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Abstract

Funding liquidity, the ability to raise funds, affects arbitrage activity in correcting mispric-
ing. We propose a new measure of funding liquidity through the corresponding arbitrage
activity, namely the arbitrage efficacy. In a model where arbitrageurs exploit mispricing sub-
ject to endogenous leverage constraint, we capture funding liquidity (arbitrage efficacy) as
the marginal leverage raised (the marginal percentage of error correction achieved) against
additional mispricing. Ample funding liquidity leads to positive arbitrage efficacy, such that
sufficient leverage is financed and higher correction is achieved against additional mispricing.
If an external shock makes the constraint binds, funding liquidity dives and drives arbitrage
efficacy negative. To test our model predictions, we estimate the arbitrage efficacy implied
by the arbitrage activity in correcting the S&P 500 future-cash basis. We find that 1. the
periods of negative arbitrage efficacy coincide with the ex-post financial market turmoils. 2.
Arbitrage efficacy is correlated with other measures of funding liquidity. 3. The basis is more
sensitive to arbitrage efficacy and other funding liquidity measures during the periods of neg-
ative arbitrage efficacy, which evidences the liquidity-induced amplification effect. (JEL G01
G10 G14)

1. Introduction

Arbitrageurs (called arbs in short hereafter), such as hedge funds, tend to heavily utilize lever-

age debts to absorb external demand and supply shocks. The high use of leverage can enhance
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their ability to capitalize on mispricing opportunities and reduce pricing anomalies, which is

referred to as “smart money” by Akbas et al. (2015). However, it also exposes them to po-

tential funding liquidity risk, as the arbs may hit the funding constraint and amplify external

shock, rather than absorbing them. Shleifer and Vishny (1997) demonstrate a potential loss

spiral, such that arbs with poor past performance face funding withdrawal from the lenders

and have to liquidate their position, which put further pressure on asset price. Brunnermeier

and Pedersen (2009) illustrate the liquidity spiral, such that adverse shocks to funding liq-

uidity condition reduce the arbs’ ability to provide market liquidity, which will raise margin

requirement and further jeopardize the funding liquidity condition.

As external shocks to the financial market are inevitable, understanding and identifying

the liquidity-induced amplification effect are vital for intermediaries and policy makers (Brun-

nermeier and Oehmke 2013, Shin 2016)4. Extant literature tends to study funding liquidity

directly through the available arbitrage capital (Comerton-Forde et al. 2008, Adrian and Shin

2010, Akbas et al. 2016) and indirectly through the asset pricing impacts (Fontaine and Garcia

2011, Garleanu and Pedersen 2011, Nagel 2012, Frazzini and Pedersen 2014, Golez, Jackwerth

and Slavutskaya 2017). However, one cannot tell when funding illiquidity becomes so severe

that the amplification will be triggered. Rather, the amplifications are empirically documented

by setting arbitrary thresholds on the measures of funding liquidity or by identifying the ex-

post market turmoils (Comerton-Forde et al. 2008, Drehmann and Nikolaou 2013, Schuster

and Uhrig-Homburg 2015). Our paper attempts to fill this gap by a complementary study on

the funding liquidity and the nonlinear consequences under the binding funding constraints.

We start from the market structure of Shleifer and Vishny (1997), and extend for endoge-

nous leverage constraint. Arbs capitalize on a risky mispricing opportunity by the use of equity

and leverage; Leverage debt is financed from outside financiers, who set a constraint to protect

their own capital from the arbs’ potential insolvency. We derive the competitive equilibrium of

4Shin (2016) points out that dealer banks with over-stretched leverage not only transmit external shocks,
but also amplify these external shocks through the self-reinforcing downward spiral in leverage. Financial
markets will always be subject to external shocks, the task for policymakers is to mitigate the endogenous,
second-round effects by helping intermediaries to be more resilient.
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the model where arbs choose the optimal leverage position to capitalize on mispricing subject

to the leverage constraint. Due to the endogenous leverage constraint, an external shock to

equity or arbitrage risk will be amplified when the leverage constraint is hit. It is consistent

with the liquidity-induced (leverage-induced) amplification effect (Brunnermeier and Pedersen

2009, Garleanu and Pedersen 2011).

Next, we investigate the model implication on the arbs’ funding liquidity. Unlike the extant

literature that investigate funding liquidity through the shadow cost of capital (Brunnermeier

and Pedersen 2009, Garleanu and Pedersen 2011) and the size of arbitrage violation (Fontaine

and Garcia 2011, Akbas et al. 2016), we define funding liquidity through the arbitrage activity

in response to mispricing. More specifically, funding liquidity ` is defined as the marginal

leverage debt raised by the arbs in order to bear against additional mispricing error, which

reflects the ability to raise leverage. When the arbs are far from the leverage constraint, `

is close to unity, such that the arbs can raise ample leverage to explore a better mispricing

opportunity. A shock to equity or arbitrage risk will slightly reduce funding liquidity. However

if an extreme shock makes the leverage constraint binds, ` dives closely to zero. It implies

that arbs can barely raise any extra leverage.

While the leverage position is difficult to observe in practise, it reflects on the arbitrage

activity in correcting mispricing, i.e. the percentage of mispricing correction achieved by the

arbs. It is defined as the ratio of the arbs’ investment (equity plus leverage) over the size

of mispricing error. In this regard, we introduce the arbitrage efficacy θ, i.e. the marginal

mispricing correction achieved by the arbs in response to additional mispricing error. Arbitrage

is (in)effective when the marginal correction is positive (negative), such that arbs are able to

achieve higher (lower) mispricing correction with larger error. We find that ample funding

liquidity leads to effective arbitrage (θ > 0) since sufficient leverage debts can be financed.

However when the leverage constraint is hit, funding liquidity is dampened, which renders

arbitrage ineffective (θ < 0). It generates an important prediction of our model: the sign of

arbitrage efficacy θ can be viewed as a signal of the binding leverage constraint and a warning

about the liquidity-induced amplification effect.
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To examine our model predictions, we design an empirical strategy to capture the arbitrage

efficacy. We choose to look into the arbitrage activity of the future-cash basis implied by the

S&P500 index and E-mini future from September 1997 (the earliest possible time for E-mini

future) to June 2015. We first estimate the fair value of the future contract implied by the cost

of carry model, and capture the future-cash basis as the difference between the spot and fair

price of the future contract. Setting an initial window of 500 days, we next estimate the mis-

pricing correction using the Generalized Error Correction Model with a recursive setup. The

implied arbitrage efficacy is computed as the OLS estimator of regressing the daily mispricing

corrections (in absolute value) on the daily mispricing errors (in absolute value).

To begin, I depicts the moving arbitrage efficacy on a 250-day (the effective trading days

in one year) window along with the VIX index from Chicago Board of Options Exchange

(CBOE) in Figure 1. The trajectory of the implied arbitrage efficacy is rather informative

about the liquidity condition of the financial market. We note that the periods of negative

arbitrage efficacy tend to coincide with spikes in the VIX index, except for the flash crash

event in 2010. In particular, the implied arbitrage efficacy drops sharply below zero from June

2007, which matches the build-up of the 2007 global financial crisis. It can be a good tool for

policy makers to identify the funding liquidity condition among the financial markets as well

as the potential amplifications due to the binding funding constraints.

Motivated by the rudimentary plot against VIX index, we formally test the model predic-

tions using the monthly implied arbitrage efficacy, i.e. the OLS estimator of regressing the

daily mispricing corrections (absolute value) on the daily mispricing errors (absolute value)

over each month. 184 observations are obtained from March 2000 to June 2015. First, we

document a significant correlation between the implied arbitrage efficacy and other broad

measures of funding liquidity over time, e.g. TED spread, Libor-Repo spread, default spread,

term spread, VIX index, funding liquidity measure of Fontaine and Garcia (2012), and the

broker-dealer leverage factor from Adrian, Etula, and Muir (2014). In particular, the implied

arbitrage efficacy closely links to TED and Libor-repo spread with a correlation over 50 per-

cent. Other funding illiquidity measures also reach a correlation of more than 20 percents.
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Figure 1: The implied arbitrage efficacy and the CBOE VIX index over time
The figure plots the arbitrage efficacy on a 250-day rolling window, implied by the S&P500 index and E-mini
future (black solid line), and the S&P500 index and the standard future (black dotted line). Each point bases
on the previous 250 days of data. Details of the measure construction are provided in Section 3. The periods
of negative arbitrage efficacy is shaded. The CBOE VIX index is depicted over the same period of time (red
solid line).

It indicates that the arbitrage efficacy implied by a single S&P 500 future-cash relationship

captures the information of market-level funding liquidity condition. Second, we find that vari-

ations in the implied arbitrage efficacy is mainly explained by funding illiquidity measures,

e.g. TED and term spread, rather than measures of market illiquidity and arbitrage risk, e.g.

the VIX index, the illiquidity measure of Amihud (2002) and Pastor and Stambaugh (2003)

and the idiosyncratic volatility of Ang et al. (2006). These measures together explain around

40 percent of the variations in the monthly implied arbitrage efficacy.

Our main objective is to establish the nonlienarity arose under the binding leverage con-

straint. Specifically, we investigate whether the future-cash basis is more sensitive to the

changes in arbitrage efficacy when arbitrage efficacy becomes negative. On aggregate, we find

strong negative relationships between changes in the basis and the implied arbitrage efficacy,

before and after controlling for other measures of arbitrage frictions. It indicates that more

effective arbitrage reduces the future-cash basis. Conditional on the positive arbitrage efficacy,

the relationship becomes insignificant and indifferent from zero. However, given the negative

arbitrage efficacy where leverage constraints become binding, the estimated coefficients on
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the implied arbitrage efficacy become sizable and highly significant, as well as other funding

illiquidity measures, such as TED spread, default spread and term spread. Now a small shock

to funding liquidity condition is associated with large increment in the basis, which confirms

the amplification effect attributed to the binding leverage constraints. We find similar results

using the noise measure of Hu, Pan and Wang (2013) that captures mispricing in the U.S.

treasury bond market. It further suggests that funding illiquidity spillovers to the U.S. trea-

sury bond market during the periods of the binding leverage constraint. A robustness check

employs the future-cash bases that obtained from other major index market around the world,

e.g. Germany and Japan. Overall, the arbitrage efficacy can be a great tool for policy makers

to understand the funding liquidity condition and identify the binding leverage constraint that

leads to amplification.

