Edward Laird, Lancaster University

Tutorial: How to estimate and measure electrical noise
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1 Introduction
Any electronic measurement will inevitably be contaminated by noise. Understanding and
minimizing this noise is a large part of the experimentalist’s skill. Often you want to answer
guestions such as:

1. What noise level do | expect, and how do | quantify it?

2. How do | measure my noise level?

3. Given my noise level, how long will it take me to resolve a signal of known

magnitude?

This tutorial will guide you in answering these questions, starting with the basic principles
but also including specific instructions?.

2 Quantifying noise

2.1 Noise variance and spectral density
The two simplest ways to specify noise are in terms of variance and spectral density.
Suppose we have a noise voltage Vy(t) that varies with time t. Its variance is

var(Vy) = a2(Wy) = <(VN(t) - V_N)2>
= (V§ (1))

where as usual a(Vy) is the standard deviation
of Vy, (...) denotes the expectation value, and

(1)

K denotes the average of Vy, which | will L

henceforth assume to be zero. (Ifm isn’t zero,
then you should measure it and subtract it from A
the signal.) The expectation value in Eq. (1) can

be calculated from a series of individual

measurements or from a trace. Clea rly' the Figure 1: The conceptual filter that defines the
larger the variance, the larger the noise. spectral density of Vy (t).

In many situations the variance of a

measurement is what matters, because it enters the formula for standard error?. However,
often we want a different measure of noise: the spectral density. The spectral density
guantifies how much noise there is at each frequency.

To define the spectral density, imagine that we filter Vy(t) to pass only components within
a bandwidth By that include frequency f (see Figure 1). If the filtered signal is Vy(t), then?

VZ
SWIf1 = Jim, < B;‘) . (2)

TFor\smn'ulon

! These instructions are based on my memory, rather than actually checking them; if you find a mistake, please
let me know.
2 As you should know, the formula for the standard error in an average over n independent measurements is?
o, = a(Wy)
Vn
3 This tutorial uses square brackets to denote quantities in frequency space, and follows the single-sided

definition of spectral density, which is dominant in electrical engineering. Beware of alternative definitions;
Supplementary Box 1 of Ref. ! explains how to convert between them.



Table 1: Conversion between different measures of noise. The constants are k = 1.38 x 10723 J/K, Ty = 290 K, and Z, = 50 2 (usually).

Fys = 10log( 1+ Sov
dB — Og kTOZO

PN
Fs;r = 101 (1 —)
dB og(l+ KT,

TN
Fqg = 10log (1 + —)
To

Spectral density Noise power density Noise temperature Noise figure
Symbol-> Sy ik Ty Fup
Units-> V2/Hz W/Hz K dB
Spectral . o
density Syv = Zobn Syv = ZokTy SN, = ZokTy(10Fa8/10 — 1)
Noise power| SN
density PN = ZL: pn = kTy PN = kTo(loFdB/lﬂ — 1)
Noise S, Pn .
= =—- = /10 _
temperature Ty = %z, n=7 Ty = T, (107as 1)
Noise figure

The variance is related to the spectral density by

var(Vy) = f SN, LF1df.

However, the spectral density tells you more than the variance does, because it tells you
which frequencies contribute most to the noise.
These definitions can be obviously modified to apply to other measured quantities instead
of voltage (for example current or displacement), but for simplicity these notes only

describe voltage measurements.

2.2

Input-referred noise, added noise, and system noise
To make fair comparisons, it is essential to specify the noise level at the same pointin a

circuit. To see why, suppose we insert an ideal amplifier* with voltage gain® G, such that its
output and input voltages are related by
Vout(t) = GV (0).

