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1 Introduction 
Any electronic measurement will inevitably be contaminated by noise. Understanding and 
minimizing this noise is a large part of the experimentalist’s skill. Often you want to answer 
questions such as: 

1. What noise level do I expect, and how do I quantify it? 
2. How do I measure my noise level? 
3. Given my noise level, how long will it take me to resolve a signal of known 

magnitude? 
This tutorial will guide you in answering these questions, starting with the basic principles 
but also including specific instructions1. 

2 Quantifying noise 
2.1 Noise variance and spectral density 
The two simplest ways to specify noise are in terms of variance and spectral density. 
Suppose we have a noise voltage 𝑉𝑉N(𝑡𝑡) that varies with time 𝑡𝑡. Its variance is 
 var(𝑉𝑉N) ≡ 𝜎𝜎2(𝑉𝑉N) ≡ ��𝑉𝑉N(𝑡𝑡) − 𝑉𝑉N�

2
� 

= ⟨𝑉𝑉N2(𝑡𝑡)⟩ 
(1) 

where as usual 𝜎𝜎(𝑉𝑉N) is the standard deviation 
of 𝑉𝑉N, ⟨… ⟩ denotes the expectation value, and 
𝑉𝑉N denotes the average of 𝑉𝑉N, which I will 
henceforth assume to be zero. (If 𝑉𝑉N isn’t zero, 
then you should measure it and subtract it from 
the signal.) The expectation value in Eq. (1) can 
be calculated from a series of individual 
measurements or from a trace. Clearly, the 
larger the variance, the larger the noise. 
In many situations the variance of a 
measurement is what matters, because it enters the formula for standard error2. However, 
often we want a different measure of noise: the spectral density. The spectral density 
quantifies how much noise there is at each frequency. 
To define the spectral density, imagine that we filter 𝑉𝑉N(𝑡𝑡) to pass only components within 
a bandwidth 𝐵𝐵𝑓𝑓 that include frequency 𝑓𝑓 (see Figure 1). If the filtered signal is 𝕍𝕍N(𝑡𝑡), then3 
 

𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓] ≡ lim
𝐵𝐵𝑓𝑓→0

⟨𝕍𝕍N2 ⟩
𝐵𝐵𝑓𝑓

. (2) 

 
1 These instructions are based on my memory, rather than actually checking them; if you find a mistake, please 
let me know. 
2 As you should know, the formula for the standard error in an average over 𝑛𝑛 independent measurements is2 

 
𝜎𝜎𝑉𝑉 =

𝜎𝜎(𝑉𝑉N)

√𝑛𝑛
  

 
3 This tutorial uses square brackets to denote quantities in frequency space, and follows the single-sided 
definition of spectral density, which is dominant in electrical engineering. Beware of alternative definitions; 
Supplementary Box 1 of Ref. 1 explains how to convert between them. 

 

Figure 1: The conceptual filter that defines the 
spectral density of 𝑉𝑉𝑁𝑁(𝑡𝑡). 
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The variance is related to the spectral density by 
 

var(𝑉𝑉N) = � 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓]
∞

0
𝑑𝑑𝑑𝑑. (3) 

However, the spectral density tells you more than the variance does, because it tells you 
which frequencies contribute most to the noise. 
These definitions can be obviously modified to apply to other measured quantities instead 
of voltage (for example current or displacement), but for simplicity these notes only 
describe voltage measurements.  

2.2 Input-referred noise, added noise, and system noise 
To make fair comparisons, it is essential to specify the noise level at the same point in a 
circuit. To see why, suppose we insert an ideal amplifier4 with voltage gain5 𝐺𝐺, such that its 
output and input voltages are related by 
 𝑉𝑉out(𝑡𝑡) = 𝐺𝐺𝑉𝑉in(𝑡𝑡). (4) 

If we feed this amplifier a noisy voltage, then the spectral density at its output will be larger 
than at its input, by a factor 𝐺𝐺2. For consistency, we usually specify the value at the input to 
the measurement. This is the input-referred noise. 
Now let’s consider a real amplifier, for which the analogue of Eq. (5) is6 
 𝑉𝑉out(𝑡𝑡) = 𝐺𝐺𝑉𝑉in(𝑡𝑡) + 𝑉𝑉N@out(𝑡𝑡). (5) 

Here 𝑉𝑉N@out(𝑡𝑡) is the extra noise at the output due to the non-ideality of the amplifier. 
Since we always want to specify input-referred noise, we rewrite this equation as 
 𝑉𝑉out(𝑡𝑡) = 𝐺𝐺 �𝑉𝑉in(𝑡𝑡) + 𝑉𝑉N,A(𝑡𝑡)� (6) 

where 𝑉𝑉N,A(𝑡𝑡) = 𝑉𝑉N@out(𝑡𝑡)/𝐺𝐺 is the added noise due to the amplifier, which as above can 
be described using its variance or a spectral density. Obviously, other components in the 

 
4 Strictly speaking, an ideal classical amplifier; quantum mechanics makes some level of added noise 
unavoidable. 
5 Beware: some textbooks use ‘gain’ to mean power gain, i.e. 𝐺𝐺P ≡ 𝐺𝐺2. This means some formulas will appear 
differently, but the final results will not be changed. 
6 To avoid ambiguity between input-referred and output-referred signals, I use the subscript @𝑋𝑋 when I want 
to be explicit that a voltage is measured at point X. 

Table 1: Conversion between different measures of noise. The constants are 𝑘𝑘 = 1.38 × 10−23 𝐽𝐽/𝐾𝐾, 𝑇𝑇0 ≡ 290 𝐾𝐾, and 𝑍𝑍0 = 50 𝛺𝛺  (usually). 

