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GENERALIZED METHODS OF MOMENTS

Overview:

• General Setup

• Estimation

• Large Sample Properties

• Which Ŵ? – Efficient Estimation

• Multiple Equation GMM
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Motivation:

• Endogeneity Bias (e.g. Demand & Supply example, Measurement Errors, Hayashi (2000) Ch. 3.1).

• A regressor is endogenous if it is not predetermined , i.e. E[εtXt] 6= 0, i.e the orthogonality

assumption does not hold.

• Implication: biased & inconsistent estimators (obvious from Asymptotic Theory Lecture).

• Instrumental Variables : A predetermined variable that is correlated with the endogenous regressor.
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General Setup:

Assumptions:

i) The equation to be estimated is Yt = X ′

tβ + εt, t = 1, . . . , T, β ∈ R
k (Linearity)

ii) Let Zt denote the ℓ dimensional vector of instruments and let Wt be the unique and nonconstant

elements of {Yt, Xt, Zt}. Wt is a stationary ergodic process. (Ergodic Stationarity)

iii) All ℓ variables in Zt are predetermined in the sense that they are orthogonal to the current error term,

i.e. E[Ztεt] = 0 for all t. It is often written as E[Zt(Yt −X ′

tβ)] = 0 or E[gt] = 0 with

gt ≡ g(Wt, β) ≡ Ztεt. (Orthogonality Conditions)

iv) The ℓ× k matrix E[ZtX
′

t] is of full column rank (and the cross moments exist and are finite). We

denote that matrix by Σzx. [Remark: We need that the instruments and the endogenous regressors

are correlated].(Rank Condition for Identification)
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v) Since rk(Σzx) < k if ℓ < k a necessary condition is that ℓ ≥ k, i.e. number of orthogonality

conditions ≥ number of parameters. (Order Condition for Identification)

– over-identification : rank condition satisfied and ℓ > k

– exact identification : rank condition satisfied and ℓ = k

– under-identification : ℓ < k

vi) gt is a martingale difference sequence. The ℓ× ℓ matrix E[gtg
′

t] is non-singular. (Assumptions for

Asymptotic Normality)
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Remark:

i) (Rank Condition for Identification) : In general:

The k dim. vector β is a solution to E[gt] = E[g(Wt, β̃)] = 0ℓ×1. Identification , however, refers to

β being the only solution.

E[gt] = 0

Σzxβ̃ = σzy, with σzy ≡ E[ZtYt]

A sufficient and necessary condition for a unique solution is that Σzx is a full column rank.

ii) (Asymptotic Normality) : We follow the outline in Hayashi (2000), Ch. 3.2., which corresponds to the

Central Limit Theorem for Martingale Difference Sequences covered in the Asymptotic Theory

Lecture. The other cases covered there follow trivially and similarly.
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Estimation:
Principle: Choose the parameter estimate of β so that the sample moments corresponding to the

population moments E[gt] are zero.

Let

gT (β̃) ≡
1

T

T
∑

t=1

gt(Wt, β̃)

denote the sample mean of the orthogonality conditions (sample moments function) for an arbitrary

estimator β̃.

We obtain:

gT (β̃) =
1

T

T
∑

t=1

Zt(Yt −X ′

tβ̃)

=
1

T

T
∑

t=1

ZtYt −
(

1

T

T
∑

t=1

ZtX
′

t

)

β̃
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Denoting szy ≡ 1
T

∑T
t=1 ZtYt and Szx ≡ 1

T

∑T
t=1 ZtX

′

t and using gT (β̃) = 0, we obtain

Szxβ̃ = szy

which is a system of ℓ linear equations in k unknowns, derived from the sample moment conditions.
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Case I: Method of Moments: ℓ = k

The system is exactly identified and Σzx is square and invertible. Since Szx converges to Σzx with

probability one it follows that Szx is invertible for T large enough with probability one and we obtain

β̂IV = S−1
zx szy =

(

1

T

T
∑

t=1

ZtX
′

t

)−1

1

T

T
∑

t=1

ZtYt,

the instrumental variable estimator of β.
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Case II: Generalized Method of Moments (GMM): ℓ > k

The system is over-identified and we cannot choose β̃ so that gT (β̃) is zero, but we can choose β̃ so that

gT (β̃) is as close to zero as possible.