(3)

(4)

If we feed this amplifier a noisy voltage, then the spectral density at its output will be larger
than at its input, by a factor G2. For consistency, we usually specify the value at the input to
the measurement. This is the input-referred noise.
Now let’s consider a real amplifier, for which the analogue of Eq. (5) is®

Vout(£) = GVin () + VNaout (1)
Here VNaout(t) is the extra noise at the output due to the non-ideality of the amplifier.
Since we always want to specify input-referred noise, we rewrite this equation as

Vour(®) = G (Vin(®) + Viya(0)) (6)
where Vya(t) = VNeout(t)/G is the added noise due to the amplifier, which as above can
be described using its variance or a spectral density. Obviously, other components in the

(5)

4 Strictly speaking, an ideal classical amplifier; quantum mechanics makes some level of added noise
unavoidable.

5> Beware: some textbooks use ‘gain’ to mean power gain, i.e. Gp = G2. This means some formulas will appear
differently, but the final results will not be changed.

6 To avoid ambiguity between input-referred and output-referred signals, | use the subscript @X when | want
to be explicit that a voltage is measured at point X.



measurement chain (such as attenuators) can also add noise, which is calculated in the
same way.
Sometimes we want to specify the noise in an experiment including both the noise at the
input VN@input(t) (due to shot noise in the device being measured, for example), and the
noise added by the measurement chain. The combination of these is the system noise,
given by:

VN system () = VN@input(t) + VN,A(t) (7)

2.3 Other ways to quantify noise
The noise spectral density can be expressed in other useful ways:
1. The sensitivity is

Sensitivity =[S}, [f]. (8)

The reason for this name is given in Footnote 14.
2. The noise power density is defined as

SN
pnlfl= V;(Ef ! (9)

It is the power per unit bandwidth dissipated in a resistance Z, when the noise voltage
across it has spectral density SN, [f]. Here Z, is the matched resistance (usually 50
Q). This is useful because power is what a spectrum analyser measures.
3. The noise temperature Ty[f] is defined as
i < S
kZ,
where k is Boltzmann’s constant. It is the temperature of a resistor, matched to the
input impedance Z, of the measuring circuit, whose Johnson noise would contribute a
spectral density S‘I,\IV to the input-referred noise’. It is useful because it makes it easy
to compare other noise sources to the Johnson noise.
4. The noise figure is a way to characterise added noise, defined in linear units by

(10)

Fei4N (11)
= T
where T, = 290 K. In dB units (which are more common),

Faqg = 10logF. (12)
The noise figure F is the factor by which an amplifier with added noise temperature
Ty degrades the power signal-to-noise ratio, compared to Johnson noise at T,,. For
example, a noise figure of Fqg = 3 dB corresponds to an added noise temperature
close to 290 K; a noiseless amplifier has Fqg = 0 dB.
Table 1 summarises how to convert between these quantities.

3 How to calculate the expected noise

3.1 Achain of linear amplifiers
A common experimental situation is to have a chain of linear amplifiers endingin a
recording device such as an oscilloscope (as in Figure 2). Linear in this case means that the
output of the ith amplifier is proportional to its input (plus noise):

Vout,i(t) = GiVin,i(t) + noise (13)

7 This sentence is true in the classical limit only, but Eq. (10) is generally accepted to define Ty in both classical
and quantum situations.
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Figure 2: Measurement chain analysed in the text. Thie example is a simplification of a circuit used for pulsed spin
resonance (see Matthew Green’s thesis). All part numbers are from Minicircuits.

where G; is the voltage gain. The chain is therefore equivalent to single amplifier with gain

G = GleG3 e n (14)
The added noise temperature of the chain is given by Friis’ formula:
T, T,
Taa = Tnas + —o2 4 A3 4 (15)

G2 " (61Gy)?

where Ty 4; is the added noise temperature of the ith amplifier. Friis’ formula has an

important consequence: The noise temperature of a chain is mostly determined by its first

few components.

