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Abstract

We propose the Maximal rAnge-rEturn Divergence (MAED) statistic, defined as the maximal dis-

tance between the price range and the absolute return on a fixed time interval. The statistic can be

easily constructed when high-frequency transaction data is available. The MAED statistic summa-

rizes the inward movement of price paths, which contains substantially different information to the

candlestick data (i.e., high, low, open and close price in an interval) that mainly capture the out-

ward movement of prices. We propose a spot volatility estimator based on the MAED-augmented

candlestick data and establish its asymptotic properties in the fixed-k asymptotic setting with dis-

crete price observations. Our analytical and simulation results show that our MAED-augmented

estimator can reduce the asymptotic variance of the optimal candlestick-based spot volatility esti-

mator by as much as 40%. In the presence of extreme price movements such as a jump or a drift

burst, the MAED statistic has very different behaviour from the candlestick-based statistics. This

allows us to monitor and detect explosive directional price movements in real-time.
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1 Introduction

The recent availability of high-quality tick-by-tick asset transaction data has led to many important

developments in financial econometrics. The abundant intraday observations from asset price trajec-

tories allow us to construct various intraday statistics, which can be used to make inference about the

volatility of the asset, either in the form of the integrated variance over some fixed interval (e.g., 1

trading day), or the spot volatility at a fixed point in time. Most of the existing methods are built

from two fundamental statistics: return — the difference of open and close log-prices of an interval,

and range — the difference between the high and low log-prices of an interval. For example, in terms

of integrated variance estimation, the widely applied realized volatility (RV) estimator popularized

by Andersen et al. (1999, 2003); Barndorff-Nielsen and Shephard (2002) is constructed by summing

the intraday squared returns sampled over a trading day. The realized range estimator of Christensen

and Podolskij (2007) has the same structure as RV, but sums the squared intraday ranges instead.

Andersen et al. (2008) consider duration-based estimators sampled using return and range. As to spot

volatility estimation,return-based spot volatility estimators include Foster and Nelson (1996), Kris-

tensen (2010), Zu and Peter Boswijk (2014), and Bollerslev et al. (2021), among others. Recently, Li

et al. (2022) and Bollerslev et al. (2022) develop spot volatility estimators as optimal combinations of

intraday return and ranges, which are shown to have much better accuracy than a return-based spot

volatility estimator.

The statistical advantage of range over return for volatility estimation is well-studied in the

literature. In the simple setting of a Brownian motion with a constant variance1, Parkinson (1980)

and Garman and Klass (1980) point out the statistical superiority of range-based over return-based

variance estimators and demonstrate that an optimal combination of high, low, open and close prices

can further improve the estimation accuracy. Intuitively, while return summarizes price variation from

the endpoints of an interval and discards the entire price path with in the interval, range describes

price extrema on the interval which extracts additional information from the price path and improves

the precision of the variance measurements. These results lay the foundation for the high-frequency

range-based estimators in Christensen and Podolskij (2007); Li et al. (2022), as high-frequency prices

are locally Gaussian in short intervals under the standard assumption that asset prices are semi-

martingales.

Despite these theoretical advances on return- and range-based volatility estimators, there are

two major problems with using only return and range. First, both return and range summarize only

‘outward’ price movements, which expand the high and low prices in an interval. The ‘inward’ price

1See also Beckers (1983); Rogers and Satchell (1991); Yang and Zhang (2000); Meilijson (2011) for further developments

of the HLOC estimators under more general conditions.
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movements, which drive the price trajectory towards the open price from an extremum, are largely

ignored2 by return and range. This leads to a substantial information loss, as the inward price path

contains as much information about volatility as the outward price path by a reflection principle

argument. Second, return and range are heavily influenced by the presence of explosive outward price

movements such as jumps and drift bursts3, which are salient features of empirical asset prices that

can introduce substantial bias to the return- and range-based volatility estimates.

To retrieve the information embedded in the inward price movements, we propose the Maximal

rAnge-rEturn Divergence (MAED) statistic, defined as the maximal difference between the running

range and running absolute return of the price path in an interval. The precise definition and additional

ideas are discussed in Section 2. The MAED statistic is simple and fast to construct whenever intraday

price observations are available, and it conveys information about price volatility from the inward price

paths which is not measured by return or range. Moreover, it is by construction highly robust to jumps

and drift bursts as the inward price movements are unaffected by the magnitude of price extrema.

Exploiting these interesting features of the novel MAED statistic discussed above, the paper con-

tributes to the literature by developing two significant MAED-based innovations. First, in the fixed-k

asymptotic framework of Bollerslev et al. (2021), we proposed the Optimal MAED-candlesticK (OMK)

spot volatility estimator, which is in essence a variance-optimal and unbiased linear combination of

MAED, return and absolute range. We establish its asymptotic properties using the coupling tech-

nique of Bollerslev et al. (2021) and show that it nests the Optimal candlesticK (OK) estimator of

Li et al. (2022), a state-of-the-art spot volatility estimator. Importantly, the OMK estimator can in

theory reduce the asymptotic variance of the OK estimator by more than 40% with an about 25%

tighter confidence interval. This result clearly reflects the importance of MAED in spot volatility

estimation, which adds substantial information to the linear span of the return and range data and

greatly improves the precision of the OK estimator.

