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Abstract

Decomposing the gamma trading, timing and managerial stock-picking skills of individual hedge
funds is a central challenge in the active management industry. However a systematic negative
bias, attributed to the implied cost of options, blurs the evaluation of the selectivity and market
timing skills from traditional market timing models. Simple option strategies, one call and one
put, fitted on the time-varying coefficients of these models capture the implied cost. We show
that incorporating this cost allows us to categorize groups of hedge funds in a way that correlates
positively with future returns. Our model offers a flexible tool to benchmark the nonlinear payoff
of individual hedge funds and reveals that managers who are skilled at timing the market share
similar information for picking stocks. We conclude that the relationship between the selectivity

and market timing skills is not constrained to be negatively correlated.
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Introduction

Because option-like strategies such as those of hedge funds exhibit a non-linear payoff, an eval-
uation of skills, which is associated with the intercept of a regression model, may be artificial.!
Indeed, the alpha of exotic investments with option-like payoffs from a typical linear regression is
different from the alpha of a traditional portfolio (e.g., passive equity and bond strategies). The role
of skills in these exotic investments should thus be contingently adjusted for the non-linearities in
their payoffs. Moreover, if a manager has free access to a complete traded derivatives market on the
fund’s benchmark, there are many ways in which she can distort the payoff of her portfolio, and it
is important to provide an adjustment to it (see, Hiibner 2016; Ingersoll et al. 2007).

The use of a quadratic model, such as the Treynor and Mazuy (1966) model to assess market
timing skills, shifts upward (by construction) the alpha of a strategy that has a negative OLS
coefficient on the quadratic term because the average squared market return is positive (DeRoon
and Karehnke 2017). This is confirmed in our data: funds with a positive OLS coefficient on the
quadratic term deliver, on average, a negative alpha (between -0.22% and -0.06% per month), while
funds with a negative OLS coefficient on the quadratic term show, on average, a large positive
alpha of between 1.09% and 1.18% per month. Funds with a negative quadratic term have a payoff
resembling that of a short put option and perform well in mean-variance frameworks. This is because
such frameworks fail to capture the left-tail risks of portfolios with non-linear payoffs (Agarwal and
Naik 2004). While the Treynor and Mazuy (1966, TM) market timing model has an option-based
motivation, it assumes that the cost of the option is free (Jagannathan and Korajczyk 1986). For
that reason, the literature has designed option-based factors, which substitute for or complement
market timing models, to capture the convex or concave nature of hedge funds’ trades.? Despite the
explanatory power provided by these factors, the methodologies used to construct them may lack

flexibility when choosing the right type of options to trade as a result of the highly opportunistic

!See, among others, Jagannathan and Korajczyk (1986), Coggin, Fabozzi, and Rahman (1993), Bollen and Busse
(2001), and Jiang (2003) for explanations of the negative artificial bias present in market timing models and Fung and
Hsieh (2001), Mitchell and Pulvino (2001), Titman and Tiu (2011), and Hiibner, Lambert, and Papageorgiou (2015)

for evidence on the option-like payoffs displayed in the hedge fund industry.
2 Among others, Fung and Hsieh (2001), Agarwal and Naik (2004), Fung and Hsieh (2004), and Jurek and Stafford

(2015) provide option-based risk factors, while Agarwal, Arisoy, and Naik (2017) write an exhaustive literature review

on these strategies.



nature of hedge fund trading. For example, among the most common option-based factors used in
the literature, Fung and Hsieh (2004) evaluate the performance of funds using look-back straddles on
bond, currency and commodity indices; however, options on these indices are (1) not directly traded,
(2) only valid for European-style options and (3) mature in a fixed interval of 3 months. Agarwal
and Naik (2004) introduce option-based strategies that systematically buy, on the first day of the
month, a call or a put option with pre-defined moneyness (at-the-money (ATM) or out-of-the-money
(OTM)) and maturity (one month) on the S&P 500 index. Although widely accepted as explanatory
variables in the hedge fund industry, the technical features of these option-based risk factors might
not reflect an accurate replication of the dynamics of hedge fund strategies.?

To address the first issue regarding the flexibility in option-like payoffs, this paper examines and
models the gamma trading of hedge funds. We evaluate cross-sectional timing skills among a large
sample of hedge funds (using the consolidated sample from the merger of Hedge Fund Research
(HFR) and Morningstar).

To address the second issue regarding the alpha biases and the cost of options implied in market
timing models, we provide an option-based adjustment of the alpha for funds with an option-like
payoff. We apply a flexible, passive, option-based model that uses tradable options and serves as
a benchmark to adjust the performance of a fund. This approach provides better accuracy for
inferences by distinguishing between “skilled” and “dumb” alpha — positive market timing versus
shorting naked put options (Jurek and Stafford 2015). We show that the convexity or concavity
of hedge funds’ trades influences the assessment of fund managers’ skills, and after combining our
alpha adjustment with their market timing skills, simple portfolio sorts on hedge funds reveal a
positive monotonic relationship between our Adjusted-Skill Index and future returns. These results
are maintained until twelve months after portfolio formation.

To achieve these objectives, we build on the option-based replication model of Hiibner (2016).
We generalized the model in a time-varying framework in which almost all types of payoffs — even

when funds do not exhibit market timing — can be synthetically replicated using only two options,

3For instance, as Jurek and Stafford (2015, p. 2198) note, “options selected by fizing moneyness have higher
systematic risk, as measured by delta or market beta, when implied volatility is high, and lower risk when implied
volatility is low”. DeRoon and Karehnke (2017, p. 7) add that because “these models effectively restrict additional
assets to be a fixed linear combination of non-linear returns, they are unable to account for general forms of mon-

linearities”.



i.e., one call and one put.*

The model defines the option features (“the Greeks”) that would match the non-linear payoffs
captured by the linear and quadratic coefficients of the TM model. The model works well because
the Greeks of the option —i.e., A and I — can be used to match the linear and quadratic terms of
the TM model —i.e., 8 and . The option-based replication strategy is intended to be passive, such
that the alpha from this strategy can be viewed as a benchmark for the replicated fund performance.
The benchmark sets up the cost of options implied in market timing models; the performance of the
fund is thus redefined as the outperformance with respect to the alpha of the benchmark.

To the best of our knowledge, this paper is the first to identify, at the individual level, a fund’s
option profile and the impact of the option profile on the fund’s alpha and to adjust this alpha
through a flexible option-based replication strategy. Our findings are twofold. First, our methodology
categorizes the payoffs of almost the entire cross-section of hedge funds in our sample (95%). The
categories are the following: directional with market timing skills (e.g., long-short and short bias
hedge funds), non-directional with market timing (e.g., multi-strategy, global macro, CTAs), and
non-directional with convergence bets (event driven, relative value, market-neutral). Second, we
reveal the impact of these non-linear payoffs on managerial skills. We find strong positive adjusted
alpha for market timers with directional bets (between 0.63% and 3.81% per month) and non-
directional bets (~ 3.03% per month) but negative adjustments for negative timers with directional
bets (between -0.06% and -3.49% per month) and convergence bets (top straddles, approximately
-1.85% per month). The adjustments strongly depend on the curvature of the payoff.

The remainder of the paper is organized as follows. Section 1 extends the TM model under
the option-based replication framework. Section 2 describes the option and hedge fund data used
to perform the option-based replication of individual hedge fund returns. Section 3 presents the
gamma skills in the cross-section of hedge funds, quantifies the cost of option implied in market
timing model and analyzes the consequences of adjusting a manager’s alpha by this cost. Section 4
shows how an indicator of skills between selectivity and timing can be constructed to group funds

into portfolios and correlate positively with future return. Section 5 provides robustness tests on

4We empirically have approximately 95% of the observations for funds with a minimum of 36 observations that
have an option-based replication at each time period ¢t. Our sample comprises 632,154 observations, of which 616,497
have an option-based replication. The other 15,657 observations display a # ~ 0 and v ~ 0 and thus we do not consider

them in our analysis.



the selection of the market timing model as well as model misspecifications. Section 6 concludes on
the different ways of constructing the option-based replication strategy and their implications for

performance measurement.

1 Model

1.1 The Treynor and Mazuy Model revisited

The model of Treynor and Mazuy (1966) is one of the classical return-based models used to

detect fund convexity from market timing skills. This quadratic model takes the following form:

Riy = ary + BRmy +YRm} + e (1)

where v represents the coefficient of timing ability. Market timing skills are attributed to the
fund manager in case of positive convexity, i.e. positive gamma.

Empirical evidence shows several issues of the TM model (Kryzanowski, Lalancette, and To 1997;
Becker et al. 1999; Bollen and Busse 2004; Comer, Larrymore, and Rodriguez 2009). Avramov et al.
(2011) highlight the need to use conditional information to evaluate managers’ market timing skills.

To address one of these limits, Chen and Liang (2007) condition the exposure to the benchmark
on five lagged instruments which proxy for “public information.”. Following (e.g., Ferson and Schadt
1996; Becker et al. 1999; Graham and Harvey 1996; Ferson and Siegel 2001; Jiang 2003), they use
macro-economic variables that provide future information about the current economic conditions of
the market. . The variables used to control for public information are the demeaned series (over
the analyzed fund period) of the three-month T-bill yield, the term spread between 10-year and
three-month Treasury bonds, the quality spread between Moody’s BAA- and AAA-rated corporate
bonds, and the dividend yield of the S&P 500 index and the VIX. All variables are lagged by one
period. The first four instruments are obtained from the Federal Reserve Bank of St. Louis, the
dividend yield is retrieved from OptionMetrics, and the VIX is from CBEO from WRDS. Using
the same notation as in Chen and Liang (2007), we can compare the unconditional and conditional

market timing models as follows:



Riy = ary + BuRmy + v, Rm? + eiy

L (2)
= ary + BeRmy + y.Rm? + Z 01(z1—1Rmy) + €44
=1

with 2,1 being the demeaned (over the fund period) series of the lagged instruments Z;. The
variables are standardized (mean = 0, standard deviation = 1) to capture the “surprise” component
rather than the absolute levels of these variables.” The fund’s time-varying beta annotated as 3* is
made equal to 3. + Zlel S121,-1-

To capture within-month risk exposure for hedge funds, Patton and Ramadorai (2013) construct
monthly estimates of macro-economic variables — the same 2,1 as in the previous paragraph — by
aggregating their daily innovations to capture intra-month variations. Using intra-period trading is
supported by Goetzmann, Ingersoll, and Ivkovi¢ (2000) and Pfleiderer and Bhattacharya (1983), who
report that the artificial negative correlation between timing and selectivity skills could simply come
from intra-period trading. To construct these variables, we use the the daily log market returns of
the S&P 500 and the logarithmic values of the daily macro-economic variables previously mentioned.
The macro-economic variables are also standardized with mean 0 and standard deviation 1 over the
month analyzed. Formally, we compute the monthly aggregation of the daily variables conditional

on the daily log market return as follows:

zf Rmy = Z z4—11og(Rmyg) (3)
deM(t)

where M (t) is the number of days in month ¢.