Close: We understand close with respect to a quadratic form distance measure between two vectors a

and b given by (a− b)′Ŵ (a− b), where Ŵ is a symmetric positive definite weighting matrix, defining

the distance.
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Definition: GMM estimator:

Let Ŵ be an ℓ× ℓ symmetric, positive definite matrix, that may depend on the sample size T and is such

that Ŵ
p−→ W , where W is symmetric and positive definite. The GMM estimator of β is given by

β̂ ≡ β̂(Ŵ ) ≡ argmin
β̃

J(β̃, Ŵ ),

with

J(β̃, Ŵ ) ≡ TgT (β̃)
′ŴgT (β̃).
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In the linear regression model case gT (β̃)
′ is linear in β̃ and the objective function is quadratic in β̃, so

that

J(β̃, Ŵ ) ≡ T (szy − Szxβ̃)
′Ŵ (szy − Szxβ̃),

the first order conditions w.r.t. β̃ then become

S′

zxŴszy = S′

zxŴSzxβ̃.

Since Szx is of full column rank (for T large enough a.s.) and Ŵ is positive definite, the k × k matrix

S′

zxŴSzx is nonsingular and thus

β̂ =
(

S′

zxŴSzx

)

−1

S′

zxŴszy.

If ℓ = k Szx is a square matrix and we obtain the IV estimator.
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Sampling Error

Multiplying Yt = X ′

tβ + εt from the left by Zt and taking averages yields

szy = Szxβ̃ + ḡ

where ḡ = 1
T

∑T
t=1 Ztεt =

1
T

∑T
t=1 gt(Wt, β) = gT (β). Thus, we get

β̂ − β =
(

S′

zxŴSzx

)

−1

S′

zxŴ ḡ.
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Large-Sample Properties:
The GMM estimator is denoted by β̂T = β̂ = β̂(Ŵ ) for any choice of Ŵ and the asymptotic theory

stated below is valid for an arbitrary choice of Ŵ .

Proposition: Asymptotic Behaviour

• Under assumptions i) to iv): β̂T
p−→ β (Consistency) .

• If in addition vi) holds: (Asymptotic Normality)

D
−1/2
T

√
T (β̂T − β)

asy∼ N(0, I),

with

DT ≡ (Σ′

zxWΣzx)
−1Σ′

zxWVWΣzx(Σ
′

zxWΣzx)
−1,

where Σzx = E[ZtX
′

t], V = E[gtg
′

t] = E[ε2tZtZ
′

t], W = plim Ŵ

• If in addition there exists a matrix V̂T positive semi-definite and symmetric such that V̂T − V
p−→ 0a.

aFor this to hold we need the assumption vii): E[(ZtiXtj)
2] < ∞ for all i = 1, . . . , ℓ and j = 1, . . . , k. (Fourth Moments

Condition)
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Then D̂T −D
p−→ 0, with

D̂T ≡ (S′

zxŴSzx)
−1S′

zxŴ V̂T ŴSzx(S
′

zxŴSzx)
−1.

• With i), ii) and E[XtX
′

t] existing and finite we obtain T−1
∑T

t=1 ε̂
2
t

p−→ E[ε2t ], where

ε̂t = Yt −X ′

tβ̂ (Consistent Estimation of Error Covariance)
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Robust: t-ratio and Wald F-statistics

Under assumptions i) to vi) and a consistent estimator V̂T of V and D̂ ≡ D̂T given as above we obtain

• Under the null hypothesis βj = r,

tj =

√
T (β̂j − r)
√

D̂jj

=
β̂j − r

ŜEj

asy∼ N(0, 1),

with ŜEj ≡
√

T−1D̂jj (robust standard errors).