Second, we show that a spot volatility estimator based solely on MAED, referred to as the MAED

estimator, is only slightly worse than the OK estimator in terms of asymptotic variance. Nevertheless

it is robust to the presence of a jump with unknown size or location, and behave very differently to

the OK estimator in the presence of drift bursts. Therefore, the MAED estimator provides a simple

jump-robust spot volatility estimates. More importantly, this feature allows us to construct a simple

pivotal test for the detection of jumps or drift bursts in real time by directly comparing the OK

estimator with the MAED estimator, which adds a unique method to the literature of local jump and

2For example, the range statistic is invariant to different inward price trajectories after reaching the (global) high and low

prices of an interval. The return statistic becomes smaller when the close price approaches the open price of an interval,

regardless of the size of the inward price movements.
3Jumps in asset prices are discussed in e.g., Barndorff-Nielsen and Shephard (2004); Huang and Tauchen (2005), and

Andersen et al. (2021); Christensen et al. (2022) document drift bursts and the implications to volatility estimation.
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drift burst detection (Lee and Mykland, 2007, 2012; Laurent and Shi, 2020; Christensen et al., 2022).

The paper also makes a non-trivial theoretical contribution to the fixed-k asymptotic framework

by analysing the impact of discrete price observations and measurement errors, which are imperfections

in empirical prices that are not fully addressed in Bollerslev et al. (2021); Li et al. (2022); Bollerslev

et al. (2022). Specifically, we quantify the bias of the OMK estimator due to discretely observed prices

and propose a simple bias correction based on a discretely observed Brownian motion. We also show

that the impact of the measurement errors can be mitigated by adopting the pre-averaging method

of Jacod et al. (2009). Our simulation and empirical analyses demonstrate that these modifications

are indeed necessary for valid statistical inference when we observe price discretely with measurement

errors, instead of a continuous price path.

The remainder of the paper is organized as follows. Section 2 gives the definition of the MAED

statistic and discusses its basic properties. Main theoretical results of the paper is presented in Sec-

tion 3. Simulation studies and empirical illustrations of the theoretical results can be found in Section 4

and Section 5, respectively. Section 6 concludes.

2 The MAED Statistic

We start with the definition of the MAED statistic, which is the main innovation of this paper:

Definition 2.1 (The MAED Statistic). Let P = (Pt)t≥0 denote some stochastic process understood as

the log-price of a financial asset, and consider an arbitrary interval [s, t]. Let rh and wh denote the

running return and range of P from time s till time h ∈ [s, t]:

rh := Ph − Ps, wh := sup
h1,h2∈[s,h]

|Ph1 − Ph2 |. (2.1)

The Maximal rAnge-rEturn Divergence (MAED) m of P on [s, t] is defined as follows:

m := sup
h∈[s,t]

mh, mh := wh − |rh|. (2.2)

For notational convenience, we shall also use the following notation to denote the full return and

range of P associated with the interval [s, t], which are widely used in the estimation of price variation:

r := rt = Pt − Ps, w := wt = sup
h1,h2∈[s,t]

|Ph1 − Ph2 |. (2.3)

By construction, m is the maximal distance between the running range wh and the running absolute

return |rh| of P on [s, t], hence the name. The following properties of m can be easily proved, which

holds for any P and [s, t]:

Properties of MAED

1. 0 ≤ m ≤ w.
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2. m = 0 iff P is monotonically non-increasing or non-decreasing on [s, t].

3. m = w iff ∃h∗ ∈ (t∗, t] such that rh∗ = 0, where t∗ = argsuph∈[s,t] |Ph − P0|.

4. Define P ′ = µ + σP for some fixed µ ∈ R and σ ∈ R \ {0}, and let m′ denote the MAED of P ′

on [s, t]. Then it holds that m′ = |σ|m.

By Property 1, we learn that m is dominated by w, so its moments always exist as long as all moments

of w exist. Property 2 is very special, as it suggests that m does not summarize information from

unidirectional price movements, which is otherwise reflected in w and |r|. Property 3 reveals when

m = w holds, that is, when the Ph only lies on one side of Ps and rh∗ = 0 at some point h∗ after

Ph reaches its extremum on [s, t]. Property 4 suggests that m is translation invariant and scales

linearly with P , which follows from the linearity and symmetry of the absolute return and the range

functionals. This property is ideal for the purpose of estimating the scale parameter σ, which is

exploited throughout this paper.

To provide more intuitions on what information is captured by the MAED, we present a graphical

illustration of the construction of m from a path of P in Fig. 2.1.
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Figure 2.1: Plot of a path of the process Ph = 20 + Wh in the upper panel and the associated processes wh, |rh| and mh in the

lower panel for h ∈ [0, 1], where W is a standard Brownian motion. In the upper panel, the blue and red arrows point out outward

and inward price movements, respectively. The price paths are simulated with 105 Euler steps. Phigh and Plow refer to the high

and low price on [0, 1], respectively.

In the upper panel of Fig. 2.1, we present an example price path on the interval [0, 1] and indicate

the times when we obtain the maximum and minimum price as well as the MAED. Observe that as

the price moves ‘outward’ relative to P0 which is indicated by the two blue arrows, the running range

of P , plotted by wh in the lower panel of the figure, increases gradually towards the value of w and

remains constant afterwards. Intuitively, the range statistic w only summarizes how much P expands
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outwards relative to the starting point P0 on [0, 1], while any price movements between Phigh and Plow

afterwards are completely discarded. Similarly, r only summarizes a single outward price movement

from time 0 to time 1 and discards all the information in between.

Crucially, both w and |r| do not capture the ‘inward’ price movements, which are price movements

from the local extrema towards P0. We point out some large inward price movements by red arrows

in Fig. 2.1. These inward price movements does not alter the extrema of P on [0, 1] and are ignored

by w and |r|. The lower panel of Fig. 2.1 shows that m intuitively captures the largest inward price

movement. Intuitively, whenever Ph extends outwards by refreshing its extrema, the increment in wh

cancels exactly with the increment in |rh|, so mh does not increase as Ph moves outwards. On the

contrary, when Ph moves inwards from a local extrema, wh stays constant while |rh| decreases as Ph

moves towards P0, driving mh upwards. As a result, m effectively4 captures the largest inward price

movements on the interval [0, 1].