Our theoretical analysis contributes to the growing literature on the link between funding

liquidity, market liquidity and mispricing. Funding liquidity is often captured by the shadow

cost of capital (Brunnermeier and Pedersen, 2009; Garleanu and Pedersen, 2011) and the size

of uncorrected mispricings (Vayanos and Weill, 2006; Garleanu and Pedersen, 2011; Fontaine

and Garcia, 2012). Rather, we offer an alternative way to understand funding liquidity through

the corresponding arbitrage activity: the marginal mispricing correction achieved by the arbs

in response to additional mispricing. Our analyses offer a great tool to identify the binding

leverage constraint and the amplification with rigorous theoretical backing, without setting

ambiguous threshold and ex-post event dates.

Our paper also makes contributions to the empirical literature on funding liquidity. First,

we introduce a distinct measurement for funding liquidity as the arbitrage efficacy, which

can be captured from any verified arbitrage relationship. Extant literature has developed a

number of approaches to measure funding liquidity. Some base on stated interest rates that

reflects the cost of raising funds (Garleanu and Pedersen, 2011; Drehmann and Nikolaou,

2013). Others take funding illiquidity as a friction of arbitrage, liquidity provision or market

making. Comerton-Forde et al. (2008) and Adrian and Shin (2010) assess the intermediaries’

funding liquidity by directly investigating their balance sheet. Akbas et al. (2015, 2016)
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investigate the capital flow to hedge funds who conduct arbitrage5. While these papers tend

to focus on the availability of arbitrage capital, others, like Garleanu and Pedersen (2011),

Fontaine and Garcia (2012), Nagel (2012) and Frazzini and Pedersen (2014), pay attention to

the size of arbitrage violation due to funding illiquidity.

Second, our empirical study sheds new light on the nonlinearity between funding liquidity

and the size of mispricing that arises under the binding funding constraint. To distinguish

the stress periods where constraints tend to be binding, Comerton-Forde et al. (2008) select

a threshold at the 25th percentile of their measurement exogenously; Schuster and Uhrig-

Homburg (2015) determine the nonlinear relationship endogenously within a regime-switching

model; Drehmann and Nikolaou (2013) allocate the stress regime by the ex-post market tur-

moils. Our paper, however, are able to identify the binding funding constraint by the sign

of the arbitrage efficacy and find statistically significant empirical evidence of the nonlinear-

ity, which strongly supports the liquidity-induced amplification (Shleifer and Vishny, 1997;

Brunnermeier and Pedersen, 2009).

Last but not least, our paper contributes to the literature of the future-cash pricing system.

Kumar and Seppi (1994) and Roll, Schwartz and Subrahmanyam (2007) link the basis to

market illiquidity. Our results suggest that the ineffective arbitrage due to funding illiquidity

deters the movements of future and cash market prices toward the ideal of zero basis especially

when the leverage constraint is binding.

The paper proceeds as follows. In section 2, we extend the theoretical framework of Stein

(2009) and explore funding liquidity through the arbitrage activity. In section 3, the empirical

design is introduced to best capture the arbitrage efficacy from the theoretical work, as well as

the application to the S&P500 index and E-mini future arbitrage. Section 4 summarizes the

empirical results, including the time-series plot of the implied arbitrage efficacy, the linkages

with other measures of funding liquidity and the asymmetric effects that arises under the

binding leverage constraints. Finally section 5 concludes.

5Chordia et al. (2005) and Fleckensitein et al. (2014) use the flows into bond, equity funds and hedge funds
as the measure for funding condition in financial intermediaries.

7



2. The Model

2.1. Market structure

We consider the market structure similar to Shleifer and Vishny (1997), where an asset with

a fundamental value, V , trades for three periods, t = 1, 2, 3. At period 1, noise traders arrive

with a pessimistic shock of size, s1, that pushes the asset price away from fundamental. Then

the arbs attempt to correct the mispricing and prevent the asset from trading at a distressed

price. Denoting the arbs’ total (arbitrage) funds as f1, we derive the market clearing price at

period 1 by6:

P1 = V − s1 + f1. (1)

There exist two different market states at period 2. Under a bad state, noise deepens such

that s2,b > s1 with a probability, q > 0, in which case the price becomes:

P2,b = V − s2,b + f2,b, (2)

where f2,b is the total funds available in a bad state. Under a good state with a probability,

1 − q, noise disappears (i.e. s2,g = 0), and the asset price converges towards fundamental,

P2,g = V . Finally, at period 3, price is assumed to revert to fundamental, P3 = V .

Following Stein (2009), we allow the arbs to employ leverage to exploit the mispricing

opportunity. Specifically, the arbs hold an equity, fe1 and choose to raise leverage, fd1 . Without

loss of generality, equity and leverage are raised at zero interest rate. Thus, the total arbitrage

fund available at period 1 becomes the sum of equity and leverage:

f1 = fe1 + fd1 . (3)

If the arbs can access to arbitrage funds without any friction, they are able to eliminate any

mispricing and guarantee the law of one price. In practice, however, they are faced with several

6The demand of noise trader is (V − st) /Pt, and that of arbitrageurs is ft/Pt. The market clearing price
is then determined as demand equals to unit asset supply.
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constraints on equity and leverage. To accommodate the financial constraints observed in the

real world, we introduce Assumptions (i) to (iv) on the equity and leverage.

(i) The equity providers do not withdraw their funds early (at period 2).

(ii) The equity is constrained by

fe1 < s2,b, (4)

These assumptions imply that equity funds cannot be guaranteed to bet against the po-

tentially deepening noise shock at period 2.7 For a sufficient equity supply, i.e. fe1 ≥ s2,b, the

arbs are able to fully correct the mispricing without leverage and enforce the law of one price

by investing, f1 = s1 at period 1, and f2 = s2,b at period 2. The cap on equity allows us to

focus on the leverage that is adopted to conduct arbitrage.

(iii) The leverage debt fd1 must be repaid in full at period 2.

It indicates that leverage is available in a short term. If bad state occurs, arbs will have

to conduct arbitrage with the remaining equity only, such that fd2,b = 0. The available equity

at period 2 can be expressed as:

f2,g = fe1 + f1

(
V

P1
− 1

)
and f2,b = fe1 + f1

(
P2,b

P1
− 1

)
, (5)

where the second terms on the right hand side of the equations are the returns of investment

at period 1. Notice that in the bad state, return of the initial investment is negative, which

indicates that arbs might lose all their equity funds and fail to repay the leverage debt if they

lever up too excessively. As a result, financiers, who provide the leverage debts, would set a

leverage constraint to guarantee solvency of the arbs.

7Our setting of equity is different from that in Stein (2009). The equity supply in Stein’s model can be
infinite but costly, which is designed to study the longer-run question on capital structure. Our model setting is
closer to Gromb and Vayanos (2002; 2010), and imposes a constraint on the size of equity. It allows us to focus
on the shorter-run arbitrage activity, such that arbs are induced to use leverage to exploit various mispricing.
Both the equity constraint or a positive cost of equity will prevent arbs from making full mispricing correction.
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(iv) The maximum leverage that arbs are allowed to borrowed is bounded, such that8

fd1 ≤ DU ,

where we call DU the leverage upper bound.9

The leverage upper bound is imposed exogenously in the model of Stein (2009). How-

ever, financiers in our model are informative about the arbs and the market, e.g. equity,

the fundamental value and the asset price, and thus tend to set the leverage upper bound

accordingly. We introduce the setting of leverage upper bound under the assumption that

informed financiers set the rate of return as the riskless rate (zero in our model). In other

words, financiers must ensure that the potential loss under a bad state must be covered by

the arbs’ equity. This no-default condition at period 2 can be expressed as: f2,b ≥ 0, such

that the remaining equity under bad state is non-negative. Following (5), the leverage upper

bound DU is derived as:10

DU =
1

2

(√
(fe1 + s2,b − s1)2 + 4fe1 (V − s2,b)− (fe1 + s2,b − s1)

)
(6)

We formally summarize a basic property about the leverage upper bound as follows.

Proposition 1. Consider the model with the market structure in Section 2.1 and hold the

Assumption (i) to (iv). The leverage constraint, DU is positively related to the arbitrageurs’

equity, fe1 , and is negatively related to the future noise shock, s2,b.

The proposition states that the leverage upper bound is endogenously determined by the

equity and the expected future noise shock. A negative equity shock stems from negative

economic or financial market condition, which tightens the leverage upper bound. The future

8Leverage ratio is often defined as the ratio of total funding (equity and leverage) over equity funding. Since
equity is exogenous in our model, a cap on the leverage ratio is identical to a cap on the leverage debt, fd

1 .
9The lower bound is naturally given as DL = −fe

1 , indicating that the arbs can lend their equity in full to
other arbs.

10Our endogenous leverage upper bound is set similar in spirit to Gromb and Vayanos (2002; 2010), which
also require the margin loans to be riskless, such that default is not possible. An alternative way of setting the
leverage upper bound is to control the value-at-risk. In Brunnermeier and Pedersen (2009), financiers allows
the arbs to default but impose an upper bound on the default probability. It yields a margin constraint which
can be interpreted as a value-at-risk constraint.
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noise, s2,b determines the magnitude of the crash (rare event) in the bad state, which reflects

the risk of crisis. The leverage upper bound is reduced with higher crisis risk, as financiers

notice that arbs are more likely to default in the bad state. As we will see next, this leverage

upper bound has important implications for the equilibrium and the amplification effect—the

property that a moderate external shock will trigger significant pricing impact.

2.2. The equilibrium

We now consider the equilibrium. The arbs face a simple trade-off: they are induced to raise

as much short-term debt as they can, to invest at period 1 and to exploit the positive return

at good state. On the other hand, the arbs may take a cautious leverage position, in order

to capitalize on a better opportunity at period 2 if bad state occurs. Subject to the leverage

constraint, fd1 ≤ DU , the risk-neutral arbs choose the optimal fd1 to maximize their expected

total wealth at period 3 under perfect competition, which is given by

E (fe3 ) = (1− q)f2,g + q
V

P2,b
f2,b, (7)

The first order condition with respect to fd1 is derived as

R1 ≥ R2, (8)

where R1 = V
P1
−1 is the return of investing at period 1 and holding to price convergence, and

R2 = q
(

V
P2,b
− 1

)
represents the expected return of investing at period 2. For R1 > R2, arbs

opt to borrow as much as they can to exploit the return of investing at period 1, but subject

to the binding leverage constraint. Therefore the max-leverage strategy is adopted, such that

fd∗1 = DU .

