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Abstract

Decomposing the gamma trading, timing and managerial stock-picking skills of individual hedge

funds is a central challenge in the active management industry. However a systematic negative

bias, attributed to the implied cost of options, blurs the evaluation of the selectivity and market

timing skills from traditional market timing models. Simple option strategies, one call and one

put, fitted on the time-varying coefficients of these models capture the implied cost. We show

that incorporating this cost allows us to categorize groups of hedge funds in a way that correlates

positively with future returns. Our model offers a flexible tool to benchmark the nonlinear payoff

of individual hedge funds and reveals that managers who are skilled at timing the market share

similar information for picking stocks. We conclude that the relationship between the selectivity

and market timing skills is not constrained to be negatively correlated.
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Introduction

Because option-like strategies such as those of hedge funds exhibit a non-linear payoff, an eval-

uation of skills, which is associated with the intercept of a regression model, may be artificial.1

Indeed, the alpha of exotic investments with option-like payoffs from a typical linear regression is

different from the alpha of a traditional portfolio (e.g., passive equity and bond strategies). The role

of skills in these exotic investments should thus be contingently adjusted for the non-linearities in

their payoffs. Moreover, if a manager has free access to a complete traded derivatives market on the

fund’s benchmark, there are many ways in which she can distort the payoff of her portfolio, and it

is important to provide an adjustment to it (see, Hübner 2016; Ingersoll et al. 2007).

The use of a quadratic model, such as the Treynor and Mazuy (1966) model to assess market

timing skills, shifts upward (by construction) the alpha of a strategy that has a negative OLS

coefficient on the quadratic term because the average squared market return is positive (DeRoon

and Karehnke 2017). This is confirmed in our data: funds with a positive OLS coefficient on the

quadratic term deliver, on average, a negative alpha (between -0.22% and -0.06% per month), while

funds with a negative OLS coefficient on the quadratic term show, on average, a large positive

alpha of between 1.09% and 1.18% per month. Funds with a negative quadratic term have a payoff

resembling that of a short put option and perform well in mean-variance frameworks. This is because

such frameworks fail to capture the left-tail risks of portfolios with non-linear payoffs (Agarwal and

Naik 2004). While the Treynor and Mazuy (1966, TM) market timing model has an option-based

motivation, it assumes that the cost of the option is free (Jagannathan and Korajczyk 1986). For

that reason, the literature has designed option-based factors, which substitute for or complement

market timing models, to capture the convex or concave nature of hedge funds’ trades.2 Despite the

explanatory power provided by these factors, the methodologies used to construct them may lack

flexibility when choosing the right type of options to trade as a result of the highly opportunistic

1See, among others, Jagannathan and Korajczyk (1986), Coggin, Fabozzi, and Rahman (1993), Bollen and Busse

(2001), and Jiang (2003) for explanations of the negative artificial bias present in market timing models and Fung and

Hsieh (2001), Mitchell and Pulvino (2001), Titman and Tiu (2011), and Hübner, Lambert, and Papageorgiou (2015)

for evidence on the option-like payoffs displayed in the hedge fund industry.
2Among others, Fung and Hsieh (2001), Agarwal and Naik (2004), Fung and Hsieh (2004), and Jurek and Stafford

(2015) provide option-based risk factors, while Agarwal, Arisoy, and Naik (2017) write an exhaustive literature review

on these strategies.
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nature of hedge fund trading. For example, among the most common option-based factors used in

the literature, Fung and Hsieh (2004) evaluate the performance of funds using look-back straddles on

bond, currency and commodity indices; however, options on these indices are (1) not directly traded,

(2) only valid for European-style options and (3) mature in a fixed interval of 3 months. Agarwal

and Naik (2004) introduce option-based strategies that systematically buy, on the first day of the

month, a call or a put option with pre-defined moneyness (at-the-money (ATM) or out-of-the-money

(OTM)) and maturity (one month) on the S&P 500 index. Although widely accepted as explanatory

variables in the hedge fund industry, the technical features of these option-based risk factors might

not reflect an accurate replication of the dynamics of hedge fund strategies.3

To address the first issue regarding the flexibility in option-like payoffs, this paper examines and

models the gamma trading of hedge funds. We evaluate cross-sectional timing skills among a large

sample of hedge funds (using the consolidated sample from the merger of Hedge Fund Research

(HFR) and Morningstar).

To address the second issue regarding the alpha biases and the cost of options implied in market

timing models, we provide an option-based adjustment of the alpha for funds with an option-like

payoff. We apply a flexible, passive, option-based model that uses tradable options and serves as

a benchmark to adjust the performance of a fund. This approach provides better accuracy for

inferences by distinguishing between “skilled” and “dumb” alpha – positive market timing versus

shorting naked put options (Jurek and Stafford 2015). We show that the convexity or concavity

of hedge funds’ trades influences the assessment of fund managers’ skills, and after combining our

alpha adjustment with their market timing skills, simple portfolio sorts on hedge funds reveal a

positive monotonic relationship between our Adjusted-Skill Index and future returns. These results

are maintained until twelve months after portfolio formation.

To achieve these objectives, we build on the option-based replication model of Hübner (2016).

We generalized the model in a time-varying framework in which almost all types of payoffs – even

when funds do not exhibit market timing – can be synthetically replicated using only two options,

3For instance, as Jurek and Stafford (2015, p. 2198) note, “options selected by fixing moneyness have higher

systematic risk, as measured by delta or market beta, when implied volatility is high, and lower risk when implied

volatility is low”. DeRoon and Karehnke (2017, p. 7) add that because “these models effectively restrict additional

assets to be a fixed linear combination of non-linear returns, they are unable to account for general forms of non-

linearities”.
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i.e., one call and one put.4

The model defines the option features (“the Greeks”) that would match the non-linear payoffs

captured by the linear and quadratic coefficients of the TM model. The model works well because

the Greeks of the option – i.e., ∆ and Γ – can be used to match the linear and quadratic terms of

the TM model – i.e., β and γ. The option-based replication strategy is intended to be passive, such

that the alpha from this strategy can be viewed as a benchmark for the replicated fund performance.

The benchmark sets up the cost of options implied in market timing models; the performance of the

fund is thus redefined as the outperformance with respect to the alpha of the benchmark.

To the best of our knowledge, this paper is the first to identify, at the individual level, a fund’s

option profile and the impact of the option profile on the fund’s alpha and to adjust this alpha

through a flexible option-based replication strategy. Our findings are twofold. First, our methodology

categorizes the payoffs of almost the entire cross-section of hedge funds in our sample (95%). The

categories are the following: directional with market timing skills (e.g., long-short and short bias

hedge funds), non-directional with market timing (e.g., multi-strategy, global macro, CTAs), and

non-directional with convergence bets (event driven, relative value, market-neutral). Second, we

reveal the impact of these non-linear payoffs on managerial skills. We find strong positive adjusted

alpha for market timers with directional bets (between 0.63% and 3.81% per month) and non-

directional bets (∼ 3.03% per month) but negative adjustments for negative timers with directional

bets (between -0.06% and -3.49% per month) and convergence bets (top straddles, approximately

-1.85% per month). The adjustments strongly depend on the curvature of the payoff.

The remainder of the paper is organized as follows. Section 1 extends the TM model under

the option-based replication framework. Section 2 describes the option and hedge fund data used

to perform the option-based replication of individual hedge fund returns. Section 3 presents the

gamma skills in the cross-section of hedge funds, quantifies the cost of option implied in market

timing model and analyzes the consequences of adjusting a manager’s alpha by this cost. Section 4

shows how an indicator of skills between selectivity and timing can be constructed to group funds

into portfolios and correlate positively with future return. Section 5 provides robustness tests on

4We empirically have approximately 95% of the observations for funds with a minimum of 36 observations that

have an option-based replication at each time period t. Our sample comprises 632,154 observations, of which 616,497

have an option-based replication. The other 15,657 observations display a β ≈ 0 and γ ≈ 0 and thus we do not consider

them in our analysis.
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the selection of the market timing model as well as model misspecifications. Section 6 concludes on

the different ways of constructing the option-based replication strategy and their implications for

performance measurement.

1 Model

1.1 The Treynor and Mazuy Model revisited

The model of Treynor and Mazuy (1966) is one of the classical return-based models used to

detect fund convexity from market timing skills. This quadratic model takes the following form:

Ri,t = αTM + βRmt + γRm2
t + et (1)

where γ represents the coefficient of timing ability. Market timing skills are attributed to the

fund manager in case of positive convexity, i.e. positive gamma.

Empirical evidence shows several issues of the TM model (Kryzanowski, Lalancette, and To 1997;

Becker et al. 1999; Bollen and Busse 2004; Comer, Larrymore, and Rodriguez 2009). Avramov et al.

(2011) highlight the need to use conditional information to evaluate managers’ market timing skills.

To address one of these limits, Chen and Liang (2007) condition the exposure to the benchmark

on five lagged instruments which proxy for “public information.”. Following (e.g., Ferson and Schadt

1996; Becker et al. 1999; Graham and Harvey 1996; Ferson and Siegel 2001; Jiang 2003), they use

macro-economic variables that provide future information about the current economic conditions of

the market. . The variables used to control for public information are the demeaned series (over

the analyzed fund period) of the three-month T-bill yield, the term spread between 10-year and

three-month Treasury bonds, the quality spread between Moody’s BAA- and AAA-rated corporate

bonds, and the dividend yield of the S&P 500 index and the VIX. All variables are lagged by one

period. The first four instruments are obtained from the Federal Reserve Bank of St. Louis, the

dividend yield is retrieved from OptionMetrics, and the VIX is from CBEO from WRDS. Using

the same notation as in Chen and Liang (2007), we can compare the unconditional and conditional

market timing models as follows:
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Ri,t = αTM + βuRmt + γuRm
2
t + ei,t

= αTM + βcRmt + γcRm
2
t +

L∑
l=1

δl(zl,t−1Rmt) + ei,t

(2)

with zl,t−1 being the demeaned (over the fund period) series of the lagged instruments Zl. The

variables are standardized (mean = 0, standard deviation = 1) to capture the “surprise” component

rather than the absolute levels of these variables.5 The fund’s time-varying beta annotated as β∗ is

made equal to βc +
∑L

l=1 δlzl,t−1.

To capture within-month risk exposure for hedge funds, Patton and Ramadorai (2013) construct

monthly estimates of macro-economic variables – the same zl,t−1 as in the previous paragraph – by

aggregating their daily innovations to capture intra-month variations. Using intra-period trading is

supported by Goetzmann, Ingersoll, and Ivković (2000) and Pfleiderer and Bhattacharya (1983), who

report that the artificial negative correlation between timing and selectivity skills could simply come

from intra-period trading. To construct these variables, we use the the daily log market returns of

the S&P 500 and the logarithmic values of the daily macro-economic variables previously mentioned.

The macro-economic variables are also standardized with mean 0 and standard deviation 1 over the

month analyzed. Formally, we compute the monthly aggregation of the daily variables conditional

on the daily log market return as follows:

z∗tRmt =
∑

d∈M(t)

zd−1 log(Rmd) (3)

where M(t) is the number of days in month t.