The joint distribution of the MAED, the range, and the absolute return of a standard Brown-

ian motion W̃ on [0, 1] plays a central role in the theoretical results of this paper. For notational

convenience, we shall denote:

η̃ := sup
t∈[0,1]

{ sup
h1,h2∈[0,t]

|W̃h1 − W̃h2 | − |W̃t|}, ξ̃1 := sup
t1,t2∈[0,1]

|W̃t1 − W̃t2 |, ξ̃2 := |W̃1|.

The densities and moments of ξ̃1 and ξ̃2 are known analytically (see e.g., Feller (1951)), and we can

easily simulate the density of η̃ and the associated moments. We plot the density functions of the three

quantities in Fig. 2.2. The figure clearly shows that the mode of the distribution of η̃ is approximately

1 with a smaller dispersion when compared with those of ξ̃1 and ξ̃2.
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Figure 2.2: Density functions of the MAED (η̃), the range (ξ̃1) and the absolute return (ξ̃2) of a standard Brownian motion

W̃ on [0, 1]. The density function of η̃ is simulated based on W̃ with 108 increments. The density functions of ξ̃1 and ξ̃2 are

f1(x) = 8
∑∞
k=1(−1)k−1k2φ(kx) and f2(x) = 2φ(x), respectively, where x ∈ R+ and φ(x) is the density function of a standard

normal distribution.

To further understand the properties of the three distributions, we present the first two moments

4To be precise, the MAED of P on [0, 1] equals |Phigh − P0| ∧ |Plow − P0| plus the largest inward price movement.
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of η̃, ξ̃1 and ξ̃2. The moments related to η̃ are computed via the simulation in Section C, while other

moments have closed forms that can be found in Garman and Klass (1980); Meilijson (2011). Define

µk := E[η̃k], νk := E[ξ̃k1 ], ψk := E[ξ̃k2 ], γ0 := E[ξ̃1ξ̃2], γ1 := E[η̃ξ̃1], γ2 := E[η̃ξ̃2], we have:

µ1 ≈ 1.106, ν1 =
√

8/π ≈ 1.596, ψ1 =
√

2/π ≈ 0.798,

µ2 ≈ 1.303, ν2 = 4 ln 2 ≈ 2.773, ψ2 = 1,

γ0 = 3/2, γ1 ≈ 0.0091, γ2 ≈ −0.0755.

(2.4)

The above moments imply the following variances and correlations:

Var[η̃] ≈ 0.0798, Var[ξ̃1] ≈ 0.226, Var[ξ̃2] ≈ 0.363,

Corr(η̃, ξ̃1) ≈ 0.0677, Corr(η̃, ξ̃2) ≈ −0.443, Corr(ξ̃1, ξ̃2) ≈ 0.791.

We therefore finds that: (1) η̃ has a significantly smaller variance than ξ̃1 and ξ̃2; (2) η̃ is very

weakly positively correlated with ξ̃1, and is negatively correlated with ξ̃2. These results suggest that

η̃ measures the variation of W with higher precision in terms of a more concentrated distribution and

smaller variance when compared to ξ̃1 and ξ̃2. The correlations among the variables further confirm

that the inward price movements measured by η̃ is substantially different from the outward price

movements measured by ξ̃1 and ξ̃2.

Concluding from above, we see that the MAED measures the inward price movements of P on an

interval, which differs distinctively from the return and the range statistics that only reflect outward

price movements. In this paper, we discuss two important applications of the MAED : (1) the inward

price movements can be more informative than the outward price movements on the variation of price.

Therefore, we expect that the precision of volatility estimators based on an optimal combination of w

and r, such as Garman and Klass (1980); Li et al. (2022), can be significantly improved when we add

m to the combination; (2) by construction, w and r capture the full magnitudes extreme outward price

movements such as jumps or drift bursts (Christensen et al., 2022). On the contrary, m is naturally

much more robust as it measures inward price movements from local extrema, which are less affected

by jumps or drift bursts that generate local extrema. This feature allows us to detect jumps or drift

bursts by comparing the relative magnitudes of m with w or r. Finally, we note that the MAED is

very simple to construct in practice. For example, in MATLAB, with the observations of P on [s, t]

stored in the vector P, the associated MAED m can be computed efficiently by the following single line

of code:

m = max(cummax(P)-cummin(P)-abs(P-P(1)));
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3 Theoretical Results

3.1 Econometric Setting

In this section, we formulate the econometric setting of the theoretical results in this paper. We

consider the problem of spot volatility estimator in a fixed-k framework, following Bollerslev et al.

(2021) and Li et al. (2022). On a filtered probability space (Ω,F , (Ft)t≥0,P), we assume that the

log-price of an asset, denoted by P = (Pt)t≥0, follows an Itô-semimartingale of the following form:

Pt = P0 +
∫ t

0 bsds+
∫ t

0 σsdWs + Jt, (3.1)

where bt and σt are optional processes known as the drift and the spot volatility of Pt, and Wt is

the standard Brownian motion. The J process is a pure jump process driven by a random Poisson

measure. We are mainly interested in estimating the spot volatility σt at an arbitrary time t ∈ [0, T ]

for some fixed T > 0 representing the time span of the complete dataset.

