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Abstract

We find evidence for the beta anomaly in mutual fund performance. This anomaly
is not accounted for in the standard four-factor framework, nor by the addition of a
BAB factor to the benchmark model. We show how controlling for the beta anomaly
produces an alternative measure of managerial skill that we call active alpha. Active
alpha is persistent and associated with superior portfolio performance. Therefore, it
would be sensible for investors to reward managers with high active alpha. In addition
to allocating their money based on standard alpha, we find that a subset of sophisti-
cated investors allocate their assets to funds with high active alpha performance.
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1 Introduction

The empirical asset pricing literature supplies convincing evidence that high-beta assets

often deliver lower expected returns than predicted by the CAPM, and that lower beta

assets deliver returns higher than expected according to the CAPM (Black, Jensen, and

Scholes (1972), Gibbons, Ross, and Shanken (1989), Baker, Bradley, and Wurgler (2011)).

Recently, Frazzini and Pedersen (2014) reinvigorate interest in this so-called beta anomaly

with a compelling theoretical argument. They propose a betting-against-beta (BAB) factor

that captures the return spread from the beta anomaly.

Given the evidence for the beta anomaly, it has long been noted that actively managed

funds can show significant performance by passively investing in low-beta stocks. The stan-

dard approach to measuring mutual fund performance today is to use the Carhart (1997)

4-factor model. According to this model, in the absence of active management, the expected

excess return for a fund is the sum of the products of the betas with four factor risk premia.

The expected difference between the portfolio return and its benchmark return is the Carhart

measure of abnormal performance, or the alpha. The Carhart approach in effect assumes

that a matching passive portfolio alpha is zero. However, in the context of asset pricing

anomalies such as the beta anomaly, this assumption is not innocuous. More importantly,

whether any asset pricing model effectively controls for the beta anomaly is unclear.

This paper examines whether accounting for the beta anomaly can systematically affect

inferences about mutual fund performance. According to the CAPM, higher mutual fund

alpha indicates skill. However, given the existence of the beta anomaly, higher alpha could

also reflect a low beta tilt. That is, if fund A tends to hold high-beta assets relative to fund

B, we ought to expect that, given equal skill, A has a lower alpha than B. In the standard

attribution framework we might spuriously attribute this result to differences in skill.

It is not immediately clear how to account for the beta anomaly in mutual fund perfor-
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mance evaluation. More generally, there is no existing method to estimate the value-added

of a fund when factor sensitivities are associated with a consistent pattern of alphas. We

address the accounting issue by introducing a new performance measure that we call “active

alpha.”Active alpha subtracts from the fund’s standard alpha its passive component, which

is measured as the value-weighted alpha of those individual stocks whose betas are similar

to the fund’s estimated beta. If the active alpha is positive, investors seeking that particular

level of risk would benefit from owning these funds.

In our sample of actively managed U.S. domestic equity funds, we find that fund alphas

are almost monotonically declining in beta, just as they do for equities. In contrast, we

find that active alpha tends to improve with beta. These results suggest that the alpha

from standard asset pricing models cannot effectively control for the beta anomaly, and

that inference based on our active alpha measure, which accounts for cross-sectional return

differences due to the beta anomaly, differs considerably from that based on standard alpha

measures. Notably, introducing the Frazzini-Pedersen (2014) BAB factor to the commonly

used Carhart (1997) four-factor model does not suffi ce to control for the beta anomaly in

fund performance. Although the magnitude of the alpha-beta relation is smaller based on

more sophisticated multifactor return models, standard alphas continue to be significantly

negatively related to fund beta.

In our main analysis, we show that active alpha is persistent, indicating that it captures

the existence of investment skill over and above allocating capital to low-beta stocks. We also

show that active alpha can be used to identify funds with desirable portfolio characteristics,

including market-adjusted return and the Sharpe ratio.1 These findings raise the question

of whether investors recognize and respond to active alpha when allocating their capital

to funds. To answer this question, we analyze mutual fund flows as a function of standard

1There are other benefits of using active alpha to measure managerial skill. By controlling for passive
beta outperformance or underperformance, active alpha controls for any time-variation in average mutual
fund beta documented by Boguth and Simutin (2018).
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alpha and active alpha. Consistent with the literature, we find that standard alpha generates

future fund flows. On the other hand, we also find that fund flows respond to our active alpha

measure in and beyond standard alpha. These findings suggest that while most mutual fund

investors allocate their capital based on the standard alpha, some investors are suffi ciently

sophisticated to account for the beta anomaly, allocating their fund flows based on active

alpha. We provide supporting evidence for this investor heterogeneity comparing fund flows

from institutional and retail share classes. we find that fund flows from institutional share

classes, where presumably a higher proportion of fund investors are sophisticated, are more

responsive to active alpha.

To provide an economic explanation for the empirical sensitivity of fund flows to active

alpha, we develop a simple model of fund flows with the presence of both sophisticated and

naive investors. In our model, some investors are sophisticated and are able to invest in

a passive benchmark with the same risk as the fund. Other investors are naive and only

make risky investments via the fund. Both types of investors update the fund’s managerial

skill as Bayesians. This framework shows how sophisticated investors’demand for the fund

can be positively related to posterior expectations of active alpha, whereas naive investors’

demand for the fund is positively related only to their posterior expectations of the standard

alpha. Intuitively, sophisticated investors concern themselves with active alpha since they can

identify (and short) the passive benchmark portfolio, in turn extracting only the performance

truly attributable to managerial ability. On the other hand, naive investors care equally

about all sources of alpha, since they are comfortable making risky investments only with

the fund manager.

The model shows how the flow sensitivities to active alpha and to standard alpha vary

as a function of the number of sophisticated investors. Importantly, the empirical fact that

flows jointly respond positively to both active alpha and standard alpha measures can be

consistent with our rational learning model only given the coexistence of both sophisticated
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and naive investors. Quantitatively comparing the simulated results from our model to the

empirical magnitudes of the capital response, we find that roughly 24% of mutual fund

investors are sophisticated, suggesting that sophisticated investors are a sizeable group.

Our paper contributes to the literature on mutual fund performance accounting for return

anomalies from the empirical asset pricing literature. Ours is the first to account for the

beta anomaly and to produce an estimate of managerial skill that does not attribute skill

to a low-beta portfolio tilt. However, the factor-model regression approach is not the only

popular performance attribution method. The characteristic-based benchmark approach of

Daniel, Grinblatt, Titman, and Wermers (DGTW, 1997) is also prominent. Since then, the

literature has recognized the importance of accounting for the stock characteristics such as

size, value and momentum effects in fund returns. Busse, Jiang, and Tang (2017) propose to

marry the factor-model regression approach and DGTW approach with a double-adjusted

performance measure. Berk and van Binsbergen (2015) use the value added by a fund as the

measure of skill, arguing that return measures of managerial skill alone do not suffi ce. Jordan

and Riley (2015) show that funds sorted on volatility have persistently different performance.

They find that a different benchmark model, the Fama and French (2015) five-factor model

effectively controls for the volatility effect. 2

Related to our analysis of fund flows is the fascinating question of what excess return

model investors use to allocate their fund flows. Using a Bayesian framework that allows for

alternative degrees of belief in different asset pricing models, Busse and Irvine (2006) show

that fund flow activity varies by investor beliefs and by the time period under consideration.

They report that a 3-year return history has a stronger correlation with fund flows than a

single year’s performance. Berk and van Binsbergen (2016) and Barber, Huang, and Odean

2Cremers, Fulkerson, and Riley (2018) review the literature on active management since Carhart (1997).
They suggest that active management is more valuable than the conventional wisdom claims. In particular,
they argue that it is still not clear what is the appropriate model for evaluating fund performance. Our
search for a better measure of skill contributes to answering this important question.
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(2016) use mutual fund flows to test which asset pricing model best fits investor behavior.

They test a large number of asset pricing models and find that the CAPM best reflects

investor behavior.3

Finally, as we propose fund beta as a predictor of fund performance, the existing literature

has proposed other fund characteristics that predict performance, including but not limited

to the return gap in Kacperczyk, Sialm, and Zheng (2008), active share in Cremers and

Petajisto (2009), and mutual fund’s R2 in Amihud and Goyenko (2013).4

2 Data and Methods

2.1 Mutual fund sample

The Morningstar and CRSPmerged dataset provides information about fund names, returns,

total assets under management (AUM), inception dates, expense ratios, investment strategies

classified into Morningstar Categories, and other fund characteristics. From this data set

we collect monthly return and flow data on over 2,838 U.S. diversified equity mutual funds

actively managed for the period 1983-2014. Panel A of Table 1 presents summary information

about the sample. There are 298,055 fund-month observations. Funds have average total

net assets (TNA) of $1.277 million, with a standard deviation of $2.838 billion. For the

usual reasons related to scaling, we use the log of a fund’s TNA as the proxy of fund size.