 Spectral density Noise power density Noise temperature Noise figure 

Symbol→ 𝑆𝑆𝑉𝑉𝑉𝑉  𝑝𝑝N 𝑇𝑇N 𝐹𝐹dB 

Units→ V2/Hz W/Hz K dB 

Spectral 
density  𝑆𝑆𝑉𝑉𝑉𝑉 = 𝑍𝑍0𝑝𝑝N 𝑆𝑆𝑉𝑉𝑉𝑉 = 𝑍𝑍0𝑘𝑘𝑇𝑇N 𝑆𝑆𝑉𝑉𝑉𝑉N = 𝑍𝑍0𝑘𝑘𝑇𝑇0�10𝐹𝐹dB/10 − 1� 

Noise power 
density 𝑝𝑝N =

𝑆𝑆𝑉𝑉𝑉𝑉𝑁𝑁

𝑍𝑍0
  𝑝𝑝N = 𝑘𝑘𝑇𝑇N 𝑝𝑝N = 𝑘𝑘𝑘𝑘0�10𝐹𝐹dB/10 − 1� 

Noise 
temperature 𝑇𝑇N =

𝑆𝑆𝑉𝑉𝑉𝑉𝑁𝑁

𝑘𝑘𝑍𝑍0
 𝑇𝑇N =

𝑝𝑝N
𝑘𝑘

  𝑇𝑇N = 𝑇𝑇0�10𝐹𝐹dB/10 − 1� 

Noise figure 
𝐹𝐹dB =  10 log�1 +

𝑆𝑆𝑉𝑉𝑉𝑉N

𝑘𝑘𝑇𝑇0𝑍𝑍0
� 𝐹𝐹dB =  10 log �1 +

𝑝𝑝N
𝑘𝑘𝑇𝑇0

�  𝐹𝐹dB =  10 log �1 +
𝑇𝑇N
𝑇𝑇0
�   
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measurement chain (such as attenuators) can also add noise, which is calculated in the 
same way. 
Sometimes we want to specify the noise in an experiment including both the noise at the 
input 𝑉𝑉N@input(𝑡𝑡) (due to shot noise in the device being measured, for example), and the 
noise added by the measurement chain. The combination of these is the system noise, 
given by: 
 𝑉𝑉N,system(𝑡𝑡) = 𝑉𝑉N@input(𝑡𝑡) + 𝑉𝑉N,A(𝑡𝑡) (7) 

2.3 Other ways to quantify noise 
The noise spectral density can be expressed in other useful ways: 

1. The sensitivity is 
 

Sensitivity ≡ �𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓]. (8) 

The reason for this name is given in Footnote 14. 
2. The noise power density is defined as 

 
𝑝𝑝N[𝑓𝑓] =

𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓]
𝑍𝑍0

. (9) 

It is the power per unit bandwidth dissipated in a resistance 𝑍𝑍0 when the noise voltage 
across it has spectral density 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓]. Here 𝑍𝑍0  is the matched resistance (usually 50 
Ω). This is useful because power is what a spectrum analyser measures. 

3. The noise temperature 𝑇𝑇N[𝑓𝑓] is defined as 
 

𝑇𝑇N[𝑓𝑓] =
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓]
𝑘𝑘𝑍𝑍0

 (10) 

where 𝑘𝑘 is Boltzmann’s constant. It is the temperature of a resistor, matched to the 
input impedance 𝑍𝑍0 of the measuring circuit, whose Johnson noise would contribute a 
spectral density 𝑆𝑆𝑉𝑉𝑉𝑉N  to the input-referred noise7. It is useful because it makes it easy 
to compare other noise sources to the Johnson noise. 

4. The noise figure is a way to characterise added noise, defined in linear units by 
 𝐹𝐹 = 1 +

𝑇𝑇N
𝑇𝑇0

 (11) 

where 𝑇𝑇0 ≡ 290 K. In dB units (which are more common),  
 𝐹𝐹dB = 10 log𝐹𝐹. (12) 

The noise figure 𝐹𝐹 is the factor by which an amplifier with added noise temperature 
𝑇𝑇N degrades the power signal-to-noise ratio, compared to Johnson noise at 𝑇𝑇0. For 
example, a noise figure of 𝐹𝐹dB = 3 dB corresponds to an added noise temperature 
close to 290 K; a noiseless amplifier has 𝐹𝐹dB = 0 dB. 

Table 1 summarises how to convert between these quantities. 

3 How to calculate the expected noise 
3.1 A chain of linear amplifiers 
A common experimental situation is to have a chain of linear amplifiers ending in a 
recording device such as an oscilloscope (as in Figure 2). Linear in this case means that the 
output of the 𝑖𝑖th amplifier is proportional to its input (plus noise): 
 𝑉𝑉out,𝑖𝑖(𝑡𝑡) = 𝐺𝐺𝑖𝑖𝑉𝑉in,𝑖𝑖(𝑡𝑡) + noise (13) 

 
7 This sentence is true in the classical limit only, but Eq. (10) is generally accepted to define 𝑇𝑇N in both classical 
and quantum situations. 
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where 𝐺𝐺𝑖𝑖 is the voltage gain. The chain is therefore equivalent to single amplifier with gain 
 𝐺𝐺 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3 … . (14) 

The added noise temperature of the chain is given by Friis’ formula: 
 𝑇𝑇N,A = 𝑇𝑇N,A1 +

𝑇𝑇N,A2

𝐺𝐺12
+

𝑇𝑇N,A3

(𝐺𝐺1𝐺𝐺2)2  
+ ⋯ (15) 

where 𝑇𝑇N,A𝑖𝑖 is the added noise temperature of the 𝑖𝑖th amplifier. Friis’ formula has an 
important consequence: The noise temperature of a chain is mostly determined by its first 
few components. 
Other linear components can be used in Friis’ formula as if they were amplifiers as follows: 

a. An attenuator is equivalent to an amplifier with gain 𝐺𝐺𝑖𝑖 = 1/𝐿𝐿𝑖𝑖  and added noise 
temperature 