We require the following mild regularity condition for the fixed-k inference theory:

Assumption 3.1. For P defined in Eq. (3.1), we assume that there exists an increasing and diverging

sequence of stopping times (Tm)m≥1 and a sequence of constants (Km)m≥1 such that the following

conditions hold for each m ≥ 1: (1) for some r ∈ [0, 2), |bt|+|σt|+|σt|−1+
∫

(|x|r∧1)Ft(dx) ≤ Km for all

t ∈ [0, Tm], where Ft is the spot Lèvy measure of J ; (2) for some constant κ > 0, E[|σt∧Tm−σs∧Tm |2] ≤

Km|t− s|2κ for all t, s ∈ [0, T ].

As discussed in Bollerslev et al. (2021) and Li et al. (2022), Assumption 3.1 is highly flexible and

allows for many well-established asset price features leverage effect, intraday diurnal pattern and long-

memory in volatility, and jumps in prices or volatility. Specifically, condition (1) in Assumption 3.1

imposes local boundedness to component processes of P , and condition (2) requires σt to be locally

κ-Hölder continuous under the L2-norm.

Given a realization of P , an estimator of σt is typically constructed over asymptotically shrinking

blocks around t, see for example Foster and Nelson (1996), Kristensen (2010), and Chapter 13 in Jacod

and Protter (2012). For a generic index n→∞, one can choose a sequence of number of blocks kn, a

vanishing sequence of sampling interval length ∆n → 0, and consider the block t ∈ [s, s+ kn∆n]. An

important insight from Bollerslev et al. (2021) is that one can make valid inference for estimators of

σt by using a fixed k instead of a diverging kn. In the fixed-k setting, the estimator is inconsistent

with a non-standard limiting distribution depending on the statistic we sample from the price process,

but the limiting distribution is usually known or can be easily simulated, allowing us to construct

confidence bounds easily. As the asymptotic analysis is analogous for any fixed k, without much loss

of generality we shall fix k = 1 in this paper to simplify notations and exposition.
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Under the setting above, to construct an estimator of σt, we consider an interval In = [s, s+ ∆n]

such that t ∈ In. We impose the following assumption about what is observed from In:

Assumption 3.2. For all intervals of the form In = [s, s + ∆n], we observe the MAED m, the return

r, and the range w of P on In.

Assumption 3.2 effectively assumes that P is observed continuously on In so that m and w

associated with P can be computed, which is also adopted by Bollerslev et al. (2021); Li et al. (2022).

In practice, for a fixed interval In, the assumption holds approximately true when high quality tick-

by-tick data for P is available on In, but is less appropriate when P is observed sparsely with large

measurement errors. We shall firstly establish theoretical results based on the ideal Assumption 3.2

and discuss the implications to these results when Assumption 3.2 is violated.

3.2 The Optimal MAED-Candlestick Estimator of Spot Volatility

In this section, we show that the MAED can be used to obtain more precise volatility measurements

when compared to volatility estimators based on the return and the range statistics. Our benchmark

estimator is the Optimal-candlesticK (OK) estimator of Li et al. (2022), which is the best linear

unbiased estimator (BLUE) of σt based on the optimal linear combination of |r| and w of P observed

on In. By adding m to the combination, we propose the Optimal MAED-candlesticK (OMK) estimator

of σt, which is a natural generalization of the OK estimator when m, w and r are all available. To

this end, we first define the MAED-candlestick vector c := (m,w, |r|)′ and denote the 3-by-3 diagonal

matrix Θ := diag(µ−1
1 , ν−1

1 , ψ−1
1 ). Pick any weight vector λ := (λm, λw, λr)

′ such that λ′ι = 1 where

ι := (1, 1, 1)′, the OMK estimator is defined as:

σ̂t(λ) := ∆−1/2
n λ′Θc. (3.2)

From the construction of σ̂t(λ), it is not immediate that the estimator is even positive for a particular

choice of λ, which is an essential property for a spot volatility estimator. The following result shows

that non-negativeness of the OMK estimator can be guaranteed by choosing an appropriate λ:

Proposition 3.1. Under Assumptions 3.1 and 3.2, construct σ̂t(λ) on an arbitrary interval In, then

Prob(σ̂t(λ) ≥ 0) = 1 if λ ∈ Λ, where:

Λ := {λ ∈ R3 : λ′ι = 1,λ′Θι ≥ max{0,λ′Θe1,λ
′Θe3}}, (3.3)

in which {ek}k∈{1,2,3} is the set of (3-by-1) standard basis vectors of the R3 space.

As one can easily verify if some λ belongs to Λ by verifying the conditions in Eq. (3.3), in this

paper we shall restrict ourselves to the choices of weights λ ∈ Λ to guarantee non-negative spot

volatility estimates. We derive the asymptotic properties of the OMK estimator in Theorem 3.1:
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Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold true. For any t ∈ In = [s, s+∆n] and weight

vector λ ∈ Λ, it holds as ∆n → 0 that:

σ̂t(λ)

σt
= λ′Θz + op(1), (3.4)

where z = (η, ξ1, ξ2)′ in which η, ξ1, ξ2 are the MAED, the range, and the absolute return of the scaled

Brownian motion (∆
−1/2
n Wt)t∈In, respectively.