Other linear components can be used in Friis’ formula as if they were amplifiers as follows:
a. An attenuator is equivalent to an amplifier with gain G; = 1/L; and added noise

temperature
Tnai = (LF = DT, (16)
where L; is the voltage attenuation factor and T; is the ambient temperature.
b. Asingle impedance step can be modelled by an amplifier with gain
2Z

Zo+Z
and no added noise. Here Z, and Z are the impedances before and after the
mismatch. The most common example is between an amplifier with output
impedance Z, = 50 Q and an oscilloscope with input impedance Z > Z,,, in which
case Gmismatch = 2.

c. If you have multiple impedance changes, you can still apply Eqg. (17) but it may not
be accurate because it does not account for multiple reflections. In this situation you
should accept that your estimate for the added noise may not be very good.

d. A mixer is equivalent (for the purpose of Friis’ equation; see Appendix A) to an
amplifier with gain

(17)

Gmismatch =

1
i (in homodyne configuration)
C
Gmixer = 1 (18)

in heterodyne configuration
77 L. ( y g )

The added noise is often not specified but can be taken as zero if there is plenty of
pre-amplification.
Knowing this, a procedure for calculating the expected noise of a chain is:
1. Calculate the expected gain at each stage of the chain in voltage units. (Table 2
reminds you how to do this if the gain is specified in dB.)
2. Calculate the expected added noise temperature at each stage, if necessary using
Table 1 to convert from other units.
3. Use Eq. (16) to calculate the combined added noise temperature Ty a.
4. Calculate the system noise, if you need it, by adding the input noise to the added
noise.




5. If you need the noise in units other than temperature, use Table 1 to perform the
conversion.

3.2 Example 1: Predicting the noise in Figure 2

This example comes from a pulsed spin resonance experiment. Suppose we are measuring a
tank circuit via the series of components shown in Figure 2. What should we expect for the
input-referred added noise and system noise?

Let’s calculate the noise up to the input of the mixer; as we know, added noise is dominated
by the first few components so this should be a good approximation. We follow the
procedure of Section 3.1:

1. We need the gain for three components: The switch and two identical amplifiers.
Looking at the datasheets, and taking our working frequency as 100 MHz, the gains
are:

o Switch: This gain is the inverse of the insertion loss, so we have G, g5 =
—0.9 dB, which converts to a voltage gain of G; = 0.90.
o Amplifiers: Both have G4qg = 25 dB, which convertsto G, = G; = 17.8.
The combined gain is therefore
G = G,G,G3 = 285. (19)

2. We calculate the noise temperatures as follows:

o The switch is effectively an attenuator, and is at room temperature of 300 K.
Equation (17) therefore gives:

Tnar = 70K (20)
o The amplifiers each have a specified noise figure of 0.6 dB, which converts to
Tnaz =Tnaz =44 K (21)
3. The total added noise, by Eq. (16), is therefore
Tna =120K (22)

4. To calculate the system noise, we need to know the noise at the output of the
resonator. We expect this is determined by Johnson noise, which means that the
input noise temperature is the same as room temperature. The system noise
temperature is therefore:

TN system = Tna + 300K
= 420K

5. Let’s suppose the quantity we want to know is the voltage sensitivity. The system
sensitivity corresponding to Eq. (23) is

(23)

Table 2: Conversion between gains in dB and ratios in linear units. Any quantity which is a ratio of voltages converts in
the same way as voltage gain; any quantity which is a ratio of powers converts in the same way as power gain.

Voltage gain Power gain Gain in dB
Symbol-> G Gp G
Units=> - - dB
Voltage gain G = \/G_p G = 10GaB/20
Power gain Gp = G Gp = 106aB/10
Gain in dB Gas = 20 log G Ggg = 10 log Gp




/syv = 0.54nV/VHz. (24)

4 How to measure system noise
There are at least three ways to measure noise, summarised below.
e A spectrum analyser is easiest and usually works well above about 100 kHz.
e An oscilloscope or digitiser works well at low frequencies (up to its analogue
bandwidth) and is convenient if you are using it already to record your signal.
e Alock-in works well at intermediate frequency, and is also convenient if it is what
you are using already.
In the example of Figure 2, you would probably use a spectrum analyser just before the
mixer to measure the noise including the input amplifiers, and then check this number using
the final digitiser.
All these instruments measure system noise, since of course they can’t tell whether the
noise they are fed originates from the device or the measurement chain. If you want to
know the added noise, then you should measure the system noise and then subtract your
best estimate of the device noise?.

