each stock

by scaling the 12-2 month idiosyncratic returns with their volatility:

12
> €it—j
Jj=2

(9)

€12-1;, —

I o
> (Gi,tfj - 6@')
j=2

We categorize each stock as a Winner, Neutral and Loser stock based on its cumulative
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idiosyncratic returns €51, ,. Therefore, every stock is independently sorted into one of the
2x3 portfolios on size and cumulative idiosyncratic returns, namely BW,4i0, BN;gio, BLigio,
SWidgios SNigio, and SL;g,. As for standard momentum, the 70% and 30% quantile break-
points of cumulative idiosyncratic returns are calculated using big stocks only. The portfolios
are rebalanced monthly and portfolio returns are value-weighted. Idiosyncratic momentum
is then constructed as a factor analogously to momentum: long in % (BW,;gio + SWiaio) and

short in % (BLidio + SLidio).zg

2.4 Methodology

We investigate the improvement of risk-management strategies for momentum returns based
on a comprehensive set of methodologies. First, we evaluate different factors by means, t-
statistics, higher moments (skewness and kurtosis) as well as maximum drawdowns. Second,
we conduct ex-post and Bayesian maximum Sharpe ratio tests. Third, we compare risk-
adjusted strategy returns with respect to the Fama-French three-factor model and conduct
pairwise mean-variance spanning tests. Finally, we contrast the profitability of the differ-
ent momentum strategies with their portfolio turnover to assess their capacity for potential
transaction costs. This section presents the testing procedures:

With the ex-post Sharpe ratio maximization as in Ball, Gerakos, Linnainmaa, and Niko-
laev (2016), we test which combination of factor sets has the highest ex-post Sharpe ratios.
In the mean-variance efficient portfolio optimization, the economic significance of our factors
is quantified by comparing how much an investor could gain from adding a certain factor to
his investment opportunity set.

The ex-post optimization, however, does not test if the factors span each other in a time-

conditional manner. Barillas and Shanken (2018) propose a Bayesian test to compare factor

Z3Within Section 4, we scale iMOM by its realized volatility with a six month look-back window to dis-
entangle the alpha generating signals. To sustain homogeneity across analyses, all risk management strate-
gies/factors are only used six months after their initial construction month. These six months correspond to
the look-back window in order to scale iMOM by its realized volatility. Eventually, the long (broad) sample
starts in 01/1930 (01/1991) although strategy returns are available from 07/1929 (07/1990) on.

16



models over time. In short, the posterior probabilities for models and/or factors are derived
by evaluating the null hypothesis (Hy : @ = 0) against the alternative (H; : o # 0) under
consideration of the expected Sharpe ratio increases by adding a factor. The methodology is
structured in the following way: First, prior beliefs about potential increases in Sharpe ratios
when adding factors to the investment opportunity set are assigned to the factors, considering
the alternative hypothesis. The prior expected value for the increase in the squared Sharpe
ratio, k, is:

k= (Shk, — Sh(f)*) /N (10)

max

where Shy,., is the target Sharpe value, Sh; is the Sharpe of the market factor (Shryrr)
when taking the CAPM as a baseline model, and N is the number of factors. The prior
for each factor is set so that Sh,,.. equals the sample Sharpe ratio of the market factor
(Shrurr) times 1.5 (4) for the long (broad) sample as baseline Sharpe multiple.?* The
benchmark scenario implies that the square root of the squared tangency portfolio’s Sharpe
ratio (spanned by the included factors) is 50% higher than the market’s squared Sharpe
ratio. Second, to see if a test asset (here: a factor) expands the efficient frontier, a so
called Bayes factor (BF) is motivated.”® By a derived regression density, the probability of
a factor of generating alpha (H;), and to be priced by factors in the current model (Hy),
can be expressed as marginal likelihoods ML (H;) and M L (Hy), respectively. The Bayesian
factor relates the null hypothesis to the alternative by application of the Gibbons, Ross, and
Shanken (1989) F-statistic. Hence, the ability of a factor to generate statistically significant
alpha, under consideration of the prior beliefs and relative to other factors, is translated

into posterior probabilities. Finally, the methodology yields two posterior results: model

24We choose a higher multiple for the broad sample as international factors benefit from diversification in
regional factor returns. Cf. Fama and French (2012) and Hanauer and Linhart (2015) for the diversification
potential in developed and emerging markets factor returns, respectively.

25The Bayes factor is defined as:

_ ML (Ho)
BF7WH?> (11)

where marginal likelihoods depend on the prior value k. For details on the methodology, see Barillas and
Shanken (2018).
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probabilities for all models under consideration with values between 0 and 1 (where the
weights across all models sum up to one), and cumulative probabilities for every factor that
assign values between 0 and 1 for every factor. The posterior probabilities give insights on
a model’s ability to price other factors, and on which factors are essential to build up the
model in the first place.?®

We apply a categorical model (not factor) perspective for the tests. The factors are
restricted in a way where only one value and only one risk-managed momentum factor is
allowed per model. This approach differs from the categorization in Barillas and Shanken
(2018): we also prevent factors of the same category from being included in one model,
however, we did not aggregate the results per factor category after all. The categorization (i)
prevents overfitting since constant volatility-scaled momentum over six months and dynamic
in-sample-scaled momentum are highly correlated, and (ii) enables us to measure the effect
of installing solely one risk-management strategy for momentum.

To see the strategies’ risk-adjusted performance, we calculate alphas for momentum and
all risk-management strategies relative to a Fama-French three-factor model. Moreover,
we conduct one-by-one comparisons of the strategies within mean-variance spanning tests
including the Fama-French three-factor model factors. Hence, we regress returns of the test
asset (e.g. momentum) on returns of the benchmark asset (e.g. idiosyncratic momentum) and
the Fama-French factors within a linear time-series regression model.2” The null hypothesis
states that the test asset returns are spanned, i.e., that the intercept equals zero. If the null
hypothesis is rejected and the intercept is statistically significantly different from zero, the

test asset does outperform the benchmark asset as well as the Fama-French risk factors and

26For example, applying the methodology on the FF3FM model, Barillas and Shanken (2018) test all
combinations obtainable from the three factors (RMRF, SMB, and HML) simultaneously against each other.
The four factor combinations - {RMRF}, {RMRF HML}, {RMRF SMB}, and {RMRF HML SMB} - get
assigned a prior probability of 1/4 and the value of k for the prior is implicitly given by Equation 11. For a
baseline Sharpe multiple of 1.5 is chosen, Barillas and Shanken (2018) find posterior probabilities of 55.6%
for {RMRF HML}, 43.4% for {RMRF HML SMB}, and less than 1% for the two remaining models. Thus,
the FF3FM model is outperformed by the two-factor model without the size factor for the data tested. The
Bayesian results are in line with the time-series regression results: there are highly significant and positive
(insignificant) alphas when regressing HML (SMB) on RMRF.

27See, among others, Huberman and Kandel (1987).
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extends the efficient portfolio frontier.
As in Grundy and Martin (2001) and Barroso and Santa-Clara (2015), we calculate the
round-trip costs that would render the profits of the different momentum strategies insignif-

icant at a certain a-significance level as

1.96 > s 9 (12

Round-tri Sa=s% = <1 B e

where /i, is the average monthly return, 70, is the average monthly turnover and t-stat, is
the t-statistic of strategy s. Round-trip costs are advantageous since they define an upper
border for the potential transaction costs instead of quantifying them directly. Only the
strategy returns as well as the associated portfolio turnover are necessary input factors.?”
Moreover, statistical significance can be incorporated within the round-trip costs measure.

Importantly, holding turnover fix, round-trip costs with reliance on the a-significance level

increase for strategies with higher t-statistics and therefore, lead to a higher upper border.

3 Empirical results

3.1 Performance of the Strategies

In this section, we compare the risk-to-return performance improvement of risk management
strategies for momentum in global markets. Table 2 depicts the return characteristics for the

momentum strategies.
[Table 2 about here.]

For the long U.S. sample, the average monthly return of the standard momentum factor
amounts to 0.60% with a highly significant t-statistic of 4.42. However, as Barroso and

Santa-Clara (2015) and Daniel and Moskowitz (2016) already show, momentum has also a

Z8We choose the Z-value of 2.58 (instead of 1.96 for the 5% level) for the 1% significance level.
29We calculate portfolio turnover as the sum of changes in the securities’ weights within assigned long-short
factor portfolios. The details of the turnover calculation are presented in Appendix A.3.
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dark side. The high returns come with a very high kurtosis and a negative skewness, implying
large drawdowns (fat left tails) such as the maximum drawdown for the momentum factor in
1932 of -67.10%. The returns of the standard momentum factor for the broad international
sample show similar features. The average monthly return is 0.52% with a t-statistic of 2.99.
The higher t-statistics for the U.S. sample can be attributed to the larger number of monthly
observations, as indicated by almost similar Sharpe ratios (0.47 vs. 0.57). The momentum
returns for the broad sample also exhibit a high kurtosis and a negative skewness but are
more normal compared to their counterparts for the long sample. This is also reflected in
the lower maximum drawdown in 2009 of -36.96%.