The formal definition of the OLS regression thus becomes

L L
Riy = arym + BeRmy +veBmi + > iz 1Rme) + > Ai(zf, Rmy) + ey n
=1 1=1 4

= arpy + B*Rmy + ’YcRth + €t

5We de-trend the instrumental variables Z;; from their mean level such that the loading coefficients can be inter-

preted as the average level of risk exposure (Patton and Ramadorai 2013).



The conditional beta of a fund manager is now equal to 8* = . + Zlel hzp—1+ Zlel Azl g,
while the term ~, reflects private market timing skills. For simplicity, we refer in the remainder of
the paper to the coefficients §* as 8 and ~. as 7.

Finally, at this stage, our model assumes constant values for these four coefficients. However,
hedge fund managers being active investors, their market timing skills may change over time.To
capture the dynamic allocation behavior of fund managers, we estimate the model using rolling-
window regressions with a minimum of 36 and a maximum of 60 available months.%

In the next section, we detail the generalized framework used to replicate the curvatures of a

fund’s payoff.

1.2 Option Replication Strategy

Building on the framework of Treynor and Mazuy (1966), our derivative-based framework is
focused on the timing component from market returns.” In contrast to traditional option-based risk
factors cited in the recent literature, such as Fung and Hsieh (2004), Agarwal and Naik (2004) and
Jurek and Stafford (2015), our replication strategy offers a flexible choice of the option’s moneyness
and maturity at each observed period. The aim of the strategy is to select, in each month, the option
that best replicates the linear and quadratic terms of the extended TM model at the individual fund
level. To achieve this objective, we start by normalizing the option Greeks from OptionMetrics
according to the underlying stock price and the price of the option. The normalization relies on the
Taylor expansion of the option value (V). The option can take the form of either a call or a put
option. From the Taylor series expansion, the approximation of the option value (V') on a security

with price S at time ¢ is obtained by,

ov 10%V ov
dV ~ ——=dS + - ——5(dS)* + ——dt + o(t
v 55 S+28S2(5)+8t + o(t) (5)
with g—‘g being the Delta of the option (A,), g% being the Gamma of the option (I',), and %—‘;

5Chen and Liang (2007) also use rolling regressions with fixed windows of 36 months to analyze the time variation

in hedge funds timing ability.

"A growing stream of literature has investigated the ability of hedge funds to anticipate the variations in market
returns and other variables such as liquidity and volatility (Cao et al. 2013) or even market returns and volatility
simultaneously (Chen and Liang 2007). These studies indicate that the ability to time these variables can be identified
as a source of superior hedge fund performance. Evidence indicates that a sub-sample of these funds exhibits such

timing abilities even after accounting for option-based risk factors.



being the time decay of the option, named Theta (©,). The remaining term o(t) incorporates the
Vega, Rho, and higher moment effects on the change in the option value. We consider this term
to be close to zero for short periods of time, such that we make the assumptions that the volatility
of the underlying (o) and the interest rate (r) are constant. Moreover, controlling for the monthly
and intra-month values of both the VIX and the three-month T-bill in the conditional TM model
leaves us fairly confident that setting aside the Greeks Vega and Rho should not strongly impact the

results of the replication model. Substituting the Greek annotations into equation (5) we obtain

dV ~ A,dS + %Fv(dS)z + ©,dt + o(t) (6)

Writing equation (6) in discrete time yields

1
Vi — Vicar = Ay(St — Si—ar) + iru(st — St—At)2 + 0,At (7)

where V; is the price of the option for the underlying S;, and At is the time interval and is
equal to one month (1/12). Finally, the normalization of the option return and its Greeks takes the

following form when the underlying stock S; is substituted by the market M;:

Mi—a 1L M 2 O,
R} = —A Rmy + - T Rmji + At 8
! Viear 2 Viear " ! Vieat ®)
~— ~——
(1) Normalized Delta (2) Normalized Gamma (3) Normalized Theta

with Ry = (Vi — Vi—at)/Viear and Rmy = (M — My_a¢)/Mi—a¢ . We have (1) the normalized
Delta, (2) the normalized Gamma, and (3) the normalized Theta of the option.® For the sake
of clarity, we refer, in the remainder of the paper, to the normalized Delta as A, the normalized
Gamma as I', and the normalized Theta as ©. The approximation of the option return using the

Taylor expansion is written as follows:

1
RY = AyRm; + §FURm? + 0,At (9)

with R} being the return of the option over the interval At (1-month), A,, Ty, and ©, being the

normalized Delta, Gamma and Theta of the option, respectively, and Rm; being the return of the

8 According to Ivy Option Metric’s reference manual (version 3.1 1/11/2017, p. 22), “the theta of an option
indicates the change in option premium as time passes, in terms of dollars per year.” In our analysis, the annualized

theta is thus multiplied by 1/12 (At) to convert the value to a monthly basis.



underlying stock index (S&P 500) at time ¢.

1.3 Option-Based Replication

We generalize the model of Hiibner (2016) to replicate fund return payoff. We use a time-varying
framework so that a fund can exhibit some nonlinearities in ¢ but none in ¢t + 1. To perform this
exercise, we simply use the combination of two options: one call and one put. The process can then
be described in two steps.

The first step consists in finding, in each period, the call and put options with the closest match
to the following ratio: AS , /T'¢ = —AF . /T7 .. This identity ensure similar convexity for the options
such that v = v¢ 4+ 4P, where 3¢/v¢ = —P/4P and ¢ and p are the subscript for the call and put
option, respectively.

The closest match attributes one call and one put option with maturity (7) and moneyness (k)
to each monthly return observation of a fund. Compared to classical option-based factors, our model
does not pre-define the choice of the maturity of the option. Concerning the moneyness, funds with
either a non-directional bet (8 ~ 0) or no private timing skills (v ~ 0) will be replicated with ATM
options, whereas funds that do not satisfy these conditions will have complete freedom in the choice
of option moneyness. This specification makes our framework very flexible in the selection of the
correct type of option for replication purposes.

The formal description of the option-based replication strategy is given by,

RE® = S B 4 0l B+ (1~ — ul RSy + o(A)

1
= wi,n(A'cr,ant + ir'cr,mRm? + @70',&)

(AL Rmq + T2, Rm? + 67,
+ (1 —wg,, —w? JRf + o(At)
where A, ., I's ., and O, , are the normalized Delta, Gamma and Theta of an option with
maturity (7) and moneyness (k), Rm; is the return of the underlying stock index (S&P 500) at time
t, and Rf is the monthly risk-free rate from Kenneth French’s website. The superscripts ¢ and p
denote call and put options, respectively.

Note that the replication strategy has budget constraints that are satisfied by solving for the

exposures w; . and w? . to the selected options and allocating a proportion (1 — (D w? ) to the



risk-free rate.
The second step consists in solving for the weights (wg, and w? ;) that are attributed to the

selected call and put options with the equivalent maturity (7) but potentially different moneyness

(k). The weights should satisfy the following conditions:

B = w7c’7f§ch',/§ + wQ,K,AQ,KZ (11)

= %(wf—,nrf—,n + wg,nrg,n)
And the weights can be obtained through traditional nonlinear optimizations or more simply

through a closed form solution as follow:

c Fg,n 72A£,n /3
wT?’f _ Af—,an,n_Ag,Hrf—,n A?,nrg,H_Ag,ch?,n (12)
- —-Ie¢ 2A¢
T,K T,K

w? . P P P i Y
’ AL T e—A7RTE o AL TT AT RIS
The linear and quadratic terms BRm; + yRm? are thus equal to
P AP 1 P TP 2
(w;:',I{AS',H + wT,NAT,K)Rmt + §(w$,}i]‘_‘7c',li + wT,KFT,H)Rmt :

The intercept (hereafter, alpha) of the passive strategies composed of one call and one put option

is given by,

™t = wﬂc',neﬂc',/{ + wg,neﬂg,n + (1 - wﬂc',f-e - wg,ﬁ)th (13)

Because this alpha comes from a purely passive strategy, it can be viewed as the cost of imple-
menting the same timing strategy as the fund manager when her access is limited to a set of options
on a benchmark and a risk-free. Subtracting the alpha (a™") of the option strategy from the alpha
(arar) of the manager should control for the cost of the option implied in market timing models.”

The adjusted-a of the fund is now defined as

T,k

!
T = apy — "

(14)
/
=Qry — w:,neﬂc—,n - wﬁ,neg,n - (1 - wﬂc-,ﬁ - wf,n)th

with gy, = arar + (1 — B)Rfi.

?See Bollen and Busse (2004) for a discussion on the alpha of the quadratic market timing model and Jiang (2003)

and Ferruz, Munoz, and Vargas (2010) for a discussion on the cost of the option implied in market timing models.



Or equivalently,

™" = ary — w‘?‘,lﬂgi,ﬁ - wﬁ,lﬁeg,ﬁ - (B - wg,n - wf,n)th (15)

Table 1 summarizes the model procedures to replicate a fund’s payoff. The first column reports
the paper notation for the fund classification; the second column shows the direction of the fund,
denoted by f; the third column indicates whether the replicated fund has gamma trading skills (v);
the sixth column is informative about the regression characteristics used to classify the replicated
fund. We choose —f3/2v because the value is equal to the inflection point (vertex) of the quadratic
model and by consequence, contains key information about the nonlinear characteristics of a fund’s
returns; and the last column describes the type of option-based strategy used to replicate the fund
payoff.

Note that when a fund does not exhibit «y skills, then the conditions of equation (11) become

B = w?—,mAﬂc',n + wg,ﬁAeﬁ (16)

c p
T,k Wr K

These new conditions ensure that the replication of a directional fund with no -y skills is simply
a synthetic replication of the fund. For example, a fund with positive 8 and no v will be replicated
by buying an amount w? ,; of a call and shorting an equivalent amount w? ;. in a put. These options

are ATM and have equivalent maturity.