4.1 Using a spectrum analyser
A spectrum analyser measures spectral power

Pspectral[f] = Rf p[f] (25)
where Ry is the instrument’s resolution bandwidth and p[f] is the power density defined
similarly to Eq. (9)°. From Eq. (25), it is straightforward to measure the system noise.
The procedure is as follows:

1. Use a network analyser to measure the total gain G from the device under test to
the spectrum analyser input.

2. Set up the spectrum analyser: choose the frequency range, make sure that the
acquisition is set to Vims (not Vmax), and make sure the video bandwidth is not larger
than the resolution bandwidth (for example by setting it to auto).

3. Measure the spectrum. Pick a frequency where it is dominated by noise, not signal. If
necessary, convert Pgpeciral[f] to Sl units using Table 3.

4. Measure the noise floor Py With a terminator connected, in order to account for
the instrument’s own noise (You can omit this step if you are sure this contribution is

Table 3: Conversion between dBm and Sl units of power.

Power Power in dBm
Symbol-> P PiBm
Units—> W dBm

Power P =10"3 W x 10PdBm/10

Power in dBm

P
Pygm = 10 X loglo_3 W

8 There are ways to distinguish system and added noise, of which the most common is the Y-factor method; if
you really need this, look it up.

91 have dropped the N subscript because of course the spectral analyser doesn’t distinguish between the
signal and noise contributions to its input.



negligible, or if you want to include the spectrum analyser as part of the system
noise.)

5. Using Eqg. (25) and the known gain and noise floor, convert the measured power to
an input-referred system noise as follows:

_ 1 Pspectral [f] - Pterm [f]
pulf] —§< R +kT>

where P[f] is the spectral power with the analyser connected to the measurement
chain, Prerm[f] is the spectral power with it connected to a terminator, and T the
temperature of the terminator.

If you have omitted step 4, the calculation simplifies to

(26)

Pspectral [f]
=—— 27
pnlf] G2R; (27)
6. Convert the input-referred system noise to your desired units using Table 1.
4.2 Using an oscilloscope or digitiser
This method relies on the fact (which follows from Eq. (59)) that filtered noise satisfies:
W2y = | siraf (28)
0

Therefore, if we take a noisy trace Vy(t), filter it with amplitude transmission function is
F[f], and measure the variance, we can infer the spectral density.
More precisely, we rewrite Eq. (28)(27) as

(V3) = f IFLFI2 SYLf) df

0
~ BrSpylfe]
where f. is the centre frequency of the filter and By is its noise equivalent bandwidth,
defined as

(29)

B, = f IFIf1I2 df. (30)

Equation (29) holds provided S‘I}IV is approximately constant across the filter band. It works
equally well whether the filter is analogue or digital.
The procedure to estimate noise is therefore:

1. Set your digitiser gain (and any other parameters) as in the real experiment. Call the
input voltage at the digitiser Vgp

2. Connect the digitiser to a terminator. Acquire a trace Viermep (t), and use this to
check the variance due to the digitiser noise. (You can omit this step if you want to
measure the noise including the digitiser, or if are sure that its noise is negligible.)

3. Connect the digitiser to the measurement chain, and measure the gain from the
device under test to the digitiser by injecting a known probe signal and measuring
the change in amplitude between probe on and probe off.

4. Reconnect the device under test, acquire a trace Vygp(t) and calculate its variance.

5. Calculate the input-referred system noise, which is

N var(Vyep () — var(Viermen (t))
Swvlfel = G2 R
f
(If you want to include the digitiser’s noise in the system noise, then omit the
subtraction here.)
6. Convert to your desired units using Table 1.