Only when the two returns are indifferent, R1 = R2, the partial leverage strategy becomes

optimal with fd∗1 < DU . After rearranging, the partial leverage strategy is expressed as
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fd∗1 =
V − (1− q) (fe1 + s2,b − s1)−

√
(V − (1− q) (s1 + s2,b − fe1 ))2 + 4V q (1− q) (s2,b − fe1 )

2 (1− q)
(9)

We now demonstrate the impact of a shock to arbitrage equity fe1 on the arbs’ leverage

position under loose/binding constraint. Let j ∈ (p, m), where the superscripts p and m

indicate the partial-leverage strategy and the max-leverage strategy, respectively.

Proposition 2. Consider the model with the market structure in Section 2.1 and hold the

Assumption (i) to (iv). A shock to arbitrageurs equity fe1 affects leverage raised by the arbs,

fd∗1 , such that
(
∂fd∗1
∂fe1

)p
< 0 and

(
∂fd∗1
∂fe1

)m
> 0.

Propositions 1 and 2 together imply that a negative shock to equity (a positive shock to

crisis risk) increases the risk of hitting the leverage upper bound. Under the partial-leverage

equilibrium, arbs choose to raise more leverage after equity drops, while financiers tend to

reduce the leverage upper bound. Therefore a large reduction in equity or a significant rise in

crisis risk is likely to force the arbs to adopt the max-leverage strategy.

More importantly, Proposition 2 shows how a shock to equity can be amplified with the

endogenous leverage upper bound. An equity shock under the partial- and max-leverage

equilibrium has opposite impact on the leverage position. Arbs under the partial-leverage

strategy will raise more leverage debt after a negative equity shock. Recall that P1 = V −s1 +

fe1 + fd1 . Therefore leverage serves as a cushion to smooth the price fluctuation at period 1.

Under the max-leverage equilibrium, however, the negative equity shock will force financiers

to tighten the leverage constraint (Proposition 1), which results in less available leverage

for the arbs. Now the equity shock spillovers to the leverage side through the endogenous

leverage upper bound, which pushes the price further away from fundamental. Therefore, the

arbs, instead of absorbing the shock with leverage, become the amplifier of the shock and

induce significant price impact at period 1. Similarly, a shock to the crisis risk s2,b will also

trigger amplification. Leverage drops with the crisis risk since arbs are induced to choose

more cautious leverage position to avoid a greater crash at period 2. It drops faster under the

max-leverage equilibrium, which leads to larger pricing impact at period 1.
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Amplification in our model is induced by the endogenous leverage upper bound. Similarly,

an equity shock is amplified in Gromb and Vayanos (2002; 2010) due to margin constraints

and in Brunnermeier and Pedersen (2009) due to the margin spiral. However, the crisis risk

shock is not amplified by the performance-based arbitrage mechanism in Shleifer and Vishny

(1997). Due to the exogenous-given funding constraint, the crisis risk does not affect initial

price when the funding constraint is hit. Rather, our model extension for endogenous leverage

upper bound gives rise to the amplification of a future crisis risk shock. Furthermore, we

not only demonstrate the cause of amplification, but in the next section we also attempt to

identify when amplification occurs with a thorough study of the arbs’ funding liquidity.

2.3. Funding liquidity and arbitrage efficacy

We now turn our attention to the arbs’ funding liquidity condition. Given that the level of

equity funds and arbitrage risk that does not change constantly over a short horizon, we posit

that the arbs’ funding liquidity determines how they adjust the leverage position in response

to mispricing, s1. We capture the arbs’ funding liquidity11 from this arbitrage activity:

` =
∂fd∗1
∂s1

. (10)

Specifically, ` measures the marginal leverage financed by the arbs to bear against one more

unit of mispricing error. Highly positive ` indicates that arbs can easily lever up to exploit

the mispricing opportunity. However, arbs may find it difficult to raise leverage when ` is low

or even negative. Let `j be the funding liquidity associated with different leverage strategies,

j ∈ (p, m), we characterize its properties as follows.

Proposition 3. Consider the model with the market structure in Section 2.1 and hold the

Assumption (i) to (iv).

11Notice that this definition of funding liquidity is far from similar to the extent literature. Brunnermeier
and Pedersen (2009) and Garleanu and Pedersen (2011) measure it by the marginal value of an extra dollar
used, i.e. the shadow cost of capital. In Brunnermeier and Pedersen (2009), the shadow cost of capital is nil
when leverage constraint is loose, since there is no arbitrage return as price recovers to fundamental. But, it
becomes highly positive when the leverage constraint becomes binding.
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(i) For any equity fe1 and arbitrage risk s2,b, 0 < `m < 0.5 < `p < 1.

(ii) A shock to equity fe1 or arbitrage risk s2,b reduces funding liquidity: ∂`j

∂fe1
> 0 and

∂`j

∂s2,b
< 0 for j = p, m.

(iii) If a shock to equity fe1 or arbitrage risk s2,b makes leverage constraint binds, ` dives,

such that at the corner solution we have:

lim
fd∗1 →DU

`p > `m.

Proposition 3 describes the level of the arbs’ funding liquidity. Funding liquidity is always

positive, such that arbs are able to lever up against larger mispricing. Even when the max-

leverage strategy is adopted, financiers are willing to loose the upper bound since larger s1

indicates higher arbitrage return when price converges. Funding liquidity stays below unity

due to Assumption (i) to (iv) that limits the use of equity and leverage. A key determinant

of the arbs’ funding liquidity is the leverage upper bound they are faced with. When their

leverage position is far from the upper bound, i.e. the partial-leverage strategy is adopted,

funding liquidity is significantly higher than that under the max-leverage strategy, where the

upper bound is hit.

Furthermore, under the partial-leverage strategy, a negative equity shock (or a positive

crisis risk shock) slightly reduces the arb’s funding liquidity `, since the shock increases the

risk of hitting the leverage upper bound (Proposition 1). If the leverage upper bound is

hit after an extremely large equity shock, funding liquidity is dampened significantly, i.e.

`m � `p. Overall, we note that our definition of funding liquidity ` does capture important

information about the arbs’ ability to raise leverage under the partial- and the max-leverage

strategies. More surprisingly, funding liquidity tend to dive below 0.5 when the arbs are forced

to adopted the max-leverage strategy. Recall that Proposition 2 demonstrate the amplification

arises under the max-leverage strategy, where the leverage upper bound is hit. Thus we could

identify when the arbs enters the max-leverage strategy by their funding liquidity.

In practise, we do not directly observe the leverage position fd∗1 . Following Cai et al. (2018,

2019), we note that the arbs’ leverage position will reflects on the (observable) percentage of
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mispricing correction:

κ =
f1
s1

=
fe1 + fd∗1

s1
. (11)

κ captures the percentage of mispricing correction achieved by the arbs at period 1, which

depends upon the leverage fd∗1 that arbs are able to finance. In one extreme, κ = 0, suggesting

that arbs decide to wait, fd1 = −fe1 and f1 = 0. In another extreme κ = 1, implying that arbs

can raise sufficient leverage to achieve full correction, such that fe1 + fd1 = s1. As shown in

Proposition 3, funding liquidity ` is less than unity, which indicates that full correction is not

possible under our model12.

To capture the information about funding liquidity `, we now define the arbitrage efficacy,

i.e. the arb’s ability to eliminate additional mispricing errors, as

θ =
∂κ

∂s1
=
`− κ
s1

. (12)

θ measures the marginal mispricing correction achieved by the arbs in response to one more

unit of mispricing. Positive (negative) θ means that arbs can achieve higher (less) percentage

of correction in response to larger mispricing, which is denoted as (in)effective arbitrage.

Arbitrage efficacy is closely related to funding liquidity `, such that the more marginal leverage

raised by the arbs, the higher marginal correction can be achieved. More importantly, we find

that arbitrage becomes ineffective, i.e. θ < 0, when the leverage constraint binds.

Proposition 4. Consider the model with the market structure in Section 2.1 and hold the

Assumption (i) to (iv).

(i) (Effective arbitrage) Under the loose leverage constraint, we have: θp > 0.

(ii) ( Ineffective arbitrage) Under the binding leverage constraint, we have: θm < 0.

Proposition 4 is intuitive. Under the partial-leverage strategy, arbs retain a strong ability

to raise leverage in order to exploit higher mispricing (0.5 < `p < 1). As a result, higher

12In practice, mispricing correction can be captured by the Generalized Error Correction model as suggested
in Cai et al. (2015). However from the international data of 20 countries index-future arbitrage, it is almost
rare to observe the full error correction in empirical applications due to the existence of arbitrage frictions.
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percentage of mispricing correction, θp > 0, is achieved. However, when funding liquidity

is deteriorated under the max-leverage strategy, leverage is limited. Thus arbs fail to make

higher corrections against mispricing, such that arbitrage becomes ineffective, θm < 0. Given

a level of equity fe1 and crisis risk, s2,b, if we observe a positive arbitrage efficacy, it indicates

that the partial-leverage strategy is adopted. Any future changes in fe1 and s2,b will not be

amplified. However, if we observe a negative arbitrage efficacy, it signals the max-leverage

strategy being adopted by the arbs. Shocks to fe1 and s2,b are amplified by the leverage upper

bound as shown in Proposition 2. Therefore, arbitrage efficacy not only reflects the arbs’

funding liquidity, the negative sign also signals that amplification is triggered.

Literature has documented the market instability that arises under the binding leverage

constraints due to amplification (Shleifer and Vishny 1997, Brunnermeier and Pedersen 2009,

Duffie 2010, Mitchell and Pulvino 2012). However, it is difficult to quantitatively identify

whether amplification is at work or not. Studies like Comerton-Forde et al. (2008), Schuster

and Uhrig-Homburg (2015) and Drehmann and Nikolaou (2013) provide evidence of the am-

plification when the leverage constraints are likely to be binding. However, the identification

is rather arbitrary, such as a exogenous threshold, endogenous regime-switching and ex-post

event study. By the analysis of funding liquidity through arbitrage activity, our paper pro-

vides the theoretical support to signal whether the leverage constraint is hit or not, and thus

the amplification. Knowing the tightness of the leverage constraint and especially when the

constraint is hit is key to understand amplification during the financial crisis.

2.4. Numerical examples

We use an numerical example to illustrate the amplification of an external shock, the arb’s

funding liquidity and arbitrage efficacy. Let the fundamental value of the asset be, V = 1,

probability of bad state be, q = 0.1, and the initial noise shock be s1 = 0.3, the equity holding

be fe1 = 0.1 and the future noise be sb2 = 0.4. We consider two cases, the impacts of an equity

shock and an crisis risk shock.