1.4 Implied Cost of Option Trading

This section illustrates the implementation of the option-based replication strategies in a con-
trolled environment. We present an hypothetical Perfect Market Timer fund as in the works of
Hasanhodzic and Lo (2007) and Chen and Liang (2007), which the authors refers to as “Capital
Multiplication Partners,” to show the option-like payoffs that such a perfect timer would exhibit.
The performance of the Capital Multiplication Partners fund is constructed by being invested in the
market when the market returns are higher than the risk-free and in the risk-free rate when market
returns are lower than the risk-free. The mathematical expression to obtain the performance of this

fund is simply max(Rm, Rf). When the TM model is applied on this fund, the 8 and v coefficients

10



Table 1: Option Replication Strategies

This table summarizes the types of strategies involving options that replicate all possible patterns of the
TM regression. In our applications, we use a significance level of 10% for the p-values with the Newey-West
adjustment for standard errors and apply a lag of t=3 for the linear and quadratic parameters. This table
presents the payoff identifications to apply the option-based replication strategies. The notation Rm™ stands
for the minimum value of the market return, while Rm™* represents the maximum value of the market return
over the analyzed period. The notation ST refers to a positive beta coefficient, while 3~ denotes a negative

beta coefficient. The notations are similar for the sign of the gamma () coefficient.

Paper Classification Characteristics Replication

Notation Direction Gamma Skills (3 ~v  ratio (—3/2y) Strategy

BT Long None >0 =~0 None Long Call + Short Put

B~ Short None <0 =0 None Short Call + Long Put
[BT,7"] Long Positive >0 >0 ¢ [Rm ,RmT| Long Strangle
B7,77] Short Positive <0 >0 ¢[Rm ,RmT| Long Strangle
B, 7] Long Negative >0 <0 ¢[Rm ,RmT| Short Strangle
B7,77] Short Negative <0 <0 ¢[Rm ,RmT| Short Strangle

t Neutral Positive ~ >0 €[Rm~,Rm'] Long Straddle

o Neutral Negative ~0 <0 €[Rm ,RmT"] Short Straddle

11



are both significant and positive and the fund payoff resembles that of a long call. In our framework,
the model would replicate that payoff through a strangle strategy with low weight invested in the
put option and high weight invested in the call option.

As Fama and French (2010, p. 1915) write, “Active investment must also be a zero sum game-
aggregate is zero before costs,” so for one type of payoff, there should be a counterparty. The
counterparty for the Capital Multiplication Partners fund is given by min(Rm, Rf) and has a payoff
equivalent to a short call option. We also provide four other types of fund payoff that can be
replicated in our framework: (i) a long put payoff (max(-Rm,-Rf)), (ii) a short put payoff (min(-Rm,
-Rf)), (iii) a perfect neutral timer through a long straddle payoff (max(-Rm,Rm)), and (iv) a worst
neutral timer through a short straddle payoff (min(-Rm,Rm)).

Figure 1 illustrates the payoffs of hypothetical funds with, by design, no security selection skills
but market timing skills. The alpha correction provided by our replication model is illustrated by
the vertical black line. The alpha correction can be interpreted as the cost of implementing the
timing strategy through a range of options listed on the benchmark. We review in Section 3.3 the
implication of this alpha adjustment for the negative correlation bias between the o and v coefficients
present in the quadratic model. We also check whether this artificial effect applies to our framework.

In the next section, we describe the consolidated data obtained (1) from OptionMetrics (WRDS)
for the options and their Greeks and (2) from the merger of the HFR and Morningstar databases

for our hedge fund sample.

2 Data

2.1 Options and Greeks

OptionMetrics provides data on the historical price, implied volatility and Greeks for the US
equity and index options markets. We restrict our use of OptionMetrics data to the Standard and
Poor’s (S&P) 500 composite index (ID 108105) and retrieve options with a standard settlement date,
that is, where the special settlement flag (ss_flag) is equal to 0, with positive bid and ask prices,
and the options expire on the Saturday following the third Friday of the month (Agarwal and Naik

2004).19 We only retain observations from the first day of each month for which the open interest

10The restrictions are identical to those used in the replication of the option risk factors of Agarwal and Naik (2004)

developed by WRDS.

12



Figure 1

This figure illustrates the cost of replication using options for six hypothetical fund managers with significantly
good or bad market timing skill. The fund payoff is illustrated by the blue line, while the option-based
replication payoff is given by the red dotted line. The cost of replication is equivalent to the alpha from the

option-based strategy and highlighted by the vertical black line. The empty circles refers to the hypothetical

fund returns.
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(volume) is greater than zero and that have valid implied volatility and Delta values. The sample

period ranges from January 1996 to December 2015.

2.2 Hedge Funds
2.2.1 Merger of the Databases

In this paper, we employ a sample of hedge funds from the merger of the HFR and Morningstar
databases. To carry out the merger, we follow the procedures of Joenvéara, Kosowski, and Tolonen
(2016). Because merging multiple databases is not an exact science, in addition to the phrase
matching'! used by the authors, we extend the identification of duplicate funds with a similar
level of the smoothing index following the procedure of Getmansky, Lo, and Makarov (2004). The
combination of a close match from the smoothing index and the phrase matching procedure yields
fairly good results to identify duplicates in our databases. Indeed, this combination allows us to
work simultaneously on the name and the returns of a fund (see Section 2.2.2 for further details). In
the appendix of this paper, we describe the treatments applied prior to constructing our consolidated
sample of hedge funds.

Figure 2 illustrates that the number of alive and dead funds that are specific to each database
after treatments is equal to 6,872 and 2,995 for HFR and to 4,229 and 1,139 for Morningstar,
respectively. We record 1,407 duplicates between HFR and Morningstar. For these funds, we select
the fund from the provider that reports the most observations — generally HFR, in our sample: 397
alive funds are attributed to HFR, 72 alive funds are attributed to Morningstar, 734 dead funds are
attributed to HFR, and 204 dead funds are attributed to Morningstar.

Because each database reports different hedge fund classifications, Joenvaira, Kosowski, and
Tolonen (2016) propose categorizing hedge funds into twelve primary strategies. We also follow
their approach, such that our results can be easily replicated using other providers’ data. Table 2
shows the categories documented in this paper, and the table that Joenvéara, Kosowski, and Tolonen
(2016) use to construct these primary strategies can be found in the appendix of this paper. Our
final sample contains 10,958 of the 15,235 unique funds that we identified in our databases. The

sample period ranges from January 1996 to December 2015. Of the full sample, 3,805 are funds of

"The Jarko-Wink procedure matches funds that achieve a high correlation percentage (99%) in the names of their

funds.

14



Figure 2: [llustration of the Database Coverage

This figure illustrates the coverage of hedge funds in our consolidated database after treatments. The diagram

displays the overlap -— by database — of the share classes as of December 2015.
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funds, and 4,357 are equity-oriented funds. Finally, 4,282 remained alive as of December 31, 2015,
and 11,227 became defunct during the sample period.

2.2.2 Unsmoothed Return

Hedge funds are prone to performance manipulations (Ingersoll et al. 2007). Specifically, Get-

> which is a common

mansky, Lo, and Makarov (2004) focus on the issue of “performance smoothing,’
practice in the hedge fund industry to artificially reduce fund volatility by reporting only a fraction
(X%) of the gains in a month and retaining the other fraction (1-X%) to compensate for potential
future losses.'? This practice tends to smooth the performance of a fund and makes mean-variance

risk measures, such as the Sharpe ratio, appear more attractive. To address this misleading smooth-

ing phenomenon, it is common practice to first “unsmooth” observed returns and then conduct

12For instance, Agarwal, Bakshi, and Huij (2009) reveal that hedge funds tend to manage returns and earn higher
fees by retaining gains in early parts of the year and reporting them in December. Huang, Liechty, and Rossi (2012)
demonstrate how retaining gains to offset future losses increases a fund’s alpha by reducing its beta coefficients. In
other words, reducing return volatility (smoothing returns) turns risk (8) into performance («). Finally, Asness,
Krail, and Liew (2001) show that lagged market returns are often significant explanatory variables for the returns of

supposedly market-neutral hedge funds.
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Table 2: Fund Coverage across Primary Strategies

This table reports the number of funds that fall into the primary strategies as defined by Joenvéaéra, Kosowski,

and Tolonen (2016) after applying the treatments used in their paper.

We report the number of funds

conditional on the original database, that is, Hedge Fund Research (HFR) or Morningstar (MS). The last

column indicates whether the category is included in our empirical analysis.

HFR HFR MS

MS

(Dead) (Live) (Dead) (Live)

Total Included (Y/N)

CTA 537 197 310 122 1166 Yes
FEmerging Markets 121 22 143 No
Event Driven 480 240 133 51 904 Yes
Fund of Funds 1631 574 1354 246 3805 No
Global Macro 37 27 206 54 324 Yes
Long Only 67 83 150 No
Long/Short 1867 872 1234 384 4357 Yes
Market-Neutral 348 88 133 19 588 Yes
Multi-Strategy 932 518 193 59 1702 Yes
Relative Value 697 373 206 59 1335 Yes
Sector 302 104 406 Yes
Short Bias 41 2 99 34 176 Yes
Undefined 173 6 179 No
Total 6872 2995 4229 1139 15235

Total Selected 5241 2421 2514 782 10958
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performance evaluation on the resulting adjusted returns (Kosowski, Naik, and Teo 2007; Aragon
2007; Titman and Tiu 2011; DeRoon and Karehnke 2017). Getmansky, Lo, and Makarov (2004)

propose the following model of return smoothing;:

RY = 00R; + 01 Ry_1 + ... + Op Ry, (17)

where RY is the observed return, R; is the true return of a fund, and 6y, is the loading on the kth
lag of the realized return. In the model, 6 values are constrained to fall within an interval from zero
to one and to sum to one. In common application, k is set to 2 such that smoothing takes place only
over the current quarter (i.e., the current month and the previous two months), and the observed
return is a weighted average of the fund’s true returns over the most recent three months (k+1),
including the current period. This averaging process captures the essence of smoothed returns in
several respects. The true unsmoothed return is then obtained by inverting the previous equation

as follows:
RY —OoRy — 01 Ry — ... — O, Ry_y,
fo

The procedure is applied through a moving average (MA) process using maximum likelihood

R, = (18)

estimation for the parameters. The model also imposes two additional restrictions: (1) the process
should be applied on demeaned returns and (2) be invertible. Similar to DeRoon and Karehnke
(2017), we note that the adjustment for smoothing does increase the average volatility from 3.58%
t0 4.49% in our sample, which leads to a decrease in the average fund’s Sharpe ratio from 0.23 to 0.15
per month. However, it leaves the mean returns fairly unchanged, i.e., average raw returns (0.54%)
and average unsmoothed returns (0.51%). Finally, we also use the measure of the smoothing index
to filter the duplicates in our database (as described in the previous section). The smoothing index

is computed as follows:

k
£=> 02¢0,1] (19)
=0

where 6; are the parameters from the MA process estimated in equation (17). The smoothing
index is often compared to the Herfindhal index, as it yields an estimate from 0 to 100% of the
smoothing behavior of a fund. An index value of zero implies substantial smoothing behavior in a

fund’s returns, while an index of one suggests no smoothing.
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2.3 Other Variables

In Table 3, we report the descriptive statistics of the variables used in the empirical part of this
paper. Panel A displays the average return, standard deviation, and the minimum and maximum
of the S&P 500 index over the sample period ranging from January 1996 to December 2015. We
also report the first-order auto-correlation estimate and its respective p-value as in Chen and Liang
(2007). In Panel B, we report the option-based factors using the same notations as in the original
work of Agarwal and Naik (2004) and Fung and Hsieh (2004).