Comparing risk-management momentum strategies with standard momentum for both
samples, all of them show significantly improved performance of momentum measured by the
t-statistic and Sharpe ratio. Furthermore, skewness, kurtosis and as maximum drawdowns
decrease as compared to standard momentum so that their distributions become more normal.
For the long U.S. sample, we find similar improvements for Sharpe ratios and t-statistics (both
roughly double compared to standard momentum) for all five approaches, with the highest
Sharpe ratio of 0.95 for dynamic in-sample-scaled momentum and idiosyncratic momentum,
while the maximum drawdowns are reduced most by idiosyncratic momentum. For the broad
sample, we document that idiosyncratic momentum outperforms all other strategies, as the
improvements in Sharpe ratio and t-statistic for idiosyncratic momentum are more than
twice that of the improvements of volatility-scaling strategies and the reduction in maximum
drawdowns is the highest.°

One main goal of this paper is to identify the risk-management strategy best suited for
mean-variance optimizing momentum investors. As mentioned in Subsection 2.3, volatil-
ity scaling strategies are technically very similar. We observe that the results for constant
volatility-scaled momentum over one month and constant volatility-scaled momentum over

six months are very similar, with constant volatility-scaled momentum over six months having

30We additionally scale momentum for every country in the broad sample individually rather than scaling
the aggregated time-series of all countries within the broad strategy. The results remain unchanged.
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a slightly lower Sharpe ratio but also a suffering from slightly lower drawdowns. A differ-
ent picture emerges for dynamic in-sample-scaled momentum and dynamic out-of-sample-
scaled momentum. The forward-looking bias in dynamic in-sample-scaled momentum leads
to higher returns and lower drawdowns for both the long and the broad sample. To further
shed light on the similarity of returns, Table 3 shows pairwise correlation coefficients for both

samples.
[Table 3 about here.]

As expected, cvolyys, cvolgys are highly correlated, as are dyn;g and dyn, with correla-
tion coefficients above 88%. The strong co-movement can be traced back to similar weights
scaling the identical standard momentum factor. iMOM is not particularly correlated with
the volatility-scaled strategies. We argue that it is plausible to categorize similar factors and
thereby omit informationally-redundant factors. Besides redundancy, dyn;g suffers from a
forward-looking bias, sustaining the idea of focusing on dyn instead. Thus, we henceforth
exclude cvoly s and dynyg from our analyses, and only analyze cvolgy, and dyn as categorical
factors for constant volatility-scaling and the dynamic strategy, as well as iMOM. This ex-
clusion simplifies the interpretation of one-by-one comparisons, enables cross-validation with
existing studies and eliminates the forward-looking bias of dyn;s. We moreover include a
monthly updated so-called HML-devil factor (HMLy) in our correlation analysis. Daniel and
Moskowitz (2016) state that HML, captures more variation of momentum than standard
HML.3! The more negative correlation between MOM and HML, (compared to HML) is also
shown for both our long and broad sample. Hence, we test our strategy returns against the
FF3FM or the FF3FM and substitute HML by HML, (denoted as FFy).

Figure 2 displays the buy-and-hold returns of momentum and the proposed risk-management
strategies for the long sample. All strategies are scaled to the average volatility of standard
momentum for comparability reasons. For the U.S.; all strategies increase in returns com-

pared to momentum, with a clear outperformance of idiosyncratic momentum and dyn;g.

31Cf. Daniel and Moskowitz (2016), p. 244.
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The dyn;s manages to hedge the momentum downturns in 2001 and 2008 and generates
stable returns from the 1950s on. Idiosyncratic momentum has a steady return evolution, as
expected by hedging out style exposure to the FF3FM factors. Both cvolgy, and dyn show a
similar performance by construction, differing solely by the numerator in the scaling weight of
dyn. In the global sample, idiosyncratic momentum clearly outperforms all volatility-scaling

strategies, as shown in Figure 3.

3.2 Comparison of Factor Models

In this section, we analyze the factors from the viewpoint of a Sharpe-maximizing investors
trading different momentum strategies and the FF3FM (resp. FFy) factors. To measure the
economic significance of factors, we calculate the ex-post maximum Sharpe ratios associated
with different combinations. This approach distributes weights from zero to one to the
regarded factors, where the weights in total sum up to one. Table 4 shows the weights and

Sharpe ratios for the long U.S. sample in Panel A.
[Table 4 about here.]

The (annualized) Sharpe ratio of the market factor (RMRF) is 0.42 and it increases to
0.52 when extending it with the size factor (SMB) and both value factors (HML and HMLy).
When adding momentum (MOM), the Sharpe ratio more than doubles (1.07) and the weight
from HML is shifted to HML,;. A one-by-one inclusion of risk-management strategies to
the size, value and momentum factors yields similar Sharpe ratios for all investment sets
(about 1.24). However, cvolgy, and iMOM have the highest factor weights of 45% and 47%,
respectively. Allowing all factors to be invested in, the Sharpe ratio peaks at 1.37 annually.
Importantly, within the momentum strategies, iMOM contributes almost solely to the max
Sharpe portfolio with an investment weight of 42%.

The following indications can be derived: (1) If an investor trades the base factors and at

least one risk-managed momentum strategy, the achievable ex-post maximum Sharpe ratio
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of the investor is higher than if she traded the base factors along with the momentum factor.
Depending on the base factors chosen (FF3FM or FF,), adding a risk-managed factor yields
similar Sharpe ratios across all risk-managed factors for the same base factors. Thus, an
investor would do better by adding a risk-managed momentum factor to the investment
opportunity set than by trading standard momentum. (2) In a comprehensive comparison,
iMOM is assigned the highest weight, suggesting that iMOM substantially drives the achieved
(ex post) mean-variance efficient portfolio with a Sharpe ratio of 1.45. Hence, an investor
who is restricted to picking only one momentum strategy might favor iMOM over the other
strategies.

A clearer picture emerges for the global sample, as depicted in Panel B of Table 4. iMOM
clearly generates the highest Sharpe ratio (2.42) in one-by-one comparisons with other risk-
management strategies. In the comprehensive factor comparison, iMOM is assigned an even
higher weight than for the U.S. sample (52%), sustaining the implication that iMOM is
superior in maximizing risk-adjusted returns for the overall (long and broad) sample.

Next, we investigate if the results also hold for time-conditional maximum Sharpe ratio
tests. We apply the methodology of Barillas and Shanken (2018) to our factor time-series
set. As mentioned earlier, we conduct categorical tests for value and the risk-management
strategies. The results are thus comparable to the ex-post maximum Sharpe tests where
we compare the FF3FM factors, momentum and one of the risk-management strategies. As
a benchmark scenario, we use 1.5 (4) for the Sharpe multiple in our long (broad) sample,
leading to Shye: = 1.5(4) X Shryrr. Thus, the square root of the prior expected squared
Sharpe ratio of the tangency portfolio from all eight factors® is assumed to be 50% (300%)
higher than the Sharpe ratio of the CAPM. By increasing the Sharpe multiple to a maximum
of six, the investors are assumed to believe in stronger mispricing, assigning relatively large

probability to extreme Sharpe ratios. Figure 4 shows the posterior model probabilities and

32We consider RMRF, SMB, HML, HML4, MOM, cvolgys, dyn and iMOM, where HML and HML, as well
as cvolgys, dyn and iMOM are treated as factors for categorical models. Thus, only one categorical factor is
allowed to be included in within a model.
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cumulative factor probabilities over time for the U.S. sample.®® By starting with equal prior
probabilities for every model, it takes some time until a substantial difference in the posterior
probabilities emerges. The top panel shows the time-series of posterior model probabilities
for the seven models with the highest probability by December 2017 (the end of the U.S.
sample). We find that the model {RMRF HML; MOM iMOM} performed best, ranking as
the first after outperforming {RMRF iMOM} in the mid-1980s. Of the top seven models,
five include iMOM as a factor. This hierarchy is further visualized by the bottom panel of
Figure 4, which plots the sum of posterior probability for the models including the respective
factor. Table 5 depicts the end-of-sample posterior model probabilities for the U.S. sample
within Panel A. Even when increasing the Sharpe multiple, the best-performing model stays
unchanged whereas weights even increase. Thus, when investors’ prior mispricing beliefs are
extremely high, among all risk-management strategies iMOM is solely picked as a factor and
generates significant alpha relative to other factors. Stated differently, iMOM is also picked

when extremely large Sharpe ratios are targeted.
[Table 5 about here.]

The time-conditional maximum Sharpe ratio tests for the broad sample provide even
stronger evidence for idiosyncratic momentum. The top panel of Figure 5 shows that the
model {RMRF HML,; iMOM} performed best with only a single downward peak after 2000.
Importantly, idiosyncratic momentum is part of all the top seven models for the global sample.
The bottom panel of Figure 1 highlights the importance of idiosyncratic momentum in terms
of cumulative factor probability: its probability is close to one from the end of the 1990s to the
end of the sample period. Table 5, Panel B depicts the end-of-sample global posterior model
probabilities. Irrespective of the prior Sharpe multiple chosen, idiosyncratic momentum is
part of the top-performing model, incorporating HML,; for the top three models. Overall,

the model comparison tests as in Barillas and Shanken (2018) highlight the importance

33The U.S. (global) sample begins only in 03/1930 (03/1991) since the methodology requires 9 (=8 factors
+ 1) months to get the initial values. We end up with 48 models (since we categorize) and 8 factors for our
analyses.
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of idiosyncratic momentum both as a factor for asset pricing models, and as a profitable
investment strategy. Clearly, for the broad sample, the stronger negative correlation with
HML, is key to the results obtained. As a potential caveat of the time-conditional maximum
Sharpe ratio tests, it is noteworthy that we only consider the Fama-French-Carhart four-
factor model (FFC4FM) either with HML or HML, to proxy for value for the factor set,
omitting other potential factors such as profitability or investment, as in Fama and French
(2015) or Hou, Xue, and Zhang (2015). Nevertheless, our approach is valid in a sense that (i)
we are only comparing risk-managed momentum strategies as additional factors and (ii) we
start in January 1930 for the U.S. sample where data for other factors is limited. To ensure
that our results are not driven by this choice, we add the profitability and investment factors

to the factor set in Section 4.