The formal definition of the OLS regression thus becomes

Ri,t = αTM + βcRmt + γcRm
2
t +

L∑
l=1

δl(zl,t−1Rmt) +

L∑
l=1

∆l(z
∗
l,t−1Rmt) + ei,t

= αTM + β∗Rmt + γcRm
2
t + ei,t

(4)

5We de-trend the instrumental variables Zt1 from their mean level such that the loading coefficients can be inter-

preted as the average level of risk exposure (Patton and Ramadorai 2013).

5



The conditional beta of a fund manager is now equal to β∗ = βc +
∑L

l=1 δlzl,t−1 +
∑L

l=1 ∆lz
∗
l,t−1,

while the term γc reflects private market timing skills. For simplicity, we refer in the remainder of

the paper to the coefficients β∗ as β and γc as γ.

Finally, at this stage, our model assumes constant values for these four coefficients. However,

hedge fund managers being active investors, their market timing skills may change over time.To

capture the dynamic allocation behavior of fund managers, we estimate the model using rolling-

window regressions with a minimum of 36 and a maximum of 60 available months.6

In the next section, we detail the generalized framework used to replicate the curvatures of a

fund’s payoff.

1.2 Option Replication Strategy

Building on the framework of Treynor and Mazuy (1966), our derivative-based framework is

focused on the timing component from market returns.7 In contrast to traditional option-based risk

factors cited in the recent literature, such as Fung and Hsieh (2004), Agarwal and Naik (2004) and

Jurek and Stafford (2015), our replication strategy offers a flexible choice of the option’s moneyness

and maturity at each observed period. The aim of the strategy is to select, in each month, the option

that best replicates the linear and quadratic terms of the extended TM model at the individual fund

level. To achieve this objective, we start by normalizing the option Greeks from OptionMetrics

according to the underlying stock price and the price of the option. The normalization relies on the

Taylor expansion of the option value (V ). The option can take the form of either a call or a put

option. From the Taylor series expansion, the approximation of the option value (V ) on a security

with price S at time t is obtained by,

dV ≈ ∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2 +

∂V

∂t
dt+ o(t) (5)

with ∂V
∂S being the Delta of the option (∆v),

∂2V
∂S2 being the Gamma of the option (Γv), and ∂V

∂t

6Chen and Liang (2007) also use rolling regressions with fixed windows of 36 months to analyze the time variation

in hedge funds timing ability.
7A growing stream of literature has investigated the ability of hedge funds to anticipate the variations in market

returns and other variables such as liquidity and volatility (Cao et al. 2013) or even market returns and volatility

simultaneously (Chen and Liang 2007). These studies indicate that the ability to time these variables can be identified

as a source of superior hedge fund performance. Evidence indicates that a sub-sample of these funds exhibits such

timing abilities even after accounting for option-based risk factors.
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being the time decay of the option, named Theta (Θv). The remaining term o(t) incorporates the

Vega, Rho, and higher moment effects on the change in the option value. We consider this term

to be close to zero for short periods of time, such that we make the assumptions that the volatility

of the underlying (σ) and the interest rate (r) are constant. Moreover, controlling for the monthly

and intra-month values of both the VIX and the three-month T-bill in the conditional TM model

leaves us fairly confident that setting aside the Greeks Vega and Rho should not strongly impact the

results of the replication model. Substituting the Greek annotations into equation (5) we obtain

dV ≈ ∆vdS +
1

2
Γv(dS)2 + Θvdt+ o(t) (6)

Writing equation (6) in discrete time yields

Vt − Vt−∆t = ∆v(St − St−∆t) +
1

2
Γv(St − St−∆t)

2 + Θv∆t (7)

where Vt is the price of the option for the underlying St, and ∆t is the time interval and is

equal to one month (1/12). Finally, the normalization of the option return and its Greeks takes the

following form when the underlying stock St is substituted by the market Mt:

Rvt =
Mt−∆t

Vt−∆t
∆v︸ ︷︷ ︸

(1) Normalized Delta

Rmt +
1

2

M2
t−∆t

Vt−∆t
Γv︸ ︷︷ ︸

(2) Normalized Gamma

Rm2
t +

Θv

Vt−∆t︸ ︷︷ ︸
(3) Normalized Theta

∆t (8)

with Rvt = (Vt − Vt−∆t)/Vt−∆t and Rmt = (Mt −Mt−∆t)/Mt−∆t . We have (1) the normalized

Delta, (2) the normalized Gamma, and (3) the normalized Theta of the option.8 For the sake

of clarity, we refer, in the remainder of the paper, to the normalized Delta as ∆, the normalized

Gamma as Γ, and the normalized Theta as Θ. The approximation of the option return using the

Taylor expansion is written as follows:

Rvt = ∆vRmt +
1

2
ΓvRm

2
t + Θv∆t (9)

with Rvt being the return of the option over the interval ∆t (1-month), ∆v, Γv, and Θv being the

normalized Delta, Gamma and Theta of the option, respectively, and Rmt being the return of the

8According to Ivy Option Metric’s reference manual (version 3.1 1/11/2017, p. 22), “the theta of an option

indicates the change in option premium as time passes, in terms of dollars per year.” In our analysis, the annualized

theta is thus multiplied by 1/12 (∆t) to convert the value to a monthly basis.
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underlying stock index (S&P 500) at time t.

1.3 Option-Based Replication

We generalize the model of Hübner (2016) to replicate fund return payoff. We use a time-varying

framework so that a fund can exhibit some nonlinearities in t but none in t + 1. To perform this

exercise, we simply use the combination of two options: one call and one put. The process can then

be described in two steps.

The first step consists in finding, in each period, the call and put options with the closest match

to the following ratio: ∆c
τ,κ/Γ

c
τ,κ = −∆p

τ,κ/Γ
p
τ,κ. This identity ensure similar convexity for the options

such that γ = γc + γp, where βc/γc = −βp/γp and c and p are the subscript for the call and put

option, respectively.

The closest match attributes one call and one put option with maturity (τ) and moneyness (κ)

to each monthly return observation of a fund. Compared to classical option-based factors, our model

does not pre-define the choice of the maturity of the option. Concerning the moneyness, funds with

either a non-directional bet (β ≈ 0) or no private timing skills (γ ≈ 0) will be replicated with ATM

options, whereas funds that do not satisfy these conditions will have complete freedom in the choice

of option moneyness. This specification makes our framework very flexible in the selection of the

correct type of option for replication purposes.

The formal description of the option-based replication strategy is given by,

Rτ,κt = wcτ,κR
c
t + wpτ,κR

p
t + (1− wcτ,κ − wpτ,κ)Rft + o(∆t)

= wcτ,κ(∆c
τ,κRmt +

1

2
Γcτ,κRm

2
t + Θc

τ,κ)

+ wpτ,κ(∆p
τ,κRmt +

1

2
Γpτ,κRm

2
t + Θp

τ,κ)

+ (1− wcτ,κ − wpτ,κ)Rft + o(∆t)

(10)

where ∆τ,κ, Γτ,κ, and Θτ,κ are the normalized Delta, Gamma and Theta of an option with

maturity (τ) and moneyness (κ), Rmt is the return of the underlying stock index (S&P 500) at time

t, and Rf is the monthly risk-free rate from Kenneth French’s website. The superscripts c and p

denote call and put options, respectively.

Note that the replication strategy has budget constraints that are satisfied by solving for the

exposures wcτ,κ and wpτ,κ to the selected options and allocating a proportion (1−wcτ,κ −w
p
τ,κ) to the
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risk-free rate.

The second step consists in solving for the weights (wcτ,κ and wpτ,κ) that are attributed to the

selected call and put options with the equivalent maturity (τ) but potentially different moneyness

(κ). The weights should satisfy the following conditions:


β = wcτ,κ∆c

τ,κ + wpτ,κ∆p
τ,κ

γ = 1
2(wcτ,κΓcτ,κ + wpτ,κΓpτ,κ)

(11)

And the weights can be obtained through traditional nonlinear optimizations or more simply

through a closed form solution as follow:

wcτ,κ
wpτ,κ

 =

 Γpτ,κ
∆c
τ,κΓpτ,κ−∆p

τ,κΓcτ,κ

−2∆p
τ,κ

∆c
τ,κΓpτ,κ−∆p

τ,κΓcτ,κ
−Γcτ,κ

∆c
τ,κΓpτ,κ−∆p

τ,κΓcτ,κ

2∆c
τ,κ

∆c
τ,κΓpτ,κ−∆p

τ,κΓcτ,κ


β
γ

 (12)

The linear and quadratic terms βRmt + γRm2
t are thus equal to

(wcτ,κ∆c
τ,κ + wpτ,κ∆p

τ,κ)Rmt + 1
2(wcτ,κΓcτ,κ + wpτ,κΓpτ,κ)Rm2

t .

The intercept (hereafter, alpha) of the passive strategies composed of one call and one put option

is given by,

ατ,κ = wcτ,κΘc
τ,κ + wpτ,κΘp

τ,κ + (1− wcτ,κ − wpτ,κ)Rft (13)

Because this alpha comes from a purely passive strategy, it can be viewed as the cost of imple-

menting the same timing strategy as the fund manager when her access is limited to a set of options

on a benchmark and a risk-free. Subtracting the alpha (ατ,κ) of the option strategy from the alpha

(αTM ) of the manager should control for the cost of the option implied in market timing models.9

The adjusted-α of the fund is now defined as

πτ,κ = α
′
TM − ατ,κ

= α
′
TM − wcτ,κΘc

τ,κ − wpτ,κΘp
τ,κ − (1− wcτ,κ − wpτ,κ)Rft

(14)

with α
′
TM = αTM + (1− β)Rft.

9See Bollen and Busse (2004) for a discussion on the alpha of the quadratic market timing model and Jiang (2003)

and Ferruz, Muñoz, and Vargas (2010) for a discussion on the cost of the option implied in market timing models.
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Or equivalently,

πτ,κ = αTM − wcτ,κΘc
τ,κ − wpτ,κΘp

τ,κ − (β − wcτ,κ − wpτ,κ)Rft (15)

Table 1 summarizes the model procedures to replicate a fund’s payoff. The first column reports

the paper notation for the fund classification; the second column shows the direction of the fund,

denoted by β; the third column indicates whether the replicated fund has gamma trading skills (γ);

the sixth column is informative about the regression characteristics used to classify the replicated

fund. We choose −β/2γ because the value is equal to the inflection point (vertex) of the quadratic

model and by consequence, contains key information about the nonlinear characteristics of a fund’s

returns; and the last column describes the type of option-based strategy used to replicate the fund

payoff.

Note that when a fund does not exhibit γ skills, then the conditions of equation (11) become


β = wcτ,κ∆c

τ,κ + wpτ,κ∆p
τ,κ

wcτ,κ = −wpτ,κ
(16)

These new conditions ensure that the replication of a directional fund with no γ skills is simply

a synthetic replication of the fund. For example, a fund with positive β and no γ will be replicated

by buying an amount wcτ,κ of a call and shorting an equivalent amount wpτ,κ in a put. These options

are ATM and have equivalent maturity.