We report the summary statistics for this variable in the row below that of fund size. We

compute the fund age from the fund’s inception date and find the typical fund has a life of

3Agarwal, Green, and Ren (2017) examine hedge fund flows and they also find that CAPM alpha con-
sistently wins a model horse race in predicting hedge fund flows.

4Hunter, Kandel, Kandel, and Wermers (2014) and Hoberg, Kumar, and Prabhala (2018) generate
measures of skill as a fund’s outperformance relative to its peers instead of passive benchmarks. Hunter,
Kandel, Kandel, and Wermers (2014) find that this approach significantly improves the selection of funds
with future outperformance. Hoberg, Kumar, and Prabhala (2018) show that these funds generate future
alpha when they face less competition, highlighting the importance of competition in limiting fund managers’
ability to earn persistent alpha.
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199 months. Funds earn an average gross return of 0.78% per month and collect fees of 9.8

basis points per month. Monthly firm volatility is 4.64% and average fund beta is 0.99. This

beta average suggests that in the fund beta sort results presented below, one can consider

the middle decile portfolios to roughly bracket the market beta.

2.1.1 Estimating mutual fund alphas

We estimate the abnormal return (alpha) for each fund using five performance evaluation

models: i) the CAPM, ii) the Fama-French (1993) three factor model (FF3), iii) the Carhart

(1997) four factor model (Carhart4), iv) a five factor model we call PS5 augmenting the

Carhart (1997) four-factor model with the Pastor and Stambaugh (2003) liquidity factor

as in Boguth and Simutin (2018), and v) the Carhart (1997) four factor model augmented

with the Pastor and Stambaugh (2003) liquidity factor and the Frazzini and Pedersen (2014)

betting against beta factor (FP6). Alpha estimates are updated monthly based on 36-month

rolling estimation window for each model. For example, in the case of the four-factor model

for each fund in month t, we estimate the following time-series regression using thirty-six

months of returns data from months τ = t− 1, . . . t− 36:

(Rpτ −Rfτ ) = αpt + βpt (Rmτ −Rfτ ) + sptSMBτ + hptHMLτ +mptUMDτ + epτ , (1)

where Rpτ is the fund return in month τ , Rfτ is the return on the risk-free rate, Rmτ is the

return on a value-weighted market index, SMBτ is the return on a size factor (small minus

big stocks), HMLτ is the return on a value factor (high minus low book-to-market stocks),

and UMDτ is the return on a momentum factor (up minus down stocks). The parameters

βpt, spt, hpt, and mpt represent the market, size, value, and momentum tilts (respectively)

of fund p; αpt is the mean return unrelated to the factor tilts; and epτ is a mean zero error

term. We then calculate the alpha for the fund in month t as its realized return less returns
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related to the fund’s market, size, value, and momentum exposures in month t:

α̂pt = (Rpt −Rft)−
[
β̂pt (Rmt −Rft) + ŝptSMBt + ĥptHMLt + m̂ptUMDt

]
. (2)

We repeat this procedure for all months (t) and all funds (p) to obtain a time series of

monthly alphas and factor-related returns for each fund in our sample.

There is an analogous calculation of alphas for other factor models that we evaluate.

For example, we estimate a fund’s FP6 alpha using the regression of Equation (1), but add

the Pastor and Stambaugh (2003) liquidity factor and Frazzini and Pedersen (2014) betting

against beta factor as independent variables. To estimate the CAPM alpha, we retain only

the market excess return as an independent variable.

2.1.2 Estimating stock alphas

We build the beta-matched passive portfolios from the return characteristics of individual

stocks. We estimate abnormal performance for individual stocks in an analogous manner to

that of mutual fund alphas described above. First, we estimate the abnormal return (alpha)

for each stock using each of the five performance evaluation models. Alpha estimates are

updated monthly based on a rolling estimation window. For example using the Carhart4

model, for each stock in month t, we estimate the following time-series regression using thirty-

six months of returns data from months τ = t − 1, . . . t − 36 where Rqτ is the stock return

in month τ , Rfτ is the return on the risk-free rate, Rmτ is the return on a value-weighted

market index, SMBτ is the return on a size factor (small minus big stocks), HMLτ is the

return on a value factor (high minus low book-to-market stocks), and UMDτ is the return on

a momentum factor (up minus down stocks). The parameters βqt, sqt, hqt, and mqt represent

the respective market, size, value, and momentum tilts of stock q and eqτ is a mean zero
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error term.5 We then calculate the alpha for the stock in month t as its realized return less

returns related to the stock’s market, size, value, and momentum exposures in month t:

α̂qt = (Rqt −Rft)−
[
β̂qt (Rmt −Rft) + ŝqtSMBt + ĥqtHMLt + m̂qtUMDt

]
. (3)

We repeat this procedure for all months (t) and all stocks (q) to obtain a time series of

monthly alphas and factor-related returns for each stock in our sample.

2.1.3 Estimating mutual fund passive and active alphas

We calculate the passive alpha for each fund in month t using the alphas and market betas

from individual stocks as in Equation (3). The passive alpha for each fund is the value-

weighted alpha of those individual stocks whose beta are in a 10 percent range around

estimated fund beta, such that:

β̂qt > 95%× β̂pt, β̂qt < 105%× β̂pt. (4)

Let θ̂pt denote the estimate of passive alpha for the fund in month t.6

The fund’s passive alpha allows us to calculate the active alpha for the fund in month t

as the standard alpha for the fund in month t less the passive alpha in month t :

δ̂pt = α̂pt − θ̂pt, (5)

5The subscript t denotes the parameter estimates used in month t, which are estimated over the thirty-six
months prior to month t.

6We estimate the passive alpha separately for each asset pricing model.
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where δ̂pt is our active alpha estimate for fund p in month t.

2.2 Horizon for performance evaluation

To estimate longer horizon alphas, we cumulate monthly alphas by fund-month. For example,

to estimate annual standard alpha:

Apt =

11∏
s=0

(1 + α̂p,t−s)− 1, (6)

where the monthly alpha estimates are calculated from a particular asset pricing model.

Analogously, we calculate the fund’s annual active alpha as follows:

∆pt =
11∏
s=0

(
1 + δ̂p,t−s

)
− 1, (7)

where monthly active alpha estimates can also vary depending on the asset pricing model

used to generate expected returns.

3 Results

3.1 Mutual fund alphas

In Table 1, Panel B presents summary information on fund standard alphas, estimated as

usual, without controlling for any heterogeneity across funds in their betas. Here, standard

alphas are measured against four different asset pricing models that researchers have used

to estimate fund performance: the CAPM, the Fama-French 3-factor model (FF3), the

Carhart4 model, and the PS5 model. Average fund standard alphas based on these models

are generally less than 1 basis point per month, with the exception of the CAPM, which

produces a slightly more positive average outperformance of 6 basis points per month. These
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alphas all represent risk-adjusted returns before fees, so that if we subtract the average

monthly expense ratio of 9.8 basis points, we would see that the average fund underperforms

across all the benchmark models.

Panel C of Table 1 presents the same statistics for active alpha. On average, active

alphas are lower than standard alphas for each asset pricing model. After removing the

passive alpha component of fund performance, on average mutual fund managers do not

show any degree of stock-picking ability. Average active alpha ranges from 1 basis point for

the CAPM to −5 basis points for the PS5 benchmark model. Active alphas also have larger

heterogeneity across funds than standard alphas do.

3.2 Mutual fund beta anomaly

Table 2 examines the degree to which fund alphas are exposed to the beta anomaly. Again,

alphas are measured against the four asset pricing models that we have used in section 3.1.

In each month, we sort funds into 10 portfolios by their betas and compute the time-series

average alphas for each beta-sorted portfolio. We note that mutual fund alphas are all based

on gross returns and so do not represent the net alphas earned by investors.

Panel A reports the standard alpha of each beta decile calculated relative to different

asset pricing models. The beta anomaly is clearly evident, with the standard alphas sorted

by beta showing a consistently declining pattern. Relative to the CAPM, funds in the lowest

beta decile have 250 basis points of average outperformance per year, while funds in the

highest beta decile underperform by 99 basis points, which implies an economically large

performance spread of 348 basis points. The use of alternative asset pricing models does

not materially lower the magnitude of this spread. The often-used Carhart (1997) 4-factor

model reduces the spread in alphas between beta-sorted portfolios 1 (P1) and 10 (P10) to

298 basis points. The Fama-French (1993) model and the four-factor model augmented with
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the Pastor-Stambaugh (2003) liquidity factor do marginally better than the Carhart (1997)

model, with the P1-P10 alpha spreads of 253 basis points and 269 basis points, respectively.

Clearly, if fund abnormal performance is measured by standard alphas, the low-beta mutual

funds would exhibit a great degree of skill, as evidenced by their outperformance relative to

the benchmark models.7 On the other hand, the high-beta mutual funds would predictably

underperform and represent poor investment opportunities. This pattern suggests that the

beta anomaly within assets held by the fund is an important source of standard alpha

differences across funds.