3.3 Turnover and Transaction Costs

All momentum strategies — including idiosyncratic momentum — are constructed as zero-
cost long-short strategies. The returns reported in Table 2, however, ignore transaction
costs for implementing the strategies. As mentioned in Barroso and Santa-Clara (2015),
“[o]ne relevant issue is whether time-varying weights induce such an increase in turnover that
eventually offsets the benefits of the strategy after transaction costs.” Table 6 shows the
average (over time) one-way portfolio turnover of the long leg plus the short leg. We find
that for all strategies, the legs on average generate a turnover of more than 50% per month
when using value-weighted returns.®* For the U.S. sample in Panel A, turnover increases
for all risk-management strategies, especially for volatility-scaled strategies with a maximum
of 82.22% monthly for dynamic out-of-sample-scaled momentum. The increase in turnover
when investing in dynamic out-of-sample-scaled momentum but not in momentum yields a

significant increase in turnover of 28.43 (82.22-53.79) percentage points. Similar results hold

340ur monthly turnover for momentum however is lower than the 74% in Barroso and Santa-Clara (2015).
We trace back the difference to not using decile momentum portfolios, but forming HML-style portfolios
based on 70/30% percentile breakpoints and double-sorts including size. We are able to validate the turnover
for the equivalent sub-sample period using the more extreme decile breakpoints and single sorts.
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true for the shorter global sample (from 01/1991 to 12/2017) in Panel B, where dynamic out-
of-sample-scaled momentum generates a maximum average monthly turnover of 81.06%.%°
Idiosyncratic momentum also incurs higher portfolio turnover than standard momentum.
Hence, we aim to investigate whether the increase in turnover offsets the benefits of volatility-
scaling.

Round-trip costs describe transaction cost levels (in percent) that would render the strate-
gies’ returns statistically insignificant at confidence levels of 5% and 1%. Panel A of Table 6
shows that momentum investors within the U.S. are only 5% sure that their strategy will
have positive net profits when transaction costs do not exceed 0.62% per month. Comparing
the risk-management strategies, the transaction costs that would remove the statistical sig-
nificance of profits (at the 5% level) are higher than for conventional momentum and highest
for dynamic out-of-sample-scaled momentum (1.03%). When increasing the confidence level,
a similar picture emerges. Panel B shows that for the global sample, idiosyncratic momentum
clearly gives the highest bounds for all types of round-trip costs.

Our approach does not explicitly test the after-trading cost performance of the differ-
ent momentum strategies nor does it analyze the effectiveness of transaction cost mitigation
techniques.?® Rather, this break-even cost study reveals how profitable each strategy remains
when assuming a certain level of transaction costs. Stated differently, it simply defines an
upper transaction cost bound for momentum investors. In this regard, Frazzini, Israel, and
Moskowitz (2014) and Novy-Marx and Velikov (2016) show for the U.S. that even standard
momentum, which reveals the lowest break-even round-trip costs within our analysis, is a
profitable and thus implementable trading strategy. We transfer the profitability argument
to standard momentum from the U.S. to the global sample and eventually argue that all

risk management strategies are — as indicated by higher round-trip costs — are indeed

35The high turnover of dynamic out-of-sample-scaled momentum, for which scaling weights can also take on
negative values (when return forecasts are negative), besides the high transaction costs implies that an investor
would require considerably more leverage than for momentum or constant volatility-scaled momentum over
six months to set up the strategy. Daniel and Moskowitz (2016) do not report any turnover or break-even
cost statistics for their dynamic strategies.

36See Novy-Marx and Velikov (2016) for details on these two subjects.
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implementable. Notably, we are aware of the following caveats with respect to our argu-
mentation: the potential interaction effects between stock market volatility (and thus also
realized volatility of momentum) and transaction costs (esp. bid-ask spreads) due to liquid-
ity reasons, and differently-filled long and short portfolios for iMOM compared to standard

momentum respective of its scaled versions.?”

3.4 Disentangling the Strategy Effects

By comparing Sharpe ratios of momentum strategies, we only account for strategy-specific
risk-to-return characteristics. However, Sharpe ratios give no insight on the risk-adjusted
strategy return relative to a standard asset-pricing model. We conduct time-series regressions
of momentum strategies on the FFC4FM including HML, for value, as well as pairwise
mean-variance factor spanning tests to better understand the relative importance of risk
management strategies to check which factors are redundant. We proceed as follows: the
test asset (factor 1) is regressed on the FFC4FM, model and the benchmark asset (factor 2),
whereby the FFC4FM, factors plus factor 2 state the asset pricing model. In case the
model generates an economically and statistically significant alpha, there is an omitted factor
containing information relevant to price factor 1. In case the alpha is not significant, factor 1

is spanned by the respective asset pricing model, not generating any unexplained returns.
[Table 7 about here.]

Table 7 depicts momentum strategy alphas and corresponding t-statistics. The first col-
umn shows that cvolgys, dynys and iMOM generate significantly positive FFC4FM, alphas
for both the long and the broad sample. Factor spanning tests for the U.S. shown in Panel A
reveal that cvolgy, and dyn;gs span each other, so that the alphas at least partially subsume
each other. For the global sample in Panel B, dyn;g is spanned by cvolgy,;. The statistically

significant spanning alphas for the remaining pairwise tests suggest that part of the strate-

3THowever, the long and short portfolio of the iMOM factor contains, as shown by Blitz et al. (2018), on
average larger stocks with higher idiosyncratic volatility, indicating higher liquidity and lower transaction
costs.
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gies” returns cannot be explained by neither the FFC4FM, nor by other risk management
strategies. This raises two questions: (i) whether the autocorrelation of returns, i.e., the
difference in scaling weights between both scaled strategies, eventually matters in order to
maximize Sharpe ratios, and (ii) to what extent are the alphas of volatility scaled strategies
distinct from the alphas of the residualized momentum (iMOM). To tackle the latter issue,
we disentangle the alphas of volatility scaling and residualizing. To accomplish this, we scale
idiosyncratic momentum by its realized volatility to see if it yields another Sharpe ratio im-
provement. Table 8 shows the summary statistics for idiosyncratic momentum as well as the

constant volatility-scaled and dynamic versions.
[Table 8 about here.]

The constant volatility-scaling of idiosyncratic momentum increases the Sharpe ratio by
24.21% (15.76%) for the U.S. (global) sample and also decreases both kurtosis and maxi-
mum drawdown returns. The reduced exposure of idiosyncratic momentum with respect to
the market, size and value factors due to residualizing does not dissect the first time-series
pattern observed for standard momentum: the negative volatility-to-return relation. This
enables both volatility smoothing and timing for idiosyncratic momentum and motivates the
constant volatility-scaling. Column three shows that the performance improvement is lower
for the dynamic strategy than for the constantly-scaled version of idiosyncratic momentum.
At least to some extent, the autocorrelation of returns (second pattern for momentum re-
turns) seems to be neutralized by the style exposure reduction of residualizing. We find
evidence that the alphas of volatility-scaled strategies are distinct from the alphas of idiosyn-
cratic momentum, and both generic approaches can be independently applied for the risk

management of momentum.
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4 Robustness

4.1 Controlling for Profitability and Asset Growth

As Figure 4a shows for the time-conditional maximum Sharpe ratio tests, the cumulative
factor probabilities vary substantially over time. In this regard, Barillas and Shanken (2018)
use an even larger base set of 6 categorized factors (market, size, value, profitability, in-
vestment, and momentum) for their factor comparison. This begs the questions whether
including profitability and investment as additional factors would affect our results.
Tackling the question of potentially omitted factors, we recalculate the maximum Sharpe
ratio tests in Subsection 3.1 by extending the investment set by the profitability and invest-
ment factors: robust minus weak (RMW) and conservative minus aggressive (CMA). For the
long sample, we use the data provided from Kenneth French, which restricts our sample to
start in July 1963, when both factors became available. For the broad sample, we construct
both factors country-neutral and analogous to the value factor using independent 2x3 sorts
on size and the particular sorting criteria. Fortunately, the factors can be constructed from
the original starting point of the broad sample in July 1990 on. Table 9 shows the results for

a base set of 10 factors.
[Table 9 about here.|

For both the long and broad sample, idiosyncratic momentum is included in every one of
the best seven investment sets for the corresponding baseline Sharpe multiple. This means
that none of the other risk management strategies is considered to extend the investment

opportunity set more than idiosyncratic momentum.