To see the impact of an equity shock, we allow the size of equity shock to vary from −0.1 to
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Figure 2: Plots of leverage position, leverage constraint, funding liquidity and pricing volatility
These figures plot the impacts of fe

1 on the optimal leverage position, leverage upper bound, funding liquidity
and pricing volatility. We let the fundamental value of the asset be, V = 1, probability of bad state be, q = 0.1,
the initial noise shock s1 be s1 = 0.3, the equity holding be fe

1 = 0.1 and the future noise be sb2 = 0.4. These
figures consider the shock to fe

1 , varying from −0.1 to +0.1. The left hand side of the vertical dashed line
implies that the max-leverage strategy is adopted, while the partial-leverage strategy is adopted in the right
hand side.
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+0.1. The top left panel of Figure 2 plots the shock to equity fe1 against the optimal leverage

position fd∗1 and the leverage constraint, DU . The leverage constraint becomes binding when

the negative equity shock is too large, i.e. left hand side of the vertical dashed line, such

that arbs are forced to adopt the leverage upper bound set by financiers. When the leverage

constraint is hit, the equity shock leads to decline in leverage which induces significant pricing

impacts. As shown in the top right panel, pricing volatility13 becomes more sensitive to

equity shocks under the max-leverage strategy (the liquidity-induced amplification). Funding

liquidity defined as the marginal leverage keeps dropping with lower equity funding. It remains

at high level, close to one, when the upper bound is not hit. However, it dives to a lower level,

around 0.3, after the large negative equity shock makes the constraint binds, and it declines

sharply hereafter. Finally, the bottom panel of Figure 2 plots the funding liquidity and the

mispricing correction. When the leverage upper bound is not hit, ` − κ > 0. (12) implies

that arbitrage is effective. However, when the upper bound is hit, funding liquidity dives and

makes `− κ < 0, such that arbitrage become ineffective.

For the impact of a crisis risk shock, we allow the crisis risk shock to vary from −0.1 to

+0.1. The top right panels of Figure 3 display the result of an crisis risk shock on the optimal

leverage position and the leverage upper bound. Arbs tend to deleverage after a positive shock

to sb2, while financiers reduce the leverage upper bound at a faster rate. If the shock is too

large, the leverage upper bound is hit despite the fact that the arbs are deleveraging. Funding

liquidity again dives to lower level and pricing volatility sharply rises. Arbitrage tend to be

effective under the partial leverage strategy, but ineffective once the leverage upper bound is

hit.

3. The Empirical Design

In this section, we introduce an empirical design to capture arbitrage efficacy in practice.

We first introduce the strategy to capture the arbs’ mispricing correction in response to the

13Following Hombert and Thesmar (2014), price volatility is defined as σ = E1

(
| P2−P1

P1
| + | P3−P2

P2
|
)
.
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Figure 3: Plots of leverage position, leverage constraint, funding liquidity and pricing volatility
These figures plot the impacts of sb2 on optimal leverage position, leverage upper bound, funding liquidity and
pricing volatility. We let the fundamental value of the asset be, V = 1, probability of bad state be, q = 0.1,
and the initial noise shock s1 be s1 = 0.3, the equity holding be fe

1 = 0.1 and the future noise be sb2 = 0.4.
These figures display the impact of a shock to sb2, varying from −0.1 to +0.1. The left hand side of the vertical
dashed line implies that the partial-leverage strategy is adopted, while the max-leverage strategy is adopted
in the right hand side.
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mispricing opportunity they face. Second, we demonstrate the design to capture the arbitrage

efficacy as a measure of funding liquidity. Finally, we describe the underlying data that are

applied to the strategy for our empirical application.

3.1. Measuring and mispricing correction

Suppose pt and p∗t is the natural log of the asset’s spot and fundamental price of an asset at

date t, then zt, the unarbitraged mispricing error at date t, can be easily obtained by:

pt − p∗t = zt. (13)

Under the assumption of frictionless arbitrage, arbs will take place and correct mispricing in

no time, zt = 0. In practice, however, one tends to observe persistent price deviation from

the fundamental value, which indicates that arbitrage is far from frictionless. To capture

the essence of mispricing correction in our theoretical model, let zt be stationary but serially

correlated, such that

zt = φzt−1 + εt, εt ∼ iid
(
0, σ2ε

)
(14)

where ε is the mispricing innovations. Subtracting zt−1 on both side, we obtain

zt − zt−1 = κzt−1 + εt

where κ = φ − 1. κ captures the mispricing correction achieved by arbs in correcting the

past mispricing error zt−1, and lies between −1 to 0. In one extreme, k = −1 or κ = −100%

implies full correction of the past mispricing, zt−1. In another extreme, κ = 0 indicates that

no correction has been made by the arbs. Taking the first difference of eq. (13), we obtain the

standard error correction model (ECM) that is used to estimate κ:

∆pt = κzt−1 + ∆p∗t + εt.

More generally, we follow Cai et al. (2017), who introduce a two-period generalised ECM to
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capture the mispricing correction achieved by arbs, such that:

∆pt = κzt−1 + λ∗zt−2 + δ∆p∗t + γ∆pt−1 + µt, µt ∼ iid(0, σ2µ) (15)

where ∆ is the difference operator, the lagged one error correction term, κ, captures the

initial mispricing correction. The interpretation of the error correction term as the impact of

arbitrage has been widely documented in the literature (Dwyer et al., 1996; Martens, Kofman

and Vorst, 1998; Tse, 2001).

Notice that the mispricing correction κ estimated in Eq. (15) is a static measure, which

represents the average correction to mispricing within a period of time. In order to capture

the changes in κ in response to the corresponding error, we introduce the following recursive

approach. First, we set a starting window of N days to run the regression in Eq. (15),

and assign the estimated κt to the ending date of the window, date t. κt represents the

mispricing correction achieved by the arbs attempting to eliminate a pool of N past mispricing,

zt−1, zt−2 . . . , zt−N . Next, we continue to obtain κt+1 by adding the next mispricing error

observed, zt, into the starting regression, and now κt+1 indicate the average error correction

in response to a pool of N + 1 past errors, zt, zt−1, zt−2 . . . , zt−N . Therefore the difference

∆κt+1 = κt+1 − κt is the changes in mispricing correction with respect to the additional

error zt. Finally, we adjust the value of each κt due to the changing pool size. Note that

∆κt+1 represents the changes in correction by adding one error zt into a pool of N past errors.

Similarly, ∆κt+i thus displays the changes in correction by adding one error zt+i−1 into a pool

of N + i − 1 past errors. However due to the different size of the pool, directly comparing

between ∆κt+1 and ∆κt+i can be misleading and subject to underestimation. We thus adjust

the value of ∆κt+i in order to control for the pool size by ∆κ̂t+i = ∆κt+i×N+i−1
N . Accordingly,

we adjust the value of κt+i as κ̂t+i = κ̂t+i−1 + ∆κ̂t+i. The loop strategy is displayed in Table

1. Employing this modification, we will end up with a daily series of adjusted κ̂t and the

corresponding error zt−1.
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Estimated κ Pool size Modification on ∆κ Adjusted κ̂
κt N N/A κ̂t = κt
κt+1 N + 1 ∆κ̂t+1 = ∆κt+1 × N

N κ̂t+1 = κ̂t + ∆κ̂t+1

κt+2 N + 2 ∆κ̂t+2 = ∆κt+2 × N+1
N κ̂t+2 = κ̂t+1 + ∆κ̂t+2

...
...

...
...

κt+i N + i ∆κ̂t+i = ∆κt+i × N+i−1
N κ̂t+i = κ̂t+i−1 + ∆κ̂t+i

Table 1: Modification of κ to control for the pool size

3.2. Measuring arbitrage efficacy

Given that there are T observations of data, {κ̂t, zt−1}Tt=1. By regressing the absolute value

of zt−1 on the absolute value of κ̂t, we obtain the estimate of arbitrage efficacy, L, as the OLS

estimator for the slope coefficient:

| κ̂t |= κ̂0 + θ | zt−1 | +εt, εt ∼ iid(0, σ2ε ) (16)

or more specifically,

θ =
Cov (| κ̂t |, | zt−1 |)

Var (zt−1)
, (17)

where L represents how correction respond to the size of mispricing, i.e. arbitrage efficacy.

Note that we take the absolute value of κ̂t since the estimated κ̂t are negative from the GECM,

and also take the absolute value of zt−1 in order to represent the size of error. L is positive

when Cov (| κ̂t |, | zt−1 |) > 0, such that mispricing correction κ̂t increases with mispricing

error, zt−1. L becomes negative when Cov (| κ̂t |, | zt−1 |) < 0, such that mispricing correction

κ̂t is rather decreasing with mispricing error, zt−1. It implies that arbitrage becomes ineffective.

The methodology can be applied to various assets classes, markets and countries with a

recognizable arbitrage relationship in order to evaluate funding liquidity in broad scope. In

this paper we will apply this methodology to the future-cash basis implied by the S&P 500

cash index and E-mini future.

3.3. Data

We choose to estimate the implied arbitrage efficacy in the S&P 500 index future-cash basis

because of several advantages. First, the cost-of-carry model can be applied to determine the
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Mean Median Minimum Maximum Std Dev
∆I 0.016 0.056 -9.469 10.957 1.263
∆p 0.017 0.065 -10.399 13.197 1.288
p− I 0.115 0.001 -1.689 2.030 0.516
p− p∗ 0.074 0.058 -2.201 1.792 0.213
| p− p∗ | 0.156 0.113 0.000 2.201 0.164

r 2.01 1.42 -0.02 6.24 2.077
q 1.83 1.86 1.07 3.37 0.387

Table 2: Basic descriptive statistic
The table reports the the descriptive statistics for all variables. The sample used is the daily series of the S&P
500 index and its E-mini futures contract covering the period September 16, 1997 to June 30, 2015. ∆I (∆p ) is
the first difference of log spot (futures) price. The log fundamental value is computed as p∗t,T = It + (rt − qt) τt
where It is the log of cash index, rt is the annualized risk-free (3 month T-bill) interest rate on an investment
for the period , and qt is the annualized dividend yield on the index. All numbers are recorded in percentage
point terms.

fundamental value of the E-mini future contract, which is indicated in the following relationship

to hold in equilibrium:

p∗t,T = It + (rt − qt) τt, (18)

where p∗t,T is the natural log of the fundamental price of E-mini future contract with a maturity

date T implied from cost of carry model; It is the log spot price of the S&P 500 index; rt and qt

is the risk-free interest rate and dividend yield of the asset, respectively; τt = T − t is the time

to maturity. Then, the future-cash basis at date t can be estimated as the difference between

the E-mini future price pt,T and the fundamental price p∗t,T . For completeness, we collect our

proxies for risk-free interest rate: the US three-month T-bill rate, and dividend yields on the

S&P 500 index. We focus on the most actively-traded future contracts that have 3-month to

maturity and roll over every quarter (March, June, September, and December) into successive

contracts that have 3-month to maturity.14 All data are sourced from Datastream. We provide

the summary statistics of the daily S&P 500 index and E-mini S&P 500 future data in Table

2.