 𝑇𝑇N,A𝑖𝑖 = (𝐿𝐿𝑖𝑖2 − 1)𝑇𝑇𝑖𝑖, (16) 
where 𝐿𝐿𝑖𝑖  is the voltage attenuation factor and 𝑇𝑇𝑖𝑖 is the ambient temperature. 

b. A single impedance step can be modelled by an amplifier with gain 
 𝐺𝐺mismatch = �

2𝑍𝑍
𝑍𝑍0 + 𝑍𝑍

� (17) 

and no added noise. Here 𝑍𝑍0  and 𝑍𝑍 are the impedances before and after the 
mismatch. The most common example is between an amplifier with output 
impedance 𝑍𝑍0 = 50 Ω and an oscilloscope with input impedance 𝑍𝑍 ≫ 𝑍𝑍0, in which 
case 𝐺𝐺mismatch = 2. 

c. If you have multiple impedance changes, you can still apply Eq. (17) but it may not 
be accurate because it does not account for multiple reflections. In this situation you 
should accept that your estimate for the added noise may not be very good. 

d. A mixer is equivalent (for the purpose of Friis’ equation; see Appendix A) to an 
amplifier with gain 

 

𝐺𝐺mixer =

⎩
⎪
⎨

⎪
⎧ 1
𝐿𝐿C

           (in homodyne configuration)

1
√2 𝐿𝐿C

       (in heterodyne configuration)
 (18) 

The added noise is often not specified but can be taken as zero if there is plenty of 
pre-amplification. 

Knowing this, a procedure for calculating the expected noise of a chain is: 
1. Calculate the expected gain at each stage of the chain in voltage units. (Table 2 

reminds you how to do this if the gain is specified in dB.) 
2. Calculate the expected added noise temperature at each stage, if necessary using 

Table 1 to convert from other units. 
3. Use Eq. (16) to calculate the combined added noise temperature 𝑇𝑇N,A. 
4. Calculate the system noise, if you need it, by adding the input noise to the added 

noise. 

 
Figure 2: Measurement chain analysed in the text. Thie example is a simplification of a circuit used for pulsed spin 
resonance (see Matthew Green’s thesis). All part numbers are from Minicircuits. 
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5. If you need the noise in units other than temperature, use Table 1 to perform the 
conversion. 

3.2 Example 1: Predicting the noise in Figure 2 
This example comes from a pulsed spin resonance experiment. Suppose we are measuring a 
tank circuit via the series of components shown in Figure 2. What should we expect for the 
input-referred added noise and system noise? 
Let’s calculate the noise up to the input of the mixer; as we know, added noise is dominated 
by the first few components so this should be a good approximation. We follow the 
procedure of Section 3.1: 

1. We need the gain for three components: The switch and two identical amplifiers. 
Looking at the datasheets, and taking our working frequency as 100 MHz, the gains 
are: 

o Switch: This gain is the inverse of the insertion loss, so we have 𝐺𝐺1,dB =
 −0.9 dB, which converts to a voltage gain of 𝐺𝐺1 = 0.90. 

o Amplifiers: Both have 𝐺𝐺dB =  25 dB, which converts to 𝐺𝐺2 = 𝐺𝐺3 = 17.8. 
The combined gain is therefore 

 𝐺𝐺 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3 = 285. (19) 
2. We calculate the noise temperatures as follows: 

o The switch is effectively an attenuator, and is at room temperature of 300 K. 
Equation (17) therefore gives: 

 𝑇𝑇N,A1 = 70 K. (20) 
o The amplifiers each have a specified noise figure of 0.6 dB, which converts to  

 𝑇𝑇N,A2 = 𝑇𝑇N,A3 = 44 K. (21) 
3. The total added noise, by Eq. (16), is therefore 

 𝑇𝑇N,A = 120 K (22) 
4. To calculate the system noise, we need to know the noise at the output of the 

resonator. We expect this is determined by Johnson noise, which means that the 
input noise temperature is the same as room temperature. The system noise 
temperature is therefore: 

 𝑇𝑇N,system = 𝑇𝑇N,A + 300 K 
= 420 K 

(23) 

5. Let’s suppose the quantity we want to know is the voltage sensitivity. The system 
sensitivity corresponding to Eq. (23) is 

Table 2: Conversion between gains in dB and ratios in linear units. Any quantity which is a ratio of voltages converts in 
the same way as voltage gain; any quantity which is a ratio of powers converts in the same way as power gain. 

 Voltage gain Power gain Gain in dB 

Symbol→ 𝐺𝐺 𝐺𝐺P 𝐺𝐺dB 

Units→ - - dB 

Voltage gain  𝐺𝐺 = �𝐺𝐺𝑃𝑃 𝐺𝐺 = 10𝐺𝐺dB/20 

Power gain 𝐺𝐺P = 𝐺𝐺2  𝐺𝐺P = 10𝐺𝐺dB/10 

Gain in dB 𝐺𝐺dB = 20 log𝐺𝐺 𝐺𝐺dB = 10 log𝐺𝐺P  
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�𝑆𝑆𝑉𝑉𝑉𝑉N = 0.54 nV/√Hz . (24) 

4 How to measure system noise 
There are at least three ways to measure noise, summarised below. 

• A spectrum analyser is easiest and usually works well above about 100 kHz. 
• An oscilloscope or digitiser works well at low frequencies (up to its analogue 

bandwidth) and is convenient if you are using it already to record your signal. 
• A lock-in works well at intermediate frequency, and is also convenient if it is what 

you are using already. 
In the example of Figure 2, you would probably use a spectrum analyser just before the 
mixer to measure the noise including the input amplifiers, and then check this number using 
the final digitiser. 
All these instruments measure system noise, since of course they can’t tell whether the 
noise they are fed originates from the device or the measurement chain. If you want to 
know the added noise, then you should measure the system noise and then subtract your 
best estimate of the device noise8. 