(31)



4.3 Using a lock-in amplifier

A lock-in amplifier carries out homodyne demodulation, which means that noise at the
signal frequency is converted into a dc output. The lock-in demodulates its input V (t) into
the following two filtered quadratures:

X() = [\/E V(t) cos 27Tfrt]

Y(t) = [V2 V(t) sin 2 f;t]
where [-] denotes a low-pass filter and f; is the demodulation frequency!?. Some maths
shows that

(32)

Sxx[0] = Syy[0] = Syverlf]- (33)
where Syy@L is the voltage spectral density at the lock-in input. Therefore
var(X(t)) = SyyeLlfi] By (34)
and so
var(X(t)
ShvaLlfi] = —(Bf ) (35)

where By is the noise equivalent bandwidth, which is determined by the lock-in filter order
and time constant.
So the procedure to measure your system noise using a lock-in is:

1. Set your lock-in frequency, gain, and filter, and any other parameters, as in the real
experiment. Find out the noise-equivalent bandwidth. (In a Zurich lock-in, you can do
this via the LabOne interface.)

2. Connect the lock-in to the experiment. Measure var(X(t)) and apply Eq. (35) to
calculate Sp,@L[f;] referenced to the lock-in input.

3. Divide through by G?, where G is the gain before the lock-in, to refer S),[f+] to the
device under test.

4. Convert to your desired units using Table 1.

4.4 Example 2: Measuring the system noise in Figure 2

There are two ways we might measure the noise in this situation. The simpler one to
analyse is to measure up to the input of the mixer. This is the first part of the chain and
should therefore account for most of the noise; however, if we want to make a more careful
measurement we should check this result by measuring up to the digitiser. I'll give examples
of both?,

4.4.1 Measuring up to the mixer input
We are measuring at rf frequency, so a good choice is to use a spectrum analyser. Using only
the part of Figure 2 up to the mixer input, and following the steps of Section 4.1:
1. We use a network analyser to measure from the switch input to the second amplifier
output, finding G4g = 48 dB and therefore
G = 251. (36)
2. We disconnect the network analyser, reconnect the resonator, and connect the
spectrum analyser to the second amplifier output.
3. With a resolution bandwidth of Ry = 10 kHz, we measure noise power of
Pygmlf = 100 MHz] = —84 dBm and therefore

10 These equations hold for Zurich lock-ins; see https://www.zhinst.com/europe/en/resources/principles-of-
lock-in-detection. Stanford lock-ins apparently multiply by a square wave; | haven’t done the maths for this.
11 All numbers in Example 2 are made up; | didn’t actually do the experiment (but | should; if | have made a
mistake, please tell me!).



https://www.zhinst.com/europe/en/resources/principles-of-lock-in-detection
https://www.zhinst.com/europe/en/resources/principles-of-lock-in-detection

P[f] =398 x 10712 W. (37)
4. The spectrum analyser is not part of the measurement chain we’ll use in the final
experiment, so we shouldn’t include its noise as part of the system noise. We
therefore measure the noise floor when it’s connected to a terminator, finding
Peermdag[f] = —100 dBm and therefore
Peermlf] = 1.0 x 10713 W. (38)
5. Applying Eq. (26) therefore gives (assuming a terminator temperature of T = 300 K)
the following input-referred noise power density:

pn = 6.2 X 10721 W/Hz. (39)
6. Thisis an input-referred system sensitivity of
/syv = 0.55nV/VHz. (40)

This is close to our prediction in Eq. (24), and confirms that there is no unexpected
noise source.

4.4.2 Measuring up to the digitiser

Using the entire chain in Figure 2, and following the steps of Section 4.2 (For consistent
notation with Appendix A, I'm calling the digitiser input voltage Ugp (t) instead of Vgp(t)
as in Section 4.2.):

1. We set up the digitiser ...

2. ...and skip step 2, because the digitiser noise is part of the system noise.

3. To measure the gain up to the digitiser input, we inject a probe tone of power 1 nW
(i.e. P4gyy = —60 dBm) into the measurement chain, and measure an amplitude
change between probe on and probe off of AUgp = 11 mV. Taking heed of Eq. (64),
this means the total gain of the chain is?