For the option-based factors developed in Agarwal and Naik (2004), the ATM call option on
the S&P 500 index is denoted SPCa, SPPa represents the ATM put option, SPCo represents the
OTM call option, and SPPo denotes the OTM put option strategy. These option-based risk factors
are based on a strategy that buys on the first day of the month an option (call or put) with a
fixed moneyness of ATM or OTM on the S&P 500 and a maturity of one month. The option is
then sold on the first day of the next month, and a new option with the same moneyness and
maturity is bought back to continue the process of the strategy. The option-based factors from Fung
and Hsieh (2004) are the return of a portfolio of lookback straddles on bond futures (PTFSBD),
on currency (foreign exchange) futures (PTFSFX), on commodity futures (PTFSCOM), on the
short-term interest rate (PTFSIR) and on the stock market (PTFSSTK).!® Panel C reports the
instrumental variables estimated on a monthly basis as defined in Section 1.1, that is, the three-
month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds
(T10Y3M), the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality
spread), and the dividend yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided
by v/12 to form the monthly estimate of market volatility as in Chen and Liang (2007).

3 Gamma Skills in The Cross-Section of Hedge Funds

This section presents four contributions to the current literature on hedge funds. First, we
report the time-varying option-like identification of a fund through the indications from Table 1 and
summarize the option-like characteristics of hedge funds strategies. Second, we quantify the alpha
of the option replication strategies, which is a function of the leverage, time decay (theta), and the

risk-free rate and should be regarded as the cost of the option for implementing the timing strategy.

13 A1l the information is available on David Hsieh’s website.
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Table 3: Monthly Variables Descriptive Statistics

This table reports the descriptive statistics of the variables used to explain hedge funds’ returns. We display,
from Panels A to C, the average return, standard deviation, minimum and maximum of and the first order
auto-correlation with its respective p-value for the following list of variables: the S&P 500 index, the ATM
call option on the S&P 500 (SPCa), the ATM put option on the S&P 500 (SPPa), the OTM call option on
the S&P 500 (SPCo), the OTM put option strategy on the S&P 500 (SPPo), the return of a portfolio of
lookback straddles on bond futures (PTFSBD), on currency (foreign exchange) futures (PTFSFX), on com-
modity futures (PTFSCOM), on the short-term interest rate (PTFSIR) and on the stock market (PTFSSTK),
the three-month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds
(T10Y3M), the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality spread),
and the dividend yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided by v/12, which
forms the monthly estimate of market volatility (VIX,,). The sample period ranges from January 1996 to
December 2015.

Mean STD Min. Max. p1 p-value

Panel A: Benchmark

S&P 500 0.006 0.044 -0.169 0.108  0.069 0.980

Panel B: Option-based Factors

SPCa -0.025 0.821 -0.996 2.417 -0.034 1.000
SPCo -0.036  0.874 -0.995 3.000 -0.041 0.999
SPPa -0.218 0.858 -0.966 3.332  0.119 0.756
SPPo -0.247 0.875 -0.971 3.459  0.129 0.677
PTFSBD -0.018 0.149 -0.266 0.689  0.108 0.832
PTFSFX -0.005 0.186 -0.300 0.692  0.042 0.999
PTFSCOM 0.001 0.145 -0.247 0.648 -0.033 1.000
PTFSIR -0.013 0.264 -0.351 2.219  0.216 0.080
PTFSSTK -0.049 0.145 -0.302 0.666  0.139 0.590

Panel C: Instruments

TB3MS 0.024 0.022 0.000 0.062 0.991 0.000
T10Y3M 0.017 0.012 -0.008 0.038  0.963 0.000
Rate 0.018 0.005 0.000 0.028 0.872 0.000
Quality spread 0.010 0.004 0.006 0.034 0.960 0.000
VIX,, 6.101 2.270 3.008 17.289  0.829 0.000
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Third, we evaluate the cost of options implied in the TM market timing model across our hedge
fund sample and present evidence of the artificial negative relationship between the intercept and
the quadratic term in market timing models. We demonstrate that our replication framework is free

from this systematic bias.

3.1 Time-Varying Option-Like Payoff

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014, p. 1458) support that “time variation in
fund manager skill is a useful piece of evidence in the quest to understand fund behavior.” Common
market timing frameworks, such as that of Treynor and Mazuy (1966), assume the coefficients of
the model to be constant (Jagannathan and Korajczyk 1986). Two caveats are in order. First, the
model provides no information about the dynamic behavior of the manager on his strategy allocation.
Second, risk is assumed to be stationary over time. Bollen and Whaley (2009) circumvent this issue
by using changepoint regressions that capture significant shifts in fund managers’ risk exposure. In
their study, the amount of shifts is however reduced to only one significant change in risk exposure.
Instead, we favor the use of rolling-window regressions to capture more than one change in option-
like behavior by fund managers. We impose a minimum of 36 up to a maximum of 60 available
months to perform the regression established in equation (4).

Figure 3 illustrates the identification of option-like payoffs for the cross-section of hedge funds
over time. The benefit of our method resides in the fact that even a fund without significant gamma
skills () will be replicated through a synthetic replication using one ATM call and ATM put on the
underlying benchmark (S&P 500). This number of synthetic replications, reported in green colors, is
large in our sample and varies from 45% in 2001 up to roughly 80% in 2004. These synthetic linear
replications are nevertheless important in the time-varying framework since funds can exhibit only
a linear bet in time period ¢ while showing private market timing skills in t+1. As our sample is
composed of approximately 11,000 funds, the model covers almost 95% of the observations for funds
with a minimum of 36 observations that have an option-based replication at each time period ¢.'*

We now turn to the analysis of the persistence of the option-like payoffs identified in hedge funds.
Similar to Fama and French (2007) on individual stocks and Chen, Cliff, and Zhao (2017) on hedge

funds, we consider the transition of a fund’s classification between time period ¢ to t+ 1. The results

M Our sample comprises 632,154 observations, of which 616,497 have an option-based replication. The other 15,657

observations display a 8 =~ 0 and v ~ 0 and thus we do not consider them in our analysis.
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Figure 3: Time-Varying Option-Like Payoff

This figure illustrates the identification of option-like payoffs for our cross-sectional hedge fund sample over
time. The classification of the funds follows the guidelines in Table 1. These guidelines are conducted on
the linear (8) and non-linear () terms from the regression presented in equation (4). The sample period

illustrated in the figure ranges from January 2000 to December 2016.
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can be interpreted as the empirical probability that one fund classified with only gamma skill in
period ¢t becomes to a fund with persistent gamma skill and a significant bet on the market in ¢+ 1.
Table 4 shows that this empirical probability is approximately 13%. Analyzing the transition of
funds is important because it also reveals the dynamic behavior of a fund manager of changing the
optional features of his strategy conditional on the fund survival. Panel A shows that it is very
unlikely (close to 0%) that a fund with positive « coefficient exhibits negative coefficient over the
next month regardless of whether the fund has a directional bet on the market (5), and vice versa.
It is also unlikely that a fund with only a linear bet on the market demonstrates positive market
timing skills over the next month (~ 3.5%). While these probabilities slightly increase from Panel B
to Panel D, results indicate the same direction of transitions over the next 3, 6 and 12 months. For
instance, funds with gamma skill (y") tend to remain in their states only for a short period of time —
one to three months — and may suggest that neutral allocation w.r.t the market is just a temporary
state rather than a long-term strategy. Finally, we find some evidence that funds with positive
market timing skills ([87,7"], [37,7"], and vT) are less likely to stop reporting over the subsequent
periods compared to funds with negative market timing skills (on average, ~ 1.8% against 2.8%),
and this probability increases linearly as we increase the time period (on average, ~ 18% against

21% in Panel D).
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The last analysis aims at identifying whether typical payoffs can be associated to hedge fund
style. in this subsection reviews whether some types of option-like payoffs are specific to hedge fund
categories. We report in Figure 4 the proportion of option-like payoffs displayed over time for each
hedge fund category. Figure 4a shows the results for all types of option payoffs, while Figure 4b
presents the results only when funds display a significant + coefficient. For instance, the category
“Event Driven” converges towards a payoff resembling that of a short put option because this strategy
takes a long position in the stock of the target company in the merger and a short position in the
acquiring company (Mitchell and Pulvino 2001). One explanation for this classification is that in
bad economic conditions, Event Driven funds will be more likely to fail and thus exhibit losses.
Funds with strategies that resemble writing put options may appear attractive in a mean-variance
framework, but they actually perform poorly when we consider higher order moments (DeRoon and
Karehnke 2017). The reason is that such strategies bear significant tail risks because writing put
options on the market index may severely impact the fund’s performance when strong bearish trends
affect the equity market (Agarwal and Naik 2004).

Exploiting these results, we note that our classification of option-like payoffs is in line with the
findings of previous studies. We present these evidence by primary categories and attribute one type
of option-like payoff to the highest proportion of funds found in Figure 4b that correspond to that

option strategy.

CTA: Long straddle, i.e., strategies that make a trivial directional bet and have a similar payoff to

straddle strategies (Fung and Hsieh 2004);

Event Driven: Short straddle, i.e., strategies that are more likely to fail and exhibit consequent

losses (Mitchell and Pulvino 2001).

Global Macro: Straddle, i.e., market timers with a neutral bet on the benchmark (Fung and Hsieh
2001).

Long/Short: Strangle, i.e., a directional bet with timing abilities.

Market-Neutral: Short straddle, i.e., a neutral bet on the market with the objective of profiting

from mispricing and not from market timing (Chen and Liang 2007).

Multi-Strategy: Long straddle, i.e., a neutral bet on the market with the objective of smoothing

return volatility from strategy diversification.
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Figure 4: Time-Varying Option-Like Payoff

This figure illustrates the identification of option-like payoffs for the cross-sectional hedge funds sample. The
classification of the funds follows the guidelines of Table 1. These guidelines are simply conducted by the
linear () and non-linear () terms from the regression presented in equation (4). The proportion of option-

like payoffs is given across hedge fund categories. The sample period ranges from January 1996 to December

2016.