4.1 Using a spectrum analyser 
A spectrum analyser measures spectral power 
 𝑃𝑃spectral[𝑓𝑓] ≡ 𝑅𝑅𝑓𝑓 𝑝𝑝[𝑓𝑓] (25) 

where 𝑅𝑅𝑓𝑓 is the instrument’s resolution bandwidth and 𝑝𝑝[𝑓𝑓] is the power density defined 
similarly to Eq. (9)9. From Eq. (25), it is straightforward to measure the system noise. 
The procedure is as follows: 

1. Use a network analyser to measure the total gain 𝐺𝐺 from the device under test to 
the spectrum analyser input. 

2. Set up the spectrum analyser: choose the frequency range, make sure that the 
acquisition is set to Vrms (not Vmax), and make sure the video bandwidth is not larger 
than the resolution bandwidth (for example by setting it to auto). 

3. Measure the spectrum. Pick a frequency where it is dominated by noise, not signal. If 
necessary, convert 𝑃𝑃spectral[𝑓𝑓] to SI units using Table 3. 

4. Measure the noise floor 𝑃𝑃term with a terminator connected, in order to account for 
the instrument’s own noise (You can omit this step if you are sure this contribution is 

 
8 There are ways to distinguish system and added noise, of which the most common is the Y-factor method; if 
you really need this, look it up. 
9 I have dropped the N subscript because of course the spectral analyser doesn’t distinguish between the 
signal and noise contributions to its input. 

Table 3: Conversion between dBm and SI units of power. 

 Power Power in dBm 

Symbol→ 𝑃𝑃 𝑃𝑃dBm 

Units→ W dBm 

Power  𝑃𝑃 = 10−3 W × 10𝑃𝑃dBm/10 

Power in dBm 
𝑃𝑃dBm = 10 × log

𝑃𝑃
10−3 W
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negligible, or if you want to include the spectrum analyser as part of the system 
noise.) 

5. Using Eq. (25) and the known gain and noise floor, convert the measured power to 
an input-referred system noise as follows: 

 
𝑝𝑝N[𝑓𝑓] =

1
𝐺𝐺2

�
𝑃𝑃spectral[𝑓𝑓] − 𝑃𝑃term[𝑓𝑓]

𝑅𝑅𝑓𝑓
+ 𝑘𝑘𝑘𝑘� (26) 

where 𝑃𝑃[𝑓𝑓] is the spectral power with the analyser connected to the measurement 
chain, 𝑃𝑃𝑡𝑡erm[𝑓𝑓] is the spectral power with it connected to a terminator, and 𝑇𝑇 the 
temperature of the terminator. 
If you have omitted step 4, the calculation simplifies to 

 
𝑝𝑝N[𝑓𝑓] =

𝑃𝑃spectral[𝑓𝑓]
𝐺𝐺2𝑅𝑅𝑓𝑓

 (27) 

6. Convert the input-referred system noise to your desired units using Table 1. 

4.2 Using an oscilloscope or digitiser 
This method relies on the fact (which follows from Eq. (59)) that filtered noise satisfies: 
 ⟨𝕍𝕍N2 ⟩ = � 𝑆𝑆𝕍𝕍𝕍𝕍N [𝑓𝑓] 𝑑𝑑𝑑𝑑

∞

0
 (28) 

Therefore, if we take a noisy trace 𝑉𝑉N(𝑡𝑡), filter it with amplitude transmission function is 
𝐹𝐹[𝑓𝑓], and measure the variance, we can infer the spectral density. 
More precisely, we rewrite Eq. (28)(27) as  
 ⟨𝕍𝕍N2 ⟩ = � |𝐹𝐹[𝑓𝑓]|2 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓] 𝑑𝑑𝑑𝑑

∞

0
 

≈ 𝐵𝐵𝑓𝑓𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓c] 
(29) 

where 𝑓𝑓c is the centre frequency of the filter and 𝐵𝐵𝑓𝑓 is its noise equivalent bandwidth, 
defined as  
 

𝐵𝐵𝑓𝑓 ≡ � |𝐹𝐹[𝑓𝑓]|2 𝑑𝑑𝑑𝑑.
∞

0
 (30) 

Equation (29) holds provided 𝑆𝑆𝑉𝑉𝑉𝑉N  is approximately constant across the filter band. It works 
equally well whether the filter is analogue or digital.  
The procedure to estimate noise is therefore: 

1. Set your digitiser gain (and any other parameters) as in the real experiment. Call the 
input voltage at the digitiser 𝕍𝕍@D 

2. Connect the digitiser to a terminator. Acquire a trace 𝕍𝕍term@D(𝑡𝑡), and use this to 
check the variance due to the digitiser noise. (You can omit this step if you want to 
measure the noise including the digitiser, or if are sure that its noise is negligible.) 

3. Connect the digitiser to the measurement chain, and measure the gain from the 
device under test to the digitiser by injecting a known probe signal and measuring 
the change in amplitude between probe on and probe off. 

4. Reconnect the device under test, acquire a trace 𝕍𝕍N@D(𝑡𝑡) and calculate its variance. 
5. Calculate the input-referred system noise, which is 

 
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓𝑐𝑐] =

var�𝕍𝕍N@D(𝑡𝑡)� − var�𝕍𝕍term@D(𝑡𝑡)�
𝐺𝐺2 𝐵𝐵𝑓𝑓

 (31) 

(If you want to include the digitiser’s noise in the system noise, then omit the 
subtraction here.) 