Remark 3.1. Eq. (3.4) is a coupling result in the spirit of Bollerslev et al. (2021); Li et al. (2022), which

exploits the fact that P behaves locally like the scaled Brownian motion σtW on In as ∆n → 0. By

the scaling law of Brownian motion, we find (η, ξ1, ξ2)
d
= (η̃, ξ̃1, ξ̃2), which implies that E[Θz] = ι and

hence E[λ′Θz] = 1. It should be clear now that the matrix Θ ensures the asymptotic unbiasedness of

σ̂t(λ). Similar to the estimators in Bollerslev et al. (2021) and Li et al. (2022), σ̂t(λ) is not consistent

as the limiting variable λ′Θz = Op(1). However, Theorem 3.1 provides a simple construction of the

confidence bounds which allows for valid statistical inference. For a significance level α%, define the

(1 − α)% Highest Density Interval (HDI) of a continuous random variable X as the shortest interval

`α(X) := [Bα−(X), Bα+(X)] that satisfy:

Prob(X−1 ∈ `α(X)) = 1− α. (3.5)

Based on Theorem 3.1 and given the estimate σ̂t(λ), the (1 − α)% confidence interval of σt can

be constructed as [Bα−(λ′Θz)σ̂t(λ), Bα+(λ′Θz)σ̂t(λ)], whose validity can be seen from a standard

continuous mapping argument:

lim
∆n→0

Prob(σt ∈ [Bα−(λ′Θz)σ̂t(λ), Bα+(λ′Θz)σ̂t(λ)])

= Prob((λ′Θz)−1 ∈ `α(λ′Θz)) = 1− α,
(3.6)

in which the critical values Bα±(λ′Θz) can be computed based on the simulated distribution of z. The

width of the (1− α)% HDI of λ′Θz, namely Bα+(λ)−Bα−(λ), is a pivotal quantity that determines

the width of the confidence interval of σ̂t(λ). This provides a direct measure for the precision of σ̂t(λ)

with different choices of λ.

Although Theorem 3.1 holds for arbitrary choices of λ ∈ Λ, we are only interested in a few

important special cases. Following the discussion in Li et al. (2022), an optimal choice λ∗ can be

constructed by minimizing Var[λ′Θz] subject to the asymptotic unbiasedness constraint λ′ι = 1,

which yields the BLUE estimator σ̂t(λ
∗) among the class of estimators {σ̂t(λ) : λ′ι = 1}. Define the

variance-covariance matrix of the limiting variable Θz as:

Σ := Var[Θz] =


µ2
µ21

γ1
µ1ν1

γ2
µ1ψ1

• ν2
ν21

γ0
ν1ψ1

• • ψ2

ψ2
1

− ιι′ ≈


0.0650 0.0049 −0.0857

• 0.0888 0.1781

• • 0.5708

 , (3.7)
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which follows from Eq. (2.4), the optimal choice is the solution to the following standard global

minimum variance portfolio (GMVP) problem in the finance literature:

λ∗ := argmin
{λ:λ′ι=1}

λ′Σλ =
Σ−1ι

ι′Σ−1ι
≈ (0.832,−0.030, 0.198)′. (3.8)

It is interesting to see that the optimal weight assigned to w is almost zero, so w contribute little

to the optimal linear combination. The minimized variance factor of the OMK estimator is thus

Var[λ∗′Θz] = (ι′Σ−1ι)−1 ≈ 0.0368. This should be compared to the variance factor for the optimal

OK estimator in Li et al. (2022) which is Var[λo′Θz] ≈ 0.0625, where λo solves the following restricted

GMVP problem5:

λo := argmin
{λ:λ′ι=1,λ′e1=0}

λ′Σλ ≈ (0, 1.294,−0.294)′. (3.9)

One should verify that σ̂t(λ
o) is identical to the optimal OK estimator in Li et al. (2022). Importantly,

we see that Var[λ∗′Θz]/Var[λo′Θz] ≈ 0.592, which implies that the optimal OMK estimator shrinks

the asymptotic variance of the optimal OK estimator by an impressive 40.8%! In fact, even if we

construct the spot volatility estimator based solely on m by choosing λ = e1, the corresponding

variance factor is Var[e′1Θz] ≈ 0.065, which is only slightly larger than the optimal OK estimator but

is considerably smaller than a spot volatility estimator constructed solely from w or |r|.

To simplify notation, we write:

σ̂t,OMK := σ̂t(λ
∗), σ̂t,OK := σ̂t(λ

o), σ̂t,MAED := σ̂t(e1),

which are referred to as the (optimal) OMK estimator, the (optimal) OK estimator, and the MAED

estimator, respectively. One should also verify that all three estimators above are almost surely non-

negative by Proposition 3.1. To further compare the precision of the three estimators, in Fig. 3.1 we

plot their limiting distributions and the widths of the corresponding 90% HDIs. The figure clearly

shows that: (1) the distributions of (λo′Θz)−1 and (e′1Θz)−1 are almost identical, while the width

of the 90% HDI is slightly wider for (e′1Θz)−1. This is in line with the finding that σ̂t,MAED has a

slightly higher variance than σ̂t,OK ; (2) the distribution of (λ∗′Θz)−1 is more concentrated than the

other two statistics with a substantially tighter 90% HDI.

To quantify the precision gain of the OMK estimator in terms of the HDI width, we present

numerical values and the critical values of the HDIs for the three densities in Table 3.1 with various

choices of α below. The table shows that, for all choices of α, the HDI widths for λo′Θz and e′1Θz are

very close. For λ∗′Θz, we observe an about 25% reduction of the HDI widths at every α compared to

that of λo′Θz. Note that although our simulation setting is different to that in Li et al. (2022), the

results of λo′Θz in Table 3.1 is consistent with those in Table 1 of Li et al. (2022) up to 2 digits after

the decimal point, which proves the credibility of our simulation results.