Panel B reports the results for active alpha, which controls for the beta anomaly effect by

using a passive beta-matched stock portfolio (Equation (5)) to estimate managerial skill. The

pattern of active alphas is markedly different than that of standard alphas. Now, skill tends

to increase with beta, suggesting that high-beta portfolio managers actually exhibit higher

skills on average than low-beta portfolio managers once we control for the beta anomaly.

The active alpha spread is quite large based on the CAPM at 331 basis points per year, but

the use of multi-factor models do reduce this spread considerably to a minimum of 156 basis

points in the case of the PS5 model.

Panel C of Table 2 presents summary statistics for mutual funds in the sample sorted

into 10 portfolios by β. The spread across portfolios accounts for a difference in betas of 0.57,

ranging from a low of 0.68 for portfolio 1, to a high of 1.25 for portfolio 10. All mutual funds

hold cash. For each mutual fund portfolio, we adjust the portfolio average beta estimate for

the average cash holding in the Adjusted column of Panel C. We find that the cash-adjusted

1-10 beta spread in mutual fund portfolios is similar to the 1-10 beta spread in our mutual

fund portfolios (0.56). This shows that the beta spread in our mutual fund portfolios is not

unduly influenced by large differences in cash holdings across beta-sorted funds. Finally, we

report the average number of stocks used to form the passive beta-matched stock portfolio

7We find similar pattern when using Fama and French (2015) five-factor model.
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for each mutual fund. The number of stocks ranges from a low of 158 in portfolio 1, to a

high of 240 in portfolio 9.

We present the time series of performance spreads in annualized standard alpha and

active alpha between the high-beta and low-beta fund portfolios in Figure 1. Each of the

three graphs plots the standard alpha and active alpha spreads for the high- vs. low-beta

portfolios using three different asset pricing models, respectively, the CAPM, the Carhart4

model, and the FP6 model.8 Consistent with the results in Table 2, the active alpha spread

is generally positive. Moreover, this spread is generally larger than the corresponding spread

in standard alpha.

3.2.1 Mutual fund beta anomaly and the BAB factor

Frazzini and Pedersen (2014) contend that the beta anomaly is driven by leverage constraints

and propose a betting-against-beta factor (BAB) that captures the return effect related to the

tightness of this constraint. Since the BAB factor is intended to be useful as a control variable

for the low-beta anomaly, it is natural to ask whether an asset pricing model augmented with

the BAB factor suffi ces to remove the performance-beta relation in mutual fund returns. To

the extent that the Frazzini-Pedersen (2014) explanation for the low-beta anomaly is correct,

the BAB factor should be related to the size of the anomaly. In turn, it should explain at

least some of the low-beta premium in funds’standard alphas.

We next analyze the effect of beta on both standard alpha and active alpha using Fama-

MacBeth regressions in Table 3. Since Table 2 shows that the relation between alpha and

beta is similar across the four standard asset pricing models in that table, for brevity, Table

3 only reports the regression results using the CAPM, the Carhart4 model, the PS5 model,

and the PS5 model augmented with the BAB factor (FP6) as performance benchmarks.

8We restrict this analysis for clarity of exposition. As suggested by the Panel A results, the FF3 model
and the PS5 model result in similar plots.
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The first four columns in Panel A of Table 3 regress standard alpha for each asset pricing

model on only a constant and beta as a single regressor. The objective of estimating these

regressions is to determine the size and the significance of the alpha-beta relation documented

in Table 2, and to examine whether the addition of the BAB factor to existing multi-factor

models suffi ces to account for this relation in fund returns. Column (1) reports that the

coeffi cient on beta for the CAPM is−0.05 and is statistically significant. This result indicates

that we would expect a fund with a beta of 0.5 to deliver around 5% improvement annually

in standard alpha relative to a fund with a beta of 1.5. The results for the Carhart model in

column (2) are similar with a slightly larger increase of 6% in annual alpha per unit decrease

in market risk. The PS5 model in column (3) reports and estimate of 5.8% increase in annual

alpha per unit decrease in market risk.

In column (4), we report the alpha-beta relation using a six-factor model that includes

the BAB factor (FP6). As we would expect from Frazzini and Pedersen (2014), the addition

of the BAB factor to the benchmark portfolios does reduce the magnitude of this relation

between fund alpha and beta. However, the coeffi cient on beta is 3.1% per year per unit

of beta is still statistically significant. Despite the use of the FP6 model, there still is a

significant alpha premium to low-beta mutual funds. This suggests that including the BAB

factor to the usual portfolios for fund performance benchmarks does not completely remove

the low-beta anomaly in fund alpha. Columns (5)-(8) present multivariate regressions of

the same alpha-beta relation, where we include fund size and fund age as controls. These

variables proxy for the effects of scale, which Chen et al., (2004), Pastor et al., (2015) and Zhu

(2018) discuss as a prominent factor in fund performance. We observe that the coeffi cients on

beta are not significantly affected by the inclusion of these statistically significant controls.

Panel B of Table 3 reports the results of running identical regressions as in Panel A,

with active alpha as the dependent variable. The univariate regression results in Columns

(1)-(4) indicate that there is a small, positive premium for per unit of beta risk. While this
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could suggest managers for high-beta funds being more skilled, this relation is statistically

significant only using the CAPM. Using the Carhart4, PS5, or FP6 model, it is not signif-

icant at the 5% level. The multivariate regressions [Columns (5)-(8)] reveal similar results.

Overall, these results indicate that our active alpha successfully removes the beta anomaly

in measuring mutual fund performance.

3.3 Persistence of active alpha

We have empirically shown that active alpha is a component of the standard alpha unaffected

by the beta anomaly. In turn, it should be a measure of fund skill distinct from any passive

persistence due to the beta anomaly. If active alpha really is a measure of managerial skill, it

should be repeatable and, thus, persistent. We test this contention in Table 4. Each month

t, we compute the percentile rank based on active alpha, ∆̂p,t, of each mutual fund p. We

then regress the active alpha ranks in the following month, ∆̂p,t+1, as well as in the next two

years, ∆̂p,t+12 and ∆̂p,t+24, on ∆̂p,t. These regressions include controls for fund size, expense

ratio, fund age, return volatility and fund flows to control for fund characteristics that could

also potentially predict active alphas.

Panel A of Table 4 presents the regression results using the CAPM as the base model

for calculating active alpha. We find that active alpha is highly persistent month-to-month.

Specifically, the (rank) regression coeffi cient on ∆̂p,t predicting ∆̂p,t+1 is 0.897 and is statis-

tically significant. In other words, a fund earning a high active alpha in month t is highly

likely to continue earning a high active alpha in month t+ 1. This persistence declines with

time as the predictability of ∆̂p,t+12 over one-year horizon is 0.103, which is still statistically

significant. Two years out, the coeffi cient on ∆̂p,t falls to only 0.006, and is not statistically

significant. The control variables in these regressions are generally insignificant with the

exception of return volatility and fund flow, which show some predictive ability at longer

horizons, but none of the controls are significant at the one-month horizon.
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In Panel B, we find that using the Carhart4 model as the asset pricing model produces

similar results. The coeffi cient of ∆̂p,t+1 on ∆̂p,t is 0.898, a number that again indicates

significant predictability of active alpha at the one-month horizon. The persistence level

again declines with time to 0.15 at the one-year horizon and to 0.035 at the two-year horizon.

These coeffi cients are both statistically significant but economically small.

We obtain similar results in Panel C using the FP6 model as the base model for calculating

active alpha. The coeffi cient of ∆̂p,t+1 on ∆̂p,t is significant 0.900. As in Panel B, statistically

significant predictability of active alpha is also evident at the one- and two-year horizons,

though the persistence coeffi cients drop markedly as the prediction horizon increases. Using

the FP6 model, none of the control variables significantly predict active alpha at any horizon.

Generally, we observe that the persistence results grow consistently stronger as we account

for more factor-related returns. This finding could result from the fact that controlling for

risk using a factor model and controlling for the beta anomaly using the active alpha are

jointly important for producing a clean estimate of true fund manager skill.