(a) All Funds

100%
80% - oY
; £
[m] -’v+
E 60% - my-
P B[R+, v
s 40%A alp-,v
mR+
20% oB-
0% -
(b) Funds with significant v Skills
100%
80% — my+
5 o+, y+]
E 60% ~ B[B-, v+
Y ay-
S 40% aR+,y-]
T el o[-,y

0% -

24



Relative Value: Short straddle, i.e., uncorrelated with the market, employing a convergence strat-
egy on mispriced securities and likely to face strong fixed-income exposures during a market

decline (Gatev, Goetzmann, and Rouwenhorst 2006; Chen and Liang 2007).

Sector: Mixed payoffs, i.e., this category is specific to HFR data and regroups a combination of

directional and non-directional bets.

Short Bias: Short strangle, i.e., sell short overvalued securities and face substantial risk during

good market conditions (Agarwal and Naik 2004).

3.2 Hedge Funds’ Gammas and Adjusted Alphas

Similar to models that have the objective of providing measures with better precision for eval-
uating market timing (see, e.g., Jiang 2003), the aim of our model is to distinguish market timing
from option-related spurious timing. We assume that accounting for the cost of options implied in
the market timing model has a causal effect that enables better measurements of a manager’s skills.
For example when a fund manager presents market timing skills (y*) in equation (4), the model
does not indicate whether this level of convexity is attainable through a passive strategy composed
of options. The timing skill attributed to the manager should thus be valid (not artificial) when the
manager trades securities different from the passive option strategy that delivers a similar timing
coefficient and market exposure. Otherwise, the manager’s strategy is a simple replication of the
passive strategy — in which there is neither market timing nor security selection skills (Jagannathan
and Korajczyk 1986) — and the manager should be accredited with zero alpha (security selection)
and spurious timing. Our model provides a solution to this problem. Specifically, our framework
establishes individual benchmarks for fund managers who trade derivatives or option-like stocks.

We present in the next two subsections, the characteristics of the selected options from the

passive replication exercise and quantify its impact in terms of alpha adjustments.

3.2.1 Selected Option Characteristics

Table 5 displays descriptive statistics of the selected options to replicate a fund’s 5 and ~ esti-
mates from equation (4). For example, a fund with positive market timing skills (positive linear and
quadratic terms) could be replicated by investing, on average, 49.14% of the strategy’s capital in a

call option with a moneyness of 0.87 while investing a small amount (only 1.27%) in a put option
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with a moneyness of 0.74, both options having a equivalent maturity of 60 days. We note that the
classifications [31,y1] and |87, v~] share the same type of moneyness (OTM put and ITM call) and
maturity (60 days) in the option selection process. The difference between these categories comes
solely from being long or short the straddle strategy. This finding is similar for the classifications
[8%,77] and [37,~"], which share equivalent moneyness (ITM put and OTM call) and maturity (~
85 days). For straddle strategies, the selection of ATM options is consistent with the idea that the
~ of a straddle strategy is the highest for ATM options. Furthermore, our model forms straddles
by selecting a maturity of approximately 5 months (~ 150 days) and that regardless of whether the
strategies are long or short in the straddle. Finally, we also note that the selected options are highly
liquid, as shown by the large open interest values found in the last columns of the Table.

What does the option selection process in our model tell us about the traditional methodological
choices in option-based replication strategies? According to the conjecture of Merton (1981), market
timers were originally identified as having a similar payoff as a long straddle strategy. Naturally, the
choice of pre-defining options to be ATM is consistent with the idea of capturing the sensitivity to
market volatility rather than the direction of the market return (Coval and Shumway 2001). The
traditional option-based risk factors from Fung and Hsieh (2001) and Agarwal and Naik (2004) also
select ATM options to explain the performance of market-neutral funds. However, we differ from
these studies, as our model selects options with an average maturity of 5 months but large standard
deviations, whereas traditional option factors use a fixed maturity of one or three months.'”> Turning
to strangle strategies for which the maturity and the moneyness are endogenous to our model, we
see that for the intention of replicating funds with directional and non-directional bets is produced
by investing in a combination of ITM and OTM options where most of the weight is attributed to
the ITM option. OTM options thus play a marginal role in our model, whereas they compose half
of the set of option risk factors in Agarwal and Naik (2004). We illustrate in Figure 6 the empirical

distribution of the characteristics of options composing the replication strategies.

15This flexibility in the selection of options is one advantage of our model. In fact, this type of information could
be interesting regarding the development of a new set of option-based risk factors that better capture nonlinearities in
hedge funds’ returns. However, this is outside the scope of the present research. Rather, we are interested in pointing

out the endogenous choices of our model and assessing whether they converge towards those of previous studies.
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Table 5: Option Replication Strategies

This table summarizes the average characteristics of the options that replicate all possible patterns of the
TM regression. We reports the average amount of capital (weight) invested in the call and put options of the
replicating strategy as well as the maturity, moneyness and open interest of these these options. Standard

deviations of the average values are reported in parentheses.

Fund # Obs Weight Moneyness Maturity Open Interest

Classification Call Put Call Put  Call Put Call Put

BT 262,191 8.15% -8.15% 1.01 1.01 149 149 11559 9343
(15.29%)  (15.29%) (0.02) (0.02) (170) (170) (18287) (13244)

BT,77] 26,646 49.14% 1.27% 087  0.74 60 60 4031 15244
(68.54%)  (2.14%) (0.05) (0.14) (47) (47) (10729) (26440)

BT,77] 30,354 -0.25% -37.64% 117 1.12 83 83 10518 3582
(0.42%)  (83.49%) (0.09) (0.07) (76) (76) (16100) (11170)

B8~ 169,192  -8.94% 8.94% 1.01 1.01 166 166 11407 9659
(17.10%) (17.10%) (0.02) (0.02) (176) (176) (17089) (14829)

B7,7"] 23,245 0.31% 47.67% 1.16  1.12 87 87 9625 2693
(0.46%)  (85.90%) (0.09) (0.07) (78) (78) (14248) (7977)

[B7,77] 13,203  -60.20% -1.42% 087 0.74 62 62 2977 10395
(107.38%) (2.34%) (0.05) (0.11) (47) (47) (9637) (20416)

vt 49,764 14.15% 14.86% 1.01 1.01 144 144 11712 10183
(32.29%) (38.31%) (0.02) (0.02) (153) (153) (16444) (13981)
v~ 41,902  -14.82%  -17.66%  1.01 1.01 165 165 11287 10294
(30.58%)  (39.49%) (0.02) (0.02) (167) (167) (16948) (16467)
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Figure 5

The figures illustrate the distribution of the characteristics from the selected call and put options of the
replication strategies, in blue and red, respectively. We display in (a) the weight, (b) the maturity (in days),
(c¢) the moneyness and (d) the open interest attributed to the options in the strategy. The boxes show the
5-th percentile and 95-th percentile of the distribution of the variables on the y-axis, and the mean of the

distribution is represented by the dots inside the boxes.
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3.2.2 Adjusted Performance

Managerial skill is by definition the part of the return in excess of any systematic sources of
risk and attributed to the alpha of a multi-factor regression analysis (Agarwal, Mullally, and Naik
2015, p. 16). However, it is conceptually unclear whether the quadratic term of the TM model
should be considered a systematic source of risk. The term can be viewed as a statistical artifact
to measure the manager’s exposure to market movements. According to Fama (1972), who defined
a fund manager’s skills as consisting of both market timing and stock selection ability, it is clear
that the combination of the intercept and the quadratic term (cps +vRm?) should be regarded as
the total performance (Perf) of the fund (see also, Bollen and Busse 2004). However, if we believe
that the quadratic term (yRm?) could be replicated by a passive strategy, then the only source of
skill left in the equation is the intercept of the TM model (apps). As our replication framework
satisfies the condition of passively replicating the linear and quadratic terms of the TM model, the
adjustment of the intercept (aps) should reflect a manager’s true skill at security selection relative
to a passive option-based benchmark.

We report in Table 6 the distribution of the monthly raw and adjusted-alpha estimates from
the extended TM model with respect to the type of strategy the model tries to replicate. The first
column displays the raw alphas, while the second column displays the distribution of the adjusted
alphas. The third and the fourth column show the results for the total performance and the total
adjusted-performance of the fund, respectively. The figures are aggregates of monthly values from
rolling-window regressions. Results show that a fund with both a positive direction and timing ability
on the market [37, 7] delivers, on average, a negative raw alpha (~ -0.06% per month). Conversely,
a fund with a positive bet but negative timing ability on the market [31,~~] delivers a positive raw
alpha (~ 1.09% per month). This strategy is similar to a strangle strategy strongly invested in the
short ITM put position and with small weight in the short OTM call position. DeRoon and Karehnke
(2017) demonstrate that writing put options may appear successful in a mean-variance framework
but performs poorly when higher-order moments are introduced into the performance evaluation. In
fact, Jurek and Stafford (2015) define writing put options as “dumb” alpha strategies. The results in
the adjusted-a column substantially change the overall picture; the “dumb” alpha from writing put
options shrinks to an average of -0.06% per month, while the alpha of a market timer is now raised

to an average of 3.81% per month with a variability of xxx. The large volatility on alpha estimate
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suggests that funds with positive direction and timing ability on the market [3", "] have on average
a lower hurdle compared to passive option-based strategies but that this hurdle is not systematic.
This is because the adjustment depends not only on the options’ availability on the market at time
t but mostly the degree of convexity of the fund. Again, such outcomes make us confident that the
flexibility of the model in the option selection process is key to distinguish spurious option timing.
Similar interpretations can be inferred for other classifications with a significant timing coefficient
(7). Overall, the aggregate results obtained for all funds preserve an equivalent level of average fund
alpha even after adjustment while making the estimate more volatile in the cross-section of hedge
funds.

The next subsection questions whether the alpha adjustment mitigates the artificial negative

correlation embedded in market timing or is simply another systematic bias but from opposite sign.

3.3 Artificial Negative Correlation in Market Timing Models

The presence of an artificial negative correlation between the intercept and quadratic term of
market timing models has been documented in previous literature such as in the work of Jagannathan
and Korajczyk (1986), among others. The alpha for option-like strategies such as hedge funds,
measured by the intercept of a regression model, may thus be inflated by a positive convexity.
Indeed, the alpha of exotic investments with option-like (nonlinear) payoffs from a typical linear
regression is different from the traditional alpha of vanilla strategies (e.g., passive equity and bond
strategies). The effect of skills for these exotic investments should thus be contingently adjusted
for the non-linearities in their returns. A quadratic model, such as the TM model, by construction
shifts upward (downward) the alpha of a strategy that has a negative (positive) OLS coefficient
on the quadratic term because the average squared market return is positive (negative) (DeRoon
and Karehnke 2017). This is in line with the empirical studies of Coggin, Fabozzi, and Rahman
(1993) and Jiang (2003), which also report evidence of an artificial negative correlation between the
intercept and the quadratic coefficients.