• Under the null hypothesis Rβ = r, (m linear restrictions)

F = T · (Rβ̂ − r)′(RD̂R)−1(Rβ̂ − r)
asy∼ χ2

(m)

• Under the null hypothesis a(β) = 0, (m non-linear restrictions), with A(β) the matrix of first

derivatives of a(β)

F = T · a(β̂)′(A(β̂)D̂A(β̂))−1a(β̂)
asy∼ χ2

(m)
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Which Ŵ? – Efficient Estimation

Proposition: Optimal Choice of Ŵ

A lower bound for the asymptotic variance DT = DT (Ŵ ) of the GMM estimator is given by

(Σ′

zxV
−1Σ′

zx)
−1

and it is achieved if Ŵ is chosen such that W (= plim Ŵ ) = V −1. Hence, we get:

(Σ′

zxWΣzx)
−1Σ′

zxWVWΣzx(Σ
′

zxWΣzx)
−1 ≥ (Σ′

zxV
−1Σ′

zx)
−1.
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Since V is usually unknown, we estimate V by V̂ = V̂T and call that GMM estimator the efficient GMM

estimator for which we replaced the weighting matrix Ŵ by V̂ −1 and we obtain:

β̂ =
(

S′

zxV̂
−1Szx

)

−1

S′

zxV̂
−1szy,

DT (V̂
−1) = (Σ′

zxV
−1Σzx)

−1,

D̂T (V̂
−1) = (S′

zxV̂
−1Szx)

−1.
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Two Step Efficient GMM

• Step 1: Choose a matrix Ŵ and compute the GMM estimator β̂(Ŵ ). Standard choices for Ŵ are the

Ŵ = I or Ŵ = S−1
zz (yields the two step LS estimator). Calculate the residuals ε̂t = Yt −X ′

tβ̂

and compute a consistent estimator V̂ of V .

• Step 2: Compute the GMM estimator β̂(V̂ −1).
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Testing Overidentifying Restrictions

Hansen’s test of overidentifying restrictions

Suppose there is a consistent estimator V̂ of V . Under assumptions i) to vi) & [ vii) ]

J(β̃, V̂ −1) ≡ TgT (β̃)
′V̂ −1gT (β̃)

asy∼ χ2
(ℓ−k).

Remark:

• Specification Test testing whether all assumptions i) to vii) are satisfied. If the test statistic is very high,

it means that indication that the orthogonality conditions or the other assumptions or both do not hold!

Only if we can rule out failure of the other assumptions we can interpret the test as a “test for

endogeneity of the instruments”.
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Testing a subset of instruments for orthogonality

Suppose assumptions i) to vi) & [ vii) ] hold. Let Z1t be a subset (ℓ1 dimensional) of the instrument vector

Zt. We also assume that the rank condition for identification also holds for this subset of instruments. Let

J denote the usual J-statistic based on Zt and J1 the J-statistic derived only using Z1t. Then, for any

consistent estimators V̂ and V̂11 of V and V11, with V11 the associated submatrix in V , we obtain

J − J1
asy∼ χ2

(ℓ−ℓ1)
.
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Likelihood Ratio Type Tests

H0 : a(β) = 0, (m non-linear restrictions)

Let β̂R denote the restricted efficient GMM estimator obtain by:

β̂R ≡ β̂R(V̂
−1) ≡ argmin

β̃

J(β̃, V̂ −1), s.t. H0,

then

LR ≡ J(β̂R, V̂
−1)− J(β̂, V̂ −1)

asy∼ χ2
(m)

Remarks:

• The Wald and the LR statistics are asymptotically equivalent, i) the distributions are the same and ii)

their numerical difference converges in probability to zero.

• if H0 : a(β) = 0 is linear then the statistics are numerically equal.

• The Wald statistic is not invariant to the way a(β) = 0 is written while the LR statistic is (small sample

problem).

• Computation of LR requires a nonlinear optimization program.
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• We don’t need the efficiency presumption Ŵ = V −1 for the Wald statistic.

• The same estimate of V should be used in both J’s in the LR statistic.
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Conditional Homoscedasticity

Under the assumption of conditional homoscedasticity V = σ2Σzz and the efficient GMM estimator

becomes the 2SLS one by choosing Ŵ = Szz or Ŵ = σ̂2Szz :

β̂(Szz) = (S′

zxSzzSzx)
−1

S′

zxSzzszy.

It can also be obtained as the limited information ML estimator.
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Multiple Equation GMM:
Hayashi, F (2000), Ch. 4.2

We consider now:

Yth = X ′

thβh + εth, for t = 1, . . . , T ; h = 1, . . . , p

with Xth the kh dimensional vector of regressors, and Zth the ℓh dimensional vector of instruments.