6. Convert to your desired units using Table 1. 
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4.3 Using a lock-in amplifier 
A lock-in amplifier carries out homodyne demodulation, which means that noise at the 
signal frequency is converted into a dc output. The lock-in demodulates its input 𝑉𝑉(𝑡𝑡) into 
the following two filtered quadratures: 
 𝕏𝕏(𝑡𝑡) = �√2 𝑉𝑉(𝑡𝑡) cos 2𝜋𝜋𝑓𝑓r𝑡𝑡� 

𝕐𝕐(𝑡𝑡) = �√2 𝑉𝑉(𝑡𝑡) sin 2𝜋𝜋𝑓𝑓r𝑡𝑡� 
(32) 

where ⌈⋅⌉ denotes a low-pass filter and 𝑓𝑓r is the demodulation frequency10. Some maths 
shows that 
 𝑆𝑆𝕏𝕏𝕏𝕏[0] = 𝑆𝑆𝕐𝕐𝕐𝕐[0] = 𝑆𝑆𝑉𝑉𝑉𝑉@L[𝑓𝑓r]. (33) 

where 𝑆𝑆𝑉𝑉𝑉𝑉@L is the voltage spectral density at the lock-in input. Therefore 
 var(𝕏𝕏(𝑡𝑡)) = 𝑆𝑆𝑉𝑉𝑉𝑉@LN [𝑓𝑓r] 𝐵𝐵𝑓𝑓 (34) 

and so 
 

𝑆𝑆𝑉𝑉𝑉𝑉@LN [𝑓𝑓r] =
var�𝕏𝕏(𝑡𝑡)�

𝐵𝐵𝑓𝑓
 (35) 

where 𝐵𝐵𝑓𝑓 is the noise equivalent bandwidth, which is determined by the lock-in filter order 
and time constant. 
So the procedure to measure your system noise using a lock-in is: 

1. Set your lock-in frequency, gain, and filter, and any other parameters, as in the real 
experiment. Find out the noise-equivalent bandwidth. (In a Zurich lock-in, you can do 
this via the LabOne interface.) 

2. Connect the lock-in to the experiment. Measure var(𝕏𝕏(𝑡𝑡)) and apply Eq. (35) to 
calculate 𝑆𝑆𝑉𝑉𝑉𝑉@LN [𝑓𝑓r] referenced to the lock-in input. 

3. Divide through by 𝐺𝐺2, where 𝐺𝐺 is the gain before the lock-in, to refer 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓r] to the 
device under test. 

4. Convert to your desired units using Table 1. 

4.4 Example 2: Measuring the system noise in Figure 2 
There are two ways we might measure the noise in this situation. The simpler one to 
analyse is to measure up to the input of the mixer. This is the first part of the chain and 
should therefore account for most of the noise; however, if we want to make a more careful 
measurement we should check this result by measuring up to the digitiser. I’ll give examples 
of both11. 

4.4.1 Measuring up to the mixer input 
We are measuring at rf frequency, so a good choice is to use a spectrum analyser. Using only 
the part of Figure 2 up to the mixer input, and following the steps of Section 4.1: 

1. We use a network analyser to measure from the switch input to the second amplifier 
output, finding 𝐺𝐺dB = 48 dB and therefore 

 𝐺𝐺 = 251. (36) 
2. We disconnect the network analyser, reconnect the resonator, and connect the 

spectrum analyser to the second amplifier output. 
3. With a resolution bandwidth of 𝑅𝑅𝑓𝑓 = 10 kHz, we measure noise power of 

𝑃𝑃dBm[𝑓𝑓 = 100 MHz] = −84 dBm and therefore 

 
10 These equations hold for Zurich lock-ins; see https://www.zhinst.com/europe/en/resources/principles-of-
lock-in-detection. Stanford lock-ins apparently multiply by a square wave; I haven’t done the maths for this. 
11 All numbers in Example 2 are made up; I didn’t actually do the experiment (but I should; if I have made a 
mistake, please tell me!). 

https://www.zhinst.com/europe/en/resources/principles-of-lock-in-detection
https://www.zhinst.com/europe/en/resources/principles-of-lock-in-detection
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 𝑃𝑃[𝑓𝑓] = 3.98 × 10−12 W. (37) 
4. The spectrum analyser is not part of the measurement chain we’ll use in the final 

experiment, so we shouldn’t include its noise as part of the system noise. We 
therefore measure the noise floor when it’s connected to a terminator, finding 
𝑃𝑃term,dB[𝑓𝑓] = −100 dBm and therefore 

 𝑃𝑃term[𝑓𝑓] = 1.0 × 10−13 W. (38) 
5. Applying Eq. (26) therefore gives (assuming a terminator temperature of 𝑇𝑇 = 300 K) 

the following input-referred noise power density: 
 𝑝𝑝N = 6.2 × 10−21 W/Hz. (39) 

6. This is an input-referred system sensitivity of  
 

�𝑆𝑆𝑉𝑉𝑉𝑉N = 0.55 nV/√Hz . (40) 

This is close to our prediction in Eq. (24), and confirms that there is no unexpected 
noise source. 

4.4.2 Measuring up to the digitiser 
Using the entire chain in Figure 2, and following the steps of Section 4.2 (For consistent 
notation with Appendix A, I’m calling the digitiser input voltage 𝕌𝕌@D(𝑡𝑡) instead of 𝕍𝕍@D(𝑡𝑡) 
as in Section 4.2.): 

1. We set up the digitiser … 
2. … and skip step 2, because the digitiser noise is part of the system noise. 
3. To measure the gain up to the digitiser input, we inject a probe tone of power 1 nW 

(i.e. 𝑃𝑃dBm = −60 dBm) into the measurement chain, and measure an amplitude 
change between probe on and probe off of Δ𝕌𝕌@D = 11 mV. Taking heed of Eq. (64), 
this means the total gain of the chain is12 

 𝐺𝐺 =
Δ𝕌𝕌@D
𝑉𝑉rms
probe = 49 (41) 

where 𝑉𝑉rms
probe is the rms of the probe tone. 