The persistence results are illustrated graphically in Figure 2. Panel A shows the persis-

tence of active alpha when calculated using the CAPM. Differences in active alpha persist

for about 8 months, though a small amount of outperformance continue to hold until about

14 months out. Consistent with the results in Table 4, the active alpha spread between the

highest decile (10) and the lowest decile (1) portfolios (sorted by active alpha today) in the

case of Carhart4 or FP6 model is generally larger, and is more persistent. In particular, the

active alphas in decile 1 portfolio do not match those in decile 10 portfolio until about 20

months out in the Carhart4 model. When the FP6 model is used, the outperformance of the

top active alpha portfolio persists for about 24 months. In summary, regardless of the asset

pricing model used to calculate active alpha, the measure exhibits significant persistence,

particularly at shorter horizons.
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3.4 Fund performance and active alpha

3.4.1 Conventional Performance

Table 5 examines the characteristics of active alpha, derived from each of the CAPM, the

Carhart4, and the FP6 asset pricing models. We do this to better understand how active

alpha relates to conventional measures of fund performance. Panel A of Table 5 presents 10

portfolios sorted by active alpha constructed from the CAPM. Panel B presents the same

10 sorted portfolios where active alpha is constructed from the Carhart4 model, and Panel

C shows the performance of fund portfolios sorted on the active alpha derived from the FP6

model.

For each model we sort the all funds into 10 portfolios formed on the basis of active alpha

calculated from that particular model and examine conventional measures of performance

for the funds. When we look at gross returns or market-adjusted returns we see similar

patterns across all three panels. Lower active alphas correlate with lower return funds.

The 10-1 difference in fund returns averages about 30 basis points in Panel A and Panel

B and 20 basis points in Panel C. The results in Panel C confirm again that a component

of the performance associated with active alpha is associated with the BAB factor, a result

demonstrated in Table 3, but a significant component of returns to active alpha is not

correlated with BAB factor risk.

When we look at Sharpe ratios and information ratios we find a significant performance

difference between high and low active alpha portfolios across all three asset pricing measures.

The difference in monthly Sharpe ratios ranges from 0.042 for the FP6 model to 0.063 basis

points using the Carhart4 model. This difference is not only statistically significant, but

represents a considerable fraction of the monthly average Sharpe ratios which range between

0.148 and 0.211. Examining the information ratio, we find that high active alpha portfolios

outperform low active alpha by an amount comparable to the Sharpe ratio outperformance.
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In the last column we examine the performance of active alpha in obtaining standard alpha

outperformance using the standard Carhart4 factor model. Active alpha is associated with

a spread of 16 basis points per month in standard alpha using the CAPM, 22 basis points

per month using the Carhart4 model and 13 basis points per month using the FP6 model.

These differences are statistically significant for both the Carhart four factor model and the

FP6 model, but not for the CAPM. This spread in four factor alphas is not that surprising

given we benchmark active alpha against standard alpha (Equation (5)). Thus, active alpha

and standard alpha tend to be positively correlated.9

Overall, these results indicate that mutual fund portfolios with high active alpha are

desirable on a range of performance measures desired by investors. Thus, high active alpha

portfolios should attract investor capital, provided the investors are sophisticated enough

to consider active alpha when allocating cash to a mutual fund. This result we explore

below after first examining whether active alpha is associated with other recently developed

measures of fund performance.

3.4.2 Sources of outperformance

We find that active alpha is associated with superior performance against a number of

asset pricing models and produces superior performance as measured by several conventional

performance measures. We next test how active alpha is related to three recent measures

found to be associated with fund performance. We examine whether the outperformance

in active alpha could come from the return gap (Kacperczyk, Sialm and Zheng, 2008), the

active share (Cremers and Petijisto, 2009) and, R2 (Amihud and Goyenko, 2013). We do

this by regressing the percentile rank of a funds active alpha on the return gap, the active

share, and the fund’s R2, for active alpha calculated from the CAPM, the Carhart4 model

9The correlation between active alpha and standard alpha is between 0.60 and 0.70 across the five asset
pricing models we use to calculate the alpha measures, This result holds for both the raw alphas and the
percentile ranks.
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and the FP6 model.

Table 6 presents the results, first by regressing active alpha on each performance measure

alone, and then with controls for fund size, the expense ratio, fund age, return volatility,

fund flow and the past 12 month return. We find that active alpha is significantly positively

related to the return gap, the degree of fund manager activity between reporting quarters.

Active alpha is also positively related to active share, the degree of deviation from a fund’s

benchmark. Both of these results hold with and without the control variables. But active

alpha is not significantly related to the R2 measure of fund performance, perhaps because

Amihud and Goyenko (2013) found stronger results from double-sorting on R2 and standard

alpha than by sorting on R2 alone. Overall, we can conclude from Table 6 that high active

alpha managers tend to be those with larger return gap and active share, indicating that

they are both active and selective managers.

3.5 Fund flows and active alpha

Table 5 reports that active alpha predicts superior portfolio performance, and Table 4 in

Section 3.3 reports that active alpha is persistent. We conclude that active alpha is a

desirable fund characteristic. Therefore, we would expect some investors to allocate their

cash towards funds that exhibit high active alpha performance. On the other hand, the fund

literature finds that investors allocate their funds based on standard alpha measures (see

Barber et al., 2016 for a recent summary). A natural question to ask then is whether there

are any investors that allocate funds based on active alpha.

To investigate this question, we run panel regressions of fund flows on the lagged ranks

of annualized active alpha and standard alpha. We report the results in Table 7. Following
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the prior literature on fund flows, we calculate flows for fund p in month t as:

Flowp,t =
TNAp,t − TNAp,t−1 (1 +Rp,t)

TNAp,t−1
, (8)

so that flows represent the percentage change in the fund’s net assets not attributable to its

return gains or losses. Specifically, the regression specification that we utilize in Table 7 is

Flowp,t = a+ bPerformancep,t−1 + c′Xp,t−1 + εp,t, (9)

where Performancep,t−1 is measured using the lagged percentile rank for the fund based

on either its annualized active alpha (δ̂p,t−1) or its annualized standard alpha (αp,t−1). We

include a vector of control variables (Xp,t−1), which yields a vector of coeffi cient estimates

(c). As controls, we include lagged fund flows from month t− 13, a lag of a fund’s expense

ratio, a fund’s return standard deviation estimated over the prior twelve months, lagged fund

size, and the log of fund age in month t − 1. We also include fixed effects for Morningstar

Category × Month.

The results of estimating equation (9) using the within-category performance rank as the

regressor are presented in Panels A and B of Table 7.10 Following the practice of Sirri and

Tufano (1998), we order funds within the nine categories corresponding to Morningstar’s

3x3 stylebox based on their active alphas or standard alphas. We present the regression

coeffi cients of fund flow on performance rank, where the standard alpha and active alpha

are estimated using three different asset pricing models: the CAPM, the Carhart4 model,

and the FP6 model. Since our active alpha is, by construction, a component of standard

alpha, we begin in Panel A by estimating the effects of standard alpha and active alpha

independently to better understand the strength of each measure in attracting fund flows.

We see that fund flows are significantly positively related to past performance as measured by

10We find that using overall performance rank produces similar results.
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either standard alpha or active alpha. For both performance measures, the flow-performance

relation weakens slightly as we add more factors to our performance benchmarks, but in all six

regressions, standard alpha and active alpha significantly attract fund flows.11 In particular,

the coeffi cients on active alpha are approximately two-thirds of the magnitude of those on

standard alpha. This result implies that the skill component of standard alpha generate

significant flows, but also that there is a significant fraction of investors who allocate flows

to the passive component of standard alpha. The larger coeffi cients on standard alpha and

in turn, its relative strength in predicting fund flows is not surprising, as standard alpha is

the more familiar performance measure.

Of course, one alternative hypothesis is that the results in Panels A and B are consistent

with investors chasing only standard alpha, but the significant coeffi cients on active alpha is

driven by the correlation between active alpha and standard alpha. We further investigate

whether there are any investors attending to active alpha by jointly estimate the effects of

standard alpha and active alpha in attracting fund flows. To address potential concerns about

multicollinearity in this specification, we compute the variance inflation factor (VIF) for the

active alpha percentile rank. Across alternative asset-pricing models, the VIF turns out to

be no larger than 2, which suggests that multicollinearity is not an issue.12 Moreover, in the

appendix, we present a simple model that formally identifies conditions for the existence of

investors chasing active alpha by testing the significance of the partial coeffi cient associated

with active alpha. Across alternative asset-pricing models, we find that the partial coeffi cient

on active alpha is appreciably smaller than two-thirds of the magnitude of that on standard

alpha, which indicates that indeed the size of the coeffi cient on active alpha in Panel A is

partly due to its high correlation with active alpha. On the other hand, fund flows are jointly

significantly positively related to both standard alpha and active alpha. The results indicate
11This is consistent with the recent literature (Berk and van Binsbergen, 2016; Barber et al., 2016) that

finds alphas from more sophisticated models do not explain fund flows as well as the CAPM alpha.
12As a rule of thumb, a regression model may be subject to multicollinearity worries if a variable has VIF

values greater than 10 (or 5 to be conservative).
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that there exists a subset of investors, who are apparently aware that passive alpha should

not necessarily be rewarded and allocate capital based on active alpha.