AU
G = Vprf)bDe =49 (41)

rms
where Vrﬁfsbe is the rms of the probe tone.
4. With the resonator reconnected, we measure a variance at the digitiser of
var(Uyep) = (0.25 mV)Z.
5. We now apply Eqg. (31). The digitiser is part of the system, so we should omit the
subtraction step; thus

n _ var(Uyep)

W= T ozg. B,
The bandwidth B should be the noise-equivalent bandwidth of the final filter. The
datasheet doesn’t tell us this, but it does tell us the 3 dB bandwidth, which ought to
be about the same. We therefore take By = 39 MHz, which leads to input noise

(42)

Sy, =6.7x107° V2 /Hz. (43)
6. The corresponding input-referred system sensitivity is
/syv = 0.82nV/VHz, (44)

which is close to the value measured at the mixer input, and confirms that the
demodulation and digitising steps do not badly degrade the sensitivity.

12 can check this against my expectation: Minicircuits specifies the conversion loss of this mixer as Lgg =

5 dB, which by Footnote 16 means L. = 4.5, which by Eq. (18) is a mixer gain of Gpixer = 0.22. We already
know (see Eq. (36)) that the gain up to the mixer is 251, so the gain we expect is Eq. (41) is G = 251 X 0.22 =
56, which is close.

10



5 What is the uncertainty in my measurement?

The usual benefit of knowing the system noise is that it determines the uncertainty in a
measurement of voltage (or of anything that can be transduced into it). As usual, let’s define
the uncertainty in a single measurement as the standard deviation if it were to be repeated

many times.
To be specific, suppose we are measuring a voltage

V(t) = Vs(t) + In(t) (45)
or equivalently

VIfl = Vslf1+ Wlfl (46)
Then the uncertainty we need is

Uncertainty in measuring V, = o(V;) (47)

where V), is the amplitude of the signal V5 and
V_O is our estimate of it after a single s V(o = Vs r Vi lO)
measurement’3, Knowing SN, [f] and some g %MWA“% Vs = Ve

details of our measurement, we can calculate
this uncertainty. This calculation is presented
in the Supplementary to Ref. !; here I will
simply state the results.

v" O’(Vo 2
5.1 When measuring over a fixed >\&‘ m Vo2
bandwidth

Let’s suppose | measure V (t) in a fixed e PV(® = Vsl &)
bandwidth; in other words, | filter it with

bandwidth Bf to output a voltage V(t). | use

one instant in the trace of V(t) to estimate Figure 3 Estimating the amplitude of a signal (blue)
the amplitude of the signal —any instant if from a noisy voltage (red), for a constant signal

the signal is a constant, or an instant at the Vs(t) = Vo (top) and for an oscillating signal Vs (t) =

V. 2mfst (bottom).
crest if the signal is oscillating (as in Figure 3). o cos 2mfst (bottom)
The expected error is**

a(Vo) = [Bs SivIfs] (48)
where fg is the centre frequency of the signal (with fg = 0 for a constant signal, of course).
5.2 When measuring over a fixed duration

5.2.1 When measuring a voltage
Another common situation is a measurement in fixed time; in other words, | record my
voltage V (t) over a duration T and use this record to estimate its amplitude. In this case, the
uncertainty depends on whether | am measuring a constant or oscillating signal.
e If my signalis constant, i.e. Vg(t) = V,, then my best estimate of V, is the average
over duration t; the uncertainty of my estimate is

13|f | repeat this measurement many times, then of course | can average the results to get the smaller
uncertainty given in Footnote 2.

14 Equation (48) is the reason that ’S{,“V is called the sensitivity; a sensitivity of 1 nV/VHz means that after a

1 Hz filter, a 1 nV signal is the same size as the rms noise fluctuations — which is a good threshold for saying
that it’s detectable.