1.4 Implied Cost of Option Trading

This section illustrates the implementation of the option-based replication strategies in a con-

trolled environment. We present an hypothetical Perfect Market Timer fund as in the works of

Hasanhodzic and Lo (2007) and Chen and Liang (2007), which the authors refers to as “Capital

Multiplication Partners,” to show the option-like payoffs that such a perfect timer would exhibit.

The performance of the Capital Multiplication Partners fund is constructed by being invested in the

market when the market returns are higher than the risk-free and in the risk-free rate when market

returns are lower than the risk-free. The mathematical expression to obtain the performance of this

fund is simply max(Rm, Rf). When the TM model is applied on this fund, the β and γ coefficients

10



Table 1: Option Replication Strategies

This table summarizes the types of strategies involving options that replicate all possible patterns of the

TM regression. In our applications, we use a significance level of 10% for the p-values with the Newey-West

adjustment for standard errors and apply a lag of t=3 for the linear and quadratic parameters. This table

presents the payoff identifications to apply the option-based replication strategies. The notation Rm− stands

for the minimum value of the market return, while Rm+ represents the maximum value of the market return

over the analyzed period. The notation β+ refers to a positive beta coefficient, while β− denotes a negative

beta coefficient. The notations are similar for the sign of the gamma (γ) coefficient.

Paper Classification Characteristics Replication

Notation Direction Gamma Skills β γ ratio (−β/2γ) Strategy

β+ Long None > 0 ≈ 0 None Long Call + Short Put

β− Short None < 0 ≈ 0 None Short Call + Long Put

[β+, γ+] Long Positive > 0 > 0 /∈ [Rm−, Rm+] Long Strangle

[β−, γ+] Short Positive < 0 > 0 /∈ [Rm−, Rm+] Long Strangle

[β+, γ−] Long Negative > 0 < 0 /∈ [Rm−, Rm+] Short Strangle

[β−, γ−] Short Negative < 0 < 0 /∈ [Rm−, Rm+] Short Strangle

γ+ Neutral Positive ≈ 0 > 0 ∈ [Rm−, Rm+] Long Straddle

γ− Neutral Negative ≈ 0 < 0 ∈ [Rm−, Rm+] Short Straddle
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are both significant and positive and the fund payoff resembles that of a long call. In our framework,

the model would replicate that payoff through a strangle strategy with low weight invested in the

put option and high weight invested in the call option.

As Fama and French (2010, p. 1915) write, “Active investment must also be a zero sum game-

aggregate is zero before costs,” so for one type of payoff, there should be a counterparty. The

counterparty for the Capital Multiplication Partners fund is given by min(Rm, Rf) and has a payoff

equivalent to a short call option. We also provide four other types of fund payoff that can be

replicated in our framework: (i) a long put payoff (max(-Rm,-Rf)), (ii) a short put payoff (min(-Rm,

-Rf)), (iii) a perfect neutral timer through a long straddle payoff (max(-Rm,Rm)), and (iv) a worst

neutral timer through a short straddle payoff (min(-Rm,Rm)).

Figure 1 illustrates the payoffs of hypothetical funds with, by design, no security selection skills

but market timing skills. The alpha correction provided by our replication model is illustrated by

the vertical black line. The alpha correction can be interpreted as the cost of implementing the

timing strategy through a range of options listed on the benchmark. We review in Section 3.3 the

implication of this alpha adjustment for the negative correlation bias between the α and γ coefficients

present in the quadratic model. We also check whether this artificial effect applies to our framework.

In the next section, we describe the consolidated data obtained (1) from OptionMetrics (WRDS)

for the options and their Greeks and (2) from the merger of the HFR and Morningstar databases

for our hedge fund sample.

2 Data

2.1 Options and Greeks

OptionMetrics provides data on the historical price, implied volatility and Greeks for the US

equity and index options markets. We restrict our use of OptionMetrics data to the Standard and

Poor’s (S&P) 500 composite index (ID 108105) and retrieve options with a standard settlement date,

that is, where the special settlement flag (ss flag) is equal to 0, with positive bid and ask prices,

and the options expire on the Saturday following the third Friday of the month (Agarwal and Naik

2004).10 We only retain observations from the first day of each month for which the open interest

10The restrictions are identical to those used in the replication of the option risk factors of Agarwal and Naik (2004)

developed by WRDS.

12



Figure 1

This figure illustrates the cost of replication using options for six hypothetical fund managers with significantly

good or bad market timing skill. The fund payoff is illustrated by the blue line, while the option-based

replication payoff is given by the red dotted line. The cost of replication is equivalent to the alpha from the

option-based strategy and highlighted by the vertical black line. The empty circles refers to the hypothetical

fund returns.

(a) Max(Rm,Rf) (b) Max(-Rm,-Rf) (c) Max(-Rm,Rm)

(d) Min(Rm,Rf) (e) Min(-Rm,-Rf) (f) Min(-Rm,Rm)
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(volume) is greater than zero and that have valid implied volatility and Delta values. The sample

period ranges from January 1996 to December 2015.

2.2 Hedge Funds

2.2.1 Merger of the Databases

In this paper, we employ a sample of hedge funds from the merger of the HFR and Morningstar

databases. To carry out the merger, we follow the procedures of Joenväärä, Kosowski, and Tolonen

(2016). Because merging multiple databases is not an exact science, in addition to the phrase

matching11 used by the authors, we extend the identification of duplicate funds with a similar

level of the smoothing index following the procedure of Getmansky, Lo, and Makarov (2004). The

combination of a close match from the smoothing index and the phrase matching procedure yields

fairly good results to identify duplicates in our databases. Indeed, this combination allows us to

work simultaneously on the name and the returns of a fund (see Section 2.2.2 for further details). In

the appendix of this paper, we describe the treatments applied prior to constructing our consolidated

sample of hedge funds.

Figure 2 illustrates that the number of alive and dead funds that are specific to each database

after treatments is equal to 6,872 and 2,995 for HFR and to 4,229 and 1,139 for Morningstar,

respectively. We record 1,407 duplicates between HFR and Morningstar. For these funds, we select

the fund from the provider that reports the most observations – generally HFR in our sample: 397

alive funds are attributed to HFR, 72 alive funds are attributed to Morningstar, 734 dead funds are

attributed to HFR, and 204 dead funds are attributed to Morningstar.

Because each database reports different hedge fund classifications, Joenväärä, Kosowski, and

Tolonen (2016) propose categorizing hedge funds into twelve primary strategies. We also follow

their approach, such that our results can be easily replicated using other providers’ data. Table 2

shows the categories documented in this paper, and the table that Joenväärä, Kosowski, and Tolonen

(2016) use to construct these primary strategies can be found in the appendix of this paper. Our

final sample contains 10,958 of the 15,235 unique funds that we identified in our databases. The

sample period ranges from January 1996 to December 2015. Of the full sample, 3,805 are funds of

11The Jarko-Wink procedure matches funds that achieve a high correlation percentage (99%) in the names of their

funds.
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Figure 2: Illustration of the Database Coverage

This figure illustrates the coverage of hedge funds in our consolidated database after treatments. The diagram

displays the overlap -– by database — of the share classes as of December 2015.

funds, and 4,357 are equity-oriented funds. Finally, 4,282 remained alive as of December 31, 2015,

and 11,227 became defunct during the sample period.

2.2.2 Unsmoothed Return

Hedge funds are prone to performance manipulations (Ingersoll et al. 2007). Specifically, Get-

mansky, Lo, and Makarov (2004) focus on the issue of “performance smoothing,” which is a common

practice in the hedge fund industry to artificially reduce fund volatility by reporting only a fraction

(X%) of the gains in a month and retaining the other fraction (1-X%) to compensate for potential

future losses.12 This practice tends to smooth the performance of a fund and makes mean-variance

risk measures, such as the Sharpe ratio, appear more attractive. To address this misleading smooth-

ing phenomenon, it is common practice to first “unsmooth” observed returns and then conduct

12For instance, Agarwal, Bakshi, and Huij (2009) reveal that hedge funds tend to manage returns and earn higher

fees by retaining gains in early parts of the year and reporting them in December. Huang, Liechty, and Rossi (2012)

demonstrate how retaining gains to offset future losses increases a fund’s alpha by reducing its beta coefficients. In

other words, reducing return volatility (smoothing returns) turns risk (β) into performance (α). Finally, Asness,

Krail, and Liew (2001) show that lagged market returns are often significant explanatory variables for the returns of

supposedly market-neutral hedge funds.
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Table 2: Fund Coverage across Primary Strategies

This table reports the number of funds that fall into the primary strategies as defined by Joenväärä, Kosowski,

and Tolonen (2016) after applying the treatments used in their paper. We report the number of funds

conditional on the original database, that is, Hedge Fund Research (HFR) or Morningstar (MS). The last

column indicates whether the category is included in our empirical analysis.

HFR HFR MS MS
Total Included (Y/N)

(Dead) (Live) (Dead) (Live)

CTA 537 197 310 122 1166 Yes

Emerging Markets 121 22 143 No

Event Driven 480 240 133 51 904 Yes

Fund of Funds 1631 574 1354 246 3805 No

Global Macro 37 27 206 54 324 Yes

Long Only 67 83 150 No

Long/Short 1867 872 1234 384 4357 Yes

Market-Neutral 348 88 133 19 588 Yes

Multi-Strategy 932 518 193 59 1702 Yes

Relative Value 697 373 206 59 1335 Yes

Sector 302 104 406 Yes

Short Bias 41 2 99 34 176 Yes

Undefined 173 6 179 No

Total 6872 2995 4229 1139 15235

Total Selected 5241 2421 2514 782 10958
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performance evaluation on the resulting adjusted returns (Kosowski, Naik, and Teo 2007; Aragon

2007; Titman and Tiu 2011; DeRoon and Karehnke 2017). Getmansky, Lo, and Makarov (2004)

propose the following model of return smoothing:

R0
t = θ0Rt + θ1Rt−1 + ...+ θkRt−k (17)

where R0
t is the observed return, Rt is the true return of a fund, and θk is the loading on the kth

lag of the realized return. In the model, θk values are constrained to fall within an interval from zero

to one and to sum to one. In common application, k is set to 2 such that smoothing takes place only

over the current quarter (i.e., the current month and the previous two months), and the observed

return is a weighted average of the fund’s true returns over the most recent three months (k+1),

including the current period. This averaging process captures the essence of smoothed returns in

several respects. The true unsmoothed return is then obtained by inverting the previous equation

as follows:

Rt =
R0
t − θ̂0Rt − θ̂1Rt−1 − ...− θ̂kRt−k

θ̂0

(18)

The procedure is applied through a moving average (MA) process using maximum likelihood

estimation for the parameters. The model also imposes two additional restrictions: (1) the process

should be applied on demeaned returns and (2) be invertible. Similar to DeRoon and Karehnke

(2017), we note that the adjustment for smoothing does increase the average volatility from 3.58%

to 4.49% in our sample, which leads to a decrease in the average fund’s Sharpe ratio from 0.23 to 0.15

per month. However, it leaves the mean returns fairly unchanged, i.e., average raw returns (0.54%)

and average unsmoothed returns (0.51%). Finally, we also use the measure of the smoothing index

to filter the duplicates in our database (as described in the previous section). The smoothing index

is computed as follows:

ξ =

k∑
j=0

θ2
j ∈ [0, 1] (19)

where θj are the parameters from the MA process estimated in equation (17). The smoothing

index is often compared to the Herfindhal index, as it yields an estimate from 0 to 100% of the

smoothing behavior of a fund. An index value of zero implies substantial smoothing behavior in a

fund’s returns, while an index of one suggests no smoothing.
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2.3 Other Variables

In Table 3, we report the descriptive statistics of the variables used in the empirical part of this

paper. Panel A displays the average return, standard deviation, and the minimum and maximum

of the S&P 500 index over the sample period ranging from January 1996 to December 2015. We

also report the first-order auto-correlation estimate and its respective p-value as in Chen and Liang

(2007). In Panel B, we report the option-based factors using the same notations as in the original

work of Agarwal and Naik (2004) and Fung and Hsieh (2004).