To better understand this bias, we word under the controlled environment presented in Section
1.4 with the hypothetical funds of Hasanhodzic and Lo (2007) and Chen and Liang (2007) for which
we know that selection skill is absent and therefore, independent of the market timing skill. We
demonstrate that (i) there is, indeed, an artificial negative correlation between the intercept and the

quadratic term of a market timing model where there should be none, by construction, and (ii) that
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Table 6: Alpha and Adjusted-Alphas

This table summarizes the average alpha and adjusted-alpha according to the types of strategy involving

options that replicate all possible patterns of the TM regression. Standard deviations of the average values

are reported in parentheses.

Classification # Obs @ Adjusted-a«  Perf  Adjusted-Perf

Br 262,191  0.50% 0.50% 0.55% 0.56%
(0.97%) (1.18%)  (1.72%) (1.88%)

[BT,~77] 26,646  -0.06% 3.81% 1.00% 4.87%
(0.85%) (6.94%)  (4.09%) (9.80%)

[B1,77] 30,354  1.09% -0.06% 0.30% -0.84%
(1.11%) (1.97%)  (1.73%) (2.94%)

B~ 169,192  0.56% 0.16% 0.50% 0.11%
(1.00%) (1.31%)  (1.61%) (1.86%)

[B7,77] 23,245  -0.22% 0.63% 0.65% 1.49%
(0.96%) (2.40%)  (1.99%) (3.67%)

B, 13,203  1.28% -3.49% 0.22% -4.55%
(1.29%) (6.37%)  (3.36%) (7.75%)

v+ 49,764  -0.20% 3.03% 1.59% 4.83%
(0.95%) (8.69%)  (6.45%) (12.80%)

o 41,902 1.18% -1.85% -0.45% -3.49%
(1.34%) (4.82%)  (4.40%) (8.11%)

All funds 616,497  0.50% 0.49% 0.56% 0.55%
(1.08%) (3.69%)  (2.84%) (5.54%)
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the alpha correction implied in our framework adjusts perfectly for this bias.

To show this, we present the correlation between the time-varying coefficients of the TM model
obtained through rolling-window regressions (min. 36 months and max. 60 months) for a sample
period ranging from January 1996 to December 2016 (252 monthly observations). Each strategy

has 216 coefficient estimates for the a and v from the TM model. Our replication framework also

K
T

provides an equivalent number of estimates for the alpha (af) of the option-based strategies. The
adjusted-a is equal to the alpha («) from the TM model minus the alpha (af) from the option-
based replication strategy. Table 7 presents the results of the controlled environment and clearly
shows that the artificial negative correlation embedded in market timing models is significant (at
a 99% confidence level) with an average correlation between v and « close to -78%. Conversely,
the correlation between v and of is low and insignificant for all hypothetical strategies. We remain
confident that the alpha correction is not another artifact that cures the correlation bias by simply
adding another mechanical effect but with the opposite sign. Nevertheless, due to the magnitude of
the artificial negative correlation, the adjusted-« also present a significant negative correlation but
for which the average value drops to -18%.

Next, we turn our analysis to the empirical evidence in our hedge fund sample. Table 8 reports
that average correlation between the v and « is, as expected, strongly negative (on average -42.02%).
The correlation between v and adjusted-a increases to 40.51%. This suggests that for some fund
classifications, af is strongly negative. In an empirical and uncontrolled environment as our hedge
fund sample, distinguishing between uncorrelated timing and selectivity information is difficult, or
almost impossible (Grinblatt and Titman 1989; Jiang 2003). Therefore, we must rely on the fact that
the alpha adjustment remains unbiased in the controlled environment and should behave identically
when applied to our sample. The most appealing results are for fund classifications that exhibit op-
posite signs for the directional () and non-directional (y) bets. Funds in the classifications [37, 7]
and [$7,7"] demonstrate low levels of correlation, 14.39% and 18.48%, respectively. Interestingly,
the correlation during the NBER expansion periods is almost null (-1.43% and -4.98%) but stronger
in periods of recession (40.00% and 45.71%). One potential explanation for these results would be
that funds classified as [31,v7] have a payoff that resembles short put option strategies; in good
economic conditions, such strategies pocket the “option” premium but suffer during sudden market
crashes because of bad market timing. So, the alpha has a positive relationship with bad market

timing in recession periods. The rationale is similar for funds with a long put payoff [3~,~v*].
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Table 7: Negative Correlation Bias in a Controlled Environment

This table presents the artificial correlation bias embedded in the TM market timing model. Results are
presented for six hypothetical market timing managers for whom we list their strategy and the option-like
payoffs they exhibit. The last three columns report the correlation between the v and the alpha («) from
the market timing model, the correction of alpha (af) from the option-based replication strategy and the
final adjusted-a of the manager. The results are obtained through rolling-window regressions and impose a

minimum of 36 up to a maximum of 60 available months.

Correlation with
Strategy Fund Payoff Q aof  Adjusted-a
max(Rm,Rf) Long Call -76.25%***  7.55% -21.45%***
min(Rm,Rf) Short Call ~ -76.25%*** 0.91% -14.81%**
max(-Rm,-Rf) Long Put S74.01%*%*F  7.38% -18.89%***
min(-Rm,-Rf) Short Put  -74.01%*** 1.75% -14.34%**
(

max(-Rm,Rm) Long Straddle -84.14%*** 8.58% -21.19%***
min(-Rm,Rm) Short Straddle -84.14%*** 5.50% -18.37%***
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The most puzzling results are for fund classifications that exhibit similar signs in the directional
(8) and non-directional () bets. Funds in the classifications [3",7"] and [37,~7~| demonstrate
high levels of correlation between the coefficients, 63.05% and 74.19%, respectively. According to
Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014) during recession periods these funds would
stop picking securities to the benefit of timing the market, we should thus expect lower levels of
correlation between the coefficients. However, this intuition is not valid as the levels of correlation
increase to 74.58% and 79.03%, respectively. One potential explanation is that funds with both a
directional and a non-directional bet on the market share similar information in their selectivity and

timing skills.
Table 8: Negative Correlation Bias in an Uncontrolled Environment

This table reports the artificial correlation bias embedded in the TM market timing model. Results are
presented for hedge fund managers for whom we list their fund classification in the first column. The last
three columns report the correlation between the « and the alpha («) from the market timing model and the
final adjusted-a of the manager. We distinguish the results for periods of expansion and recession as defined
by the NBER. The results are obtained through rolling-window regressions and impose a minimum of 36 up

to a maximum of 60 available months.

Fund Correlation with v in expansion in recession

Classification « Adjusted-a « Adjusted-a « Adjusted-a

Br -25.94%  -2341%  -25.94%  -25.61%  -30.57%  -16.45%
[BT,~77] -26.53% 63.05% -33.02% 51.96% -33.13% 74.58%
[B,77] -47.96% 14.39% -49.92% -1.43% -37.39% 40.00%

B~ -30.04%  -18.92%  -29.28%  -19.03%  -35.49% = -22.48%
[B7,77] -45.40% 18.48% -46.73% -4.98% -47.99% 45.711%
87,77 -49.95% 74.19% -56.95% 68.30% -38.43% 79.03%

yt -30.20% 52.18% -26.89% 63.64% -50.62% 56.25%

o -44.33% 53.78% -42.91% 66.83% -53.45% 54.88%

All funds -42.02% 40.51% -40.48% 33.13% -53.64% 61.00%

Finally, we present the implications of adjusting the alpha on the negative correlation bias

between the security and timing skill coefficients. To show this, we use of a double conditional
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sort on the a and the adjusted-a while controlling for the level of v skills. We predict that if the
correlation between v and adjusted-a were artificially constructed, we should not be able to perceive
any symmetrical effect between the groups of hedge funds and subsequent (t41) fund returns. We
perform this test by forming portfolios of hedge funds and assume for simplicity that there are no
transaction costs and lock-up periods for grouping hedge funds. Table 1 reports the results for
the spread portfolios constructed by the joint sort of funds in quintile portfolios based on their ~
skill and by their selectivity skill. The raw selectivity skill («) is reported in Panel A, whereas the
adjusted selectivity skill (Adjusted-«) is in Panel B. As expected, in Panel A, the abnormal returns of
these spread portfolios over the FF 3-factor model are not symmetrical, that is, the spread portfolio
for funds with high ~ skill is close to 0 (¢-stat of -0.176). Conversely, adjusting for the negative
correlation bias leads to a symmetrical effect in predicting subsequent hedge fund returns; the same
portfolio now delivers a monthly return of 0.651% (¢-stat of 3.423). And the effect is valid up to

nine months after portfolio formation; however, we do not report these results for brevity.

4 Skill Index

In a similar vein as Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014), we construct a hy-
pothetical Skill Index at time t+1 using the adjusted measure for the selectivity skill and timing
skill at time ¢. The index is constructed by aggregating the standardized values (z-score) of the
selectivity skill and timing skill and weighting each component by the recession probability index
from Chauvet and Piger (2008), denoted w.

The equation is as follows:

Skill Index},; = w; x Timing] + (1 — w;) x Selection; (20)

The intuition behind the linear methodology is simple; a manager is more likely to time the
market in stressed economic conditions, while in prosperous conditions, he concentrates on the
selection of securities. In our framework, the timing skill is defined by the slope on the squared
market return from the TM model (), and the selection skill is the adjusted-o (7. = & — ar ).

Panel A of Table 10 demonstrates that a skill index applied to the raw selectivity measure
from the TM model does not allow to identify persistent skilled funds. Indeed, long/short strategy

formed on the decile portfolios sorted on the skill show average returns (E[R]) close to zero. We
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Table 9: Conditional Sort on the Adjusted-Alpha

For each month, we sort hedge funds into quintile portfolios according to their selectivity skills, i.e., a or

adjusted-a. Groups are formed using a conditional sort that first splits hedge funds according to their level

of gamma skill and then by their level of selectivity skill. In each level of gamma skill, the spread between

funds with the highest (Q5) and the lowest (Q1) selectivity skill are reported in the column (Q5-Q1). The

reported values are the alpha (in %) from the FF 3-factor model, and ¢-stats are in parentheses.