4.2 Single Sorts and Equal-Weighted Portfolio Returns

Up to this point, the analyses have aimed to compare momentum strategies based on 2x3

double sorts and value-weighted portfolio returns. Studies such as Jegadeesh and Titman
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(2001), Rouwenhorst (1998), or Blitz et al. (2011) choose to construct equally-weighted decile
portfolios to ensure that the resulting portfolios have sufficient breadth. In other words, value-
weighted portfolio returns may be heavily driven by the returns of few very large stocks. The
resulting up minus down strategy is even more concise in terms of return and crash behavior.
This raises the question of whether idiosyncratic momentum also holds in a single-sorted
long-short strategy and with equally weighted stock returns.

Hence, we construct momentum portfolios based on decile (quintile) sorts for the long
(broad) sample. To prevent that the results are driven by micro stocks, we exclude them
for every country.®® For the U.S., we exclude all stocks with a market capitalization below
the 20th percentile of the market capitalization distribution among NYSE stocks. For the
global sample, we exclude the smallest stocks that jointly subsume 3% of the total market
capitalization in the home country. The risk management strategies are installed as before,
i.e., UMD is scaled based on its realized volatility (and predicted return for dynamically-
scaled strategies) and iMOM is constructed from single sorts based on the scaled 12-2 month

idiosyncratic returns from Equation 9. The results appear in Table 10.
[Table 10 about here.]

A similar pattern emerges for the one-dimensional sorted portfolios as for the standard set-
ting: all risk management strategies roughly double the Sharpe ratios of UMD, both skewness
and kurtosis are lowered, and the maximum drawdowns decrease significantly. Compared to
the long sample, the broad sample yields especially pronounced differences across strategies
with a more than 400% increase in the Sharpe ratio for the single sorted iMOM as compared

to UMD.

38Fama and French (2008) note that micro stocks cover about 60% of the whole stock universe, but subsume
only about 3% if the total market capitalization.
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4.3 Country-Level Analysis

As highlighted by Chui et al. (2010), momentum is a persistent phenomenon around the
world, except in Asia. To answer the question whether our results are driven by non-Asian
countries or countries with high market capitalizations within the market cap-weighted broad
international sample, we investigate the Sharpe ratios of momentum and risk management
strategies as well as the maximum ex-post Sharpe ratio weights for every country individually.

Panel A of Table 11 shows the factors’ annualized Sharpe ratios analogously to Table 2.
[Table 11 about here.]

The factors with the highest (second highest) value are highlighted in dark (bright) grey.
For developed markets, iMOM clearly has the highest or second highest Sharpe ratio for most
of the countries. In contrast, the emerging market countries reveal no clear pattern. Panel B
shows the country-specific results for the ex-post Sharpe ratio maximization test analogously
to Table 4. More specifically, we only plot the weights for momentum and the three strategies
for the specification where all eight factors enter the maximization test. In contrast to pure
Sharpe ratios, the results also control for the FF3FM factors. The maximum weights are
distributed equally between cvolgy, and iMOM for developed markets. In emerging market
countries, cvolgys clearly contributes mostly to the factor combination with the highest Sharpe
ratio. We find that standard momentum is outperformed by all strategies, irrespective of the
country or when controlling for other common factors.

From the list of individual countries, Japan might be the most interesting to examine in
detail, because conventional momentum is considered ineffective in Japan. Similar to other
studies (e.g. Griffin et al., 2003; Fama and French, 2012), we find that the performance of
momentum is weak in Japan. This weakness presents a challenge for our momentum risk
management strategies. Based on our analysis, idiosyncratic momentum emerges as the best
momentum strategy by providing the highest Sharpe ratio. These results are even more

compelling for the assigned maximum ex-post Sharpe ratio weight of 37%. In contrast, the
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two scaling approaches lead to smaller performance improvements.

5 Conclusion

The aim of examining volatility-scaling and residualizing momentum in this study is fourfold.
First, we construct risk management strategies for momentum proposed in the literature
that are found to work in the U.S. but have not yet been documented in a comprehensive
international setting. Second, we assess the performance improvement of the strategies as
compared to momentum in an absolute versus relative as well as in an unconditional versus
conditional manner. Third, we investigate if momentum or risk-management strategy profits
are robust to trading costs and calculate turnover and round-trip costs. Fourth, motivated
by pairwise mean-variance spanning tests, we disentangle the potential Sharpe improvement
of risk management strategies and additionally scale the residualized momentum strategy by
its own volatility.

Using monthly stock returns for a total of 49 developed and emerging market countries
and a sample period of about 28 years (89 years for the U.S.), our main findings can be
summarized as follows: First, we show that all risk-management strategies substantially in-
crease Sharpe ratios. Furthermore, higher moments and maximum drawdowns decrease as
compared to standard momentum so that their distributions become more normal. Compar-
ing the individual risk-management strategies within samples, we find similar improvements
within the long U.S. sample for Sharpe ratios and t-statistics (both roughly double com-
pared to standard momentum) across all three approaches, while maximum drawdowns are
reduced mostly by idiosyncratic momentum. For the broad sample, we document that id-
iosyncratic momentum outperforms all other strategies, as the improvements in Sharpe ratio
and t-statistic for idiosyncratic momentum are more than twice as the improvements of
volatility-scaling strategies and the reduction in maximum drawdowns is highest.

Second, maximum Sharpe ratio and factor comparison tests of the risk-management
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strategies further confirm our results in favor of idiosyncratic momentum. Idiosyncratic
momentum is assigned the highest weight in ex-post maximum Sharpe ratio tests for both
the long and the broad sample, meaning that mean-variance optimizing investors would al-
locate most to the idiosyncratic momentum factor next to traditional factors such as the
market, size, and value. Furthermore, the Bayesian Sharpe ratio tests as in Barillas and
Shanken (2018) show that the models with the highest model probabilities include idiosyn-
cratic momentum and that idiosyncratic momentum shows the highest cumulative factor
probability among the three momentum risk-management approaches for both the long and
the broad sample. However, pairwise factor spanning tests show that alphas generated by
the volatility-scaled strategies are different from the alpha when using residualized returns.

Third, we tackle the difficulty of quantifying implied transaction costs. We apply the
break-even round-trip cost metric of Grundy and Martin (2001). By calculating the transac-
tion costs that theoretically would render the strategies unprofitable, we are able to directly
compare the risk-managed momentum strategies with each other and relate them to existing
quantifications of momentum trading costs. We find that all risk management strategies have
higher average portfolio turnover compared to standard momentum but still higher break-
even costs, driven by the increased strategy returns. Relying on the insights from research
on transaction costs in the U.S., we conclude that all strategies should deliver significant
after-transaction cost returns for the long U.S. sample.?® For countries other than the U.S.,
studies have not comprehensively quantified transaction costs of anomalies.

Finally, scaling iMOM with its realized volatility enables us to investigate if (i) the auto-
correlation of the strategy’s returns and (ii) the negative risk-to-return relation known from
standard momentum is also featuring residual momentum. In case solely the latter (both)
feature(s) occur for iMOM, the constant volatility-scaled (dynamic) strategy would further
improve its performance. We find that constant volatility-scaling of iMOM maximizes its

performance.

39Research has found momentum to deliver significant after-transaction cost returns. Since round-trip costs
of all risk management strategies are above those of momentum, we can derive the indication of profitability.
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Table 2: Summary statistics for MOM and risk management strategies

The table presents the following summary statistics for MOM, cvoly s, cvolgys, dynyg, dyn and
iMOM: (1) Average monthly returns (in %), (2) Corresponding t-statistics, (3) Annualized
Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum drawdown (in %), defined as the
maximum cumulative loss between a peak and subsequent downturn during the buy-and-hold
resp. sample period. The analysis is performed from 01/1930 (01/1991) to 12/2017 for the
long (broad) sample.

MOM cvolypys  cvolgys dyngg dyn iMOM
Panel A: U.S. (Long) (01/1930 - 12/2017)

Avg. Returns (in %) 0.60 1.12 1.09 1.21 1.11 0.64
t-Stat 4.42 8.27 8.07 8.93 8.24 8.90

Sharpe (annualized) 0.47 0.88 0.86 0.95 0.88 0.95
Skewness  -1.91 -0.15 -0.23 0.22 0.11 0.14

Kurtosis  19.46 1.22 2.08 4.32 7.23 10.50

Max. Drawdown (in %) -67.10 -39.80 -35.88 -33.30 -39.66 -25.52

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.52 0.92 0.88 0.97 0.76 0.71
t-Stat 2.99 5.33 5.09 5.64 4.42 8.57

Sharpe (annualized) 0.57 1.03 0.98 1.08 0.85 1.65
Skewness  -1.00 -0.14 -0.17 0.87 0.66 0.09

Kurtosis 5.50 1.53 0.37 3.80 7.52 1.16

Max. Drawdown (in %) -36.96 -19.49 -15.11 -10.26 -23.74 -7.04
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Table 3: Correlation coefficients

The table reports the time-series averages of the cross-sectional spearman correlation coeffi-
cients for the global sample between the following variables: RMRF (market factor), SMB,
HML, HMLy4, MOM, cvoly s, cvolgas, dynrg, dyn, and iMOM. For details regarding variable
construction, see Section 2.2. The sample is described in Table 1. The analysis is performed
from 01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample and depicted within the
upper (lower) triangle.