For the option-based factors developed in Agarwal and Naik (2004), the ATM call option on

the S&P 500 index is denoted SPCa, SPPa represents the ATM put option, SPCo represents the

OTM call option, and SPPo denotes the OTM put option strategy. These option-based risk factors

are based on a strategy that buys on the first day of the month an option (call or put) with a

fixed moneyness of ATM or OTM on the S&P 500 and a maturity of one month. The option is

then sold on the first day of the next month, and a new option with the same moneyness and

maturity is bought back to continue the process of the strategy. The option-based factors from Fung

and Hsieh (2004) are the return of a portfolio of lookback straddles on bond futures (PTFSBD),

on currency (foreign exchange) futures (PTFSFX), on commodity futures (PTFSCOM), on the

short-term interest rate (PTFSIR) and on the stock market (PTFSSTK).13 Panel C reports the

instrumental variables estimated on a monthly basis as defined in Section 1.1, that is, the three-

month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds

(T10Y3M), the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality

spread), and the dividend yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided

by
√

12 to form the monthly estimate of market volatility as in Chen and Liang (2007).

3 Gamma Skills in The Cross-Section of Hedge Funds

This section presents four contributions to the current literature on hedge funds. First, we

report the time-varying option-like identification of a fund through the indications from Table 1 and

summarize the option-like characteristics of hedge funds strategies. Second, we quantify the alpha

of the option replication strategies, which is a function of the leverage, time decay (theta), and the

risk-free rate and should be regarded as the cost of the option for implementing the timing strategy.

13All the information is available on David Hsieh’s website.
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Table 3: Monthly Variables Descriptive Statistics

This table reports the descriptive statistics of the variables used to explain hedge funds’ returns. We display,

from Panels A to C, the average return, standard deviation, minimum and maximum of and the first order

auto-correlation with its respective p-value for the following list of variables: the S&P 500 index, the ATM

call option on the S&P 500 (SPCa), the ATM put option on the S&P 500 (SPPa), the OTM call option on

the S&P 500 (SPCo), the OTM put option strategy on the S&P 500 (SPPo), the return of a portfolio of

lookback straddles on bond futures (PTFSBD), on currency (foreign exchange) futures (PTFSFX), on com-

modity futures (PTFSCOM), on the short-term interest rate (PTFSIR) and on the stock market (PTFSSTK),

the three-month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds

(T10Y3M), the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality spread),

and the dividend yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided by
√

12, which

forms the monthly estimate of market volatility (VIXm). The sample period ranges from January 1996 to

December 2015.

Mean STD Min. Max. ρ1 p-value

Panel A: Benchmark

S&P 500 0.006 0.044 -0.169 0.108 0.069 0.980

Panel B: Option-based Factors

SPCa -0.025 0.821 -0.996 2.417 -0.034 1.000

SPCo -0.036 0.874 -0.995 3.000 -0.041 0.999

SPPa -0.218 0.858 -0.966 3.332 0.119 0.756

SPPo -0.247 0.875 -0.971 3.459 0.129 0.677

PTFSBD -0.018 0.149 -0.266 0.689 0.108 0.832

PTFSFX -0.005 0.186 -0.300 0.692 0.042 0.999

PTFSCOM 0.001 0.145 -0.247 0.648 -0.033 1.000

PTFSIR -0.013 0.264 -0.351 2.219 0.216 0.080

PTFSSTK -0.049 0.145 -0.302 0.666 0.139 0.590

Panel C: Instruments

TB3MS 0.024 0.022 0.000 0.062 0.991 0.000

T10Y3M 0.017 0.012 -0.008 0.038 0.963 0.000

Rate 0.018 0.005 0.000 0.028 0.872 0.000

Quality spread 0.010 0.004 0.006 0.034 0.960 0.000

VIXm 6.101 2.270 3.008 17.289 0.829 0.000
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Third, we evaluate the cost of options implied in the TM market timing model across our hedge

fund sample and present evidence of the artificial negative relationship between the intercept and

the quadratic term in market timing models. We demonstrate that our replication framework is free

from this systematic bias.

3.1 Time-Varying Option-Like Payoff

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014, p. 1458) support that “time variation in

fund manager skill is a useful piece of evidence in the quest to understand fund behavior.” Common

market timing frameworks, such as that of Treynor and Mazuy (1966), assume the coefficients of

the model to be constant (Jagannathan and Korajczyk 1986). Two caveats are in order. First, the

model provides no information about the dynamic behavior of the manager on his strategy allocation.

Second, risk is assumed to be stationary over time. Bollen and Whaley (2009) circumvent this issue

by using changepoint regressions that capture significant shifts in fund managers’ risk exposure. In

their study, the amount of shifts is however reduced to only one significant change in risk exposure.

Instead, we favor the use of rolling-window regressions to capture more than one change in option-

like behavior by fund managers. We impose a minimum of 36 up to a maximum of 60 available

months to perform the regression established in equation (4).

Figure 3 illustrates the identification of option-like payoffs for the cross-section of hedge funds

over time. The benefit of our method resides in the fact that even a fund without significant gamma

skills (γ) will be replicated through a synthetic replication using one ATM call and ATM put on the

underlying benchmark (S&P 500). This number of synthetic replications, reported in green colors, is

large in our sample and varies from 45% in 2001 up to roughly 80% in 2004. These synthetic linear

replications are nevertheless important in the time-varying framework since funds can exhibit only

a linear bet in time period t while showing private market timing skills in t+1. As our sample is

composed of approximately 11,000 funds, the model covers almost 95% of the observations for funds

with a minimum of 36 observations that have an option-based replication at each time period t.14

We now turn to the analysis of the persistence of the option-like payoffs identified in hedge funds.

Similar to Fama and French (2007) on individual stocks and Chen, Cliff, and Zhao (2017) on hedge

funds, we consider the transition of a fund’s classification between time period t to t+1. The results

14Our sample comprises 632,154 observations, of which 616,497 have an option-based replication. The other 15,657

observations display a β ≈ 0 and γ ≈ 0 and thus we do not consider them in our analysis.
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Figure 3: Time-Varying Option-Like Payoff

This figure illustrates the identification of option-like payoffs for our cross-sectional hedge fund sample over

time. The classification of the funds follows the guidelines in Table 1. These guidelines are conducted on

the linear (β) and non-linear (γ) terms from the regression presented in equation (4). The sample period

illustrated in the figure ranges from January 2000 to December 2016.

can be interpreted as the empirical probability that one fund classified with only gamma skill in

period t becomes to a fund with persistent gamma skill and a significant bet on the market in t+ 1.

Table 4 shows that this empirical probability is approximately 13%. Analyzing the transition of

funds is important because it also reveals the dynamic behavior of a fund manager of changing the

optional features of his strategy conditional on the fund survival. Panel A shows that it is very

unlikely (close to 0%) that a fund with positive γ coefficient exhibits negative coefficient over the

next month regardless of whether the fund has a directional bet on the market (β), and vice versa.

It is also unlikely that a fund with only a linear bet on the market demonstrates positive market

timing skills over the next month (∼ 3.5%). While these probabilities slightly increase from Panel B

to Panel D, results indicate the same direction of transitions over the next 3, 6 and 12 months. For

instance, funds with gamma skill (γ+) tend to remain in their states only for a short period of time –

one to three months – and may suggest that neutral allocation w.r.t the market is just a temporary

state rather than a long-term strategy. Finally, we find some evidence that funds with positive

market timing skills ([β+, γ+], [β−, γ+], and γ+) are less likely to stop reporting over the subsequent

periods compared to funds with negative market timing skills (on average, ∼ 1.8% against 2.8%),

and this probability increases linearly as we increase the time period (on average, ∼ 18% against

21% in Panel D).
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The last analysis aims at identifying whether typical payoffs can be associated to hedge fund

style. in this subsection reviews whether some types of option-like payoffs are specific to hedge fund

categories. We report in Figure 4 the proportion of option-like payoffs displayed over time for each

hedge fund category. Figure 4a shows the results for all types of option payoffs, while Figure 4b

presents the results only when funds display a significant γ coefficient. For instance, the category

“Event Driven” converges towards a payoff resembling that of a short put option because this strategy

takes a long position in the stock of the target company in the merger and a short position in the

acquiring company (Mitchell and Pulvino 2001). One explanation for this classification is that in

bad economic conditions, Event Driven funds will be more likely to fail and thus exhibit losses.

Funds with strategies that resemble writing put options may appear attractive in a mean-variance

framework, but they actually perform poorly when we consider higher order moments (DeRoon and

Karehnke 2017). The reason is that such strategies bear significant tail risks because writing put

options on the market index may severely impact the fund’s performance when strong bearish trends

affect the equity market (Agarwal and Naik 2004).

Exploiting these results, we note that our classification of option-like payoffs is in line with the

findings of previous studies. We present these evidence by primary categories and attribute one type

of option-like payoff to the highest proportion of funds found in Figure 4b that correspond to that

option strategy.

CTA: Long straddle, i.e., strategies that make a trivial directional bet and have a similar payoff to

straddle strategies (Fung and Hsieh 2004);

Event Driven: Short straddle, i.e., strategies that are more likely to fail and exhibit consequent

losses (Mitchell and Pulvino 2001).

Global Macro: Straddle, i.e., market timers with a neutral bet on the benchmark (Fung and Hsieh

2001).

Long/Short: Strangle, i.e., a directional bet with timing abilities.

Market-Neutral: Short straddle, i.e., a neutral bet on the market with the objective of profiting

from mispricing and not from market timing (Chen and Liang 2007).

Multi-Strategy: Long straddle, i.e., a neutral bet on the market with the objective of smoothing

return volatility from strategy diversification.
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Figure 4: Time-Varying Option-Like Payoff

This figure illustrates the identification of option-like payoffs for the cross-sectional hedge funds sample. The

classification of the funds follows the guidelines of Table 1. These guidelines are simply conducted by the

linear (β) and non-linear (γ) terms from the regression presented in equation (4). The proportion of option-

like payoffs is given across hedge fund categories. The sample period ranges from January 1996 to December

2016.