Panels C and D are similar to Panels A and B except that we include both active alpha

and standard alpha in Panel C, and active alpha and raw returns in Panel D. We do this to see

whether the inclusion of these measures that are known to influence fund flows completely

subsume the flow predictability of active alpha. In Panel C, we find that both standard

alpha and active alpha continue to generate significant flows, and the coeffi cients on active

alpha is smaller in magnitude than those on standard alpha. Panel D reports similar results,

raw returns are important in attracting fund flows, but this result does not subsume the

flow-performance significance of active alpha.

The results in Table 7 confirm that large flows chase standard alpha. It is apparent that

the bulk of these flows do not discriminate between the passive alpha component (obtained

from the beta anomaly) and the active alpha component. While we maintain that any flows

allocated to passive alpha are not rewarding managerial outperformance, it can be consistent

with rational choices by some constrained investors.13

We expand on our analysis of the flow-performance sensitivity of active alpha in Table

8. In this analysis, we conduct regressions of flows on active alpha, standard alpha, and

the returns from the factor portfolios used by the various asset pricing models. Thus, the

regressions in Table 8 include theMarket return, and the returns from factors for Size, Value,

Momentum, Liquidity and the BAB factor. To control for the correlation between active

alpha and standard alpha noted in Section 3.4, we construct the variable Alpha residual by

first regressing standard alpha on active alpha and using the residual from that regression as

an additional regressor in Table 8. We conduct this orthogonalization to show whether active

13Specifically, in our model, investors who cannot short the passive benchmark do not discriminate between
the two components of standard alpha, active and passive, and, in turn, they produce flows chasing standard
alpha.

21



alpha has a unique affect on fund flows that is not significant just because it is correlated

with standard alpha, a performance variable known to attract investors.

Table 8 reports flow-performance regression results for three asset pricing models, the

CAPM, the Carhart4, and the FP6. Each regression only includes returns for the factors

specified in that model, so that the CAPM regression reports flows to active alpha, the alpha

residual and the market return, while the Carhart4 model also includes the factor returns

for size, value and momentum. The regressions reveal that, in general, investors respond

to return performance, whatever the source, whether a factor return or the outperformance

component of the factor model. Both the active alpha measure and the alpha residual mea-

sure significantly attract fund flows. However, the coeffi cient on the component of standard

alpha unrelated to active alpha produces a significantly larger flow-performance coeffi cient

than that of active alpha. Our interpretation of this result is that some investors do allo-

cate flows to mutual funds with superior active alpha performance, but the majority of fund

investors do not.

3.5.1 Investor sophistication and active alpha

Thus far, we have found that flows respond to both the standard alpha and the skill compo-

nent of it, active alpha. We view these results as suggestive that mutual fund investors are

heterogeneous in their ability to adjust for returns related to the beta anomaly. We argue

that most fund investors allocate their capital based on the standard alpha, but that some

fraction of investors are sophisticated and will seek out active alphas. In this section, we test

and find strong support for this conjecture. We do so by comparing the flow-performance

relations for fund flows from retail share classes, where less sophisticated investors arguably

represent a higher proportion of fund investors, to fund flows from institutional share classes.

Evans and Fahlenbrach (2012) report that institutional investors are more sensitive to

high fees and poor-risk adjusted performance, which they argue is consistent with greater
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ability to select and monitor managers by institutional investors. If institutional investors are

more knowledgeable than retail investors, they likely would use more sophisticated bench-

marks when evaluating fund performance and, thus, we anticipate that they will respond

more strongly to active alpha than will retail investors.

To test this conjecture, we repeat the analysis of the flow-performance relations in Panel

C of Table 7, separating out flows to retail share classes and institutional share classes. To do

so, we first classify a share class as institutional if it is identified by CRSP or Morningstar as

an institutional share class. Otherwise, a share class is classified as retail. We then calculate

flows at the share class level, aggregating the flows for the retail share classes for that fund

each month into a single retail fund-month observation and do a similar aggregation for the

institutional share classes. All other variables continue to be computed by aggregating all

share classes of the same fund each month.

To test for the heterogeneity in flow-performance relations across share types, we modify

the regression specification of Table 7, Panel C, by interacting each of the performance ranks

of a fund (one for annualized active alpha, the other for annualized standard alpha) with

dummies for the share types (one for institutional share type, the other for retail share

type). We also include fund fixed effects, which absorb variations in average fund flows

across different share types within a fund.

The results of this flow analysis are presented in Table 8. Comparing the institutional

share class coeffi cient estimates to the retail coeffi cient estimates, we find that institutional

share class flows are more sensitive to fund performance than retail flows. The difference

between the retail and institutional response to performance is significantly negative for

both the standard alpha and active alpha, regardless of the asset pricing model.14 This is
14Specifically, the difference is statistically significant at the 1% level in all cases, except for the differential

response to active alpha using the Carhart4 model, which is significant at the 5% level. Otherwise, the t-
statistics on the difference tests would range from −3.5 (in the case of active alpha using the FP6 model) to
−9.3 (in the case of standard alpha using the Carhart4 model).
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consistent with greater monitoring by institutional investors as in Evans and Fahlenbrach

(2012). Additionally, flows are significantly more sensitive to standard alphas than to the

active component of alpha for both the retail and institutional share types, showing that our

findings in Table 7 are robust: most fund investors, retail and institutional, are not sophis-

ticated enough to discriminate between the active versus passive components of standard

alpha.

We find that flows from institutional share classes respond strongly to active alpha. This

response is statistically significant at the 1% level, regardless of the asset pricing model.

On the contrary, the flow response from retail share classes to active alpha is comparatively

less or is statistically insignificant. In particular, when the CAPM is used, the institutional

share class coeffi cient estimate on active alpha represents over 40% of the magnitude of that

on standard alpha, whereas the corresponding ratio for the retail shares is less than 10%;

the difference is statistically and economically significant. In the case of Carhart4 or FP6

model, the retail share class coeffi cient estimates on active alpha produce t-statistics that

are smaller or insignificant.

Taken together, these results provide strong support for our hypothesis that more sophis-

ticated investors, who use more sophisticated models to assess fund manager skill, will also

account for returns related to the beta anomaly and, thus, will seek out active alpha when

allocating capital to mutual funds.

3.6 Explaining the role of active alpha in generating fund flows

We began our empirical investigation of active alpha by establishing that it is a persistent

fund characteristic that can be used to pick funds with higher risk-adjusted performance,

arguing that it is a measure of fund manager skill. Consistent with this argument, we show

that active alpha attracts fund flows, and fund flows respond to active alpha in and beyond
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standard alpha. We also show that the strength of active alpha (relative to that of standard

alpha) in attracting fund flows is significantly higher in the case of the, presumably more

sophisticated, institutional share classes.

We contend that this empirical evidence is consistent with an active management indus-

try, which serves investors of varying sophistication. While investor sophistication has many

dimensions, our empirical results point to heterogeneous ability on the part of investors to

account for the beta anomaly in evaluating mutual fund performance.

In the appendix, we formalize this argument by describing a simple model with the

presence of both sophisticated and naive investors. In addition to the actively managed fund,

sophisticated investors have available an alternative investment opportunity in the passive

benchmark (with the same beta risk). Naive investors make risky investments only with the

mutual fund. In this model, sophisticated investors care about difference in alphas between

fund alpha (standard alpha) and passive benchmark (passive alpha), which corresponds to

active alpha. Because they can short the passive benchmark portfolio, they only care if the

manager can provide risk-adjusted return in and beyond that offered by passive benchmark.

On the other hand, naive investors do not care about the source of the alpha outperformance.

3.6.1 Calibration

Our empirical evidence is consistent with a simple model of heterogeneous investor sophisti-

cation, in which two types of investors coexist. In this section, we use the model to obtain

guidance about the population of active alpha chasers by calibrating the model to the data.

We find that 24% of investors are sophisticated, which is quite large considering that active

alpha is a novel measure and suggests reasonably high sophistication on the part of fund

investors.
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In the model, both components of the fund’s alpha are assumed to evolve as AR(1):

δt =
(
1− φA

)
δ∗ + φAδt−1 + τ t, (10)

θt =
(
1− φP

)
θ∗ + φP θt−1 + υt, (11)

where τ t and υt are i.i.d., respectively, N (0, σ2τ ) and N (0, σ2υ). δ
∗ and θ∗ represent, respec-

tively, the unconditional expectations of active alpha and passive alpha.15

We begin by estimating the model parameters that can be inferred directly from Equa-

tions (10) and (11). Regressing annualized active alpha or annualized passive alpha on its

lag with fund fixed effects, the autoregressive coeffi cients are estimated around 0.91, so we

use φA = 0.91 and φP = 0.91. Berk and Green (2004) infer the parameters that govern

the distribution of skill level (mean of the prior, φ0, and prior standard deviation, γ) by

calibrating their model. They report that the flow-performance relationship is consistent

with high average levels of skills (φ0 = 6.5% per year, or 0.5% per month, and γ is similar in

magnitude to φ0). So we will draw both components of the fund’s average alpha (δ
∗ and θ∗)

from a lognormal distribution with mean 0.26% per month and standard deviation 0.26%

per month, which implies the fund’s average alpha is drawn from a distribution with mean

0.52% per month. These numbers are consistent with both components of the fund’s average

alpha contributing equally and being drawn from diffuse distributions.16

We also set στ = 0.4 percent per month, which is the estimate of the standard deviation

of residuals obtained from estimating (10). We note that we would set συ = 0.3 percent (per

15Examination of the partial correlation plots of our active and passive alpha estimates show that AR(1)
is a valid description of the persistence of these measures. No month other than the most recent month has
a partial correlation coeffi cient that makes a significant contribution to the time series processes of these
measures.