Second, the E-mini future is one of the most traded future contracts. It contains large

numbers of financial intermediaries, such as hedge fund and investment banks, that will exploit

14In the appendix, we test the robustness by investigating the implied arbitrage efficacy from other S&P 500
future contracts (e.g. standard contracts that have 3-, 6-, 9-month to maturity) and other major index-future
market (e.g. Germany and Japan).
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any arbitrage opportunity in the market. It also offers liquidity at lower cost (Domowitz and

Steil, 1999), attracts traders even with modest capital and provides higher pricing efficiency

(Hasbrouck, 2003; Kurov and Lasser, 2004). Thus the arbitrage efficacy implied by the S&P

500 future-cash basis is more likely to reflect the ability of a large number of future-cash

arbitrageurs and to infer the market-level funding liquidity.

Third, the E-mini future has been trading since September 16, 1997, which covers the

periods of rapid growth in hedge fund industry15 and some noticeable market events, like the

burst of dot-com bubble, the recent financial crisis 2007-2008, the Flash Crash in 2010 and

the European sovereign debt crisis. The comprehensive time-period helps to verify the validity

of the arbitrage efficacy as a measure of funding liquidity in different market circumstances,

especially the extreme ones.

4. Main results

4.1. Arbitrage efficacy over time

We first present some aggregate level results of the implied arbitrage efficacy of S&P 500

index-future arbitrage over the period from September 16, 1997 to June 30, 2015 in Table

3. The aggregate level of L is positive at 0.172 over full sample, showing that arbitrage

activity in general tends to actively react to larger mispricing errors. The sub-sample results,

however, vary but consistent with the ex post market condition. The first sub-sample covers

the periods of turmoil from September 1997 to October 2002, which marks the collapse of

Dot-com bubble, the 911 attacks and the market downturn in 2002. The implied arbitrage

efficacy in this period is recorded at −0.006 with t-statistic of −1.89, which implies that one

percent changes in mispricing error leads to 0.6% drop in the mispricing error. It suggests a

low funding liquidity and the possibility of binding constraints. The second sub-sample from

November 2002 to May 2007 captures the bull market with ample liquidity, where our measure

15According to the data of Fung and Hsieh (2013) gathering from BarclayHedge, HFR, Lipper-Tass and
Hedgefund.net, the hedge fund industry starts to grow dramatically after 2000. The number of funds and the
asset under management (AUM) are more than five times larger in 2010 than that in 2000.
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Sample period Implied arbitrage efficacy t-stat
09/1997 - 06/2015 0.172*** (4.98)
09/1997 - 10/2002 -0.006* (-1.89)
11/2002 - 05/2007 0.109*** (6.28)
06/2007 - 04/2009 -0.197*** (-9.77)
05/2009 - 12/2011 -0.019*** (-2.57)
01/2012 - 06/2015 -0.004 (-0.94)

Table 3: The implied arbitrage efficacy of S&P 500 index-future arbitrage in full and sub-sample
The table reports the implied arbitrage efficacy estimated from (17) over full sample and sub-samples based
on ex post market events. The implied arbitrage efficacy is estimated by Eq. (17), where mispricing correction
and mispricing error are estimated from the S&P 500 index and E-mini future arbitrage relationship. All
t-statistic are computed with Newey-West standard errors. ***, ** and * indicate significance at 1%, 5% and
10% levels, respectively.

captures the same story, i.e. positive at 0.109 with statistical significance. The third sub-

sample consists the financial crisis of 2007 - 09 as the market was subject to severe uncertainty

and liquidity dry-out. The implied arbitrage efficacy L is significantly negative (−0.197 with

t-statistic of −9.77), which suggests that funding liquidity is severely deteriorated and funding

constraints are binding. The period from May 2009 to the end of 2011 marks the flash crash

and sovereign debt crisis in US and EU. The implied arbitrage efficacy improved to −0.019

but still significantly negative. The final sub- sample captures another bull market along with

numerous liquidity events along with injection schemes to improve liquidity condition. Our

funding liquidity measure is recorded at −0.004, which is indifferent to zero.

For the purpose of tracking the innovation of funding liquidity, the time-series variation of

θ is in favor, while the aggregate level of θ is of little importance. We thus capture the moving

arbitrage efficacy in Eq. (17) on a rolling window basis for a rudimentary test. In particular,

we take a window of T = 250, and the 250-day moving arbitrage efficacy is assigned to the

ending date τ of the window as θτ , representing the average arbitrage efficacy over the previous

250 days. In doing so, a daily series of θ with 3721 observations from September 6, 2000 to

June 30, 2015 are obtained, which allow us to examine the dynamics of funding liquidity.

Figure 4 depicts the daily series of arbitrage efficacy θ implied by the S&P 500 index-future

arbitrage relationship over a 250-day rolling window. At first glance, we see that the implied

arbitrage efficacy θ varies through time; the daily series of θ fluctuates gently in the early stage

of the sample period from 2000 to 2007; θ remains positive, except for the liquidity concern
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Figure 4: The implied arbitrage efficacy of S&P 500 index-future arbitrage over time, March 2, 2000 to June
30, 2015
The figure shows the arbitrage efficacy implied by the arbitrage relationship between S&P 500 index and E-mini
future, computed through a 250-days rolling window. The periods of the three round of QE are shaded, along
with some major financial market events. The data is sampled from March 2, 2000 to June 30, 2015 at daily
frequency.

during mid 2006. It is after 2007 that the variation in θ began to be remarkably volatile. It

becomes negative from June 2007, and even drop to its bottom, at around −0.16, in early

2008 and the collapse of Lehman Brother in September 2008. After the Global financial crisis

in 2007-2009, θ retains its stability till the end of our sample period. The sign of θ is negative,

i.e. arbitrage is ineffective, with most of the market crashes and turmoils during our sample

periods. The major liquidity-related events include: liquidity withdrawal in 2006, the Global

Financial Crisis in 2007-2008, the Debt Ceiling (dollar shortage) crisis in 2011 and the Debt

Ceiling crisis in 2013.

4.2. Arbitrage efficacy and other measures of funding liquidity

The rolling-window plot of the implied arbitrage efficacy provides some rudimentary results

that consist with our model predictions. Started from this subsection, we document some

formal evidence to verify our model predictions. We construct the arbitrage efficacy on a

monthly basis as the slope estimator in (16) over each month, denoted as θm. We obtain 184

monthly observations from March 2000 to June 2015.

We first investigate whether the implied arbitrage efficacy θm is associated with other
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funding liquidity measure. Typical measures for funding illiquidity and credit conditions in-

cludes: the TED spread, e.g. the spread between the three-month risky LIBOR rate and the

three-month risk free T-Bill yield, which measures the funding illiquidity among the financial

intermediaries; Repo spread is the spread between 3-month LIBOR and the repo rate; Default

spread is the spread between BAA and AAA rated corporate bonds; Term spread is the spread

between the yield on 10-year Treasury bonds and the 3-month T-bill rate. We also have the

VIX index as the ex ante risk-neutral expectation of the future market volatility (referred to as

the “fear” index)16, the treasury market funding illiquidity measure (FGilliq) from Fontaine

and Garcia (2012) and the broker-dealer leverage factor (BDlev) from Adrian, Etula, and

Muir (2014). Details on data sources are provided in the Appendix.

Table 4 reports the summary of pairwise correlation matrix between levels and changes

in these funding illiquidity measures. Our measure of funding liquidity is negatively related

to all the other funding illiquidity variables in monthly frequency. The pairwise correlations

in levels are highest for TED spread (-56.3%) and lowest for term spread (-2.7%), which is

the only measure that is insignificant at 10% levels. Although our funding liquidity measure

is constructed using only the S&P 500 index-future arbitrage relationship, which reflects the

funding liquidity condition among the participating arbitrageurs in the index-future arbitrage,

it contains some information of market-wide funding illiquidity and credit condition.

To further investigate the linkage between the arbitrage efficacy and other measures of

funding liquidity and arbitrage risk, we report the OLS regression of the implied arbitrage

efficacy on several important measures. Other than the funding illiquidity measures introduced

in the last section, we also include the following variables of arbitrage frictions that are available

on monthly bases from March 2000 to June 2015. We have the Amihud (2002) illiquidity

measure (Illiq) that indicates the level of stock market illiquidity, the aggregate liquidity

measure (PSilliq) from Pastor and Stambaugh (2003) that poses a illiquidity cost to conduct

arbitrage, and the idiosyncratic risk (Idio) from Ang et al. (2006) that captures the arbitrage

16VIX index tends to reflects the market condition. Literature uses VIX index to proxy for funding liquidity
condition, as Brunnermeier and Pedersen (2009) finds that funding illiquidity is closely related to market
volatility.
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Correlation matrix in levels
θm TED Repo Def Term V IX FGilliq BDLev

θm 1.000
TED -0.563*** 1.000
Repo -0.551*** 0.935*** 1.000
Def -0.249*** 0.507*** 0.677*** 1.000
Term -0.027 -0.250*** 0.018 0.284*** 1.000
V IX -0.245*** 0.522*** 0.639*** 0.755*** 0.279*** 1.000
FGilliq -0.124* 0.416*** 0.399*** 0.327*** -0.299*** 0.123*** 1.000
BDlev -0.283*** 0.532*** 0.450*** 0.165*** -0.222*** 0.136*** 0.065* 1.000

Table 4: Pairwise correlation between the implied arbitrage efficacy and other measures of funding illiquidity,
March 2000 to June 2015
The table reports the correlation matrix among the implied arbitrage efficacy θm and other funding liquidity
measures in levels. TED is TED spread between the three-month risky LIBOR rate and the three-month
risk free T-Bill yield; Repo is Libor-repo spread between 3-month LIBOR and the repo rate; Def is the
default spread between BAA-AAA rated corporate bonds; Term is the term spread between the yield on 10-
year Treasury bonds and the 3-month T-bill rate; V IX is the CBOE VIX index; FGilliq is the the funding
liquidity measure of Fontaine and Garcia; BDlev is the Broker-dealer leverage factor of Adrian et al. (2014).
***, ** and * indicate significance at 1%, 5% and 10% levels, respectively.

risk exposed to arbitrageurs in the stock market. Details of data sources are provided in the

Appendix.