(a) All Funds

(b) Funds with significant γ Skills
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Relative Value: Short straddle, i.e., uncorrelated with the market, employing a convergence strat-

egy on mispriced securities and likely to face strong fixed-income exposures during a market

decline (Gatev, Goetzmann, and Rouwenhorst 2006; Chen and Liang 2007).

Sector: Mixed payoffs, i.e., this category is specific to HFR data and regroups a combination of

directional and non-directional bets.

Short Bias: Short strangle, i.e., sell short overvalued securities and face substantial risk during

good market conditions (Agarwal and Naik 2004).

3.2 Hedge Funds’ Gammas and Adjusted Alphas

Similar to models that have the objective of providing measures with better precision for eval-

uating market timing (see, e.g., Jiang 2003), the aim of our model is to distinguish market timing

from option-related spurious timing. We assume that accounting for the cost of options implied in

the market timing model has a causal effect that enables better measurements of a manager’s skills.

For example when a fund manager presents market timing skills (γ+) in equation (4), the model

does not indicate whether this level of convexity is attainable through a passive strategy composed

of options. The timing skill attributed to the manager should thus be valid (not artificial) when the

manager trades securities different from the passive option strategy that delivers a similar timing

coefficient and market exposure. Otherwise, the manager’s strategy is a simple replication of the

passive strategy – in which there is neither market timing nor security selection skills (Jagannathan

and Korajczyk 1986) – and the manager should be accredited with zero alpha (security selection)

and spurious timing. Our model provides a solution to this problem. Specifically, our framework

establishes individual benchmarks for fund managers who trade derivatives or option-like stocks.

We present in the next two subsections, the characteristics of the selected options from the

passive replication exercise and quantify its impact in terms of alpha adjustments.

3.2.1 Selected Option Characteristics

Table 5 displays descriptive statistics of the selected options to replicate a fund’s β and γ esti-

mates from equation (4). For example, a fund with positive market timing skills (positive linear and

quadratic terms) could be replicated by investing, on average, 49.14% of the strategy’s capital in a

call option with a moneyness of 0.87 while investing a small amount (only 1.27%) in a put option

25



with a moneyness of 0.74, both options having a equivalent maturity of 60 days. We note that the

classifications [β+, γ+] and [β−, γ−] share the same type of moneyness (OTM put and ITM call) and

maturity (60 days) in the option selection process. The difference between these categories comes

solely from being long or short the straddle strategy. This finding is similar for the classifications

[β+, γ−] and [β−, γ+], which share equivalent moneyness (ITM put and OTM call) and maturity (∼

85 days). For straddle strategies, the selection of ATM options is consistent with the idea that the

γ of a straddle strategy is the highest for ATM options. Furthermore, our model forms straddles

by selecting a maturity of approximately 5 months (∼ 150 days) and that regardless of whether the

strategies are long or short in the straddle. Finally, we also note that the selected options are highly

liquid, as shown by the large open interest values found in the last columns of the Table.

What does the option selection process in our model tell us about the traditional methodological

choices in option-based replication strategies? According to the conjecture of Merton (1981), market

timers were originally identified as having a similar payoff as a long straddle strategy. Naturally, the

choice of pre-defining options to be ATM is consistent with the idea of capturing the sensitivity to

market volatility rather than the direction of the market return (Coval and Shumway 2001). The

traditional option-based risk factors from Fung and Hsieh (2001) and Agarwal and Naik (2004) also

select ATM options to explain the performance of market-neutral funds. However, we differ from

these studies, as our model selects options with an average maturity of 5 months but large standard

deviations, whereas traditional option factors use a fixed maturity of one or three months.15 Turning

to strangle strategies for which the maturity and the moneyness are endogenous to our model, we

see that for the intention of replicating funds with directional and non-directional bets is produced

by investing in a combination of ITM and OTM options where most of the weight is attributed to

the ITM option. OTM options thus play a marginal role in our model, whereas they compose half

of the set of option risk factors in Agarwal and Naik (2004). We illustrate in Figure 6 the empirical

distribution of the characteristics of options composing the replication strategies.

15This flexibility in the selection of options is one advantage of our model. In fact, this type of information could

be interesting regarding the development of a new set of option-based risk factors that better capture nonlinearities in

hedge funds’ returns. However, this is outside the scope of the present research. Rather, we are interested in pointing

out the endogenous choices of our model and assessing whether they converge towards those of previous studies.
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Table 5: Option Replication Strategies

This table summarizes the average characteristics of the options that replicate all possible patterns of the

TM regression. We reports the average amount of capital (weight) invested in the call and put options of the

replicating strategy as well as the maturity, moneyness and open interest of these these options. Standard

deviations of the average values are reported in parentheses.

Fund # Obs Weight Moneyness Maturity Open Interest

Classification Call Put Call Put Call Put Call Put

β+ 262,191 8.15% -8.15% 1.01 1.01 149 149 11559 9343

(15.29%) (15.29%) (0.02) (0.02) (170) (170) (18287) (13244)

[β+, γ+] 26,646 49.14% 1.27% 0.87 0.74 60 60 4031 15244

(68.54%) (2.14%) (0.05) (0.14) (47) (47) (10729) (26440)

[β+, γ−] 30,354 -0.25% -37.64% 1.17 1.12 83 83 10518 3582

(0.42%) (83.49%) (0.09) (0.07) (76) (76) (16100) (11170)

β− 169,192 -8.94% 8.94% 1.01 1.01 166 166 11407 9659

(17.10%) (17.10%) (0.02) (0.02) (176) (176) (17089) (14829)

[β−, γ+] 23,245 0.31% 47.67% 1.16 1.12 87 87 9625 2693

(0.46%) (85.90%) (0.09) (0.07) (78) (78) (14248) (7977)

[β−, γ−] 13,203 -60.20% -1.42% 0.87 0.74 62 62 2977 10395

(107.38%) (2.34%) (0.05) (0.11) (47) (47) (9637) (20416)

γ+ 49,764 14.15% 14.86% 1.01 1.01 144 144 11712 10183

(32.29%) (38.31%) (0.02) (0.02) (153) (153) (16444) (13981)

γ− 41,902 -14.82% -17.66% 1.01 1.01 165 165 11287 10294

(30.58%) (39.49%) (0.02) (0.02) (167) (167) (16948) (16467)
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Figure 5

The figures illustrate the distribution of the characteristics from the selected call and put options of the

replication strategies, in blue and red, respectively. We display in (a) the weight, (b) the maturity (in days),

(c) the moneyness and (d) the open interest attributed to the options in the strategy. The boxes show the

5-th percentile and 95-th percentile of the distribution of the variables on the y-axis, and the mean of the

distribution is represented by the dots inside the boxes.

(a) Weight (b) Maturity

(c) Moneyness (d) Open Interest
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3.2.2 Adjusted Performance

Managerial skill is by definition the part of the return in excess of any systematic sources of

risk and attributed to the alpha of a multi-factor regression analysis (Agarwal, Mullally, and Naik

2015, p. 16). However, it is conceptually unclear whether the quadratic term of the TM model

should be considered a systematic source of risk. The term can be viewed as a statistical artifact

to measure the manager’s exposure to market movements. According to Fama (1972), who defined

a fund manager’s skills as consisting of both market timing and stock selection ability, it is clear

that the combination of the intercept and the quadratic term (αTM + γRm2
t ) should be regarded as

the total performance (Perf) of the fund (see also, Bollen and Busse 2004). However, if we believe

that the quadratic term (γRm2
t ) could be replicated by a passive strategy, then the only source of

skill left in the equation is the intercept of the TM model (αTM ). As our replication framework

satisfies the condition of passively replicating the linear and quadratic terms of the TM model, the

adjustment of the intercept (αTM ) should reflect a manager’s true skill at security selection relative

to a passive option-based benchmark.

We report in Table 6 the distribution of the monthly raw and adjusted-alpha estimates from

the extended TM model with respect to the type of strategy the model tries to replicate. The first

column displays the raw alphas, while the second column displays the distribution of the adjusted

alphas. The third and the fourth column show the results for the total performance and the total

adjusted-performance of the fund, respectively. The figures are aggregates of monthly values from

rolling-window regressions. Results show that a fund with both a positive direction and timing ability

on the market [β+, γ+] delivers, on average, a negative raw alpha (∼ -0.06% per month). Conversely,

a fund with a positive bet but negative timing ability on the market [β+, γ−] delivers a positive raw

alpha (∼ 1.09% per month). This strategy is similar to a strangle strategy strongly invested in the

short ITM put position and with small weight in the short OTM call position. DeRoon and Karehnke

(2017) demonstrate that writing put options may appear successful in a mean-variance framework

but performs poorly when higher-order moments are introduced into the performance evaluation. In

fact, Jurek and Stafford (2015) define writing put options as “dumb” alpha strategies. The results in

the adjusted-α column substantially change the overall picture; the “dumb” alpha from writing put

options shrinks to an average of -0.06% per month, while the alpha of a market timer is now raised

to an average of 3.81% per month with a variability of xxx. The large volatility on alpha estimate

29



suggests that funds with positive direction and timing ability on the market [β+, γ+] have on average

a lower hurdle compared to passive option-based strategies but that this hurdle is not systematic.

This is because the adjustment depends not only on the options’ availability on the market at time

t but mostly the degree of convexity of the fund. Again, such outcomes make us confident that the

flexibility of the model in the option selection process is key to distinguish spurious option timing.

Similar interpretations can be inferred for other classifications with a significant timing coefficient

(γ). Overall, the aggregate results obtained for all funds preserve an equivalent level of average fund

alpha even after adjustment while making the estimate more volatile in the cross-section of hedge

funds.

The next subsection questions whether the alpha adjustment mitigates the artificial negative

correlation embedded in market timing or is simply another systematic bias but from opposite sign.

3.3 Artificial Negative Correlation in Market Timing Models

The presence of an artificial negative correlation between the intercept and quadratic term of

market timing models has been documented in previous literature such as in the work of Jagannathan

and Korajczyk (1986), among others. The alpha for option-like strategies such as hedge funds,

measured by the intercept of a regression model, may thus be inflated by a positive convexity.

Indeed, the alpha of exotic investments with option-like (nonlinear) payoffs from a typical linear

regression is different from the traditional alpha of vanilla strategies (e.g., passive equity and bond

strategies). The effect of skills for these exotic investments should thus be contingently adjusted

for the non-linearities in their returns. A quadratic model, such as the TM model, by construction

shifts upward (downward) the alpha of a strategy that has a negative (positive) OLS coefficient

on the quadratic term because the average squared market return is positive (negative) (DeRoon

and Karehnke 2017). This is in line with the empirical studies of Coggin, Fabozzi, and Rahman

(1993) and Jiang (2003), which also report evidence of an artificial negative correlation between the

intercept and the quadratic coefficients.