16The average value of the fixed effects from estimating (10) is higher than that from estimating (11), so
apparently δ∗ is drawn from a distribution with lower mean than θ∗. Our use of equal means for δ∗ and
θ∗ aids the effi ciency of our simulation exercise. In each sample, we assume that it ends whenever investor
expects the fund’s alpha or the active alpha to be negative going forward, so a slightly higher average for δ∗

allows for a larger effective sample size given the number of simulations.
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month), if we were to use the same reasoning for the fund’s passive alpha, but instead we

will use a συ prior that allows us to match the empirical correlation between the sign of the

change in expected active alpha and the sign of the change in expected standard alpha (see

below).

In the model, the excess return on the actively managed fund is rt = αt + β∗rMt , where

rMt is the excess return on the market portfolio, and β∗ is the fund beta. The passive

benchmark portfolio’s excess return has mean θt and the same risk as the fund, so rPt =

θt + β∗rMt . In other words, this is a CAPM world, and idiosyncratic risk is negligible since

we are analyzing diversified U.S. equity mutual funds. To determine the parameter β∗, we

appeal to Proposition 1 from Frazzini and Pedersen (2014), which shows that a security’s

alpha with respect to the market is αst = ψt (1− βst) (in equilibrium). Running the Fama-

MacBeth regression of annualized alpha on one minus beta in the sample of U.S. equities

and suppressing the constant term, the estimated coeffi cient is around 0.006, so we infer the

beta of a fund with average passive alpha of θ∗ as β∗ = 1− θ∗/0.006. Finally, the volatility

of monthly market excess returns is higher than 4 percent, so we specify Std
(
rMt
)

= 0.05,

or 5 percent, and in turn, specify σε = β∗ × Std
(
rMt
)
in each sample.

We simulate the model more than 2.5 million times over 500 months. In each sample, we

assume that it ends whenever investor expects the fund’s alpha or the active alpha negative

going forward, at which point, at least one type of investors stop investing in the fund. This

allows us to construct roughly 10,000 samples of simulated time-series data, with an average

sample length of more than 100 months. In each sample, the model produces the total net

flow into the fund as

Flowt = q
δ̂t+1|t − δ̂t|t−1

δ̂t|t−1
+ (1− q)

α̂t+1|t − α̂t|t−1
α̂t|t−1

,

where q is the fraction of sophisticated investors. Intuitively, fund flows are fully determined
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by changes in investors’ expectations of the fund’s alpha and its active alpha, while the

relative importance of the two expectations in attracting fund flows is determined by the

fraction of sophisticated investors. We cannot expect to realistically quantify the magnitude

of the capital response or the changes in investors’beliefs, all of which are likely to also vary

due to factors beyond the scope of our model. Following Berk and van Binsbergen (2016),

rather than making further assumptions necessary for quantitatively matching the data, we

sidestep this issue by focusing only on the direction of the capital response and those of the

changes in investors’beliefs.

Specifically, we first infer the parameter συ by matching the correlation between the

directions of investors’update on active alpha and standard alpha:

corr
(
sign

(
δ̂t+1|t − δ̂t|t−1

)
, sign

(
α̂t+1|t − α̂t|t−1

))
,

which we estimate in our data and in the simulated data.17 Empirically, this correlation

is about 0.43. We set συ = 0.7 percent per month, which produces an average simulated

correlation of 0.44 across simulated samples. Note that we can match the parameter συ from

this process without worrying about q because both types of investors rationally update

their beliefs such that the fraction of sophisticated investors does not change this simulated

correlation.

Finally, we match the parameter q governing the fraction of sophisticated investors by

matching the ratio of the empirical correlations between the sign of the capital inflows and

17The function sign (x) returns the sign of a real number, taking values 1 for a positive number, −1 for
a negative number and zero for zero:

sign (x) ≡
{ x
|x| x 6= 0
0 x = 0

.
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the sign of the update on δ̂t+1|t to the analogous correlation using α̂t+1|t :

corr(sign (Flowt) , sign(δ̂t+1|t − δ̂t|t−1 ))

corr(sign (Flowt) , sign
(
α̂t+1|t − α̂t|t−1

)
)
. (12)

Ratio (12) captures the strength of active alpha in predicting fund flows (relative to that of

standard alpha).

Panel A of Figure 3 shows how the numerator (the green lines with diamond markers)

versus the denominator (the orange lines with no marker) of the ratio (12) vary with the

fraction of sophisticated investors. The figure plots the median (the solid lines) as well as

the 25th and 75th percentiles (the dotted lines) of the estimated correlations based on signs

across simulated samples. As expected, the direction of capital response is primarily driven

by changes in investors’expectation about standard alpha for small q (most investors are

unsophisticated) and by changes in investors’expectation about active alpha for large q (most

investors are sophisticated). Moreover, the correlation between fund flows and active alpha

decreases monotonically to a significantly positive 0.44 even as investors chasing active alpha

vanish away, while the correlation between fund flows and standard alphas also decreases

monotonically to a significantly positive 0.44 even as investors chasing standard alpha vanish

away. Thus, even if no investors attend to active alpha, the positive correlation between

standard alpha and active alpha induces a positive correlation between fund flows and active

alpha.

Our simulated moment of interest (12) is plotted in Panel B of Figure 2 as a function of

q (the blue lines) with its empirical estimate (the red line) of 0.63. Again, the figure plots

the median (the solid line) as well as the 25th and 75th percentiles (the dotted lines) of

the simulated moment. The relative strength of active alpha in predicting fund flows grows

monotonically stronger when mutual fund investors as a group becomes more sophisticated,

as expected. Comparing the blue and red lines, we see that a fraction of sophisticated
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investors at 24% is consistent with the empirical estimate of (12), and the 25th and 75th

percentiles for q are 15% and 33%.

Considering that active alpha is a new performance measure, we interpret this result

as positive evidence for a substantial degree of investor sophistication in evaluating fund

performance.

4 Conclusion

Mutual fund managers can earn positive alphas passively by allocating resources to low beta

assets to take advantage of the low-beta anomaly. This positive relation between beta and

standard alpha is significant over a number of different asset pricing models, including a

six-factor model that includes the four factors in the Carhart (1997) model plus a liquidity

factor and the betting against beta factor of Frazzini and Pedersen (2014). To correct for

the passive alphas that exist regardless of the asset pricing model, we develop a measure of

alpha called active alpha that subtracts the outperformance from a beta-matched passive

portfolio from the fund’s standard alpha. We contend that active alpha is a useful measure

of managerial skill since it isolates outperformance that is distinct from the outperformance

that can be obtained from the low-beta anomaly.

A high active alpha is associated with positive portfolio properties including overall re-

turns, market-adjusted returns and high Sharpe ratios. Active alpha is also predictable, in

that past active alphas are significantly correlated with future active alphas for at least 12

months into the future. Given the positive properties of high active alpha portfolios and the

fact that it is to some extent persistent, sophisticated investors should allocate their capi-

tal to high active alpha funds. We find evidence that active alpha does attract cash flows,

particularly from more sophisticated investors who are presumably aware of the low-beta

anomaly.
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Appendix: The model

In this appendix we present a simple model to highlight the impact of the relative composition

of sophisticated versus naive investors on the flow-performance relation. We use this model

in Section 3.6.1 to infer the fraction of sophisticated investors consistent with allocations to

active alpha, rather than just standard alpha, in the data.