5It is worth noting that the solution to this problem has a closed from λo = ((4 ln 2 − 2)−1, 1 − (4 ln 2 − 2)−1)′ with the

minimized variance Var[λo′Θz] = π
2

+ π
16(1−2 ln 2)

− 1, which can be derived from the analytical moments in Eq. (2.4).
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Figure 3.1: Plot of the simulated densities of (λ∗′Θz)−1, (λo′Θz)−1, and (e′1Θz)−1, and the corresponding critical values of the

90% HDIs. The densities are simulated based on 107 simulated Brownian paths with an Euler step size of 10−8. For each density,

the critical values for the 90% HDI, namely B0.1± (λ′Θz), are plotted as vertical lines that are of the same style as the density line.

X λo′Θz λ∗′Θz e′1Θz

α Lower Upper Width Lower Upper Width Lower Upper Width

0.5 0.791 1.132 0.341 0.856 1.115 0.260 0.793 1.135 0.342

0.4 0.765 1.192 0.427 0.829 1.153 0.324 0.762 1.191 0.429

0.3 0.729 1.256 0.527 0.799 1.199 0.400 0.722 1.254 0.532

0.2 0.687 1.342 0.655 0.762 1.258 0.496 0.679 1.343 0.664

0.1 0.635 1.483 0.848 0.713 1.352 0.640 0.626 1.496 0.870

Table 3.1: Simulated critical values and widths for the highest density intervals of λo′Θz, λ∗′Θz and e′1Θz with different choices

of α. The densities are simulated based on 107 simulated Brownian paths with an Euler step size of 10−8. The Lower and Upper

columns correspond to Bα− (X) and Bα+ (X) as defined in Eq. (3.5) with X defined in the first row of the table, and the Width

columns display the value of Bα+ (X)−Bα− (X).
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To sum up, the comparisons of variances and HDI widths among σ̂t,OMK , σ̂t,OK and σ̂t,MAED

provide strong evidence supporting the superiority of σ̂t,OMK over σ̂t,OK , which shows the rich infor-

mation about σt embedded in m. Indeed, σ̂t,MAED performs almost as good as σ̂t,OK , which suggests

that m alone is almost as informative about σt as w and |r| combined. Importantly, as m mainly

measures the inward price movements which are largely ignored by w and |r|, the addition of m to the

candlestick data leads to a significant precision gain in the estimation of σt. Moreover, in Appendix B,

we show that the MAED statistic can improve the asymptotic variance of an optimal candlestick-based

spot variance estimator by about 41% in a similar fashion as the discussion in Remark 3.1. These

results clearly demonstrate the significance of MAED in estimating spot volatility and variance.

3.3 Jump-Robustness of the MAED Estimator and A Spot Test For Jumps

The asymptotic results in Theorem 3.1 hold under Assumption 3.1 which allows for Poisson-type jumps

in P , implying that the OMK estimator is robust to jumps. However, as discussed in footnote 8 of Li

et al. (2022), such jump robustness is purely probabilistic, as it exploits the fact that the probability

of observing one jump in In is of the order Op(∆n) which vanishes in the limit. Bollerslev et al. (2021);

Li et al. (2022) suggest both a truncation technique in the spirit of Mancini (2009) or a bipower-type

extension similar to Barndorff-Nielsen and Shephard (2004) to guard against the possible occurrence

of a jump in In. Both approaches require non-trivial modification to the original estimator, and the

finite sample jump-robustness of the two approaches are not reported.

Instead of pursuing these jump-robust modifications to the OMK estimator, we show that the

MAED estimator, σ̂t,MAED, is jump-robust in its original form:

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold true. Consider the jump-augmented process

P ◦t = Pt+J1l {t≥τ} where τ ∈ (s, s+∆n) is an arbitrary (n-dependent) jump time and J is any random

variable strictly bounded away from zero. Define σ̂◦t,OK and σ̂◦t,MAED as the counterpart of σ̂t,OK and

σ̂t,MAED constructed from P ◦ instead of P on In, then it holds that:

|σ̂◦t,OK − σ̂t,OK |
σt

= Op(∆
−1/2
n ),

|σ̂◦t,MAED − σ̂t,MAED|
σt

≤ 3ξ1

µ1
+ op(1). (3.10)

Remark 3.2. Theorem 3.2 shows that the OK estimator explodes in the presence of a jump in the limit,

which formally justifies the necessity of jump-robust modifications for the OK estimator as discussed

in Li et al. (2022). On the contrary, the presence of a jump only introduces a stochastic bias to the

σ̂t,MAED estimator whose size is bounded above by 3ξ1/µ1, which is of order Op(1). This implies

that σ̂t,MAED does not explode in the limit, but it has an asymptotic relative absolute bias bounded

above by 3ν1/µ1 ≈ 4.328. We stress that this result holds path-wise and independent of the size,

direction or location of J , so no knowledge about the jump is needed for the result to be applicable.

Consequently, the bias upper bound of σ̂t,MAED is far from sharp. We analyse the actual finite sample
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bias of σ̂t,MAED via simulation in Fig. 4.3, which suggests that the relative bias of σ̂t,MAED is much

smaller than the upper bound suggests.

Remark 3.3. We caution that σ̂t,MAED is not robust to multiple jumps with opposite directions on

In. Intuitively, two jumps that (partially) offset each other are inward price movements which are

captured by the MAED and cause σ̂t,MAED to explode in the limit. This could be caused by erroneous

price entries that are quickly corrected in the dataset, which should be eliminated by appropriate

data filtering rules such as Barndorff-Nielsen et al. (2009) before applying the estimator. As jumps are

found to be infrequent in equity prices (Huang and Tauchen, 2005; Christensen et al., 2014), robustness

to a single jump in a short interval (e.g., up to 10 minutes) should be sufficient for the purpose of

jump-robust spot volatility estimation.