RMRF SMB HML HMLsy MOM cvolyy cvolgy, dynyg dyn iMOM

RMRF 0.27  0.02 0.07 -0.056 -0.02 -0.03 0.10 0.00 -0.09
SMB -0.04 0.01 0.08 -0.03 -0.04 -0.04 0.00 -0.02 -0.04
HML -0.01 -0.13 084 -0.18 -0.16 -0.15 -0.08 -0.13 0.02
HML, 0.08 -0.11 0.74 -045 -042  -042 -0.29 -0.36  -0.18
MOM -0.18 0.00 -0.10  -0.57 0.94 096  0.77 0.85 0.64
cvoly py -0.12 -0.03 -0.10 -0.55 0.94 098 0.87 093 0.62
cvolgps -0.12 -0.05 -0.09  -0.55 0.95 0.96 0.88 0.95 0.64
dynrg 0.11 0.00 -0.13 -0.42 0.64 0.71 0.75 0.92 0.54
dyn 0.01 -0.04 -0.10 -0.43 0.71 0.78 0.83  0.88 0.58

iMOM -0.09 0.02 -0.05 -0.38  0.66 0.62 064 045 044

Table 4: Maximum ex-post Sharpe ratios

The table presents the maximum ex-post Sharpe ratios that can be achieved by using different
combinations of long-short portfolios (factors) and the weights required on each long-short
portfolio to achieve the maximum Sharpe ratio. The following factors are included: RMRF
(market factor), SMB, HML, HML,;, MOM, cvolgy;, dyn, and iMOM. For details regarding
variable construction, see Section 2.2. The analysis is performed at monthly frequency from
01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample.

RMRF SMB HML HML; MOM cvolgyy dyn iMOM SR
Panel A: U.S. (Long) (01/1930 - 12/2017)

1.00 0.42
031 024 045 0.00 0.52
0.13 0.00  0.00 0.39 0.48 1.07
0.09 0.03 0.00 0.35 0.08 0.45 1.24
0.10  0.00  0.00 0.35 0.27 0.27 1.23
0.11  0.00  0.00 0.24 0.18 0.47 1.24

0.08 0.00 0.00 0.23 0.00 0.12 0.14 0.42 1.37
Panel B: Global (Broad) (01/1991 - 12/2017)

1.00 0.30
0.12 0.18 0.70 0.00 0.98
0.09 0.12 0.00 0.45 0.34 1.67
0.06 0.14 0.00 0.43 0.03 0.34 1.91
0.08 0.12  0.00 0.42 0.27 0.11 1.79
0.06 0.04 0.00 0.30 0.03 0.57 2.42

0.06 0.05 0.00 0.29 0.00 0.02 0.07 0.52 2.53

43



Table 5: Prior Sensitivity for the Model Probabilities with 8 Factors

The table displays changes in the prior and corresponding percentage model probabilities as
in Barillas and Shanken (2018) for the seven models with the highest probability by December
2017 (the end of the sample period). The analysis is performed at monthly frequency from
01/1930 (01/1991) to 12/2017 for the U.S. (Global) sample in Panel A (B). The following
prior multiples for the market Sharpe ratio, Shryrr , are considered: 1.5, 2.0, 3.0, 4.0, 5.0
and 6.0. Models are based on the following factors: RMRF, SMB, HML, HML;, MOM,
cvolgys, dyn, and iMOM. Models are restricted to contain not more than one factor from
the following categories: value (HML or HML,), risk-managed momentum (cvolgys, dyn,
or iMOM). The prior for each factor is set the following: Shie. = priormultiple X Shysk,
where Shy: is the Sharpe ratio of RMRF within the sample and the mentioned prior Sharpe
multiples are used. Shy,.. is the square root of the squared tangency portfolio’s expected
Sharpe ratio (spanned by the factors included), implying the alphas of factors other than
RMRF are non-zero. In line with the expected Sharpe ratios, we choose 1.5 (4.0) as the
baseline Sharpe multiple for the U.S. (Global) sample.

Prior Sharpe Multiple
1.5 2 3 4 5 6
Panel A: U.S. (Long) (01/1930 - 12/2017)

RMRF HML; MOM iMOM  67.86 74.15 7546 74.22 7235 70.27
RMRF SMB HML; MOM iMOM 798 6.26 4.13 3.02 234 1.89
RMRF HML,; iMOM  7.76 6.12 647 755 874 9.90

RMRF HML; MOM cvolgas 599 6.16 6.04 587 569 551
RMRF HML iMOM 292 149 1.21 1.3 145 161

RMRF HML, cvolgas 240 329 485 629 7.63 887

RMRF iMOM  1.75 0.57 045 056 073 094

Panel B: Global (Broad) (01/1991 - 12/2017)

RMRF HML,; iMOM  47.88 67.00 73.85 77.60 80.54 82.88

RMRF HML; MOM iMOM  11.85 14.97 13.40 11.61 10.15  8.97
RMRF SMB HML,; iMOM  8.64 11.13 10.28 9.08 8.04 7.16
RMRF SMB HML; MOM iMOM 249 295 227 168 126 0.98
RMRF HML iMOM 13.09 260 0.14 0.02 0.01 0.00

RMRF HML MOM iMOM 193 050 0.04 0.01 0.00 0.00
RMRF SMB HML iMOM 242 044 0.02 0.00 0.00 0.00
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Table 6: Turnover and break-even round-trip costs

The table presents the following turnover resp. trading cost measures for MOM, cvol;,,,
cvolgys, dynzg, dyn and iMOM: (1) Average long-short portfolio turnover (monthly, in %),
(2) break-even round-trip costs significant at the 5% level, stating the upper border for trading
costs so that the strategy is profitable with 5% significance, and (3) break-even round-trip
costs significant at the 1% level. For details regarding measure construction, see Section 2.4.
The analysis is performed from 01/1930 (01/1991) to 12/2017 for the long (broad) sample.

MOM  cvolgas dyn iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

Turnover (in %) 53.79 80.63 82.22 65.32
Round-trip costs at 5% sign. level (in %) 0.62 1.02  1.03 0.77
Round-trip costs at 1% sign. level (in %) 0.46 092 0.93 0.70

Panel B: Global (Broad) (01/1991 - 12/2017)

Turnover (in %) 50.32 70.69 81.06  62.59
Round-trip costs at 5% sign. level (in %) 0.35 0.76  0.52 0.87
Round-trip costs at 1% sign. level (in %) 0.14 0.61  0.39 0.79

45



Table 7: Factor spanning tests

The table presents alphas and corresponding t-statistics from mean-variance spanning tests
for the U.S. and Global sample. The dependent variables are the risk management momentum
strategies as depicted in Panel A to C: cvolgys, dyn, and iMOM. Independent variables are:
RMRF (market factor), SMB, HML,; and MOM, as well as the risk management momentum
strategies as benchmark assets. The independent factor set for each spanning test is shown
above the respective results. For details regarding variable construction, see Section 2.2. The
analysis is performed at monthly frequency over the time-series from 01/1930 (01/1991) to
12/2017 for the U.S. (Global) sample.

Ind. var. FF;+MOM FF;+MOM FF;+MOM FF;+MOM
+cvolgps +dyn +iMOM

Panel A: U.S. (Long) (01/1930 - 12/2017)

cvolg s

« 0.42 0.06 0.37
t(a) 5.60 1.74 4.91
dyn

« 0.60 0.06 0.55
t(cv) 5.43 1.11 4.96
iMOM

« 0.32 0.28 0.29

t(a) 5.67 4.99 5.21

Panel B: Global (Broad) (01/1991 - 12/2017)

cvolg s

« 0.39 0.20 0.28
t(a) 4.34 3.18 2.86
dyn

« 0.50 -0.04 0.56
t(a) 2.92 -0.34 2.97
iMOM

« 0.54 0.49 0.55

t(a) 8.17 7.37 8.18
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Table 8: Summary statistics for iMOM and scaled iMOM strategies

The table presents the following summary statistics for iMOM, and the corresponding scaled
versions of iMOM: (1) Average monthly returns (in %), (2) Corresponding t-statistics, (3)
Annualized Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum drawdown (in %),
defined as the maximum cumulative loss between a peak and subsequent downturn during
the buy-and-hold resp. sample period. The analysis is performed from 01/1930 (01/1991) to
12/2017 for the long (broad) sample.

iMOM iMOM_¢yo;  iIMOMgy,

Panel A: U.S. (Long) (01/1930 - 12/2017)
Avg. Returns (in %) 0.64 0.80 0.74
t-Stat 8.90 11.11 10.23
Sharpe (annualized) 0.95 1.18 1.09
Skewness 0.14 0.16 0.96
Kurtosis 10.50 2.06 6.74
Max. Drawdown (in %)  -25.52 -14.25 -12.99

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.71 0.82 0.77
t-Stat 8.57 9.93 9.31

Sharpe (annualized) 1.65 1.91 1.79
Skewness 0.09 0.64 1.57

Kurtosis 1.16 1.12 4.48

Max. Drawdown (in %) -7.04 -5.17 -4.17
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Table 9: Prior Sensitivity for the Model Probabilities with 10 Factors

The table displays changes in the prior and corresponding percentage model probabilities as
in Barillas and Shanken (2018) for the seven models with the highest probability by December
2017 (the end of the sample period). The analysis is performed at monthly frequency from
07/1963 (01/1991) to 12/2017 for the U.S. (Global) sample in Panel A (B). The following prior
multiples for the market Sharpe ratio, Shryrr , are considered: 1.5, 2.0, 3.0, 4.0, 5.0 and
6.0. Models are based on the following factors: RMRF, SMB, HML, HML,;, MOM, RMW,
CMA, cvolgys, dyn, and iMOM. Models are restricted to contain not more than one factor
from the following categories: value (HML or HMLy), risk-managed momentum (cvolgys, dyn,
or iMOM). The prior for each factor is set the following: Shie. = priormultiple X Shysk,
where Shy: is the Sharpe ratio of RMRF within the sample and the mentioned prior Sharpe
multiples are used. Shy,.. is the square root of the squared tangency portfolio’s expected
Sharpe ratio (spanned by the factors included), implying the alphas of factors other than
RMRF are non-zero. In line with the expected Sharpe ratios, we choose 1.5 (4.0) as the
baseline Sharpe multiple for the U.S. (Global) sample.