11



a(Vo) = SW ]- (49)

e If my signal is oscillating, i.e. Vg(t) =V, cos(27rfst + ¢s), then my best estimate of
V, comes from a least-squares fit; the uncertainty in my estimate is

0_( 0) SVV fS] (50)

5.2.2 When measuring the power of an incoherent source

To measure power from a coherent source (i.e. one whose phase and amplitude stay fixed
during one measurement), then you should measure the amplitude and convert it to a
power. However, often you want to measure power from an incoherent source; for example
in noise thermometry, intensity mapping, or an axion haloscope. In this case, it is the system
noise itself that is what you want to quantify.

If the noise is white, then the best possible uncertainty is given by the Dicke radiometer
equation; it is

— P
o(P) ===
BfT
By SN Ifs]
T Z
where By is the bandwidth over which your power detector is sensitive, 7 is the
measurement time (assumed to satisfy B > 1), fs is the centre frequency at which you
are detecting, and the power is obviously related to the spectral density by

SN
P = B; ZVV (52)

(51)

where S, is the spectral density of the system noise.

5.3 What is the smallest signal | can resolve?
Suppose the signal you want to measure is an input-referred voltage of known amplitude,
say 1 nV. Can you detect it? The answer is yes, if your noise is low enough and you can
measure for long enough.
We call a signal resolved if it is larger than the uncertainty in the measurement, i.e.

Vo = a(Vy). (53)
When a signal is barely resolved, the signal-to-noise ratio will be unity, which means it will
be larger than most of the random fluctuations due to noise®. A good way to quantify how
hard a signal is to measure is therefore the minimum time t,;, (or, equivalently, the
maximum bandwidth By ,,«) needed for it to become barely resolved. Using Egs. (48) to
(51), we can see that these are (approximating white noise near the relevant frequencies):

e Toresolve a constant voltage V/:

_ Spy[0]
T > Thmin 7
0
Bf < Bf max SN [0]

15To be precise: if the noise is gaussian-distributed (which it usually is), then a barely resolved signal is larger
than about 84% of measurement outcomes when there is zero signal.
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e To resolve an oscillating voltage V,, cos 2rfst:

Sov[fs]
T > Tmin = T
VOZ (55)
0
O = Brmax = S 17
e Toresolve an incoherent power P:
SN\
T> Toin = Bf< ;V[Zf5]> (56)
0Zo

These minimum resolution times are useful benchmarks for comparing different
experiments and deciding whether a particular measurement is feasible. A trace with each
point at the resolution threshold will usually look OK — but for nice-looking data, you will
want to measure for longer.

6 Appendix A: Chains including a mixer

Demodulating the signal by introducing mixers to the fo
chain both scales the output noise and shifts it from one

frequency to another. However, if you are careful about
your definitions, you can still calculate and measure an
effective gain for the chain, and therefore use Friis’
formula (Eqg. (15)) as in the main text.

LO
Vit ut
@ RF~IF @

Figure 4: Inputs and output of a mixer.

6.1 What a mixer does

If a signal V(t) enters a mixer through its RF port while a local oscillator at approximately
the specified level enters through the LO port (as in Figure 4), then the output at the IF port
will be

Ut) = ?cos(Zn frot + PV (t) (57)
c

where f1o and ¢ are the frequency and phase of the local oscillator. Here L is the mixer
conversion loss in voltage units®. If the spectral density of the voltage entering the mixer is
S},\IV [f], it follows from Eq. (57) that the spectral density at the output will be
1
Syulfl = SIZ (SN [f = frol + SN If + frol)- (58)
C

6.2 Demodulation using a mixer
Let’s call the signal at the RF port

V(t) = Acos 2rfst + noise, (59)
where the signal amplitude A varies slowly'’. Let’s also suppose that S‘I}IV [f]is roughly
independent of frequency close to fg (which is usually true). Then we can calculate the

16 Conversion loss is usually specified in dB units as Lgg, and unfortunately this has two definitions: Pozar’s
classic textbook® uses
Lc = 10taB/10 (Pozar convention)

while Minicircuits* uses
Lc = V2 x 10%as/10 (Minicircuits convention)

7)'ve ignored a possible sine contribution to V (t), which is equivalent to shifting the zero of t.
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amplitude and gain of the mixer’s RF output for each of the two configurations used in
demodulation (Figure 5):
¢ In a homodyne measurement configuration, we:
o Set fi0 equal to the signal frequency fs.
o Low-pass filter U(t) to keep only the components U(t) near zero frequency.