To better understand this bias, we word under the controlled environment presented in Section

1.4 with the hypothetical funds of Hasanhodzic and Lo (2007) and Chen and Liang (2007) for which

we know that selection skill is absent and therefore, independent of the market timing skill. We

demonstrate that (i) there is, indeed, an artificial negative correlation between the intercept and the

quadratic term of a market timing model where there should be none, by construction, and (ii) that
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Table 6: Alpha and Adjusted-Alphas

This table summarizes the average alpha and adjusted-alpha according to the types of strategy involving

options that replicate all possible patterns of the TM regression. Standard deviations of the average values

are reported in parentheses.

Classification # Obs α Adjusted-α Perf Adjusted-Perf

β+ 262,191 0.50% 0.50% 0.55% 0.56%

(0.97%) (1.18%) (1.72%) (1.88%)

[β+, γ+] 26,646 -0.06% 3.81% 1.00% 4.87%

(0.85%) (6.94%) (4.09%) (9.80%)

[β+, γ−] 30,354 1.09% -0.06% 0.30% -0.84%

(1.11%) (1.97%) (1.73%) (2.94%)

β− 169,192 0.56% 0.16% 0.50% 0.11%

(1.00%) (1.31%) (1.61%) (1.86%)

[β−, γ+] 23,245 -0.22% 0.63% 0.65% 1.49%

(0.96%) (2.40%) (1.99%) (3.67%)

[β−, γ−] 13,203 1.28% -3.49% 0.22% -4.55%

(1.29%) (5.37%) (3.36%) (7.75%)

γ+ 49,764 -0.20% 3.03% 1.59% 4.83%

(0.95%) (8.69%) (6.45%) (12.80%)

γ− 41,902 1.18% -1.85% -0.45% -3.49%

(1.34%) (4.82%) (4.40%) (8.11%)

All funds 616,497 0.50% 0.49% 0.56% 0.55%

(1.08%) (3.69%) (2.84%) (5.54%)
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the alpha correction implied in our framework adjusts perfectly for this bias.

To show this, we present the correlation between the time-varying coefficients of the TM model

obtained through rolling-window regressions (min. 36 months and max. 60 months) for a sample

period ranging from January 1996 to December 2016 (252 monthly observations). Each strategy

has 216 coefficient estimates for the α and γ from the TM model. Our replication framework also

provides an equivalent number of estimates for the alpha (ακτ ) of the option-based strategies. The

adjusted-α is equal to the alpha (α) from the TM model minus the alpha (ακτ ) from the option-

based replication strategy. Table 7 presents the results of the controlled environment and clearly

shows that the artificial negative correlation embedded in market timing models is significant (at

a 99% confidence level) with an average correlation between γ and α close to -78%. Conversely,

the correlation between γ and ακτ is low and insignificant for all hypothetical strategies. We remain

confident that the alpha correction is not another artifact that cures the correlation bias by simply

adding another mechanical effect but with the opposite sign. Nevertheless, due to the magnitude of

the artificial negative correlation, the adjusted-α also present a significant negative correlation but

for which the average value drops to -18%.

Next, we turn our analysis to the empirical evidence in our hedge fund sample. Table 8 reports

that average correlation between the γ and α is, as expected, strongly negative (on average -42.02%).

The correlation between γ and adjusted-α increases to 40.51%. This suggests that for some fund

classifications, ακτ is strongly negative. In an empirical and uncontrolled environment as our hedge

fund sample, distinguishing between uncorrelated timing and selectivity information is difficult, or

almost impossible (Grinblatt and Titman 1989; Jiang 2003). Therefore, we must rely on the fact that

the alpha adjustment remains unbiased in the controlled environment and should behave identically

when applied to our sample. The most appealing results are for fund classifications that exhibit op-

posite signs for the directional (β) and non-directional (γ) bets. Funds in the classifications [β+, γ−]

and [β−, γ+] demonstrate low levels of correlation, 14.39% and 18.48%, respectively. Interestingly,

the correlation during the NBER expansion periods is almost null (-1.43% and -4.98%) but stronger

in periods of recession (40.00% and 45.71%). One potential explanation for these results would be

that funds classified as [β+, γ−] have a payoff that resembles short put option strategies; in good

economic conditions, such strategies pocket the “option” premium but suffer during sudden market

crashes because of bad market timing. So, the alpha has a positive relationship with bad market

timing in recession periods. The rationale is similar for funds with a long put payoff [β−, γ+].
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Table 7: Negative Correlation Bias in a Controlled Environment

This table presents the artificial correlation bias embedded in the TM market timing model. Results are

presented for six hypothetical market timing managers for whom we list their strategy and the option-like

payoffs they exhibit. The last three columns report the correlation between the γ and the alpha (α) from

the market timing model, the correction of alpha (ακτ ) from the option-based replication strategy and the

final adjusted-α of the manager. The results are obtained through rolling-window regressions and impose a

minimum of 36 up to a maximum of 60 available months.

Correlation with γ

Strategy Fund Payoff α ακτ Adjusted-α

max(Rm,Rf) Long Call -76.25%*** 7.55% -21.45%***

min(Rm,Rf) Short Call -76.25%*** 0.91% -14.81%**

max(-Rm,-Rf) Long Put -74.01%*** 7.38% -18.89%***

min(-Rm,-Rf) Short Put -74.01%*** 1.75% -14.34%**

max(-Rm,Rm) Long Straddle -84.14%*** 8.58% -21.19%***

min(-Rm,Rm) Short Straddle -84.14%*** 5.50% -18.37%***
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The most puzzling results are for fund classifications that exhibit similar signs in the directional

(β) and non-directional (γ) bets. Funds in the classifications [β+, γ+] and [β−, γ−] demonstrate

high levels of correlation between the coefficients, 63.05% and 74.19%, respectively. According to

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014) during recession periods these funds would

stop picking securities to the benefit of timing the market, we should thus expect lower levels of

correlation between the coefficients. However, this intuition is not valid as the levels of correlation

increase to 74.58% and 79.03%, respectively. One potential explanation is that funds with both a

directional and a non-directional bet on the market share similar information in their selectivity and

timing skills.

Table 8: Negative Correlation Bias in an Uncontrolled Environment

This table reports the artificial correlation bias embedded in the TM market timing model. Results are

presented for hedge fund managers for whom we list their fund classification in the first column. The last

three columns report the correlation between the γ and the alpha (α) from the market timing model and the

final adjusted-α of the manager. We distinguish the results for periods of expansion and recession as defined

by the NBER. The results are obtained through rolling-window regressions and impose a minimum of 36 up

to a maximum of 60 available months.

Fund Correlation with γ in expansion in recession

Classification α Adjusted-α α Adjusted-α α Adjusted-α

β+ -25.94% -23.41% -25.94% -25.61% -30.57% -16.45%

[β+, γ+] -26.53% 63.05% -33.02% 51.96% -33.13% 74.58%

[β+, γ−] -47.96% 14.39% -49.92% -1.43% -37.39% 40.00%

β− -30.04% -18.92% -29.28% -19.03% -35.49% -22.48%

[β−, γ+] -45.40% 18.48% -46.73% -4.98% -47.99% 45.71%

[β−, γ−] -49.95% 74.19% -56.95% 68.30% -38.43% 79.03%

γ+ -30.20% 52.18% -26.89% 63.64% -50.62% 56.25%

γ− -44.33% 53.78% -42.91% 66.83% -53.45% 54.88%

All funds -42.02% 40.51% -40.48% 33.13% -53.64% 61.00%

Finally, we present the implications of adjusting the alpha on the negative correlation bias

between the security and timing skill coefficients. To show this, we use of a double conditional
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sort on the α and the adjusted-α while controlling for the level of γ skills. We predict that if the

correlation between γ and adjusted-α were artificially constructed, we should not be able to perceive

any symmetrical effect between the groups of hedge funds and subsequent (t+1) fund returns. We

perform this test by forming portfolios of hedge funds and assume for simplicity that there are no

transaction costs and lock-up periods for grouping hedge funds. Table 1 reports the results for

the spread portfolios constructed by the joint sort of funds in quintile portfolios based on their γ

skill and by their selectivity skill. The raw selectivity skill (α) is reported in Panel A, whereas the

adjusted selectivity skill (Adjusted-α) is in Panel B. As expected, in Panel A, the abnormal returns of

these spread portfolios over the FF 3-factor model are not symmetrical, that is, the spread portfolio

for funds with high γ skill is close to 0 (t-stat of -0.176). Conversely, adjusting for the negative

correlation bias leads to a symmetrical effect in predicting subsequent hedge fund returns; the same

portfolio now delivers a monthly return of 0.651% (t-stat of 3.423). And the effect is valid up to

nine months after portfolio formation; however, we do not report these results for brevity.

4 Skill Index

In a similar vein as Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014), we construct a hy-

pothetical Skill Index at time t+1 using the adjusted measure for the selectivity skill and timing

skill at time t. The index is constructed by aggregating the standardized values (z-score) of the

selectivity skill and timing skill and weighting each component by the recession probability index

from Chauvet and Piger (2008), denoted w.

The equation is as follows:

Skill Indexit+1 = wt × Timingit + (1− wt)× Selectionit (20)

The intuition behind the linear methodology is simple; a manager is more likely to time the

market in stressed economic conditions, while in prosperous conditions, he concentrates on the

selection of securities. In our framework, the timing skill is defined by the slope on the squared

market return from the TM model (γ), and the selection skill is the adjusted-α (πτ,k = α− ατ,k).

Panel A of Table 10 demonstrates that a skill index applied to the raw selectivity measure

from the TM model does not allow to identify persistent skilled funds. Indeed, long/short strategy

formed on the decile portfolios sorted on the skill show average returns (E[R]) close to zero. We
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Table 9: Conditional Sort on the Adjusted-Alpha

For each month, we sort hedge funds into quintile portfolios according to their selectivity skills, i.e., α or

adjusted-α. Groups are formed using a conditional sort that first splits hedge funds according to their level

of gamma skill and then by their level of selectivity skill. In each level of gamma skill, the spread between

funds with the highest (Q5) and the lowest (Q1) selectivity skill are reported in the column (Q5-Q1). The

reported values are the alpha (in %) from the FF 3-factor model, and t-stats are in parentheses.

γ Panel A: α Panel B: Adjusted-α

↓ 1 2 3 4 5 Q5-Q1 1 2 3 4 5 Q5-Q1

1 -0.289 0.032 0.148 0.094 0.305 0.593 -0.392 0.033 0.089 0.112 0.454 0.846

(-1.620) (0.270) (1.273) (0.741) (1.366) (2.827) (-1.882) (0.259) (0.793) (0.896) (2.584) (4.943)

2 -0.085 0.051 0.159 0.162 0.289 0.374 -0.298 0.064 0.103 0.256 0.445 0.743

(-0.680) (0.712) (2.250) (2.244) (2.649) (2.695) (-2.228) (0.813) (1.525) (3.375) (4.054) (4.737)

3 0.078 0.126 0.221 0.268 0.436 0.358 0.020 0.122 0.247 0.235 0.504 0.484

(0.852) (1.821) (3.276) (3.891) (4.366) (3.307) (0.198) (1.726) (3.787) (3.650) (4.484) (3.667)

4 0.103 0.206 0.243 0.286 0.447 0.345 0.072 0.201 0.250 0.308 0.453 0.381

(0.877) (2.145) (2.495) (3.106) (3.596) (2.718) (0.561) (2.001) (2.675) (3.400) (4.007) (3.070)

5 0.650 0.460 0.437 0.415 0.610 -0.040 0.323 0.380 0.402 0.487 0.974 0.651

(2.395) (2.493) (2.744) (2.747) (3.118) (-0.176) (1.555) (2.110) (2.474) (2.774) (4.197) (3.423)
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found similar findings when spread returns are regressed again the Fung and Hsieh (2001, FH) and

Agarwal and Naik (2004, AN) models; the intercepts α-FH and α-AN are not significantly different

from 0. Panel B of Table 10 shows that sorting hedge funds on the Adjusted-Skill Index predict

future returns. The long/short strategy presents a postivie gamma at a 95% confidence level. This

suggests that relationship between the Adjusted-Skill Index and subsequent hedge fund returns is

monotonic across the decile portfolios. In unreported results, we confirm that this linear relationship

holds up to 12 months after portfolio formation.