—_

Panel A: « Panel B: Adjusted-a

1 2 3 4 5 Q5-Q1 1 2 3 4 5 Q5-Q1
-0.289 0.032 0.148 0.094 0.305 0.593 -0.392 0.033 0.089 0.112 0.454 0.846
(-1.620) (0.270) (1.273) (0.741) (1.366) (2.827) (-1.882) (0.259) (0.793) (0.896) (2.584) (4.943)
-0.085 0.051 0.159 0.162 0.289 0.374 -0.298 0.064 0.103 0.256 0.445 0.743
(-0.680) (0.712) (2.250) (2.244) (2.649) (2.695) (-2.228) (0.813) (1.525) (3.375) (4.054) (4.737)
0.078 0.126 0.221 0.268 0.436  0.358 0.020 0.122 0.247 0.235 0.504 0.484
(0.852) (1.821) (3.276) (3.891) (4.366) (3.307)  (0.198) (1.726) (3.787) (3.650) (4.484) (3.667)
0.103 0.206 0.243 0.286 0.447  0.345 0.072 0.201 0.250 0.308 0.453 0.381
(0.877) (2.145) (2.495) (3.106) (3.596) (2.718)  (0.561) (2.001) (2.675) (3.400) (4.007) (3.070)
0.650 0.460 0.437 0.415 0.610 -0.040 0.323 0.380 0.402 0.487 0974 0.651

(2.395) (2.493) (2.744) (2.747) (3.118) (-0.176)

(1.555) (2.110) (2.474) (2.774) (4.197) (3.423)
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found similar findings when spread returns are regressed again the Fung and Hsieh (2001, FH) and
Agarwal and Naik (2004, AN) models; the intercepts a-FH and a-AN are not significantly different
from 0. Panel B of Table 10 shows that sorting hedge funds on the Adjusted-Skill Index predict
future returns. The long/short strategy presents a postivie gamma at a 95% confidence level. This
suggests that relationship between the Adjusted-Skill Index and subsequent hedge fund returns is
monotonic across the decile portfolios. In unreported results, we confirm that this linear relationship

holds up to 12 months after portfolio formation.
Table 10: Option Replication Strategies

For each month, we sort hedge funds into decile portfolios according to the level of their Skill Indexz, i.e., a linear
combination of v and « or adjusted-«. In each symmetric level of Skill, the spread between portfolios of funds
is reported in the columns named Differences. The reported values are the average fund’s one month ahead
returns (from ¢+1 until t42). The corresponding t-stats of the expected returns are displayed in parentheses.
The notations E[R] refers to average return whereas a-FH and a-AN refers to the intercept coefficient from the
factor models of Fung and Hsieh (2001) and Agarwal and Naik (2004), respectively. Returns are in percent.
The sample period ranges from February 1996 to December 2015.

Decile Portfolios (Equal-Weighted) Differences
1 2 3 4 5 6 7 8 9 10 10-1 9-2 8-3 7-4 6-5
Panel A: Skill Index

E[R] 0.43 0.39 0.36 0.33 0.37 0.39 0.41 0.43 0.47 0.72 0.29 0.08 0.07 0.08 0.02
t-stat  (1.518) (2.084) (2.221) (2.307) (2.702) (2.897) (2.906) (2.852) (2.657) (2.869) (1.294) (0.779) (0.905) (1.345) (0.417)
a-FH 0.14 0.18 0.17 0.18 0.19 0.21 0.22 0.23 0.21 0.44 0.31 0.03 0.07 0.04 0.02
t-stat  (0.718) (1.592) (1.726) (2.150) (2.452) (2.762) (2.912) (2.492) (1.902) (2.413) (1.293) (0.269) (0.858) (0.711) (0.416)
a-AN  0.16 0.22 0.18 0.17 0.19 0.23 0.27 0.27 0.31 0.58 0.42 0.09 0.09 0.10 0.04
t-stat  (0.660) (1.647) (1.771) (1.907) (2.160) (2.839) (2.761) (2.815) (2.585) (2.985) (1.685) (0.749) (1.099) (1.592) (0.788)
Panel B: Adjusted-Skill Index
E[R] 0.03 0.26 0.26 0.32 0.38 0.44 0.44 0.47 0.64 1.04 1.01 0.38 0.21 0.11 0.06
t-stat  (0.104) (1.238) (1.506) (2.277) (2.819) (3.433) (3.182) (3.324) (4.001) (4.801) (3.941) (3.046) (2.771) (2.185) (1.675)
o-FH  -0.44 -0.02 0.02 0.15 0.21 0.30 0.27 0.32 0.46 0.89 1.34 0.48 0.30 0.12 0.08
t-stat  (-2.185) (-0.135) (0.228) (1.891) (2.723) (4.028) (3.359) (3.459) (4.097) (5.182) (5.543) (3.857) (3.987) (2.192) (2.090)
a-AN  -0.34 -0.04 0.03 0.17 0.22 0.31 0.31 0.37 0.57 0.95 1.29 0.61 0.34 0.14 0.10
t-stat  (-1.744) (-0.308) (0.307) (1.938) (2.503) (3.718) (3.127) (3.340) (4.196) (4.672) (5.607) (5.242) (4.647) (2.385) (2.197)
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5 Robustness

5.1 Model Specification
5.1.1 In-sample Bootstrap Test

We posit the hypothesis that estimating an ad hoc model specification of active investors should
deliver (in-sample) an aggregate distribution of skills similar to a zero-alpha distribution. In other
words, if the model is accurate enough (in-sample) we should see an aggregate alpha close to zero:
for every winning investor, there should be losers (Fama and French 2010).

Kosowski, Naik, and Teo (2007) demonstrate, however, that assessing the performance of a fund
based solely on the alpha coefficient of a regression model is misleading because the errors of the
estimation are not considered in the performance evaluation. These errors lead to spurious outliers,
which may be identified as good or bad performers, by chance. As a result, recent performance
evaluations have been conducted based on the normalization of the coefficient through the ¢-statistics
(t(«)) of the alpha and bootstrap methods. We next explain Fama and French (2010)’s bootstrap
test in which the ¢(«) of a fund is considered to judge whether its performance is persistent or simply
driven by luck. In our framework, we are rather interested to check whether the distribution of skill
for well and poorly performing funds remains the same before and after our alpha adjustment.'®
Fama and French (2010) compare the actual cross-section of mutual funds’ alphas to a simulated
cross-section of bootstrapped alpha in a world of zero true alpha (no timing or selection abilities).
In this section, we transpose the procedure to our sample of hedge fund returns using the extensions
of the TM regression models described in the prior sections.

Kosowski, Naik, and Teo (2007) emphasize two difficulties in evaluating the performance of
hedge funds: first the difficulty of benchmarking dynamic hedge fund strategies and, second, the
fact that adding alternative risk factors might reduce misspecifications in the model. Concerning
the benchmark issue, we know that although the S&P 500 is probably not the most appropriate
benchmark for evaluating the cross-section of hedge funds, it is nevertheless the most frequently used
benchmark in the literature. The interpretation of our results should thus not diverge from other
studies based on the choice of this benchmark. Regarding the model specification, we complement

the quadratic regression model of TM with instrumental variables that control for public information.

0Qur bootstrap procedure is similar to that of Kosowski, Timmermann, and Wermers (2006), Chen and Liang

(2007), Jiang, Yao, and Yu (2007), Kosowski, Naik, and Teo (2007), and Cao et al. (2013).
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We describe the bootstrap procedure in the four following steps.
The first step consists in estimating the actual alphas of the i** hedge fund using a multi-factor
model. In our application, we use the TM model augmented with conditional lagged instruments

described in Section 1.1:

L L
R = a+ B.Rmy + %Rm? + Z 5l(zl7t,1Rmt) + Z Al(zl*,t,lRmt) + et (21)
=1 =1

where R; denotes the i hedge fund’s return in excess of the risk-free rate (the one-month T-bill
from Ken French’s website) at time t. 2;_1, and zl*’til denote the conditional lagged instruments
measured on monthly and aggregate daily observations, respectively. We still consider the excess
return of the S&P 500 as a proxy for the excess market return (Rmy). We also assume that e; ~
N(0,02).

In the second step, we subtract the estimated « of the 7*" fund from its return (R;) to construct
a time series of zero-alpha returns, i.e., (R; — «). As Cao et al. (2013, p. 499) note, this step
ensures that the procedure generates “hypothetical funds that, by construction, have the same factor
loadings as the actual funds but have no timing ability”. In other words, the beta parameters remain
unchanged. However, in our case, as the market timing ability is already captured by the quadratic
terms, the only ability left in the model is the manager’s skill at picking well performing stocks
(security selection).

In the third step, we jointly!” resample the zero-alpha returns with the factor returns (Rm; and
Rm?). The joint resampling ensures that we capture the cross-sectional correlation between the fund
returns in our sample and the explanatory variables. One run of the bootstrap works as follows:
we randomly select a date from our sample of 239 monthly observations (from February 1996 to
December 2015) and draw a selection, with replacement, of date observations of the same size as
our original time frame (239 monthly observations). The time series is equivalent for the whole
funds universe. We retain only funds with more than 36 observations in this run. As explained in
Fama and French (2010), this procedure preserves the cross-sectional and time-series dependence

across funds and explanatory variables. The bootstrap is composed of 1,000 runs (denoted b for

"The bootstrap procedure is a random selection of monthly observations of all funds with replacement. The
conditional resampling is performed to capture the cross-sectional correlation between portfolio returns constituting our

sample. As in Harvey and Liu (2016), for example, the bootstrap preserves cross-sectional and time-series dependence.
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bootstrapped) and estimates the alpha and t-statistic for the ¢ fund in a world in which its true

alpha is zero:

L L
(Re — ap)’ = a4 + B°Rmy + A" Rmf + ) 0jzp—1 Ry + > wp (2 Rmy) + €] (22)
=1 =1

In the fourth step, we average, across the 1,000 simulations, the alphas and their ¢-statistic (¢(«))
estimates at the same percentile to construct an empirical cumulative density function (CDF) of the
cross-sectional zero alphas (4)). Fama and French (2010) use the t-statistics of funds instead of
their raw alphas to remove the influence of funds with short sample periods or high idiosyncratic
risk — these funds being more likely to have alpha by chance. Thus far, the alpha corrections from
our option-based strategies have not been integrated into the bootstrap. To do this, we repeat the

operation from step one to step four and adjust the funds’ returns by subtracting the alpha of our
(T,k)

7

), that is, we replace R! in equation (21) with (R — a(T’“)).

option-based replication strategies (« i

Overall, Figure 6 demonstrates that the in-sample o adjustment from our option-based framework
delivers an aggregate picture of the distribution ¢-(«) similar to a distribution where « is by design
equal to zero. This supports the hypothesis that the combination of the extended TM model with
instrumental variables and our alpha adjustment provides a good model specification to explain the

cross-section of hedge fund returns.