The jump-robustness of σ̂t,MAED leads naturally to a spot jump test. Among many possible

specifications, we consider the following log-ratio statistic:

Corollary 3.1. For some price process P observed on In, construct the following S-test statistic as the

log-ratio of the OK and the MAED estimator:

St := ln
σ̂t,OK

σ̂t,MAED
= ln

λo′Θc

e′1Θc
. (3.11)

Under the null hypothesis that P follows Assumptions 3.1 and 3.2, it holds that:

St = ln
λo′Θz

e′1Θz
+ op(1). (3.12)

Under the alternative hypothesis that P ◦ in Theorem 3.2 is the underlying price process, we have

St
p−→∞.

Notice that the S-test statistic is pivotal as the limiting distribution is independent of the unknown

spot volatility σt. This is much easier to construct than the local jump tests considered in e.g., Lee

and Mykland (2007, 2012). Despite the fixed-k setting, the S-test has correct asymptotic size under

the null and is consistent under the alternative. For the purpose of jump detection, one can compare

St to the critical values of a right-tailed test, which can be retrieved from the simulated density of z.

The simulated 10%, 5% and 1% critical values are 0.375, 0.535 and 0.847, respectively (see Appendix

C for details of this simulation).

3.4 MAED and Drift Bursts

Recently, Christensen et al. (2022) propose a drift-burst model for P which allows the drift and

spot volatility processes bt and σt to explode locally, violating Assumption 3.1. This model provides

an econometric framework to analyse ‘gradual jumps’ in the observed stock prices, i.e., a gradual

directional movement of stock prices occurring in a very short window. Andersen et al. (2021) show
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that the presence of drift bursts can lead to non-trivial finite sample bias when measuring the integrated

variance of P which need to be correct. As the MAED is robust to extreme outward price movements,

it is interesting to study to behaviour of the MAED in the presence of a drift burst, which is the

purpose of this section.

To this end, we introduce a drift-burst alternative price process in the spirit of Christensen et al.

(2022):

Assumption 3.3. On the interval In = [s, s+ ∆n] ⊂ [0, T ], the drift-burst alternative price process P db

is given by:

P dbt = Ps + bs
∫ t
s(u− s)

−αdu+ σs
∫ t
s(u− s)

−βdWu, t ∈ [s, s+ ∆n],

where bs and σs satisfy Assumption 3.1, and the constants α ∈ (1/2, 1) and β ∈ (0, 1/2).

The above assumption states that the starting point of the interval In is the drift burst time,

τdb, in the terminology of Christensen et al. (2022). Effectively, In is a short time window right after

the drift burst at time τdb when the price reverts back to the pre-burst level. This is an important

design as it ensures that P db explodes in a unidirectional manner, which we exploit in this section.

Alternatively, one can also consider the interval [s−∆n, s] where the drift burst occurs at the end of

the interval. If τdb /∈ In, then there is no drift burst in the limit and Theorem 3.1 continuous to hold.

Assumption 3.3 implies that as ∆n → 0, both the drift and the spot volatility of P dbs+∆n
may

explode. The parameters α and β control for the explosion rates of the drift and the volatility on In,

respectively. Christensen et al. (2022) shows that when 0 < α − β < 1/2, there is no local arbitrage

opportunity, while local arbitrage opportunity exists when α − β > 1/2. We shall refer to the case

α > 1/2 and β = 0 as the pure drift burst case. Similarly, the case α = 0 and β > 0 is called the pure

volatility burst case, and a drift-volatility burst corresponds to the case α > 1/2 and β > 0.

The OMK estimator has the following asymptotic properties when constructed from the drift-burst

augmented price process in Assumption 3.3:

Proposition 3.2. Suppose 3.2 hold true and construct the OMK estimators constructed from P db on In

as specified in Assumption 3.3. For any λ ∈ Λ as ∆n → 0, if 0 < α− β < 1/2, then:

∆β
n

σ̂t(λ)

σs

d−→ λ′Θz̆√
1− 2β

, (3.13)

where z̆ is defined analogously as z in Theorem 3.1, but is constructed from a Brownian motion (Bt)t∈In

independent of W . If α− β > 1/2, then it holds that:

∆β
nσ̂t,OK = Op(∆

1/2−α+β
n ), ∆β

nσ̂t,MAED
p−→ 0. (3.14)

Proposition 3.2 shows that the OMK estimator behaves very differently depending on the presence

of local arbitrage opportunity. When 0 < α− β < 1/2, σ̂t(λ) still converges to a limiting distribution
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identical to that in Theorem 3.1 (since z̆
d
= z by construction), but with additional scaling factors ∆β

n

and
√

1− 2β due to the volatility burst. Intuitively, in this case the volatility burst dominates the

drift burst, thus the drift-burst augmented price is equivalent in distribution to a price process without

a drift burst when rescaled by the exploding volatility in the limit, which gives the same limiting

distribution as in Theorem 3.1. However, when α − β > 1/2, Eq. (3.14) suggests that σ̂t,MAED is

biased towards zero while σ̂t,OK explodes in the limit, after adjust for the volatility burst. In this case,

the drift burst dominates the volatility burst, and the rescaled price process converges to a monotonic

explosive drift process that drives σ̂t,MAED towards zero.

Unfortunately, as in practice we do not know the value of β, none of the results in Proposition 3.2

is informative in practice. Nevertheless, Proposition 3.2 directly implies the following result for the

S-test statistic as the unknown scaling factors cancel in the log-ratio:

St
d−→ ln

λo′Θz̆

e′1Θz̆
, 0 < α− β < 1/2,

St
p−→∞, α− β > 1/2.