Prior Sharpe Multiple
1.5 2 3 4 5 6

Panel A: U.S. (Long) (07/1963 - 12/2017)

RMRF HML; MOM iMOM CMA RMW  34.62 45.75 47.13 46.51 45.47 44.15
RMRF HML,; iMOM CMA RMW  23.28 1840 15.29 16.02 17.58 19.31

RMRF iMOM CMA RMW 10.08 246 099 092 1.04 1.23

RMRF HML iMOM CMA RMW 733 148 043 031 028 0.28

RMRF SMB HML,; iMOM CMA RMW  6.94 10.22 11.45 11.65 11.56 11.31
RMRF SMB HML; MOM iMOM CMA RMW  6.79 13.55 16.04 14.51 12.47 10.62
RMRF HML; MOM iMOM RMW 231 341 460 576 6.87 791

Panel B: Global (Broad) (01/1991 - 12/2017)

RMRF HML,; iMOM CMA RMW  22.89 4890 48.77 4397 40.33 37.69

RMRF HML; iMOM RMW  7.96 18.66 22.59 24.47 26.48 28.68

RMRF SMB HML,; iMOM CMA RMW  3.17 872 1321 15.38 16.08 15.83
RMRF SMB HML,; iMOM RMW  1.07 325 6.09 864 10.75 12.33

RMRF HML; MOM iMOM CMA RMW  3.18 6.23 517 391 3.06 247
RMRF HML; MOM iMOM RMW  0.84 1.79 1.78 1.60 1.46 1.36

RMRF SMB HML; MOM iMOM CMA RMW 048 1.19 1.45 1.39 1.22 1.03
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Table 10: Summary statistics for UMD and risk management strategies

The table presents the following summary statistics for UMD, and the corresponding cvolyy,
cvolgar, dynrg, dyn and iMOM: (1) Average monthly returns (in %), (2) Corresponding
t-statistics, (3) Annualized Sharpe ratios, (4) Skewness, (5) Kurtosis, and (6) Maximum
drawdown (in %), defined as the maximum cumulative loss between a peak and subsequent
downturn during the buy-and-hold resp. sample period. The analysis is performed from
01/1930 (01/1991) to 12/2017 for the long (broad) sample.

UMD cvolyjps cvolgys  dyngg dyn iMOM
Panel A: U.S. (Long) (01/1930 - 12/2017)

Avg. Returns (in %) 1.11 2.11 2.05 2.39 2.11 0.92
t-Stat 4.98 9.45 9.18 10.69 9.43 8.82

Sharpe (annualized) 0.53 1.01 0.98 1.14 1.01 0.94
Skewness  -2.80 -0.62 -0.65 0.47 0.15 -1.52

Kurtosis ~ 27.22 4.27 3.84 3.34 7.28 10.47

Max. Drawdown (in %) -93.62 -51.89 -59.49 -45.18 -60.55 -42.73

Panel B: Global (Broad) (01/1991 - 12/2017)

Avg. Returns (in %) 0.48 0.79 0.73 0.80 0.55 0.71
t-Stat 1.98 3.24 3.01 3.30 2.26 9.96

Sharpe (annualized) 0.38 0.62 0.58 0.64 0.44 1.92
Skewness  -0.53 -0.21 -0.28 299 -1.23 -0.12

Kurtosis 3.50 0.85 1.99 33.14 19.47 1.00

Max. Drawdown (in %) -44.63 -32.31 -39.96 -39.76 -34.15 -8.58
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Table 11: Sharpe ratios and Maximum ex-post Sharpe ratio weights

The table presents annualized Sharpe ratios as well as the weights required on each factor
to achieve the maximum ex-post Sharpe ratio by using different factor combinations. The
following factors are included: RMRF (market factor), SMB, HML, HML,;, MOM, cvolg,y,
dyn, and iMOM. For details regarding variable construction, see Section 2.2. The analyses
are performed at monthly frequency from 01/1991 (01/1930)) to 12/2017 for (the U.S.) all
countries that have more than 120 observations for each factor. The maximum (second
highest) factor Sharpe ratios and factor weights are indicated by darker (brighter) grew.

‘ Panel A: Sharpe ratios Panel B: Max SR weights
Country Market ‘ MOM cvolgpy dyn iMOM ‘ MOM cvolgyy dyn iMOM ‘
Australia DM 1.28 1.51 1.44 1.78 0.00 0.17  0.11 0.36
Austria DM 0.45 0.74 0.38 0.40 0.00 0.24 0.08 0.01
Belgium DM 0.76 1.10 0.95 1.23 0.02 0.26 0.00  0.29
Canada DM 0.71 1.10 1.01 1.10 0.00 0.30 0.08 0.21
Denmark DM 0.61 0.88 0.65 0.92 0.00 0.29 0.01 0.29
Finland DM 0.53 0.75 0.37 0.62 0.00 0.24 0.00  0.25
France DM 0.44 0.80 0.69 0.95 0.00 0.21 0.06 ~ 0.29
Germany DM 0.57 1.01 0.96 1.28 0.00 0.10 0.10 ~ 0.40
Hong Kong DM 0.46 0.92 1.04 0.58 0.00 0.33 0.13  0.06
Ireland DM -0.02 0.32 0.20 0.34 0.00 0.22 0.06 ~ 0.33
Italy DM 0.56 0.78 0.30 0.41 0.00 0.57  0.00 0.00
Japan DM -0.01 0.15 0.04 0.49 0.12 0.00 0.02 =~ 0.37

Netherlands DM 0.31 0.61 0.51 0.42 0.00 0.37 0.02 0.11
New Zealand DM 1.18 1.32 0.82 0.92 0.00 0.41 0.00 0.19

Norway DM 0.63 0.78 0.58 1.01 0.00 0.16 0.06  0.27
Singapore DM 0.09 0.56 0.57 0.73 0.00 0.23 0.08 ~ 0.25
Spain DM 0.29 0.51 0.04 0.34 0.00 0.35 0.00  0.03
Sweden DM 0.44 0.85 0.74 0.87 0.00 0.21 0.09 0.18
Switzerland DM 0.46 0.74 0.57 0.85 0.00 0.05 0.10 ~ 0.36
U.K. DM 0.79 1.26 1.18 1.32 0.00 0.19 0.07 = 0.37
U.s. DM 0.47 0.86 0.88 0.95 0.00 0.12 0.14  0.42
Brazil EM 0.21 0.42 0.47 0.15 0.00 0.30 0.22 0.00
Chile EM 0.80 0.93 0.88 0.55 0.00 0.36 0.09 0.02
China EM -0.48 -0.26  -0.01 -0.01 0.00 0.16 0.00 0.11
Greece EM 0.27 0.57 0.30 0.46 0.00 0.33 0.07  0.08
India EM 0.59 0.92 1.01 1.38 0.00 0.00 0.17 =~ 0.50
Indonesia EM -0.07 0.38 0.18 0.49 0.00 0.24 0.07  0.18
Israel EM 0.65 0.92 0.57 0.62 0.00 0.38 0.01 0.00
Malaysia EM 0.20 0.86 0.88 0.74 0.00 0.39 0.00  0.15
Mexico EM 0.38 0.62 0.82 0.56 0.00 0.11 0.21 0.10
Pakistan EM 0.22 0.48 0.01 0.36 0.00 0.18 0.06 0.12
Peru EM -0.08 0.06 0.36 -0.06 0.00 0.09 0.08  0.05
Philippines EM 0.06 0.32 0.06 0.27 0.00 0.10 0.07 = 0.13
Poland EM 0.75 1.09 0.90 0.66 0.00 0.33 0.08  0.06
Portugal EM 0.76 0.88 0.65 0.67 0.00 0.45 0.00  0.07

South Africa EM 1.02 1.31 1.24 1.32 0.00 0.21 0.17 = 0.28
South Korea EM 0.11 0.40 0.01 0.44 0.00 0.26 0.13 0.13

Taiwan EM 0.21 0.46 0.63 0.37 0.00 0.14 0.32 0.22
Thailand EM 0.24 0.62 0.70 0.66 0.00 0.20 0.18 0.11
Turkey EM -0.15 0.09 0.34 0.38 0.00 0.17 0.19  0.20