5.1.2 Exclusion Restriction Variables

To verify that our findings are not driven by model misspecifications, we re-estimate our results
using two “placebo” variables which control for spurious significant loadings on the quadratic term
in equation (4). Following the work of Jagannathan and Korajczyk (1986), Chen and Liang (2007)
complement the specification of the regression model by adding one of these two nonlinear variables of
the benchmark, i.e., In(Rm|) and 1/Rm. Performing equivalent analysis as in Section 1.1 with these
additional variables verifies whether nonlinear coefficients on the benchmark load up significantly in
the regression, by design. A significant estimate serves as the exclusion of the model specification.
We report in Table 11 the proportion of rolling regressions for which one of these term coefficients is
significant. The first column present the significance level for the coefficient estimate of the placebo
variable; the second column reports the proportion of significant estimates in the OLS-regression

when the variable 1/Rm is added to the model while the third column report the average adjusted R-
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Figure 6: Cumulative Density Function of ¢(«)

This figure illustrates the CDF of ¢(«) estimates on hedge funds with significant parameters from the TM
model. The simulated CDF of the ¢(«) estimates for zero-alpha funds is represented by the blue line. The
red dotted line is the CDF of the ¢(«) estimates for actual portfolios. The vertical gray dotted lines represent
t-statistics at the usual 90% confidence level. For visualization purposes, the areas above this confidence level
for the actual t-statistics are shaded. The aim of the figure is to compare the blue and red dotted lines at
these 90% confidence levels. The sample period is from January 1996 to December 2015. Graphs on the left
(right) show results for funds without (with) alpha correction from an option-based strategy. Plots (a) and

(b) use the factors of the TM model and conditional lagged instruments from Chen and Liang (2007).
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squared for the regressions with a significant estimates; Columns four and five display the equivalent
results when the variable In(Rm|) is added to the model. Our results indicates that the proportion
of regressions with a significant estimate on the placebo variable are proportional to their specified
significance levels, i.e. around 10%, 5%, 1% for a confidence level of 90%, 95%, 99%, respectively.
These findings confirm that our results should not be driven by model misspecification. In unreported
tests, we perform again all analysis present in the paper by discarding regressions with a significant
coefficient on a placebo variable. This selection process does not affect the results presented in the

previous sections.
Table 11: Model Misspecification

This table summarizes the proportion of rolling regressions with a total amount equal to 616,497 in our sample
for which a coefficient on the nonlinear placebo variable is found significant. The placebo variable is either:

1/Rm or In(Rm|). We also report the average adjusted R-squared for regressions with a significant estimate.

Significance level 1/Rm Adj-R? In(Rm|) Adj-R?

10% 9.80% 3.70% 10.61% 3.89%
5% 5.31% 2.10% 5.60% 2.16%
1% 1.36% 0.59% 1.36% 0.54%

5.2 Henriksson and Merton Model

Ferson and Schadt (1996, p. 431) identify for dynamic models that: “the investment horizon
of the investor becomes a complex issue [...] and the optimal investment horizon is an endogenous
variable.” In this part, we briefly present evidence that the nonlinear variable from the market timing
model of Henriksson and Merton (1981, HM) is pertinent for adjusting the alpha of a manager only
when her investment horizon is short-term (up to 3 months). We proxy the investment horizon
by the maturity of the selected options that replicate the manager’s strategy. The reason to this
choice is simple; as the investment horizon of the manager gets closer to one period, the Treynor and
Mazuy (1966, TM) model degenerates into the HM model. In their model, Henriksson and Merton
substitutes the squared market return (Rm?) by the payoff to a one-period call option on the market
portfolio (max(0,Rm)). This alternative specification provides a kinked rather than function which

gradually becomes nonlinear to capture the market timing skill of fund managers. The model is
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thus well suited for replicating managers’ performance with short investment horizons because the
gamma for options with low maturity tends to converge to 400 and it is precisely what the kink of
the function intends to capture.

To demonstrate that the HM model is only well suited for short investment horizons, we use the
joint sorting test on v and the adjusted-a which allows to distinguished good from bad performing
funds for all level of gamma skills. In this test, we implement a simple selection process to estimate
the adjusted-a of managers: funds identified with low investment horizons under the TM model
and for which the HM model show higher R? are corrected with the adjusted-a from the HM model
otherwise the correction is provided from the TM model. The first column of Table 12 reports the
results when no investment horizons are specified and simply refers to the adjusted-a from the HM
model only. Each row of the Table reports the spread return between funds ranked in high quintile
(Q5) and low quintile (Q1) on their adjusted-« for a given level of . Clearly results show that the
HM model fails at distinguishing good from bad performing funds with a high level of v (Q5) and
mixed investment horizons because the spread return (Q5-Q1) is close to zero (0.053% with a ¢-stat
of 0.212). Columns (2) to (4) demonstrates that the spread returns (Q5-Q1) between high versus
low adjusted-a funds increase significantly as the investment horizon shrinks from 180 to 120, and
60 days, respectively.

According to Ferson and Schadt (1996) the investment horizon of an investor is an important but
difficult issue that deserves particular attention for performance evaluations. We thus motivate the
initial choice of the TM model not only by its strong relationship with the Taylor expansion series
that serves as a basis for the option-based replication framework but also by the important flexibility

it gives for replicating a complex variety of investment horizons compared to the HM model.
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Table 12: Adjusted-alpha and Managers’ Investment Horizons

For each month, we sort hedge funds into quintile portfolios according to their selectivity skills, i.e., a or
adjusted-a. Groups are formed using a conditional sort that first splits hedge funds according to their level
of gamma skill and then by their level of selectivity skill. In each level of gamma skill, the spread between
funds with the highest (Q5) and the lowest (Q1) selectivity skill are reported in each column (Q5-Q1). The
reported values are the alpha (in %) from the FF 3-factor model, and ¢-stats are in parentheses. We provide
four model specification: (1) refers to the alpha-adjusted from the HM model only, while for the next columns
the model selection combine the adjusted-a from the HM and the models. More precisely, funds identified
with low investment horizons under the TM model and for which the HM model show higher R? are corrected
with the adjusted-a from the HM model otherwise the correction is provided from the TM model. Columns
(2) to (4) specify that the HM model used when investment horizons are lower than 180, 120, and 60 days,

respectively.

Adjusted-a : Q5-Q1
nm @ B @
7 None 180 days 120 days 60 days
1 1.005 0.644 0.655 0.725
(4.485) (3.296) (3.337) (3.878)
2 0.600 0.727 0.728 0.677
(4.278) (4.658) (4.639) (4.365)
3 0465  0.365 0.370 0.430
(3.371) (3.152) (3.206) (3.633)
4 0527  0.303 0.302 0.399
(3.535) (1.903) (1.904) (2.646)
5 0.0563  0.395 0.423 0.513
(0.212) (1.979) (2.124) (2.619)
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6 Conclusion

This paper establishes a time-varying benchmark methodology to assess the timing skills of fund
managers. Our model is intended to adjust the fund managers’ returns by the alpha of a passive
option-based strategy that replicates the non-linearity in the fund returns. Fama (1972) defined a
fund manager’s skills as both market timing and stock selection ability from the Treynor and Mazuy
(1966, TM) model, such that the combination of the intercept and the quadratic term (aps +vRm?)
captures these skills. However, when assuming that the quadratic term (yRm?) could be replicated
by a passive strategy, the only source of skill left in the equation is the intercept (arps), which thus
represents the security selection skill of a manager. Our study follows this assumption and extend
the replication model of Hiibner (2016) to satisfy the condition of passively replicating the linear
and quadratic terms of the market timing model in a time-varying framework. The “cost” of the
replication serves as a basis for adjusting the intercept (a) of the TM model and should reflect the
true skill that a manager demonstrates relative to a passive option-based benchmark with equivalent
convexity.

After adjusting the alpha of the managers by that of the replication strategy, we simply assess
the systematic sources of fund returns through traditional multi-factor models. Overall, the alpha
adjustment in our model delivers an interesting picture of the cross-sectional skills in our hedge fund
sample (a merged sample of HFR and Morningstar): the construction of an Adjusted-Skill Index
correlates with future returns and that up to twelve months ahead. This monotonic relationship is
not present when using the traditional specification of the TM model.

This research contributes to the literature on the gamma trading in hedge funds’ trades be-
cause it first sets individual benchmarks for replicating the non-linear nature of the performance of
hedge funds, and it does so by applying a flexible approach that uses tradable options from Option-
Metrics. Second, the adjustment in our model improves on and is not captured by other standard,
derivative-based risk factor models. Third, the approach allows us to make more accurate infer-
ences in comparing non-linear strategies with “skilled” versus “dumb” alpha. Indeed, the algebra
behind a quadratic equation leaves a positive (negative) intercept when the quadratic coefficient is
negative (positive), such that a positive market timer will have, on average, negative alpha, while
a strategy that shorts naked put options will have, on average, positive alpha by construction (see,

for instance, Jurek and Stafford 2015). Adjusting for this mechanical effect leaves us with a more
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accurate evaluation of the skills available in the hedge fund industry.

Overall, we categorize the payoffs of approximately the whole cross-section of our hedge funds
sample into three main categories: directional with market timing skills (e.g., long-short and short
bias hedge funds), non-directional with market timing (e.g., multi-strategy, global macro, CTAs), and
non-directional with convergence bets (event driven, relative value, market-neutral). We find positive
adjustments for market timers with directional bets and positive non-directional bets (long call, long
put, and long straddle payoffs) but negative adjustments for negative timers with convergence bets
(short call, short put, and short straddle payoffs). We note however that the alpha adjustment is
strongly dependent on the vertex of the quadratic payoff — i.e., the ratio —3/2v. The flexibility of
our model leaves an alpha adjustment that is free from the bias arising from the artificial negative
correlation in market timing models.

We hope this study can improve our understanding of the non-linearities in hedge fund returns
and contribute to the development of a new set of option-based risk factors that more accurately

capture the dynamic patterns of hedge funds, which is a topic we hope to pursue in future research.
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Appendices

A Hedge Fund Database Treatments

The treatments applied to merge our databases (Morningstar and HFR) regroup the following
conditions for both databases, which contain monthly net-of-fees returns and assets under manage-

ment for the period from January 1974 to December 2015;

1. We focus on the post-1994 period because prior to this date, the coverage of defunct funds
is incomplete. In our paper, we focus on 1996 onward to fit the condition imposed by the

OptionMetrics database, which only starts in January 1996.

2. In Joenvaara, Kosowski, and Tolonen (2016), the data for raw returns and AuM observations
are denominated in several different currencies, and the authors convert returns and AuM
observations that are not denominated in USD to USD using end-of-month spot rates. In this
paper, however, we only use funds denominated in USD to be in line with the benchmark used

in our analysis (the S&P 500).
3. We include only funds that report net-of-fee returns on a monthly basis.

4. We remove very large or small returns to eliminate a possible source of error by truncating

returns between the limits of -90% and 300%.

5. We exclude the first twelve observations of each hedge fund to reduce the issues of backfill bias

(Fung and Hsieh 2001; Bali, Brown, and Caglayan 2014).

6. We exclude hedge funds with track records shorter than 36 months (to address survivorship

bias) as in (Bali, Brown, and Caglayan 2014; Patton and Ramadorai 2013).

B Hedge Fund Classifications
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