4. With the resonator reconnected, we measure a variance at the digitiser of 
var(𝕌𝕌N@D) = (0.25 mV)2. 

5. We now apply Eq. (31). The digitiser is part of the system, so we should omit the 
subtraction step; thus 

 
𝑆𝑆𝑉𝑉𝑉𝑉N =

var(𝕌𝕌N@D)
𝐺𝐺2 𝐵𝐵𝑓𝑓

. (42) 

The bandwidth 𝐵𝐵𝑓𝑓 should be the noise-equivalent bandwidth of the final filter. The 
datasheet doesn’t tell us this, but it does tell us the 3 dB bandwidth, which ought to 
be about the same. We therefore take 𝐵𝐵𝑓𝑓 = 39 MHz, which leads to input noise 

 𝑆𝑆𝑉𝑉𝑉𝑉N = 6.7 × 10−19 V2/Hz. (43) 
6. The corresponding input-referred system sensitivity is 

 
�𝑆𝑆𝑉𝑉𝑉𝑉N = 0.82 nV/√Hz , (44) 

which is close to the value measured at the mixer input, and confirms that the 
demodulation and digitising steps do not badly degrade the sensitivity. 

 
12 I can check this against my expectation: Minicircuits specifies the conversion loss of this mixer as 𝐿𝐿dB =
 5 dB, which by Footnote 16 means 𝐿𝐿𝐶𝐶 = 4.5, which by Eq. (18) is a mixer gain of 𝐺𝐺mixer = 0.22. We already 
know (see Eq. (36)) that the gain up to the mixer is 251, so the gain we expect is Eq. (41) is 𝐺𝐺 = 251 × 0.22 =
56, which is close.  
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5 What is the uncertainty in my measurement? 
The usual benefit of knowing the system noise is that it determines the uncertainty in a 
measurement of voltage (or of anything that can be transduced into it). As usual, let’s define 
the uncertainty in a single measurement as the standard deviation if it were to be repeated 
many times. 
To be specific, suppose we are measuring a voltage 
 𝑉𝑉(𝑡𝑡) = 𝑉𝑉S(𝑡𝑡) + 𝑉𝑉N(𝑡𝑡) (45) 

or equivalently 
 𝑉𝑉[𝑓𝑓] =  𝑉𝑉S[𝑓𝑓] + 𝑉𝑉N[𝑓𝑓]. (46) 

Then the uncertainty we need is 
 Uncertainty in measuring V0 ≡ 𝜎𝜎(𝑉𝑉0) (47) 

where 𝑉𝑉0 is the amplitude of the signal 𝑉𝑉S and 
𝑉𝑉0 is our estimate of it after a single 
measurement13. Knowing 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓] and some 
details of our measurement, we can calculate 
this uncertainty. This calculation is presented 
in the Supplementary to Ref. 1; here I will 
simply state the results.  

5.1 When measuring over a fixed 
bandwidth 

Let’s suppose I measure 𝑉𝑉(𝑡𝑡) in a fixed 
bandwidth; in other words, I filter it with 
bandwidth 𝐵𝐵𝑓𝑓 to output a voltage 𝕍𝕍(𝑡𝑡). I use 
one instant in the trace of 𝕍𝕍(𝑡𝑡) to estimate 
the amplitude of the signal – any instant if 
the signal is a constant, or an instant at the 
crest if the signal is oscillating (as in Figure 3). 
The expected error is14 
 

𝜎𝜎�𝑉𝑉0� = �𝐵𝐵𝑓𝑓 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S] (48) 

where 𝑓𝑓S is the centre frequency of the signal (with 𝑓𝑓S = 0 for a constant signal, of course). 

5.2 When measuring over a fixed duration 

5.2.1 When measuring a voltage 
Another common situation is a measurement in fixed time; in other words, I record my 
voltage 𝑉𝑉(𝑡𝑡) over a duration 𝜏𝜏 and use this record to estimate its amplitude. In this case, the 
uncertainty depends on whether I am measuring a constant or oscillating signal. 

• If my signal is constant, i.e. 𝑉𝑉S(𝑡𝑡) = 𝑉𝑉0, then my best estimate of 𝑉𝑉0 is the average 
over duration 𝜏𝜏; the uncertainty of my estimate is 

 
13 If I repeat this measurement many times, then of course I can average the results to get the smaller 
uncertainty given in Footnote 2. 

14 Equation (48) is the reason that �𝑆𝑆𝑉𝑉𝑉𝑉N  is called the sensitivity; a sensitivity of 1 nV/√Hz means that after a 

1 Hz filter, a 1 nV signal is the same size as the rms noise fluctuations – which is a good threshold for saying 
that it’s detectable. 

 

Figure 3 Estimating the amplitude of a signal (blue) 
from a noisy voltage (red), for a constant signal 
𝕍𝕍𝑆𝑆(𝑡𝑡) = 𝑉𝑉0 (top) and for an oscillating signal 𝕍𝕍𝑆𝑆(𝑡𝑡) =
𝑉𝑉0 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜋𝜋𝑓𝑓𝑆𝑆𝑡𝑡 (bottom). 
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𝜎𝜎�𝑉𝑉0� = �𝑆𝑆𝑉𝑉𝑉𝑉

N [0]
2𝜏𝜏

. (49) 

• If my signal is oscillating, i.e. 𝑉𝑉S(𝑡𝑡) = 𝑉𝑉0 cos(2𝜋𝜋𝑓𝑓S𝑡𝑡 + 𝜙𝜙𝑆𝑆), then my best estimate of 
𝑉𝑉0 comes from a least-squares fit; the uncertainty in my estimate is 

 
𝜎𝜎�𝑉𝑉0� = �𝑆𝑆𝑉𝑉𝑉𝑉

N [𝑓𝑓S]
𝜏𝜏

. (50) 

5.2.2 When measuring the power of an incoherent source 
To measure power from a coherent source (i.e. one whose phase and amplitude stay fixed 
during one measurement), then you should measure the amplitude and convert it to a 
power. However, often you want to measure power from an incoherent source; for example 
in noise thermometry, intensity mapping, or an axion haloscope. In this case, it is the system 
noise itself that is what you want to quantify. 
If the noise is white, then the best possible uncertainty is given by the Dicke radiometer 
equation; it is 
 𝜎𝜎�𝑃𝑃� =

𝑃𝑃
�𝐵𝐵𝑓𝑓𝜏𝜏

 

= �𝐵𝐵𝑓𝑓
𝜏𝜏
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓𝑆𝑆]
𝑍𝑍0

  
(51) 

where 𝐵𝐵𝑓𝑓 is the bandwidth over which your power detector is sensitive, 𝜏𝜏 is the 
measurement time (assumed to satisfy 𝜏𝜏𝐵𝐵𝑓𝑓 ≫ 1), 𝑓𝑓𝑆𝑆 is the centre frequency at which you 
are detecting, and the power is obviously related to the spectral density by 
 

𝑃𝑃 = 𝐵𝐵𝑓𝑓
𝑆𝑆𝑉𝑉𝑉𝑉N

𝑍𝑍0
 (52) 

where 𝑆𝑆𝑉𝑉𝑉𝑉N  is the spectral density of the system noise. 