20



Figure 1: Static volatility-scaling and dynamic weights

This figure plots the weights on the momentum factor when scaling it to cvolgy, and dyn. For
the U.S. sample, the weights range from 01/1930 to 12/2017 (Subfigure 1a) and are shown
for times of high volatility, i.e. the 1930s (Subfigure 1b). For the Global sample, the weights
range from 01/1991 to 12/2017 (Subfigure 1c¢) and are shown around the financial crisis in

2007/2008 (Subfigure 1d).
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Figure 2: Cumulative Performance of the momentum strategies: U.S. (Long)
This figure displays the cumulated performance of a $1 investment in each of the momentum
strategies (plus the risk-free rate since, all momentum portfolio state zero-cost strategies)
for the U.S. (Long) sample. The following strategies are comprised: MOM, cvolgy,, dyn and
iMOM For details regarding variable construction, see Section 2.2. The sample period ranges
from 01/1930 to 12/2017
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Figure 3: Cumulative Performance of the momentum strategies: Global (Broad)
This figure displays the cumulated performance of a $1 investment in each of the momentum
strategies (plus the risk-free rate since, all momentum portfolio state zero-cost strategies)
for the Global (Broad) sample. The following strategies are comprised: MOM, cvolgys, dyn
and iMOM. For details regarding variable construction, see Section 2.2. The sample period
ranges from 01/1991 to 12/2017.
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Figure 4: Model probabilities and cumulative factor probabilities for U.S. (Long)
The top panel shows the time-series for posterior model probabilities of the seven models with
the highest probability at the end of the U.S. sample. The plotted sample starts in 09/1930,
and probabilities are calculated recursively at the end of each month up to 12/2017. Models
are based on the following factors: RMRF, SMB, HML, HML,;, MOM, cvolg;, dyn, and
iMOM Models are restricted to contain not more than one factor from the following categories:
value (HML or HML,), risk-managed momentum (cvolgys, dyn, iMOM). The bottom panel
shows the time-series of cumulative posterior probabilities for factor. The prior for each
factor is set the following: Sh,.: = 1.5 X Shye, where Shyg is the Sharpe ratio of RMRF
within the sample and the baseline Sharpe multiple (1.5) is used. Shy,q, is the square root
of the squared tangency portfolio’s expected Sharpe ratio (spanned by the factors included)
which is assumed to be 50% higher than the market’s squared Sharpe ratio, implying the
alphas of factors other than RMRF are non-zero.
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Figure 5: Model probabilities and cumulative factor probabilities for Global
(Broad)

The top panel shows the time-series for posterior model probabilities of the seven models
with the highest probability at the end of the Global sample. The plotted sample starts in
09/1991, and probabilities are calculated recursively at the end of each month up to 12/2017.
Models are based on the following factors: RMRF, SMB, HML, HML,;, MOM, cvolg,,, dyn,
and iMOM. Models are restricted to contain not more than one factor from the following cat-
egories: value (HML or HML,), risk-managed momentum (cvolgys, dyn, iMOM). The bottom
panel shows the time-series of cumulative posterior probabilities for factor. The prior for each
factor is set the following: Shy,e: = 4.0 X Shysg, where Shy, is the Sharpe ratio of RMRF
within the sample and the baseline Sharpe multiple (4.0) is used. Shy,q, is the square root
of the squared tangency portfolio’s expected Sharpe ratio (spanned by the factors included)
which is assumed to be 300% higher than the market’s squared Sharpe ratio, implying the
alphas of factors other than RMRF are non-zero.
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A Appendix

A.1 Datastream sample definition
Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope lists
and (3) dead lists. By using dead lists, we ensure to obviate any survivorship bias. For
every country we use the intersection of all available lists and eliminate any duplicates. As a
result, we have one remaining list for every country, which can subsequently be used in the
static filter process. Table A.1 and Table A.2 provide an overview of the constituent lists for

developed markets and emerging markets, respectively, used in our study.

[Table A.1 about here.]

[Table A.2 about here.]

Static screens

We restrict our sample to common equity stocks by applying several static screens as shown

in Table A.3. Screen (1) to (7) are standard filters as common in the literature.
[Table A.3 about here.]

Screen (8) related to, among others, the following work: Ince and Porter (2006), Campbell,
Cowan, and Salotti (2010), Griffin et al. (2010), Karolyi, Lee, and van Dijk (2012). The
authors provide generic filter rules in order to exclude non-common equity securities from
Thomson Reuters Datastream. We apply the identified keywords and match them with the
security names provided by Datastream. A security is excluded from the sample in case a
keyword coincides with part of the security name. The following three Datastream items
store security names and are applied for the keyword filters: “NAME”, “ENAME”, and

“ECNAME”. Table A.4 gives an overview of the keywords used.
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[Table A.4 about here.]

In addition, Griffin et al. (2010) introduce specific keywords for individual countries.
Thus, the keywords are applied on the security names of single countries only. Exemplary,
German security names are parsed to contain the word “GENUSSSCHEINE”, which declares
the security to be non-common equity. In Table A.5 we give an overview of country-specific

keyword deletions conducted in our study.

[Table A.5 about here.]

Dynamic screens

For the securities, remaining from the static screens above, we obtain return and market
capitalization data from Datastream and accounting data from Worldscope. Several dynamic
screens that are common in the literature were installed in order to account for data errors

mainly within return characteristics. The dynamic screens are shown in Table A.6.

[Table A.6 about here.]

A.2 GJR-GARCH volatility forecasts

To implement the dynamic in-sample-scaled momentum strategy, volatility of Momentum is
forecasted via a GJR-GARCH model, calibrated in-sample over the whole Momentum return
time-series. Therefore, as a first step, following Daniel and Moskowitz (2016), Momentum
returns follow the process:

Ryromye = p+ & (13)

where the error term ¢ ~ N (0,07) is normally distributed, and the evolution of o7 is

described by the process:

atz =w+ 50371 + (@ +Z (-1 < 0)) 6371 (14)
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where (¢;—; < 0) is an indicator that equals one if the error term in t—1 equals one if ¢,_; < 0,
and zero elsewise. The parameters u, w, a, v and § are estimated on a country basis using a
maximum likelihood estimator. In a second step, we estimate the volatility for the upcoming
month resp. for 22 days within that month by an extended OLS autoregression including the

past 126-day volatility of Momentum and the GJR-GARCH estimate:

Odyopy1 — & + YGARCH,tOGARCH,t + Vdi26,: T d126,t (15)

where Gg4,,,,, is the volatility forecast for month ¢ + 1, 6garcm, is the volatility estimate

from the first step, and 64,,,, is the past 126-day Momentum return volatility.

A.3 Turnover calculation

Specifically, (one-way portfolio) turnover in month ¢ for both the long or short portfolio leg
are calculated as:

Ny
Turnovers, pong(short) = 0.5 X Z|x” — Zig1] (16)

(2

where x;, is the weight of stock ¢ in the respective portfolio leg in month ¢ (i.e., the value
proportion since we use value-weighted portfolio returns), N, amounts to the total number
of stocks in the portfolio leg at month ¢, and r;, is the return of stock ¢ during month ¢, and
x;7—1 is the weight at the end of month ¢ — 1 resp. at the beginning of month ¢, right before
trading. We define 7;,_; as:

Tip—1 (L+7i4-1)

N
S Tig1 (14 7i4-1)

(17)

Tit—1 =

The turnover of the long-short momentum strategies is then the sum of the average turnover
in the long and short legs, i.e., the sum of Turnovero,, and T'urnovergper. For the volatility-

scaled strategies, the turnover is derived from Equation 16 by weighting the turnover in month

o8



t with the corresponding strategy weight:

Nt

Turnov@rs,t,Long/Short =0.5 % Z‘wscaled,txi,t - wscaled,t—li‘i,t—l (18>
i
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Table A.1: Constituent lists: Developed markets
The table contains the Research lists, Worldscope lists and Dead lists of developed markets

countries in our sample.

Country Lists Country Lists
Australia DEADAU Italy DEADIT
FAUS FITA
WSCOPEAU WSCOPEIT
Austria DEADOE Japan DEADJP
FOST FFUKUOKA
WSCOPEOE FJASDAQ
Belgium DEADBG FOSAKA
FBEL FTOKYO
FBELAM JAPOTC
FBELCM WSCOPEJP
WSCOPEBG Netherlands DEADNL
Canada DEADCN1 FHOL
DEADCN2 WSCOPENL
DEADCN3 New Zealand DEADNZ
DEADCN4 FNWZ
DEADCN5 WSCOPENZ
DEADCNG6 Norway DEADNW
FTORO FNOR
FVANC WSCOPENW
LTTOCOMP Portugal DEADPT
WSCOPECN FPOR
Denmark DEADDK WSCOPEPT
FDEN Singapore DEADSG
WSCOPEDK FSIN
Finland DEADFN FSINQ
FFIN WSCOPESG
WSCOPEFN Spain DEADES
France DEADFR FSPN
FFRA WSCOPEES
WSCOPEFR Sweden DEADSD
Germany DEADBD1 FAKTSWD
DEADBD2 FSWD
DEADBD3 WSCOPESD
DEADBD4 Switzerland DEADSW
DEADBDS FSWA
DEADBD6 FSWS
FGER1 FSWUP
FGER2 WSCOPESW
FGERIBIS United Kingdom DEADUK
FGKURS FBRIT
WSCOPEBD LSETSCOS
Hong Kong DEADHK LSETSMM
FHKQ LUKPLUSM
WSCOPEHK WSCOPEJE
Ireland DEADIR WSCOPEUK
FIRL
WSCOPEIR
Israel DEADIS
FISRAEL
WSCOPEIS
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Table A.2: Constituent lists: Emerging markets

The table contains the Research lists, Worldscope lists and Dead lists of emerging markets

countries in our sample.