Applying Egs. (57) and (58) shows that the output is
cos ¢

V2L

plus noise with spectral density (within the post-filter bandwidth)
Soulf1 = Shy[0]

1 N
= L_ZSVV[fLO]
C

where the first line follows because we assumed that SN, [f] is roughly flat, and the
second follows from Eq. (58), using that S[—f] = S[f].
¢ In a heterodyne measurement configuration, we:
o Before the mixer, pre-filter V(t) around the signal frequency fs.
o Set fio to be different from f;.
o Band-pass filter U(t) around |fs — fi.0l-
The filtered output is then

1
U(t) = L cos(2n(fro — fo)t + ) A (62)
c

plus noise with spectral density (within the post-filter bandwidth)

Sul}lm[f] ~ S[U[U[fS frol
(SN Ifs1+SM [2fi0 — fs])

U=

A (60)

(61)

2L2
1

ZLZ SVV [fS]
where the last step follows because the pre-filter has removed noise components
away from fs.

(63)

6.3 Friis’ law including a demodulation stage
The results of Section 6.2 mean is that we can apply Friis’ formula to a chain containing a

mixer, provided that we define the gain to be
Urms

(64)

Gmixer Vv
rms

By doing this, we have generalised Eq. (4); we are treating a demodulator — for the purpose
of noise calculations - as an amplifier that also changes the frequency.
With this definition, the gain and added noise of an ideal mixer are

cos ¢ i .
L (homodyne configuration)
C

Gmixer = 1 (65)
(heterodyne configuration)

V2 L
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T = {tan2 ¢ X Tnein  (homodyne configuration) (66)
NA T o (heterodyne configuration)
where Ty@in IS the noise temperature at the mixer’s RF input, referred to that input.
The conventional choice is to set ¢ = 0, in which case this simplifies to
{ Li (homodyne configuration)
Gixer = i (67)
(heterodyne configuration)
2 L¢
and
Tna=0. (68)

Equations (67) and (68) are the values to use in Friis’ equation.

6.4 Hot to measure mixer conversion loss
If you want to measure your conversion loss, for example to check the value in the
datasheet, this is the procedure:

1.

3.

Connect a signal generator to the LO port. Set the signal generator to your desired
LO frequency and power specified in the datasheet (e.g. 13 dBm for a Level 13
mixer).

If you plan to operate the mixer in homodyne configuration:

a. Connect a low-pass filter and a voltmeter to the IF port.

b. Connect a terminator to the RF port and measure the voltmeter reading U,.
This is the output offset.

c. Instead of the terminator, connect a second signal generator to the RF port
and clock it from the 10 MHz reference of the first one. Set its frequency to
fLo, and its power Pgg well below the LO power. This generator supplies
V(t).

d. Adjust the phase of the first signal generator (you can use a phase shifter, but
if so you must account for its insertion loss when setting the LO level) until U
is maximal.

e. Calculate AU = U — U,. If your voltmeter has input impedance much greater
than 50 Q, then divide AU by 2, to account for the impedance mismatch of
Eqg. (17).

f. The conversion loss is then

Lo = A :,/ZOPRF (69)
V2AU AU
If you plan to operate the mixer in heterodyne configuration:
a. Connect a second generator to the RF port. Set its frequency close to your
expected fs, and its power Pgg well below the LO power. This generator

supplies V (t).

Homodyne demodulator Heterodyne demodulator

U Vi —= e\ s\ H—= 1(t)

Figure 5: Homodyne and heterodyne demodulation configurations.
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b. Connect a spectrum analyser to the IF port. A peak should appear at

frequency |fs = frol-
c. Call the power in this peak Pig. The conversion loss is then

PRrp
Lc = (70)
€T 2P
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