The results in Table 5 show that these explanatory variables of funding liquidity and

arbitrage frictions do indeed capture some variation in the implied arbitrage efficacy with the

expected sign. When consider individually, higher market risk and credit risk are associated

with worse funding liquidity, and thus lower arbitrage efficacy. In particular, column (2) shows

that TED spread explains more than 30% of the variation in the implied arbitrage efficacy,

while VIX index have a much smaller explanation power as seen in column (1). Column (3)

reports the joint regression with funding illiquidity measures. Coefficients of TED and term

spread are negative and statistically significant at 1% level, while that of VIX index becomes

positive and close to zero. When consider the variables of market illiquidity and arbitrage

risk jointly in column (4), we find that measures of market illiquidity and idiosyncratic risk

have limited explanatory power, while funding liquidity measures, e.g. TED and term spread,

still serve as the dominant explanatory variables. It again shows that our measure is closely

related to the existing measure of funding liquidity. The adjusted R2 is 37%, which implies

that more than 60% of the variation in the implied arbitrage efficacy is unexplained.
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Regression of θm in levels on:
(1) (2) (3) (4)

V IX -0.021** (-2.01) 0.016* (1.77) 0.008 (0.06)
TED -0.972*** (-4.19) -1.374*** (-4.10) -1.364*** (-3.95)
Def 0.094 (0.48) 0.117 (0.63)
Term -0.154*** (-3.92) -0.115*** (-2.75)
FGilliq 0.058 (1.26) 0.091* (1.75)
Illiq 2803. (0.09)
PSilliq 0.541 (0.52)
Idio 15.98 (0.97)
R-square 0.054 0.313 0.361 0.373
Obs 184 184 184 184

Table 5: Determining the implied arbitrage efficacy, March 2000 to June 2015
This table reports the OLS regressions that estimate the relation between the implied arbitrage efficacy and
factors for funding liquidity and other arbitrage frictions. TED is TED spread between the three-month
risky LIBOR rate and the three-month risk free T-Bill yield; Repo is Libor-repo spread between 3-month
LIBOR and the repo rate; Def is the default spread between BAA-AAA rated corporate bonds; Term is the
term spread between the yield on 10-year Treasury bonds and the 3-month T-bill rate; V IX is the CBOE
VIX index; FGilliq is the the funding liquidity measure of Fontaine and Garcia; Illiq is the Amihud (2002)
illiquidity measure; PSilliq is the aggregate liquidity measure from Pastor and Stambaugh (2003); Idio is the
idiosyncratic risk captured from Ang et al. (2006). The Unit root test (ADF) rejects the null in levels for the
monthly implied arbitrage efficacy θm. Thus it is regressed in levels. All coefficient are reported at 102 level
for better view. The constant term is not reported. All t-statistic are computed with Newey-West standard
errors. ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively, and reported in the bracket.

4.3. Nonlinearity

Our model predicts that amplification arises due to the binding leverage constraint, such that

an external shock, e.g. an equity shock, can spillover to the leverage debt and cause more

mispricing. In other words, mispricing tend to be more sensitive to an external shock when

the leverage constraint binds. In this section, we examine the relation between the size of

mispricing and the implied arbitrage efficacy. To identify the periods of the binding leverage

constraint, we refer to the sign of the implied arbitrage efficacy, rather than setting an arbitrary

threshold or ex-post event dates. We capture the future-cash basis in absolute value from the

S&P 500 index and E-mini future using Eq. (13) and Eq. (18), denoted as | zt |. Since

other arbitrage frictions, such as market condition, arbitrage risk and illiquidity also affect the

size of mispricing error, we add the following explanatory variables. The controls include the

lagged mispricing itself, the VIX index to control for market conditions, TED spread, Default

spread and term spread to control for credit market conditions, the idiosyncratic risk (Idio)

to control for arbitrage risk in the stock market, the Amihud (2002) illiquidity measure (Illiq)
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to control for the level of stock market illiquidity.17

Results of the OLS regressions in changes are reported in Table 4.3. Column (2) reports

the relation between mispricing error and the control variables over the full sample from 2000

to 2015. Idiosyncratic risk and TED spread are significantly and positively related to the size

of mispricing error, such that higher arbitrage risk and credit cost is associated with larger

mispricing. In column (3) where the implied arbitrage efficacy is included, the coefficient on

Lm is statistically significant at 1% levels with a negative sign (−2.537). The adjusted R2

increases from 0.579 to 0.623. Columns (4) and (5) display the conditional results on the

positive and negative implied arbitrage efficacy, respectively. When θm > 0, i.e. leverage

constraint tends to be slack, loading on the implied arbitrage efficacy drops (in absolute term)

to −0.792 and becomes insignificant. Other funding liquidity measures, such as TED spread

and Default spread, also witness a decline in the coefficients and the significance. However

idiosyncratic risk obtains a higher and statistically significant loading, 6.246, which is the

dominant driver of the size of mispricing in these periods of time. However, when θm < 0, i.e.

leverage constraints become binding, loading on θm sharply increases (in absolute term) to

−3.286, and it is statistically significant at 1% level. Coefficients on TED spread and Default

spread also are more than doubled and become significant, while that on the idiosyncratic risk

becomes indifferent from zero. These evidence implies that a moderate external shock to the

funding liquidity condition has a large impact on the size of mispricing when θm < 0, which

is consistent with the liquidity-induced amplification effect.

In addition, we also repeat the regression on the noise measure from Hu, Pan and Wang

(2013), which captures the observed market-wide mispricing in the US treasury bond market.

This exercise may also answer a question: whether and when funding liquidity in stock market

will spillover to the treasury bond market?18 Existing literature shows that commonality in

liquidity appears when funding constraints tend to be binding (Brunnermeier and Pedersen,

2009; Fontaine, Garcia and Gungor, 2015). Therefore we expect to see a closer relationship

17Results are not dissimilar if we control for market-wide illquidity measure of Pastor and Stambaugh (2003).
18Chordia, Sarkar, and Subrahmanyam (2005) and Goyenko and Ukhov (2009) provide evidence of liquidity

spillovers between equity and bond markets in the US.
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Regression of future-cash basis | z | in changes on:

(1) (2) (3) (4) (5)
lag ∆ | z | -0.205 (-1.61) -0.418*** (-5.52) -0.340*** (-4.56) -0.294*** (-4.06) -0.517*** (-4.26)
∆θm -4.728*** (-6.14) -2.537*** (-3.67) -0.792 (-1.16) -3.286*** (-3.30)
∆V IX -0.007 (-0.30) 0.008 (0.36) 0.034 (0.89) 0.038 (1.07)
∆Idio 4.868*** (2.75) 5.525*** (3.23) 6.426*** (-3.17) -0.415 (-0.22)
∆TED 0.200*** (5.14) 0.138*** (3.86) 0.096* (1.95) 0.181*** (2.93)
∆Def 0.087* (1.72) 0.068* (1.72) 0.055 (1.23) 0.127** (2.02)
∆Term -0.021 (-1.11) -0.023 (-1.28) -0.019 (-1.04) -0.002 (-0.06)
∆Illiq -0.341 (-0.77) -0.012 (-0.02) -0.603 (-1.24) -0.475 (-0.56)
R-square 0.349 0.579 0.623 0.444 0.769
Obs 183 183 183 104 78

Table 6: Determine the size of mispricing error in S&P 500 index-future arbitrage, March 2000 to June 2015

This table reports the OLS regression of mispricing error captured in the index-future arbitrage relation on the
implied arbitrage efficacy controlling for various variables of funding liquidity, market liquidity and arbitrage
risk in changes. Columns (1) to (3) regress on full sample. Column (4) reports the conditional regression on
positive arbitrage efficacy (Lm > 0), while column (5) on negative arbitrage efficacy (Lm < 0). All t-statistic
are computed with Newey-West standard errors. ***, ** and * indicate significance at 1%, 5% and 10% levels,
respectively, and reported in the bracket.

between the noise measure and the implied arbitrage efficacy during the periods of binding

leverage constraints.

We replace the stock market controls, i.e. idiosyncratic risk Idio and market liquidity Illiq,

to the aggregate market-wide illiquidity (PSilliq) of Pastor and Stambaugh (2003) and the

treasury market funding illiquidity measure (FGilliq) of Fontaine and Garcia (2012). Details

on data sources are provided in the Appendix. Results of regressions in changes are drew on

Table 4.3. Although θm, on its own, has a significant negative relation to the noise measure

(Column 1), the coefficient drops to −9.052 after the controls are introduced in column 3 with

a t-statistic of 1.57. All controls produce the correct sign in relating to the noise measure

with mix results in significance. VIX index and term spread are the dominating drivers with

significant coefficient at 1% levels. We are more interested in the conditional regressions on the

sign of the implied arbitrage efficacy. In column (4) where θm > 0, VIX index and Term spread

remain the dominating drivers of the noise measure but with a smaller loading, comparing to

the aggregate results. Coefficient on Lm has even larger decline (in absolute term) to only

0.322. However column (5) illustrate the arise of nonlinearity under θm < 0. Comparing to the
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Regression of the noise measure (noise) in changes on:

(1) (2) (3) (4) (5)
lag ∆noise 0.522*** (-3.35) 0.473*** (4.01) 0.472*** (4.05) 0.576*** (3.40) 0.323*** (2.86)
∆θm -12.473** (-1.98) -9.052 (-1.57) 0.322 (0.03) -11.89** (-2.00)
∆V IX 1.087*** (4.61) 1.178*** (4.59) 0.865*** (3.63) 1.121*** (3.44)
∆TED 0.345 (0.75) 0.090 (0.18) 0.981* (1.97) -0.674 (-1.34)
∆Def 0.943 (1.58) 0.908 (1.49) -0.601 (-0.70) 2.214** (2.60)
∆Term 0.758*** (3.53) 0.758*** (3.65) 0.475** (2.38) 0.997*** (3.15)
∆FGilliq 0.182 (1.35) 0.254* (1.68) -0.059 (-0.38) 0.339 (1.47)
∆PSilliq 0.287 (0.49) 0.301 (0.55) 1.325** (2.22) -0.591 (-0.83)
R-square 0.269 0.503 0.611 0.463 0.734
Obs 183 183 183 104 78

Table 7: Determine the size of mispricing error in U.S. treasury bond market, March 2000 to June 2015

This table reports the OLS regression of the noise measure on the implied arbitrage efficacy controlling for
various variables of funding liquidity, market liquidity and arbitrage risk in changes. Columns (1) to (3) regress
on full sample. Column (4) reports the conditional regression on positive arbitrage efficacy, while column (5)
on negative arbitrage efficacy. Column (6) runs the conditional regression on the negative arbitrage efficacy
that avoids the period of the global financial crises (Jan 2007 to May 2009). All t-statistic are computed with
Newey-West standard errors. ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively, and
reported in the bracket.

results in column (4), loading on VIX index increases from 0.865 to 1.121; loading on default

spread sharply rises from −0.601 (indifferent from zero) to 2.214; loading on term spread also

doubles from 0.475 to 0.997. It implies that noise measure is more sensitive to the funding

liquidity shock when the implied arbitrage efficacy becomes negative. More importantly, the

estimate coefficient on θm is sizable (−11.89) and highly significant at a 5% significance level,

which represents the spillover effect of funding liquidity shock from stock market to treasury

bond market.