Table 10: Option Replication Strategies

For each month, we sort hedge funds into decile portfolios according to the level of their Skill Index, i.e., a linear

combination of γ and α or adjusted-α. In each symmetric level of Skill, the spread between portfolios of funds

is reported in the columns named Differences. The reported values are the average fund’s one month ahead

returns (from t+1 until t+2). The corresponding t-stats of the expected returns are displayed in parentheses.

The notations E[R] refers to average return whereas α-FH and α-AN refers to the intercept coefficient from the

factor models of Fung and Hsieh (2001) and Agarwal and Naik (2004), respectively. Returns are in percent.

The sample period ranges from February 1996 to December 2015.

Decile Portfolios (Equal-Weighted) Differences

1 2 3 4 5 6 7 8 9 10 10-1 9-2 8-3 7-4 6-5

Panel A: Skill Index

E[R] 0.43 0.39 0.36 0.33 0.37 0.39 0.41 0.43 0.47 0.72 0.29 0.08 0.07 0.08 0.02

t-stat (1.518) (2.084) (2.221) (2.307) (2.702) (2.897) (2.906) (2.852) (2.657) (2.869) (1.294) (0.779) (0.905) (1.345) (0.417)

α-FH 0.14 0.18 0.17 0.18 0.19 0.21 0.22 0.23 0.21 0.44 0.31 0.03 0.07 0.04 0.02

t-stat (0.718) (1.592) (1.726) (2.150) (2.452) (2.762) (2.912) (2.492) (1.902) (2.413) (1.293) (0.269) (0.858) (0.711) (0.416)

α-AN 0.16 0.22 0.18 0.17 0.19 0.23 0.27 0.27 0.31 0.58 0.42 0.09 0.09 0.10 0.04

t-stat (0.660) (1.647) (1.771) (1.907) (2.160) (2.839) (2.761) (2.815) (2.585) (2.985) (1.685) (0.749) (1.099) (1.592) (0.788)

Panel B: Adjusted-Skill Index

E[R] 0.03 0.26 0.26 0.32 0.38 0.44 0.44 0.47 0.64 1.04 1.01 0.38 0.21 0.11 0.06

t-stat (0.104) (1.238) (1.506) (2.277) (2.819) (3.433) (3.182) (3.324) (4.001) (4.801) (3.941) (3.046) (2.771) (2.185) (1.675)

α-FH -0.44 -0.02 0.02 0.15 0.21 0.30 0.27 0.32 0.46 0.89 1.34 0.48 0.30 0.12 0.08

t-stat (-2.185) (-0.135) (0.228) (1.891) (2.723) (4.028) (3.359) (3.459) (4.097) (5.182) (5.543) (3.857) (3.987) (2.192) (2.090)

α-AN -0.34 -0.04 0.03 0.17 0.22 0.31 0.31 0.37 0.57 0.95 1.29 0.61 0.34 0.14 0.10

t-stat (-1.744) (-0.308) (0.307) (1.938) (2.503) (3.718) (3.127) (3.340) (4.196) (4.672) (5.607) (5.242) (4.647) (2.385) (2.197)
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5 Robustness

5.1 Model Specification

5.1.1 In-sample Bootstrap Test

We posit the hypothesis that estimating an ad hoc model specification of active investors should

deliver (in-sample) an aggregate distribution of skills similar to a zero-alpha distribution. In other

words, if the model is accurate enough (in-sample) we should see an aggregate alpha close to zero:

for every winning investor, there should be losers (Fama and French 2010).

Kosowski, Naik, and Teo (2007) demonstrate, however, that assessing the performance of a fund

based solely on the alpha coefficient of a regression model is misleading because the errors of the

estimation are not considered in the performance evaluation. These errors lead to spurious outliers,

which may be identified as good or bad performers, by chance. As a result, recent performance

evaluations have been conducted based on the normalization of the coefficient through the t-statistics

(t(α)) of the alpha and bootstrap methods. We next explain Fama and French (2010)’s bootstrap

test in which the t(α) of a fund is considered to judge whether its performance is persistent or simply

driven by luck. In our framework, we are rather interested to check whether the distribution of skill

for well and poorly performing funds remains the same before and after our alpha adjustment.16

Fama and French (2010) compare the actual cross-section of mutual funds’ alphas to a simulated

cross-section of bootstrapped alpha in a world of zero true alpha (no timing or selection abilities).

In this section, we transpose the procedure to our sample of hedge fund returns using the extensions

of the TM regression models described in the prior sections.

Kosowski, Naik, and Teo (2007) emphasize two difficulties in evaluating the performance of

hedge funds: first the difficulty of benchmarking dynamic hedge fund strategies and, second, the

fact that adding alternative risk factors might reduce misspecifications in the model. Concerning

the benchmark issue, we know that although the S&P 500 is probably not the most appropriate

benchmark for evaluating the cross-section of hedge funds, it is nevertheless the most frequently used

benchmark in the literature. The interpretation of our results should thus not diverge from other

studies based on the choice of this benchmark. Regarding the model specification, we complement

the quadratic regression model of TM with instrumental variables that control for public information.

16Our bootstrap procedure is similar to that of Kosowski, Timmermann, and Wermers (2006), Chen and Liang

(2007), Jiang, Yao, and Yu (2007), Kosowski, Naik, and Teo (2007), and Cao et al. (2013).
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We describe the bootstrap procedure in the four following steps.

The first step consists in estimating the actual alphas of the ith hedge fund using a multi-factor

model. In our application, we use the TM model augmented with conditional lagged instruments

described in Section 1.1:

Rt = α+ βcRmt + γcRm
2
t +

L∑
l=1

δl(zl,t−1Rmt) +
L∑
l=1

∆l(z
∗
l,t−1Rmt) + et (21)

where Rt denotes the ith hedge fund’s return in excess of the risk-free rate (the one-month T-bill

from Ken French’s website) at time t. zl,t−1, and z∗l,t−1 denote the conditional lagged instruments

measured on monthly and aggregate daily observations, respectively. We still consider the excess

return of the S&P 500 as a proxy for the excess market return (Rmt). We also assume that et ∼

N(0, σ2).

In the second step, we subtract the estimated α of the ith fund from its return (Rt) to construct

a time series of zero-alpha returns, i.e., (Rt − α). As Cao et al. (2013, p. 499) note, this step

ensures that the procedure generates “hypothetical funds that, by construction, have the same factor

loadings as the actual funds but have no timing ability”. In other words, the beta parameters remain

unchanged. However, in our case, as the market timing ability is already captured by the quadratic

terms, the only ability left in the model is the manager’s skill at picking well performing stocks

(security selection).

In the third step, we jointly17 resample the zero-alpha returns with the factor returns (Rmt and

Rm2
t ). The joint resampling ensures that we capture the cross-sectional correlation between the fund

returns in our sample and the explanatory variables. One run of the bootstrap works as follows:

we randomly select a date from our sample of 239 monthly observations (from February 1996 to

December 2015) and draw a selection, with replacement, of date observations of the same size as

our original time frame (239 monthly observations). The time series is equivalent for the whole

funds universe. We retain only funds with more than 36 observations in this run. As explained in

Fama and French (2010), this procedure preserves the cross-sectional and time-series dependence

across funds and explanatory variables. The bootstrap is composed of 1,000 runs (denoted b for

17The bootstrap procedure is a random selection of monthly observations of all funds with replacement. The

conditional resampling is performed to capture the cross-sectional correlation between portfolio returns constituting our

sample. As in Harvey and Liu (2016), for example, the bootstrap preserves cross-sectional and time-series dependence.
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bootstrapped) and estimates the alpha and t-statistic for the ith fund in a world in which its true

alpha is zero:

(Rt − αt)b = α̂b0 + β̂bRmt + γ̂bRm2
t +

L∑
l=1

δ̂bl zl,t−1Rmt +

L∑
l=1

ωbl (z
∗
l,t−1Rmt) + ebt (22)

In the fourth step, we average, across the 1,000 simulations, the alphas and their t-statistic (t(α))

estimates at the same percentile to construct an empirical cumulative density function (CDF) of the

cross-sectional zero alphas (α̂0
b). Fama and French (2010) use the t-statistics of funds instead of

their raw alphas to remove the influence of funds with short sample periods or high idiosyncratic

risk – these funds being more likely to have alpha by chance. Thus far, the alpha corrections from

our option-based strategies have not been integrated into the bootstrap. To do this, we repeat the

operation from step one to step four and adjust the funds’ returns by subtracting the alpha of our

option-based replication strategies (α
(τ,κ)
i ), that is, we replace Rit in equation (21) with (Rit−α

(τ,κ)
i ).

Overall, Figure 6 demonstrates that the in-sample α adjustment from our option-based framework

delivers an aggregate picture of the distribution t-(α) similar to a distribution where α is by design

equal to zero. This supports the hypothesis that the combination of the extended TM model with

instrumental variables and our alpha adjustment provides a good model specification to explain the

cross-section of hedge fund returns.

5.1.2 Exclusion Restriction Variables

To verify that our findings are not driven by model misspecifications, we re-estimate our results

using two “placebo” variables which control for spurious significant loadings on the quadratic term

in equation (4). Following the work of Jagannathan and Korajczyk (1986), Chen and Liang (2007)

complement the specification of the regression model by adding one of these two nonlinear variables of

the benchmark, i.e., ln(|Rm|) and l/Rm. Performing equivalent analysis as in Section 1.1 with these

additional variables verifies whether nonlinear coefficients on the benchmark load up significantly in

the regression, by design. A significant estimate serves as the exclusion of the model specification.

We report in Table 11 the proportion of rolling regressions for which one of these term coefficients is

significant. The first column present the significance level for the coefficient estimate of the placebo

variable; the second column reports the proportion of significant estimates in the OLS-regression

when the variable l/Rm is added to the model while the third column report the average adjusted R-
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Figure 6: Cumulative Density Function of t(α)

This figure illustrates the CDF of t(α) estimates on hedge funds with significant parameters from the TM

model. The simulated CDF of the t(α) estimates for zero-alpha funds is represented by the blue line. The

red dotted line is the CDF of the t(α) estimates for actual portfolios. The vertical gray dotted lines represent

t-statistics at the usual 90% confidence level. For visualization purposes, the areas above this confidence level

for the actual t-statistics are shaded. The aim of the figure is to compare the blue and red dotted lines at

these 90% confidence levels. The sample period is from January 1996 to December 2015. Graphs on the left

(right) show results for funds without (with) alpha correction from an option-based strategy. Plots (a) and

(b) use the factors of the TM model and conditional lagged instruments from Chen and Liang (2007).