There is an actively managed mutual fund, whose manager has the potential ability to

generate expected returns in excess of those provided by a passive benchmark – an equally-

risky alternative investment opportunity available to some investors. The expected passive

alpha on the benchmark portfolio and the manager’s ability to outperform it are unknown

to investors, who learn about this ability and the actual passive alpha by observing the

return history of the two portfolios. Let rt = αt + β∗rMt denote the return, in excess of

the risk-free rate, on the actively managed fund, where β∗ is the fund beta. The parameter

αt is the fund’s expected alpha, a noisy signal of managerial ability since the passive alpha

component of this return is also unknown. The market portfolio’s excess return, rMt , is

normally distributed with mean zero and variance σ2M and is independently distributed

through time. The passive benchmark portfolio’s excess return has mean θt and the same

risk as the fund, i.e., rPt = θt + β∗rMt . Note that the model is partial equilibrium.
18

In the model,

δt = αt − θt = rt − rPt (A1)

where δt is the risk-adjusted return to investors over what would be earned on the passive

benchmark, and corresponds to active alpha. Of course, active alpha is the same as the

standard alpha measure if the passive benchmark has zero alpha, but when the passive
18The benchmark portfolio’s returns are assumed to be exogenously given, and we do not model the source

of successful managers’abilities. In that sense, our approach is similar to that in Berk and Green (2004)
and Huang et al. (2012). We are describing the simplest model, which produces the sensitivity of mutual
fund flows not only to the standard alpha measure, but also to active alpha that is an alternative measure
of fund manager skill controlling for passive alpha.
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alpha is non-zero the standard alpha and active alpha will diverge. Note that αt, θt (and in

turn δt) vary over time. Specifically, both components of the alpha are assumed to evolve as

AR(1):

δt =
(
1− φA

)
δ∗ + φAδt−1 + τ t, (A2a)

θt =
(
1− φP

)
θ∗ + φP θt−1 + υt, (A2b)

where τ t and υt are i.i.d., respectively, N (0, σ2τ ) and N (0, σ2υ). δ
∗ and θ∗ represent, respec-

tively, the unconditional expectations of the active alpha and the passive alpha.

There are two types of investors: a fraction q of investors are sophisticated, indexed by

s, who allocate money across all assets (the risk-free asset and the active fund, as well as

its passive benchmark). The remaining 1 − q fraction of investors are naive, indexed by

n, who only allocate money between the active fund and the risk-free asset. We note that

the behavior of naive investors is consistent with the empirical evidence on limited market

participation.

On date t− 1, investors have priors about δt and θt. These investors form their posterior

expectations of the fund manager’s ability as well as of the passive alpha through Bayesian

updating. On date t, after observing the period t excess return rt, they update their priors

about δt and θt, which in turn imply their beliefs about δt+1 and θt+1. Investors’prior beliefs

are assumed to be normally distributed: δ1

θ1

 ∼ N

 δ̂1|0

θ̂1|0

 ,
 V δ

1|0 0

0 V θ
1|0

 . (A3)

Assume that V θ
1|0 = σ2θ, where σ

2
θ is given by the (unique) real positive solution to the
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equation

σ2θ =
(
φP
)2 σ2θβ

2σ2M
σ2θ + β2σ2M

+ σ2υ. (A4)

Then, it is straightforward to show by using standard Bayesian results for updating the

moments of a normal distribution that their posterior expectations after observing the history{
ru, r

P
u

}t
u=1

are:

 δt+1

θt+1

 ∣∣∣{ru, rPu }tu=1 ∼ N

 δ̂t+1|t

θ̂t+1|t

 ,
 σ2τ 0

0 σ2θ

 (A5)

where

δ̂t+1|t =
(
1− φA

)
δ∗ + φA

(
rt − rPt

)
(A6a)

θ̂t+1|t =
(
1− φP

)
θ∗ + φP

(
wθ̂t|t−1 + (1− w) rPt

)
(A6b)

and w = β2σ2M/
(
σ2θ + β2σ2M

)
. Similarly, this implies the posterior about αt+1 is normally

distributed with a mean of α̂t+1|t =
(
δ̂t+1|t + θ̂t+1|t

)
and a variance of (σ2τ + σ2θ).

We consider an overlapping-generations (OLG) economy in which investors of type i ∈

{s, n} are born each time period t with wealthWi,t and live for two periods. Each time period

t, young investors have a constant absolute risk aversion (CARA) utility over their period

t+1 wealth, e−γiWi,t+1, whereWi,t+1 = Wi,t+Xi,trt+1+XP
i,tr

P
t+1, Xi,t is the dollar allocation to

the mutual fund at time t, and XP
i,t is the dollar allocation to the passive benchmark. Since

naive investors are assumed to make risky investments only with the mutual fund, XP
n,t = 0.
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Given CARA utility, it is easy to show that the optimal mutual fund holdings are

Xs,t =
δ̂t+1|t
γsσ

2
τ

(A7a)

Xn,t =
α̂t+1|t

γn
(
σ2τ + σ2θ + β2σ2M

) (A7b)

Imposing the restriction that Xs,t and Xn,t are nonnegative (no shorting of funds), we have

Xs,t =
max

(
δ̂t+1|t , 0

)
γsσ

2
τ

(A8a)

Xn,t =
max

(
α̂t+1|t , 0

)
γn
(
σ2τ + σ2θ + β2σ2M

) (A8b)

Intuitively, when choosing their optimal allocation to the fund, sophisticated investors will

consider only active alpha, since they have the ability to short the passive benchmark port-

folio and in turn extract only the performance truly attributable to managerial ability. On

the other hand, naive investors will attend to the standard alpha measure, since they cannot

short sell the benchmark asset and in turn care equally about all sources of alpha.

We define the flow into the fund from investors of type i on date t as

Fi,t =
Xi,t −Xi,t−1

Xi,t−1
. (A9)

The total net flow into the fund is then

Ft = qFs,t + (1− q)Fn,t = q
max

(
δ̂t+1|t , 0

)
max

(
δ̂t|t−1 , 0

) + (1− q)
max

(
α̂t+1|t , 0

)
max

(
α̂t|t−1 , 0

) − 1. (A10)

For simplicity, we assume the history of observed returns is such that δ̂t|t−1 , α̂t|t−1 > 0.

Hence, both types of investors started with positive dollar holdings, Xs,t−1, Xn,t−1 > 0, in

37



the mutual fund at time t− 1.

Looking forward, it is useful to note two facts that follows immediately from equation

(A10). If all investors are naive, q = 0, then the partial effect of active alpha on fund flows

is null. On the other hand, if all investors are sophisticated, q = 1, then the partial effect of

standard alpha on fund flows is null. Essentially, an empirical observation that flows respond

positively to both active alpha and the standard alpha measure would suffi ce to show that at

least some investors are sophisticated and not all investors are sophisticated, i.e., q ∈ (0, 1).

Moreover, how strongly flows respond to active alpha vs. the standard alpha measure would

be informative of q, the fraction of investors who are sophisticated.
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Table 1: Summary Statistics

This table summarizes the statistics across fund-month observations from Jan. 1983 to Dec. 2014. Panel
A reports fund characteristics such as net return, flows, fund size, expense ratio, age, and return volatility.
Percentage fund flow is percentage change TNA from month t-1 to t adjusted for the fund return in month
t. Return volatility is calculated as the standard deviation of prior 12 month fund returns. All variables
are winsorized at the 1% and 99% levels. Panel B presents the estimated alphas from 36-month rolling
regressions using various factor models. Panel C presents of estimated active alphas using various factor
models.

#obs Mean SD 25th perc Median 75th perc

Panel A: Fund Characteristics

Monthly gross return 298,055 0.878% 5.130% -1.780% 1.350% 3.920%

Monthly net return 298,055 0.779% 5.130% -1.870% 1.250% 3.830%

Percentage fund flow 298,055 -0.097% 4.160% -1.490% -0.409% 0.832%

Fund size ($mil) 298,055 1,277 2,838 105.5 324.6 1,041

Log fund size 298,055 5.847 1.612 4.659 5.783 6.948

Expense ratio (per month) 298,055 0.098% 0.110% 0.078% 0.096% 0.117%

Age (months) 298,055 198.9 161.7 92 147 238

Return volatility (t-12 to t-1) 298,055 4.635 2.093 3.03 4.231 5.769

Fund Beta 298,055 0.998 0.165 0.909 0.998 1.083

Panel B: Fund Performance - Standard Alpha (per month)

CAPM alpha 298,055 0.059% 2.310% -0.997% 0.019% 1.050%

FF3 alpha 298,055 0.005% 1.830% -0.866% -0.001% 0.860%

Carhart4 alpha 298,055 -0.006% 1.800% -0.856% -0.007% 0.840%

PS5 alpha 298,055 0.003% 1.830% -0.854% 0.004% 0.859%

Panel C: Fund Performance - Active Alpha (per month)

CAPM active alpha 297,926 0.011% 3.020% -1.530% -0.019% 1.500%

FF3 active alpha 297,977 -0.048% 2.620% -1.450% -0.046% 1.370%

Carhart4 active alpha 297,981 -0.038% 2.640% -1.380% -0.032% 1.350%

PS5 active alpha 297,970 -0.050% 2.620% -1.410% -0.026% 1.340%
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Table 5: Active Alpha Sort Portfolio

This table reports performance of active-alpha sorted calendar-time mutual fund portfolios. Each month,
mutual funds are assigned to one of ten deciles mutual fund portfolios based on prior month’s annualized
active alpha. Panel A reports CAPM active alpha sort results. Panel B reports Carhart4 active alpha
sort results. Panel C reports FP6 active alpha sort results. All mutual funds are equally weighted within
a given portfolio, and the portfolios are rebalanced every month to maintain equal weights. Column (2) -
column (5) report mutual fund portfolio’s time series average of gross return, market adjusted return, Sharpe
ratio, information ratio, and Carhart4 alpha. We use Newey-West (1987) standard errors with eighteen lags;
t-statistics are presented in parentheses. *, **, and *** denote 10%, 5%, and 1% significance, respectively.