Orthogonality conditions: E[gt] = 0 with

gt ≡











Zt1εt1
...

Ztpεtp











(
∑

ℓh×1)

Weighting Matrix: Ŵ of dimension
∑

ℓh ×∑ ℓh.
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Asymptotic Covariance V :

V = E[gtg
′

t] =











E[εt1εt1Zt1Z
′

t1] · · · E[εt1εtpZt1Z
′

tp]
...

...

E[εtpεt1ZtpZ
′

t1] · · · E[εtpεtpZtpZ
′

tp]











Remark: Assumptions: The same assumptions apply as in the single equation GMM section, now

“equation-by-equation”wise. The assumptions about ergodicity and stationarity are strengthened to

ergodicity and stationarity of the joint processes, where applicable.
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Single vs. Multiple Equation GMM

Idea: Compute the GMM estimator of βh equation-by-equation. What changes?

Answer: The weighting matrix: Ŵ . The multiple eq. GMM Ŵ can be constructed as the stacked single

equation Ŵ s, but this is a special case.

And ... in general there will be an impact on the efficiency of the estimator.

But:

• If all equations are exactly identified, then equation-by-equation GMM and multiple GMM are

numerical the same. (IV case).

• If at least one equation is over-identified, but the equations are unrelated then the efficient

equation-by-equation GMM and the efficient multiple GMM estimator are asymptotically equivalent.

Unrelated:

E[εthεth′ZthZ
′

th′ ] = 0 for all h 6= h′(= 1, . . . , p)
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Special Cases:

Conditional Homoscedasticity: E[εthεth′ |ZthZ
′

th′ ] = σhh′

Full-Information Instrumental Variable Efficient (FIVE):

V̂ =











σ̂11Ê[Zt1Z
′

t1] · · · σ̂1pÊ[Zt1Z
′

tp]
...

...

σ̂p1Ê[ZtpZ
′

t1] · · · σ̂ppÊ[ZtpZ
′

tp]











,

with σ̂hh′ = T−1
∑T

t=1 ε̂thε̂th′ and Ê[ZthZ
′

th′ ] = T−1
∑T

t=1 ZthZ
′

th′ (dim: ℓh × ℓh′ ). As the initial

estimator usually the 2SLS one is used.
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If in addition the same instruments Zt(= Z1t = · · · = Zpt) are used

Three Stage Least Squares (3SLS):

V̂ = Σ̂⊗ Ê[ZtZ
′

t]

with Σ̂ = T−1
∑T

t=1 ε̂tε̂
′

t (dim: p× p)

and Ê[ZtZ
′

t] = T−1
∑T

t=1 ZtZ
′

t (dim: ℓ× ℓ)

It holds that:

V̂ −1 = Σ̂−1 ⊗ Ê[ZtZ
′

t]
−1

As the initial estimator usually the 2SLS one is used. Moreover, we obtain now:
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β̂3SLS =











σ̂11Â11 · · · σ̂1pÂ1p

...
...

σ̂p1Âp1 · · · σ̂ppÂpp











−1









σ̂11ĉ11 · · · σ̂1pĉ1p
...

...

σ̂p1ĉp1 · · · σ̂ppĉpp











with

Âhh′ ≡ Ê[XthZ
′

t]Ê[ZtZ
′

t]
−1Ê[ZtX

′

th′ ]

ĉhh′ ≡ Ê[XthZ
′

t]Ê[ZtZ
′

t]
−1Ê[ZtYth′ ]
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If in addition the regressors are a subset of the instruments , i.e Zt =
⋃

h{Xth} or E[Xthεth′ ] = 0,

which means there are a priori predetermined and satisfy cross-orthogonality conditions, then:

Seemingly Unrelated Regression (SUR):

Âhh′ ≡ Ê[XthX
′

th′ ]

ĉhh′ ≡ Ê[XthYth′ ]

OLS vs. SUR

• all equations are exactly identified, then the regressors are the same for all equations and the

equation-by-equation OLS and SUR are numerical the same.

• If at least one equation is over-identified, then SUR is more efficient unless the equations are

unrelated.
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Outlook/Issues:

• Panel Data Models

• Simulation Based Approaches

• Weak Instruments or Weak Identification

• Misspecification
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