(a) Raw α (b) Adjusted-α
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squared for the regressions with a significant estimates; Columns four and five display the equivalent

results when the variable ln(|Rm|) is added to the model. Our results indicates that the proportion

of regressions with a significant estimate on the placebo variable are proportional to their specified

significance levels, i.e. around 10%, 5%, 1% for a confidence level of 90%, 95%, 99%, respectively.

These findings confirm that our results should not be driven by model misspecification. In unreported

tests, we perform again all analysis present in the paper by discarding regressions with a significant

coefficient on a placebo variable. This selection process does not affect the results presented in the

previous sections.

Table 11: Model Misspecification

This table summarizes the proportion of rolling regressions with a total amount equal to 616,497 in our sample

for which a coefficient on the nonlinear placebo variable is found significant. The placebo variable is either:

l/Rm or ln(|Rm|). We also report the average adjusted R-squared for regressions with a significant estimate.

Significance level 1/Rm Adj-R2 ln(|Rm|) Adj-R2

10% 9.80% 3.70% 10.61% 3.89%

5% 5.31% 2.10% 5.60% 2.16%

1% 1.36% 0.59% 1.36% 0.54%

5.2 Henriksson and Merton Model

Ferson and Schadt (1996, p. 431) identify for dynamic models that: “the investment horizon

of the investor becomes a complex issue [...] and the optimal investment horizon is an endogenous

variable.” In this part, we briefly present evidence that the nonlinear variable from the market timing

model of Henriksson and Merton (1981, HM) is pertinent for adjusting the alpha of a manager only

when her investment horizon is short-term (up to 3 months). We proxy the investment horizon

by the maturity of the selected options that replicate the manager’s strategy. The reason to this

choice is simple; as the investment horizon of the manager gets closer to one period, the Treynor and

Mazuy (1966, TM) model degenerates into the HM model. In their model, Henriksson and Merton

substitutes the squared market return (Rm2) by the payoff to a one-period call option on the market

portfolio (max(0,Rm)). This alternative specification provides a kinked rather than function which

gradually becomes nonlinear to capture the market timing skill of fund managers. The model is
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thus well suited for replicating managers’ performance with short investment horizons because the

gamma for options with low maturity tends to converge to +∞ and it is precisely what the kink of

the function intends to capture.

To demonstrate that the HM model is only well suited for short investment horizons, we use the

joint sorting test on γ and the adjusted-α which allows to distinguished good from bad performing

funds for all level of gamma skills. In this test, we implement a simple selection process to estimate

the adjusted-α of managers: funds identified with low investment horizons under the TM model

and for which the HM model show higher R2 are corrected with the adjusted-α from the HM model

otherwise the correction is provided from the TM model. The first column of Table 12 reports the

results when no investment horizons are specified and simply refers to the adjusted-α from the HM

model only. Each row of the Table reports the spread return between funds ranked in high quintile

(Q5) and low quintile (Q1) on their adjusted-α for a given level of γ. Clearly results show that the

HM model fails at distinguishing good from bad performing funds with a high level of γ (Q5) and

mixed investment horizons because the spread return (Q5-Q1) is close to zero (0.053% with a t-stat

of 0.212). Columns (2) to (4) demonstrates that the spread returns (Q5-Q1) between high versus

low adjusted-α funds increase significantly as the investment horizon shrinks from 180 to 120, and

60 days, respectively.

According to Ferson and Schadt (1996) the investment horizon of an investor is an important but

difficult issue that deserves particular attention for performance evaluations. We thus motivate the

initial choice of the TM model not only by its strong relationship with the Taylor expansion series

that serves as a basis for the option-based replication framework but also by the important flexibility

it gives for replicating a complex variety of investment horizons compared to the HM model.
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Table 12: Adjusted-alpha and Managers’ Investment Horizons

For each month, we sort hedge funds into quintile portfolios according to their selectivity skills, i.e., α or

adjusted-α. Groups are formed using a conditional sort that first splits hedge funds according to their level

of gamma skill and then by their level of selectivity skill. In each level of gamma skill, the spread between

funds with the highest (Q5) and the lowest (Q1) selectivity skill are reported in each column (Q5-Q1). The

reported values are the alpha (in %) from the FF 3-factor model, and t-stats are in parentheses. We provide

four model specification: (1) refers to the alpha-adjusted from the HM model only, while for the next columns

the model selection combine the adjusted-α from the HM and the models. More precisely, funds identified

with low investment horizons under the TM model and for which the HM model show higher R2 are corrected

with the adjusted-α from the HM model otherwise the correction is provided from the TM model. Columns

(2) to (4) specify that the HM model used when investment horizons are lower than 180, 120, and 60 days,

respectively.

Adjusted-α : Q5-Q1

(1) (2) (3) (4)

↓ γ None 180 days 120 days 60 days

1 1.005 0.644 0.655 0.725

(4.485) (3.296) (3.337) (3.878)

2 0.600 0.727 0.728 0.677

(4.278) (4.658) (4.639) (4.365)

3 0.465 0.365 0.370 0.430

(3.371) (3.152) (3.206) (3.633)

4 0.527 0.303 0.302 0.399

(3.535) (1.903) (1.904) (2.646)

5 0.053 0.395 0.423 0.513

(0.212) (1.979) (2.124) (2.619)
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6 Conclusion

This paper establishes a time-varying benchmark methodology to assess the timing skills of fund

managers. Our model is intended to adjust the fund managers’ returns by the alpha of a passive

option-based strategy that replicates the non-linearity in the fund returns. Fama (1972) defined a

fund manager’s skills as both market timing and stock selection ability from the Treynor and Mazuy

(1966, TM) model, such that the combination of the intercept and the quadratic term (αTM+γRm2)

captures these skills. However, when assuming that the quadratic term (γRm2) could be replicated

by a passive strategy, the only source of skill left in the equation is the intercept (αTM ), which thus

represents the security selection skill of a manager. Our study follows this assumption and extend

the replication model of Hübner (2016) to satisfy the condition of passively replicating the linear

and quadratic terms of the market timing model in a time-varying framework. The “cost” of the

replication serves as a basis for adjusting the intercept (α) of the TM model and should reflect the

true skill that a manager demonstrates relative to a passive option-based benchmark with equivalent

convexity.

After adjusting the alpha of the managers by that of the replication strategy, we simply assess

the systematic sources of fund returns through traditional multi-factor models. Overall, the alpha

adjustment in our model delivers an interesting picture of the cross-sectional skills in our hedge fund

sample (a merged sample of HFR and Morningstar): the construction of an Adjusted-Skill Index

correlates with future returns and that up to twelve months ahead. This monotonic relationship is

not present when using the traditional specification of the TM model.

This research contributes to the literature on the gamma trading in hedge funds’ trades be-

cause it first sets individual benchmarks for replicating the non-linear nature of the performance of

hedge funds, and it does so by applying a flexible approach that uses tradable options from Option-

Metrics. Second, the adjustment in our model improves on and is not captured by other standard,

derivative-based risk factor models. Third, the approach allows us to make more accurate infer-

ences in comparing non-linear strategies with “skilled” versus “dumb” alpha. Indeed, the algebra

behind a quadratic equation leaves a positive (negative) intercept when the quadratic coefficient is

negative (positive), such that a positive market timer will have, on average, negative alpha, while

a strategy that shorts naked put options will have, on average, positive alpha by construction (see,

for instance, Jurek and Stafford 2015). Adjusting for this mechanical effect leaves us with a more
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accurate evaluation of the skills available in the hedge fund industry.

Overall, we categorize the payoffs of approximately the whole cross-section of our hedge funds

sample into three main categories: directional with market timing skills (e.g., long-short and short

bias hedge funds), non-directional with market timing (e.g., multi-strategy, global macro, CTAs), and

non-directional with convergence bets (event driven, relative value, market-neutral). We find positive

adjustments for market timers with directional bets and positive non-directional bets (long call, long

put, and long straddle payoffs) but negative adjustments for negative timers with convergence bets

(short call, short put, and short straddle payoffs). We note however that the alpha adjustment is

strongly dependent on the vertex of the quadratic payoff – i.e., the ratio −β/2γ. The flexibility of

our model leaves an alpha adjustment that is free from the bias arising from the artificial negative

correlation in market timing models.

We hope this study can improve our understanding of the non-linearities in hedge fund returns

and contribute to the development of a new set of option-based risk factors that more accurately

capture the dynamic patterns of hedge funds, which is a topic we hope to pursue in future research.
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Hübner, G., Lambert, M., and Papageorgiou, N. (2015) Higher - moment Risk Exposures in Hedge

Funds, European Financial Management 21, 236–264.

Ingersoll, J., Spiegel, M., Goetzmann, W., and Welch, I. (2007) Portfolio Performance Manipulation

and Manipulation-proof Performance Measures, The Review of Financial Studies 20, 1503–1546.

Jagannathan, R. and Korajczyk, R. (1986) Assessing the Market Timing Performance of Managed

Portfolios, The Journal of Business 59, 217–235.

Jiang, G. J., Yao, T., and Yu, T. (2007) Do Mutual Funds Time the Market ? Evidence from Portfolio

Holdings, Journal of Financial Economics 86, 724–758.

Jiang, W. (2003) A nonparametric test of market timing, Journal of Empirical Finance 10, 399–425.
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Appendices

A Hedge Fund Database Treatments

The treatments applied to merge our databases (Morningstar and HFR) regroup the following

conditions for both databases, which contain monthly net-of-fees returns and assets under manage-

ment for the period from January 1974 to December 2015;

1. We focus on the post-1994 period because prior to this date, the coverage of defunct funds

is incomplete. In our paper, we focus on 1996 onward to fit the condition imposed by the

OptionMetrics database, which only starts in January 1996.

2. In Joenväärä, Kosowski, and Tolonen (2016), the data for raw returns and AuM observations

are denominated in several different currencies, and the authors convert returns and AuM

observations that are not denominated in USD to USD using end-of-month spot rates. In this

paper, however, we only use funds denominated in USD to be in line with the benchmark used

in our analysis (the S&P 500).

3. We include only funds that report net-of-fee returns on a monthly basis.

4. We remove very large or small returns to eliminate a possible source of error by truncating

returns between the limits of -90% and 300%.

5. We exclude the first twelve observations of each hedge fund to reduce the issues of backfill bias

(Fung and Hsieh 2001; Bali, Brown, and Caglayan 2014).

6. We exclude hedge funds with track records shorter than 36 months (to address survivorship

bias) as in (Bali, Brown, and Caglayan 2014; Patton and Ramadorai 2013).

B Hedge Fund Classifications
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