5.3 What is the smallest signal I can resolve? 
Suppose the signal you want to measure is an input-referred voltage of known amplitude, 
say 1 nV. Can you detect it? The answer is yes, if your noise is low enough and you can 
measure for long enough. 
We call a signal resolved if it is larger than the uncertainty in the measurement, i.e. 
 𝑉𝑉0 ≥  𝜎𝜎�𝑉𝑉0�. (53) 

When a signal is barely resolved, the signal-to-noise ratio will be unity, which means it will 
be larger than most of the random fluctuations due to noise15. A good way to quantify how 
hard a signal is to measure is therefore the minimum time 𝜏𝜏min (or, equivalently, the 
maximum bandwidth 𝐵𝐵𝑓𝑓,max) needed for it to become barely resolved. Using Eqs. (48) to 
(51), we can see that these are (approximating white noise near the relevant frequencies):  

• To resolve a constant voltage 𝑉𝑉0: 
 

𝜏𝜏 > 𝜏𝜏min =
𝑆𝑆𝑉𝑉𝑉𝑉N [0]

2𝑉𝑉02
 

𝐵𝐵𝑓𝑓 < 𝐵𝐵𝑓𝑓,max =
𝑉𝑉02

𝑆𝑆𝑉𝑉𝑉𝑉N [0]
 

(54) 

 
15 To be precise: if the noise is gaussian-distributed (which it usually is), then a barely resolved signal is larger 
than about 84% of measurement outcomes when there is zero signal. 
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• To resolve an oscillating voltage 𝑉𝑉0 cos 2𝜋𝜋𝑓𝑓S𝑡𝑡: 
 

𝜏𝜏 > 𝜏𝜏min =
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S]
𝑉𝑉02

 

𝐵𝐵𝑓𝑓 < 𝐵𝐵𝑓𝑓,max =
𝑉𝑉02

𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S]
 

(55) 

• To resolve an incoherent power 𝑃𝑃0: 
 

𝜏𝜏 > 𝜏𝜏min = 𝐵𝐵𝑓𝑓 �
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S]
𝑃𝑃0𝑍𝑍0

�
2

 (56) 

These minimum resolution times are useful benchmarks for comparing different 
experiments and deciding whether a particular measurement is feasible. A trace with each 
point at the resolution threshold will usually look OK – but for nice-looking data, you will 
want to measure for longer. 

6 Appendix A: Chains including a mixer 
Demodulating the signal by introducing mixers to the 
chain both scales the output noise and shifts it from one 
frequency to another. However, if you are careful about 
your definitions, you can still calculate and measure an 
effective gain for the chain, and therefore use Friis’ 
formula (Eq. (15)) as in the main text. 
 

6.1 What a mixer does 
If a signal 𝑉𝑉(𝑡𝑡) enters a mixer through its RF port while a local oscillator at approximately 
the specified level enters through the LO port (as in Figure 4), then the output at the IF port 
will be 
 

𝑈𝑈(𝑡𝑡) =
√2
𝐿𝐿C

cos(2𝜋𝜋 𝑓𝑓LO𝑡𝑡 + 𝜙𝜙)𝑉𝑉(𝑡𝑡) (57) 

where 𝑓𝑓LO and 𝜙𝜙 are the frequency and phase of the local oscillator. Here 𝐿𝐿C is the mixer 
conversion loss in voltage units16. If the spectral density of the voltage entering the mixer is 
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓], it follows from Eq. (57) that the spectral density at the output will be 
 𝑆𝑆𝑈𝑈𝑈𝑈N [𝑓𝑓] =

1
2𝐿𝐿C2

�𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓 − 𝑓𝑓LO] + 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓 + 𝑓𝑓LO]�. (58) 

6.2 Demodulation using a mixer 
Let’s call the signal at the RF port  
 𝑉𝑉(𝑡𝑡) = 𝐴𝐴 cos 2𝜋𝜋𝜋𝜋𝑆𝑆𝑡𝑡 + noise, (59) 

where the signal amplitude 𝐴𝐴 varies slowly17. Let’s also suppose that 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓] is roughly 
independent of frequency close to 𝑓𝑓S (which is usually true). Then we can calculate the 

 
16 Conversion loss is usually specified in dB units as 𝐿𝐿dB, and unfortunately this has two definitions: Pozar’s 
classic textbook3 uses 

 𝐿𝐿C = 10𝐿𝐿dB/10 (Pozar convention)  
 
while Minicircuits4 uses 

 𝐿𝐿C = √2 × 10𝐿𝐿dB/10 (Minicircuits convention)  
 
17 I’ve ignored a possible sine contribution to 𝑉𝑉(𝑡𝑡), which is equivalent to shifting the zero of 𝑡𝑡.  

 

Figure 4: Inputs and output of a mixer. 
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amplitude and gain of the mixer’s RF output for each of the two configurations used in 
demodulation (Figure 5): 

• In a homodyne measurement configuration, we: 
o Set 𝑓𝑓LO equal to the signal frequency 𝑓𝑓S. 
o Low-pass filter 𝑈𝑈(𝑡𝑡) to keep only the components  𝕌𝕌(𝑡𝑡) near zero frequency. 