Panel A: CAPM Active Alpha

Active Alpha Gross Ret MAR Shar. R. Info. R. Carhart4 Alpha

1 (low) 0.901% -0.175% 0.1484 0.1479 -0.045%

2 0.949% -0.122% 0.1653 0.1649 -0.030%

3 0.958% -0.111% 0.1683 0.1679 -0.018%

4 0.959% -0.110% 0.1669 0.1666 -0.025%

5 0.973% -0.096% 0.1689 0.1685 -0.018%

6 0.988% -0.081% 0.1740 0.1737 0.010%

7 1.026% -0.044% 0.1859 0.1857 0.021%

8 1.064% -0.006% 0.1914 0.1911 0.037%

9 1.110% 0.038% 0.2036 0.2034 0.068%

10 (high) 1.199% 0.120% 0.2042 0.2039 0.116%

High-Low 0.298%*** 0.295%*** 0.0557** 0.0560** 0.161%

t-stats (2.636) (2.602) (2.057) (2.064) (0.949)

Panel B: Carhart4 Active Alpha

Active Alpha Gross Ret MAR Shar. R. Info. R. Carhart4 Alpha

1 (low) 0.906% -0.173% 0.1483 0.1479 -0.058%

2 0.975% -0.097% 0.1643 0.1638 -0.006%

3 0.991% -0.079% 0.1722 0.1719 -0.017%

4 0.983% -0.086% 0.1731 0.1728 -0.015%

5 0.995% -0.073% 0.1738 0.1735 0.006%

6 0.999% -0.070% 0.1748 0.1744 0.009%

7 1.002% -0.066% 0.1820 0.1817 -0.002%

8 1.026% -0.044% 0.1859 0.1856 0.023%

9 1.044% -0.027% 0.1889 0.1886 0.012%

10 (high) 1.206% 0.128% 0.2112 0.2110 0.166%

High-Low 0.300%*** 0.301%*** 0.0629*** 0.0631*** 0.224%***

t-stats (3.000) (3.022) (2.906) (2.911) (2.673)

43



Table 5 continued

Panel C: FP6 Active Alpha

Active Alpha Gross Ret MAR Sharpe R Info. R Carhart4 Alpha

1 (low) 0.976% -0.101% 0.1639 0.1635 0.001%

2 0.990% -0.080% 0.1697 0.1693 0.002%

3 0.986% -0.083% 0.1758 0.1754 0.000%

4 0.984% -0.085% 0.1685 0.1681 -0.037%

5 0.961% -0.107% 0.1704 0.1701 -0.015%

6 0.996% -0.073% 0.1770 0.1767 -0.011%

7 0.983% -0.086% 0.1731 0.1728 -0.022%

8 1.005% -0.065% 0.1769 0.1766 -0.001%

9 1.061% -0.012% 0.1941 0.1939 0.063%

10 (high) 1.182% 0.102% 0.2056 0.2053 0.134%

High-Low 0.205%*** 0.203%*** 0.0417*** 0.0419*** 0.133%**

t-stats (2.658) (2.639) (2.461) (2.459) (1.967)
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Table 8: Fund Flow Response to Fund Return Components

This table presents regression coefficient estimates from panel regression of monthly fund flow (dependent
variable) on the components of a fund’s return - a funds’ active alpha, alpha residual, and factor-related
return. Alpha residual is the residual from regression of alpha on active alpha. Factor-related returns are
estimated based on the funds’ factor exposure and the factor return. Controls include lagged fund flows from
month t-13, lagged values of log of fund size, log of fund age, expense ratio, return volatility, and style-month
fixed effects. Standard errors (double-clustered by fund and month) are presented in parentheses. *, **, and
*** denote 10%, 5%, and 1% significance, respectively.

Dependent Variable: Flow

CAPM Carhart4 FP6

Active Alpha 0.091*** 0.070*** 0.071***

(0.005) (0.003) (0.003)

Alpha Residual 0.130*** 0.153*** 0.150***

(0.008) (0.007) (0.007)

Mkt Ret 0.045*** 0.049*** 0.051***

(0.007) (0.008) (0.008)

Size Ret 0.119*** 0.117***

(0.012) (0.013)

Value Ret 0.082*** 0.092***

(0.011) (0.010)

Mom Ret 0.126*** 0.121***

(0.007) (0.008)

Liq Ret 0.196***

(0.014)

Bab Ret 0.112***

(0.011)

R-squared 0.245 0.247 0.246

Observations 269,463 269,523 269,497

Style-month fixed effects YES YES YES

Controls YES YES YES
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Table 9: Investor Sophistication and Flow-Active Alpha Relationship

This table presents regression coefficient estimates from panel regressions of monthly flow to institution/retail
share class (dependent variable). A share class is defined as institutional share class if Morningstar share
class is INST or CRSP institution fund dummy is 1. For each mutual fund, the flow to its institutional
class is the value-weighted flow across fund’s multiple institutional classes. Similar, the flow to fund’s retail
share class is the value-weighted flow across fund’s retail classes. Controls include lagged rank of annualized
alpha, lagged fund flows from month t-13, lagged values of log of fund size, log of fund age, expense ratio,
return volatility, fund fixed effect and style-month fixed effects. Standard errors (double-clustered by fund
and month) are presented in parentheses. *, **, and *** denote 10%, 5%, and 1% significance, respectively.

Dependent Variable: Flow

CAPM Carhart4 FP6

Ret. Class*Active Alpha 0.00327*** 0.00157* 0.000441

(0.00103) (0.000905) (0.000917)

Inst. Class * Active Alpha 0.0176*** 0.00590*** 0.00845***

(0.00215) (0.00214) (0.00226)

Ret. Class* Alpha 0.0335*** 0.0237*** 0.0219***

(0.00174) (0.00135) (0.00138)

Inst. Class * Alpha 0.0469*** 0.0470*** 0.0414***

(0.090) (0.091) (0.090)

R-squared 0.084 0.082 0.080

Observations 382,780 382,867 382,815

Fund fixed effects YES YES YES

Style-month fixed effects YES YES YES
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Figure 1: Time series of spreads between high beta and low beta mutual fund portfolios
This figure plots the annualized alpha spreads (solid lines) and annualized active alpha spreads (dotted lines)

between highest beta portfolio and lowest beta decile portfolio (decile 10 - decile1). Each month, mutual

funds are ranked into equal-weight decile portfolios based on market beta exposures estimate. Mutual fund

alphas, active alphas, and market beta exposures are updated monthly based on a rolling regression using

prior thirty-six months of returns data. In Panel A, we report annualized alpha and active alpha spreads

based on CAPM; in the middle Panel B, we report annualized alpha and active alpha spreads based on

Carhart four-factor model; and in Panel C, we report annualized alpha and active alpha spreads based on

FP six-factor model.

Panel A: CAPM Alpha Spread and Active Alpha Spread

Panel B: Cahart4 Alpha Spread and Active Alpha Spread

Panel C: FP6 Alpha Spread and Active Alpha Spread
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Figure 2: Persistence of Active Alpha
This figure depicts the average monthly active alpha of portfolios tracked over a 2-year period between 1984

and 2014. The portfolios are formed by sorting all the funds into deciles according to lagged annualized

active alpha. Subsequently, the top and bottom decile portfolios are tracked over the next 2-year period.

The portfolios are equally weighted each month, so the porfolios are readjusted whenever a fund disappears

from the sample. In Panel A, we report the CAPM active alphas; in Panel B, we report the Carhart4 active

alpha; and in Panel C, we report the FP6 active alpha.

Panel A: Post-formation Average CAPM Active Alpha

Panel B: Post-formation Average Carhart4 Active Alpha

Panel C: Post-formation Average FP6 Active Alpha
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Figure 3: Calibration Results
This figure plots the estimated correlations based on the simulated samples. We plot the median (solid lines)

as well as the 25th and 75th percentiles (dotted lines) of the estimated correlations. In Panel A, the green

diamond line (orange no-marker line) shows how the correlation between the sign of the capital inflows and

the sign of the updates on active alpha (standard alpha) vary with the fraction of sophisticated investors q.

In Panel B, the ratio of the correlations between the sign of the capital inflows and the sign of the update

on active alpha to the analogous correlation using standard alpha is plotted as a function of the fraction of

sophisticated investors q. The red line shows the empirical estimate of this ratio (0.63).

Panel A:

Panel B:
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