5. Conclusion

In this paper we propose an alternative way to study the arbitrageurs’ funding liquidity through

the corresponding arbitrage activity. Under the limit to arbitrage framework with endogenous

leverage constraint, we allow arbitrageurs to choose the optimal leverage position subject to the

equity and leverage constraints. The arbitrageurs’ funding liquidity is defined as the marginal

leverage financed to bear against additional mispricing error. We find that arbitrageurs tend

to raise sufficient leverage against higher mispricing when they are far from the leverage
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constraint. Such activity is reflected on the arbitrage efficacy, which is defined as the marginal

percentage of mispricing correction achieved by the arbitrageurs. When funding liquidity is

ample, higher marginal mispricing correction can be achieved since more leverage funds enter

the market to correct mispricing. However when the leverage constraint is hit, funding liquidity

is deteriorated, such that insufficient leverage can be financed to bet against higher mispricing

due to the leverage constraint. It leads lower marginal mispricing correction, i.e. arbitrage

efficacy becomes negative. We thus use arbitrage efficacy to infer for funding liquidity, and

more importantly the negative sign of arbitrage efficacy signals the binding leverage constraint,

where amplifications occur.

We empirically estimate the implied arbitrage efficacy from the S&P 500 future-cash ba-

sis, and find statistically significant evidence that the implied arbitrage efficacy is related to

other broad measure of funding liquidity. More importantly, the sign of the implied arbitrage

efficacy identifies the binding leverage constraint, such that the periods of negative arbitrage

efficacy coincide with the episodes of liquidity crises within the sample period and exhibit

strong amplification effects. The measure of implied arbitrage efficacy thus provides vital and

helpful tool for policy maker and regulators to evaluate the funding condition among the fi-

nancial intermediaries and the potential existence of amplification due to the binding funding

constraint. Moreover the measure could be used to investigate the effects of the implementa-

tion of the liquidity injection schemes, such as quantitative easing, and help to evaluate their

efficacy.

Our work provides a number of direction that future researches might address. First,

it would be interesting to extend the empirical methodology to several other stock market

arbitrage relation, or even difference asset classes, to capture the more information about

market-wide funding liquidity condition. In doing so, one might be able to properly address

the spillover and contagion effect in funding liquidity especially during the crisis period. Sec-

ond, Brunnermeier and Pedersen (2009) suggest that funding illiquidity among arbitrageurs

leads to the phenomenon of flight to liquidity, flight to quality, and commonality in liquidity.

Hence, the implied arbitrage efficacy can be a good tool to distinguish the sample into two
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regimes: the period of loose and binding funding constraint, and empirically examine these

hypotheses. Third, our paper only focuses on the initial mispricing correction, while the pat-

tern of subsequent price recovery also reflects the impediments faced by arbs, as suggested by

Duffie (2010). Combining both immediate and subsequent pricing dynamics might generate

more fruitful results. Fourth, the amplification effect under binding funding constraint can

lead to long-lasting consequences, which has been explored in the macroeconomics literature.

It would be interesting to empirically verify the impact of funding liquidity in the financial

sector on overall economics, especially during the period of binding leverage constraints.

AppendixA. The arbitrage efficacy implied by the other markets

In this appendix, we will investigate the arbitrage efficacy estimated by other future contracts

of S&P 500 index, and other major index-future markets.

First we capture the implied arbitrage efficacy using the standard S&P 500 future contract.

The standard contract has the same underlying asset: S&P 500 index, as the E-mini future.

Comparing to the standard contract, the E-mini contract offers a smaller size of contract and

lower margin, which attracts more high frequency traders and market makers. However, the

standard contract was first introduced in 1982, which offers a larger samples. However we

choose to start the sample in 11 June 1990 due to considerations with respect to data quality.

In particular, hedge funds industry, regarded as real world arbitrageurs, prospers in the early

1990s. We then compute the 250-day moving arbitrage efficacy using the same methodology

introduced in Section 3.

The top panel in Figure A.5 shows the daily series of the 250-day moving arbitrage efficacy

from June 1993 to June 2015, implied by the standard future contracts, while the bottom one

captures the arbitrage efficacy implied by the E-mini future contracts from September 2000

to June 2015. The plots are similar in terms of the periods of negativity and the magnitudes

of negativity, except for early 2000s. The arbitrage efficacy implied by standard contract

displays more significant and persistent negativity in value from mid 2001 to mid 2002, when

the market was under uncertainty after 911 attack. Due to the larger sample period, the

34



US_liq250_Standard 

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

-0.1

0.0

0.1
US_liq250_Standard 

US_liq250_Emini 

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

-0.1

0.0

0.1
US_liq250_Emini 

Figure A.5: The arbitrage efficacy implied by the S&P 500 index and standard future contract
The figures show the arbitrage efficacy computed through a 250-days rolling window. The top figure is implied
by the arbitrage relationship between S&P 500 index and the standard future contract from June 1993 to June
2015, while the bottom figure is implied by the S&P 500 E-mini future from September 2000 to June 2015.

arbitrage efficacy implied by standard contract is also informative about the market turmoil

in 1994, the global turmoil in mid 1998 and the bust of dot-com bubble starting from late

1999. It drops below zero in these periods and persists for at least six months.

Next, we seek for international evidence by investigating two major index-future markets:

the DAX index (Germany) and the Nikkei 225 index (Japan). We have two future contracts for

the Nikkei 225 index, one traded in the Osaka Exchange and one in the Chicago Mercantile

Exchange (CME), and one future contract for DAX index traded in EUREX Deutschland.

Take the Osaka-traded contract for example, it starts from 1988, but we choose to start the

analysis in 1995. The reason being that the 3-month money rate in Japan, used as the risk

free rate, is available from 1995. Similarly, although the future contract for DAX index is

available from 1990, we choose to start from 1995 due to data quality. Also as a result of

the introduction of the euro in 1998, we use the 3-month Frankfurt Interbank Offer Rate as

the risk free rate from the start but replace it with the Euro Interbank Offered Rate from

December 1998.

Figure A.6 depicts the arbitrage efficacy implied by the DAX index and future along with

the 10-year government bond yield for some European countries (Greece, Italy, Portugal and
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Figure A.6: The arbitrage efficacy implied by the DAX index and the standard future contract
The top figure depict the arbitrage efficacy implied by the DAX index from January 2007 to June 2015,
computed through a 250-days rolling window. The bottom figure shows the monthly 10-year government bond
yield for Greece, Italy, Portugal and Germany at the same period.

Germany) after 2007. Although the implied arbitrage efficacy is available from 1998, we focus

on what happen after 2007 to investigate the impact of the 2007 global financial crises and

the 2010 European debt crisis. The implied arbitrage efficacy is close to zero in 2007 and

early 2008. It is the collapse of Lehman Brothers in September 2008 that drives it below zero

significantly. It reaches the lowest point at −8.7% in early 2009 and starts to improve. The

build-up of the European debt crisis since 2010 does not seem to affect the implied arbitrage

efficacy. It drops below zero from mid 2011 to mid 2012, when the government bond yields are

at their peak (See Greece for example). The implied arbitrage efficacy grow above zero in late

2012, as the ECB calmed the markets by announcing free unlimited support for all eurozone

countries. 2015 marks another rises in the long-term bond yields due to uncertainties in

Greece. The implied arbitrage efficacy responds and declines to the −10%. Notice also that

the arbitrage efficacy also drop below zero in mid 2013. This period coincides with the dollar

appreciation, which leads to tightening global liquidity (Avdjiev et al. 2017, 2018). Evidence

of funding illiquidity is also documented in the violation of covered interest parity after mid

2013.

Figure A.7 plots the arbitrage efficacy implied by the Nikkei 225 index and the two future
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Figure A.7: The arbitrage efficacy implied by the Nikkei 225 index and the future contracts
The top figure is implied by the Nikkei 225 index and the standard future contract traded in Osaka, and the
bottom figure is implied by the Nikkei 225 index and the standard future contract traded in CME. The implied
arbitrage efficacy is computed through a 250-days rolling window from October 1998 to June 2015.

contracts. The top figure is implied by the future contracts traded in Osaka, while the bottom

one is implied by those traded in CME. The two trajectories are both negative in 1998, but

remain close to zero in early 2000s. Unlike the arbitrage efficacy implied by S&P 500 and DAX

indices, the collapse of Lehman Brothers in September 2008 rather pushes the trajectories up

above zero significantly (7% and 3%, respectively).

For a more clear view of the implied arbitrage efficacy in US, Germany and Japan, we

plot them in Figure A.8 covering the period of June 2006 and June 2015. Both the S&P

500 index-implied arbitrage efficacy capture the build-up of the global financial crisis in 2007,

while those implied by DAX and Nikkei index are rather unaffected. The collapse of Lehman

Brothers in September 2008 drives the arbitrage efficacy implied by S&P 500 and DAX indices

below zero significantly, while pushes that implied by Nikkei index up above zero. It implies

that the Japanese market is served as a safe haven in this crisis period. Similar evidence is

found in late 2011 where dollar shortage and sovereign debt crises hit the U.S. and the Europe.

Starting from 2013, arbitrage efficacy captured in the Germany and Japan market tend to be

more negative than those in the U.S. market, consistent with the period of dollar appreciation

that reduces global liquidity.
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Figure A.8: The arbitrage efficacy implied by the S&P500 index, DAX index, and Nikkei index
The figures depict the arbitrage efficacy computed through a 250-days rolling window from October 1998 to
June 2015. The top figure is implied by the arbitrage relationship between DAX index and the standard future
contract, the middle figure is implied by the Nikkei 225 index and the standard future contract traded in Osaka,
and the bottom figure is implied by the Nikkei 225 index and the standard future contract traded in CME.