Applying Eqs. (57) and (58) shows that the output is 
 𝕌𝕌 =

cos𝜙𝜙
√2𝐿𝐿C

𝐴𝐴 (60) 

plus noise with spectral density (within the post-filter bandwidth) 
 𝑆𝑆𝕌𝕌𝕌𝕌N [𝑓𝑓] ≈ 𝑆𝑆𝕌𝕌𝕌𝕌N [0] 

=
1
𝐿𝐿C2
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓LO] (61) 

where the first line follows because we assumed that 𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓] is roughly flat, and the 
second follows from Eq. (58), using that 𝑆𝑆[−𝑓𝑓] ≡ 𝑆𝑆[𝑓𝑓]. 

• In a heterodyne measurement configuration, we: 
o Before the mixer, pre-filter 𝑉𝑉(𝑡𝑡) around the signal frequency 𝑓𝑓𝑆𝑆. 
o Set 𝑓𝑓LO to be different from 𝑓𝑓𝑆𝑆. 
o Band-pass filter 𝑈𝑈(𝑡𝑡) around |𝑓𝑓S − 𝑓𝑓LO|. 

The filtered output is then 
 𝕌𝕌(𝑡𝑡) =

1
√2𝐿𝐿C

cos(2𝜋𝜋(𝑓𝑓LO − 𝑓𝑓S)𝑡𝑡 + 𝜙𝜙)𝐴𝐴 (62) 

plus noise with spectral density (within the post-filter bandwidth) 
 𝑆𝑆𝕌𝕌𝕌𝕌N [𝑓𝑓] ≈ 𝑆𝑆𝕌𝕌𝕌𝕌N [𝑓𝑓S − 𝑓𝑓LO] 

=
1

2𝐿𝐿C2
�𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S]+𝑆𝑆𝑉𝑉𝑉𝑉N [2𝑓𝑓LO − 𝑓𝑓S]� 

≈
1

2𝐿𝐿𝐶𝐶2
𝑆𝑆𝑉𝑉𝑉𝑉N [𝑓𝑓S]. 

(63) 

where the last step follows because the pre-filter has removed noise components 
away from 𝑓𝑓𝑆𝑆. 

6.3 Friis’ law including a demodulation stage 
The results of Section 6.2 mean is that we can apply Friis’ formula to a chain containing a 
mixer, provided that we define the gain to be 
 𝐺𝐺mixer ≡

𝕌𝕌rms
𝑉𝑉rms

. (64) 

By doing this, we have generalised Eq. (4); we are treating a demodulator – for the purpose 
of noise calculations - as an amplifier that also changes the frequency. 
With this definition, the gain and added noise of an ideal mixer are 
 

𝐺𝐺mixer =

⎩
⎪
⎨

⎪
⎧ cos𝜙𝜙

𝐿𝐿C
      (homodyne configuration)

1
√2 𝐿𝐿C

       (heterodyne configuration)
 (65) 
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 𝑇𝑇N,A = � tan2 𝜙𝜙 × 𝑇𝑇N@in       (homodyne configuration)

0                                (heterodyne configuration) (66) 

where 𝑇𝑇N@in is the noise temperature at the mixer’s RF input, referred to that input. 
The conventional choice is to set 𝜙𝜙 = 0, in which case this simplifies to 
 

𝐺𝐺mixer =

⎩
⎪
⎨

⎪
⎧ 1
𝐿𝐿C

           (homodyne configuration)

1
√2 𝐿𝐿C

       (heterodyne configuration)
 (67) 

and 
 𝑇𝑇N,A = 0. (68) 

Equations (67) and (68) are the values to use in Friis’ equation. 

6.4 Hot to measure mixer conversion loss 
If you want to measure your conversion loss, for example to check the value in the 
datasheet, this is the procedure: 

1. Connect a signal generator to the LO port. Set the signal generator to your desired 
LO frequency and power specified in the datasheet (e.g. 13 dBm for a Level 13 
mixer). 

2. If you plan to operate the mixer in homodyne configuration: 
a. Connect a low-pass filter and a voltmeter to the IF port. 
b. Connect a terminator to the RF port and measure the voltmeter reading 𝕌𝕌0. 

This is the output offset. 
c. Instead of the terminator, connect a second signal generator to the RF port 

and clock it from the 10 MHz reference of the first one. Set its frequency to 
𝑓𝑓LO, and its power 𝑃𝑃RF well below the LO power. This generator supplies 
𝑉𝑉(𝑡𝑡). 

d. Adjust the phase of the first signal generator (you can use a phase shifter, but 
if so you must account for its insertion loss when setting the LO level) until 𝕌𝕌 
is maximal. 

e. Calculate Δ𝕌𝕌 ≡ 𝕌𝕌− 𝕌𝕌0. If your voltmeter has input impedance much greater 
than 50 Ω, then divide Δ𝕌𝕌 by 2, to account for the impedance mismatch of 
Eq. (17). 

f. The conversion loss is then 
 

𝐿𝐿C =
𝐴𝐴

√2 Δ𝕌𝕌
=
�𝑍𝑍0𝑃𝑃RF
Δ𝕌𝕌

 (69) 

3. If you plan to operate the mixer in heterodyne configuration: 
a. Connect a second generator to the RF port. Set its frequency close to your 

expected 𝑓𝑓𝑆𝑆, and its power 𝑃𝑃RF well below the LO power. This generator 
supplies 𝑉𝑉(𝑡𝑡). 

 

Figure 5: Homodyne and heterodyne demodulation configurations. 
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b. Connect a spectrum analyser to the IF port. A peak should appear at 
frequency |𝑓𝑓S − 𝑓𝑓LO|. 

c. Call the power in this peak 𝑃𝑃IF. The conversion loss is then 
 

𝐿𝐿C = �
𝑃𝑃RF

2 𝑃𝑃IF
 (70) 
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