Argentina

Brazil

Chile

China

Colombia

Czech Republic

Egypt

Greece

Hungary

India

Indonesia

Jordan

Malaysia

Mexico

Morocco

DEADAR
FPARGA
WSCOPEAR
DEADBRA
FBRA
WSCOPEBR
DEADCHI
FCHILE
FCHILE10
WSCOPECL
DEADCH
FCHINA
WSCOPECH
DEADCO
FCOL
WSCOPECB
DEADCZ
FCZECH
FCZECHUP
WSCOPECZ
DEADEGY
EGYPTALL
FEGYPT
WSCOPEEY
DEADGR
FGREE
FGRMM
FGRPM
FNEXA
WSCOPEGR
DEADHU
FHUN
WSCOPEHN
DEADIND
FBSE
FINDIA
FINDNW
FINDUP
FNSE
WSCOPEIN
DEADIDN
FINO
WSCOPEID
DEADJO
FJORD
WSCOPEJO
DEADMY
FMAL
FMALQ
WSCOPEMY
DEADME
FMEX
MEX101
WSCOPEMX
DEADMOR
FMOR
WSCOPEMC

Pakistan

Peru

Philippines

Poland

Qatar

Russia

Slovakia

South Africa

Sri Lanka

Taiwan

Thailand

Turkey

United Arab Emirates

Venezuela

DEADPA
FPAK
FPAKUP
WSCOPEPK
DEADPE
FPERU
WSCOPEPE
DEADPH
FPHI
FPHILA
FPHIMN
FPHIQ
WSCOPEPH
DEADPO
FPOL
WSCOPEPO
DEADQT
FQATAR
WSCOPEQA
DEADRU
FRTSCL
FRUS
FRUSUP
WSCOPERS
ALLSLOV
DEADSLO
FSLOVAK
WSCOPESX
DEADSAF
FSAF
WSCOPESA
DEADKO
FKONEX
FKOR
WSCOPEKO
DEADSL
FSRILA
FSRIUP
WSCOPECY
DEADTW
FTAIQ
WSCOPETA
DEADTH
FTHAQ
WSCOPETH
DEADTK
FTURK
FTURKUP
WSCOPETK
DEADAB
DEADDB
FABUD
FDUBALI
WSCOPEAE
DEADVE
FVENZ
WSCOPEVE
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Table A.3: Static Screens

The table displays the static screens applied in our study, mainly following Ince and Porter
(2006), Schmidt et al. (2017) and Griffin et al. (2010). Column 3 lists the Datastream items
involved (on the left of the equality sign) and the values which we set them to in the filter

process (on the right of the equality sign). Column 4 indicates the source of the screens.

Nr. Description Datastream  item(s) Source
involved

(1) For firms with more than one MAJOR =Y Schmidt et al. (2017)
security, only the one with the
biggest market capitalization and
liquidity is used.

(2) The type of security must be eq- TYPE = EQ Ince and Porter (2006)
uity.

(3) Only the primary quotations of a ISINID = P Fong, Holden, and
security are analyzed. Trzcinka (2017)

(4) Firms are located in the respec- GEOGN = country Ince and Porter (2006)
tive domestic country. shortcut

(5) Securities are listed in the respec- GEOLN = country Griffin et al. (2010)
tive domestic country. shortcut

(6) Securities with quoted currency PCUR = currency Griffin et al. (2010)

different from the one of the as-
sociated country are disregarded.?

shortcut of the coun-
try

(7) Securities with ISIN country code GGISN = country Annaert, Ceuster, and
different from the one of the asso- shortcut Verstegen (2013)
ciated country are disregarded.”

(8) Securities whose name fields indi- NAME, ENAME, Ince and  Porter
cate non-common stock affiliation ECNAME (2006), Campbell

are disregarded.

et al. (2010), Griffin
et al. (2010) and
Karolyi et al. (2012)

2 In this filter rule also the respective pre-euro currencies are accepted for countries within
the euro zone. Moreover, in Russia “USD” is also accepted as currency, besides “RUB”.
> In Hong Kong, ISIN country codes equal to “BM” or “KY” and in the Czech Republic
ISIN country codes equal to “CS” are also accepted.
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Table A.4: Generic Keyword Deletions
The table reports the generic keywords, which are searched for in the names of all stocks of
all countries. If a harmful keyword is detected as part of the name of a stock, the respective

stock is removed from the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI,
DUPLICATE, XSQ, XETa

Depository Receipts ADR, GDR

Preferred Stock
Warrants

Debt

Unit Trusts

ETFs

Expired securities

Miscellaneous (mainly taken from
Ince and Porter (2006))

PF, 'PF’, PFD, PREF, PREFERRED, PRF

WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
%, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
IT, ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,
TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST
UNITS, UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT
AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
EXPD, EXPIRED, EXPIRY, EXPY

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HLYIELD, HIGH INCOME,
IDX, INC.&GROWTH, INC.&GW, INDEX, LP, MIPS,
MITS, MITT, MPS, NIKKEIL, NOTE, OPCVM, ORTF,
PARTNER, PERQS, PFC, PFCL, PINES, PRTF, PTNS,
PTSHP, QUIBS, QUIDS, RATE, RCPTS, REAL EST,
RECEIPTS, REIT, RESPT, RETUR, RIGHTS, RST,
RTN.INC, RTS, SBVTG, SCORE, SPDR, STRYPES,
TOPRS, UTS, VCT, VTG.SAS, XXXXX, YIELD, YLD
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Table A.5: Country-Specific Keyword Deletions
The table reports the country-specific keywords, which are searched for in the names of all
stocks of the respective countries. If a harmful keyword is detected as part of the name of a
stock, the respective stock is removed from the sample.

Country Keywords

Australia PART PAID, RTS DEF, DEF SETT, CDI

Austria PC, PARTICIPATION CERTIFICATE, GENUSSSCHEINE,
GENUSSCHEINE

Belgium VVPR, CONVERSION, STRIP

Brazil PN, PNA, PNB, PNC, PND, PNE, PNF, PNG, RCSA, RCTB

Canada EXCHANGEABLE, SPLIT, SPLITSHARE, VTG\\.,
SBVTG\\., VOTING, SUB VTG, SERIES

Denmark \\)CSE\\)

Finland USE

France ADP, CI, SICAV, \\)SICAV\\), SICAV-

Germany GENUSSCHEINE

Greece PR

India FB DEAD, FOREIGN BOARD

Israel P1,1,5

Italy RNC, RP, PRIVILEGIES

Korea 1P

Mexico N

Malaysia A

Netherlands CERTIFICATE, CERTIFICATES, CERTIFICATES\)),
CERT, CERTS, STK\\.

New Zealand RTS, RIGHTS

Peru INVERSION, INVN, INV

Philippines PDR

South Africa N, OPTS\\., CPF\\., CUMULATIVE PREFERENCE

Sweden CONVERTED INTO, USE, CONVERTED-,
CONVERTED - SEE

Switzerland CONVERTED INTO, CONVERSION, CONVERSION SEE

United Kingdom PAID, CONVERSION TO, NON VOTING,

CONVERSION A’
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Table A.6: Dynamic Screens
The table displays the dynamic screens applied to the data in our study, following Ince and
Porter (2006), Griffin et al. (2010), Jacobs (2016) and Schmidt et al. (2017). If screens are

adapted solely to monthly (daily) returns, this is indicated by m (d).

Column 3 lists the

respective Datastream items. Column 4 refers to the source of the screens.

Nr.

Description

Datastream
involved

item(s) Source

(1)

We delete the zero returns at
the end of the return time-series,
which exist, because in case of
a delisting Datastream displays
stale prices from the date of
delisting until the end of the re-
spective time-series.  We also
delete the associated market cap-
italizations.

TRI, MV

Ince and Porter (2006)

We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

TRI, MV, UP

The screen originally
stems from Schmidt
et al. (2017), whereby
we employ it on the
unadjusted price.

(3m)We delete monthly returns and

the associated market capitaliza-
tions in case of return spikes (re-
turns > 990%).

TRI, MV

Schmidt et al. (2017)

(3d) We delete daily returns and the

associated market capitalizations
in case of return spikes (returns >

200%).

TRI, MV

Griffin et al. (2010)

(4m)We delete monthly returns and

the associated market capitaliza-
tions in case of strong return re-
versals, defined as follows: R;_;
or Ry >=3.0 and (1+ R;—1)(1 +
R;) —1<0.5.

TRI, MV

Ince and Porter (2006)

(4d) We delete daily returns and the

associated market capitalizations
in case of strong return reversals,
defined as follows: R;_; or R; >=
1.0and (1+R1)(14+R) —1<
0.2.

TRI, MV

Ince and Porter
(2006), Griffin et al.
(2010), Jacobs (2016)

We delete the associated returns
and market capitalizations in case
of a missing past-36-month return
history.

TRI, MV
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Blitz et al. (2011),
Blitz et al. (2018).
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