AppendixB. Proofs

In this appendix, we provide the proofs for the propositions derived from our model.

Proof for Proposition 1: We first derive the upper leverage limit DU , by allowing for

f2,b = 0 under bad state, such that the arbs’ equity in period 2 fully covers the losses generated

in period 1. We have

f2,b = fe1 + (fe1 +DU )

(
P2,b

P1
− 1

)
= 0 (B.1)

where

P1 = V − s1 + fe1 +DU , P2,b = V − s2,b, (B.2)

Using Eq.(B.1) and (B.2), we solve for the leverage constraint DU :

DU =
1

2
(m1 −m0) (B.3)

where
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m0 = (fe1 + s2,b − s1)

m1 =
√

(m0)
2 + 4fe1 (V − s2,b).

Using Eq. (B.3), we are able to write the partial derivative of DU w.r.t fe1 as

∂DU

∂fe1
=

1

2

(
2V − (s1 + s2,b − fe1 )

m1
− 1

)
.

It is easily found that the first term in the bracket is greater than 1, since

(2V − (s1 + s2,b − fe1 ))2 − (m1)
2 = 4 (V − s1) (V − s2,b) ≥ 0.

Thus we have ∂DU
∂fe1

> 0.

Using Eq. (B.3), we also write the partial derivative of DU w.r.t s2,b as

∂DU

∂s2,b
=

1

2

(
s2,b − s1 − fe1

m1
− 1

)

It is easily found that the first term in the bracket is less than 1, since

(s2,b − s1 − fe1 )2 − (m1)
2 = −4fe1 (V − s1) < 0.

Thus we have ∂DU
∂s2,b

< 0. Q.E.D.

Proof for Proposition 2: Consider the partial-leverage strategy first. We derive the optimal

fd1 by solving the first order condition in Eq.(8):

V

P1
− 1 = q

(
V

P2,b
− 1

)

where

P1 = V − s1 + f1, P2,b = V − s2,b + f2,b.
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Then the optimal leverage fund is given by:

fd1 =
n0 − n2
2 (1− q)

(B.4)

where

n0 = V − (1− q) (fe1 + s2,b − s1)

n1 = V − (1− q) (s1 + s2,b − fe1 )

n2 =
√

(n1)
2 + 4V q (1− q) (s2,b − fe1 )

We write the partial derivative of fd1 w.r.t. fe1 as

∂fd1
∂fe1

= −1

2

[
V − (1− q) (s1 + s2,b − fe1 )− 2V q

n2
+ 1

]

It is easily found that the absolute value of the first term in the bracket is less than 1, since

[V − (1− q) (s1 + s2,b − fe1 )− 2V q]2 − (n2)
2 = −4qV (1− q) (V − s1) < 0

Therefore we have ∂fd1
∂fe1

< 0.

Consider the max-leverage strategy now. We have ∂DU
∂fe1

> 0 from Proposition 1. Q.E.D.

Proof for Proposition 3: Under the partial-leverage strategy, fd1 is implied by Eq. (B.4).

Taking the partial derivative of fd1 in Eq. (B.4) w.r.t. s1, we obtain the funding liquidity `p

under the partial-investment strategy by

`p =
∂fd1
∂s1

=
(1− q) + (1− q)n1/n2

2 (1− q)
=

1

2

(
1 +

n1
n2

)
(B.5)

Under the assumption on equity constraint, i.e. sb2 > fe1 , we have n2 > n1. Therefore we must

have 0.5 < `p < 1. If q = 0 or q = 1, `p becomes 1 as n2 = n1.

Funding liquidity under max-leverage strategy can be written as the partial derivative of
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DU in Eq. (B.3) w.r.t. s1:

`m =
∂DU

∂s1
=

1

2

(
1− m0

m1

)
. (B.6)

It is easily seen that 0 < `m < 0.5, since 0 < m0
m1

< 1. Therefore we must have 0 < `m < `p < 1.

Also there must be a dive in ` when leverage constraint becomes binding.

To see how `p and `m behave after an equity shock, we write the partial derivatives of `p

w.r.t. fe1 as:
∂`p

∂fe1
=

1

2
+

1

2

∂ n1
n2

∂fe1

where
∂ n1
n2

∂fe1
=

(n2)
2 − (n1)

2 + 2V qn1

(n2)
3 =

4V q (1− q) (s2,b − fe1 ) + 2V qn1

(n2)
3 > 0.

Thus we have ∂`p

∂fe1
> 0.

We also write the partial derivatives of `m w.r.t. fe1 as

∂`m

∂fe1
=

1

2
− 1

2

∂m0
m1

∂fe1

where
∂m0
m1

∂fe1
=

(m1)
2 − (m0)

2 − 2 (V − s2,b)m0

(m1)
3 =

2 (V − s2,b) (fe1 − s2,b + s1)

(m1)
3 .

We notice that the term fe1 − (s2,b − s1) tend to be negative under max-leverage strategy.

Proposition 1 suggests that max-leverage strategy occurs when fe1 is rather small. Large fe1

will trigger the partial-leverage strategy as leverage funds is less attractive. Therefore without

further mathematical derivation and loss of generality, we can assume that fe1 − (s2,b − s1) < 0

for small fe1 that triggers max-leverage strategy. Thus
∂

m0
m1
∂fe1

< 0 and ∂`m

∂fe1
> 0. Q.E.D.

Proof for Proposition 4: Under the partial-investment strategy we write the arbitrage

efficacy as

αp =
∂κ

∂s1
=
`p − κ
s1

=
`p

s1
− 1

s21

(
n3 − n2
2 (1− q)

)
(B.7)

where

n3 = V − (1− q)
(
sb2 − s1 − fe1

)
.
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To show that αp > 0, we consider the worse case possible: the lowest αp with the initial shock

as large as sb2, i.e. s1 → sb2. Then αp can be expressed as,

[
s1→ sb2]limα

p =
sb2 (1− q)

(
n4
n5
− 1

)
+ n5 − n4

2 (1− q)
(
sb2
)2

=
n5 − n4

2 (1− q)
(
sb2
)2
(

1− sb2 (1− q)
n5

)

where

n4 = V − (1− q)
(
2sb2 − fe1

)
n5 =

√
(n4)

2 + 4q (1− q)V
(
sb2 − fe1

)

To see
[
s1→ sb2]limα

p > 0, we verify whether the following inequality holds or not:

n5 > sb2 (1− q) (B.8)

The right hand side in Eq. (B.8) reach its largest when q → 0, i.e. RHS = sb2, while the left

hand side is at its lowest when q → 0, i.e. LHS = V − 2sb2 + fe1 . Thus the inequality in Eq.

(B.8) holds provided that

V > 3sb2 − fe1 .

Since the model assumes that noise shocks are much less than the fundamental value, i.e.

V � sb2, f
e
1 , the condition can be satisfied easily. Thus the inequality

[
s1→ sb2]limα

p > 0

holds, and we have αp > 0.

Under the max-leverage strategy the arbitrage efficacy can be expressed as

αm =
`m − κ
s1

.
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According to Eq.(B.3) and (B.6), it becomes

αm =
1

2s21
(m0 +m1)−

1

2s1

(
m0

m1
− 1

)

For αm to be negative, it requires the following condition after rearrangement:

s1 <
1

sb2

(
V
(
sb2 + fe1

)
−
√
V
(
V − sb2

) (
sb2 − fe1

))
<

2V fe1
sb2

.

For simplicity, we can express it as

V >
s1

2fe1
sb2.

Since it is reasonable to assume that V � s1, f
e
1 , s

b
2, the condition is easily satisfied. Therefore,

we always have αm < 0. Q.E.D.

AppendixC. Additional data sources

This Appendix details the data sources and variable definitions for all the variables used in

Section 4. Unless specified otherwise, the variable is available on a monthly basis for the whole

time period, January 2000 through June 2015. For data that are available in daily series, we

obtain the monthly data by taking the average over the start and the end of the month.

We obtain the VIX index from Chicago Board of Options Exchange (CBOE). TED spread

is 3-month LIBOR less 3-month T-bill. Libor-repo spread is 3-month LIBOR less GC repo

rate. Default spread is the spread between BAA and AAA rated corporate bonds. Term

spread is the spread between the yield on 10-year Treasury bonds and the 3-month T-bill

rate. These interest rate variables are available from Datastream. Other measures of funding

and market liquidity is available from the authors’ webpages. The monthly treasury market

funding illiquidity measure of Fontaine and Garcia (2012) is collected from Fontaine’s webpage.

The broker-dealer leverage factor of Adrian, Etula and Muir (2014) is collected from Muir’s
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webpage. The monthly aggregate illiquidity of Pastor and Stambaugh (2003) is collected from

Pastor’s webpage. The noise measure of Hu, Pan, and Wang (2013) is collected from Pan’s

webpage.

In addition, we construct the idiosyncratic risk measure following Ang, Hodrick, Xing and

Zhang (2006), who find that stocks with high idiosyncratic risk relative to the Fama–French

3-factor model (1993) have low average return. We obtain the daily stock return and the S&P

500 Index return from the Center for Research in Security Prices (CRSP), then the daily risk-

free return from the Fama–French Data Library website. We calculate the idiosyncratic risk

of each stock in each month and then take the mean of the monthly aggregate idiosyncratic

risk of all US stocks to run principal component analysis (PCA). The idiosyncratic risk is

constructed as follows:

Reti,t −Retriskfree,t = αt + βt (Retspx500,t −Retriskfree) + εi,t

IdioRiski,t = Std (εi,t=1, εi,t=2, εi,t=3, . . . . . . εi,t=end day of month) ,

where Reti,t is the daily return of stock on day d at month t, Retriskfree,t is the daily return

of the 30-day T-bill from the Fama–French website, and εi,t=j is the residual obtained from

the regression on day j.

We also construct the Amihud (2002) illiquidity measure as follows:

Illiqi,y =

(
1

Di,y

)Di,y∑
k=0

| Ri,y,d |
V OLDi,y,d

,

where Di,y is the number of days of stock i available in year y, Ri,y,d is the daily return of

stock i on day d in year y, and V OLDi,y,d is the trading volume in dollars of stock i on day d

in year y. The daily stock return are obtained from the Center for Research in Security Prices

(CRSP).
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