(3.15)

Notice that in the no arbitrage case (0 < α − β < 1/2), the asymptotic distribution of St is equal in

distribution to the setting without a drift burst in Corollary 3.1. This shows that St has no power

in the no arbitrage case, but it can consistently detect a drift burst with local arbitrage opportunity

(α − β > 1/2), which is in line with the testing procedure proposed in Christensen et al. (2022).

However, as pointed out by Christensen et al. (2022), drift bursts tend to generate local directional

outward price movements regardless of whether local arbitrage opportunity exists, which has a larger

impact on the OK estimator than the MAED estimator. Consequently, our simulation results in

Fig. 4.5 show that the S-test still has non-trivial power against the presence of a drift burst in the

non-arbitrage case.

3.5 Discretely Observed Prices

Assumption 3.2 plays a central role in determining the limiting distribution of the OMK estimator

and the S-test statistic. However, empirically we only observe a finite number of price records on

the interval In, so Assumption 3.2 is violated. Suppose that the price process is not observed with

measurement error, the discretely observed price records lead to underestimations of the range w and

the MAED m on In. This not only biases the candlestick and MAED-based estimators downwards,

but also distorts the asymptotic distributions and the confidence intervals for the estimators. In this

section, we quantify the discretization bias and propose an explicit and easy-to-implement correction

method.

To examine the impact of discrete observations formally, we need to make an assumption about

the price observations in the interval [s, s + ∆n] as ∆n → 0. In particular, we are interested in a
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scenario where the number of observations are fixed for any subinterval [s, s+∆n] ⊂ [0, T ] in the limit,

which naturally requires an increasing number of observations globally on [0, T ], a setting similar to

the infill asymptotics in the classic realized volatility literature (see e.g. Jacod (1997); Andersen et al.

(2001); Barndorff-Nielsen and Shephard (2002)).

Borrowing ideas from the infill asymptotics literature, we make the following assumption about

the observation times of P on [0, T ]:

Assumption 3.4. On (Ω,F , (Ft)t≥0,P), let α = (αt) denote a semimartingale which satisfies the same

conditions as P in Assumption 3.1. For each n, P is observed at a sequence of strictly increasing

stopping times 0 ≤ τn,0 < τn,1 < . . . < τn,Nn ≤ T , where Nn is the total number of observations on

[0, T ]. We assume that:

(1) For every t < Tm, we have 1/ᾱ ≤ αt− ≤ ᾱ for some strictly positive constant ᾱ.

(2) If (Fnt ) is the smallest filtration containing (Ft) and w.r.t. which all {τn,i}i=1,2,... are stopping

times, then for each i, the variable ∆τn,i := τn,i− τn,i−1 is, conditionally on Fnτn,i−1
, independent

of F∞ :=
∨
t>0Ft.

(3) In restriction to the set {τn,i < Tm}, there exists a strictly positive and decreasing sequence

δn → 0 and some constant κ > 0 such that for each i, |∆τn,i − δn/ατn,i−1 | = Op(δ
1+κ
n ).

Remark 3.4. The above assumption is a special case of the more general setting in Assumption (O)

of Jacod et al. (2017). In detail, the process αt controls for the ‘spot’ observation arrival rate at

time t, which is assumed to be bounded above and away from zero by condition (1). Condition

(2) is a conditional exogeneity assumption of the observation times which ensures that P is still a

semimartingale relative to the filtration (Fnt ) with the same dynamics. Condition (3) allows the

sampling times to be time-varying and random, but requires the observation times to be locally

equidistant in a vanishing window of order δn. In the context of the examples given in Jacod et al.

(2017), this condition is trivially satisfied by the regular or the time-changed regular sampling scheme,

but is not satisfied by the modulated Poisson or the predictably-modulated random walk sampling

scheme which has |∆τn,i− δn/ατn,i−1 | = Op(δn). In this case, the asymptotic distribution of the OMK

estimator depends on the distribution of the sampling times which can in theory be an arbitrary

positive distribution. Therefore, to derive a feasible asymptotic theory for the OMK estimator in the

discrete case, we shall stick with condition (3).

Under Assumption 3.4, it suffices to consider the time-deformed process (P (i))i=0:Nn where P (i) :=

Pτn,i . Also, we assume that the interval of interest In = [s, s + ∆n] contains the grid of discrete

observations I
(q)
n := {is, is+1, . . . is+q} for some fixed q and is ≤ Nn−q such that In = [τn,is , τn,is+q].
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This design ensures that we observe exactly q + 1 price observations in the limit6. In this case,

the length of the interval ∆n = τn,is+q − τn,is is implicitly determined by the choice of q and the

(unobserved) sequence δn which represents the ‘average mesh size’. One can show (see Eq. (A.44))

that by Assumption 3.4(3), we have ∆n = Op(δn) for any fixed q, so In indeed shrinks as n → ∞,

which is similar to the continuous case in the previous section, but with a possibly random interval

length.

For the interval In and the observed prices (P (i))
i∈I(q)n

, the associated MAED, range and return

statistics reduce to:

m = max
1≤j≤q

{w(j)− |r(j)|}, w = w(q), r = r(q), (3.16)

where w(j) := max1≤i,i′≤j |P (is + i)− P (is + i′)| and r(j) := P (is + j)− P (is) for j ∈ {1, . . . , q} are

the discrete running range and return of P on the grid of observations, respectively. As two special

cases, when q = 1, Pr(m = 0) = Pr(w = |r|) = 1 as only the return information is available and there

is no ‘inward’ price movement. When q = 2, it is trivial to show that m+ |r| = w, so the MAED does

not add any information to the candlestick data.

To construct the OMK estimator in the discrete case (which we refer to as the discrete OMK

estimator), we introduce some further notations related to a discretely observed Brownian motion.

For some fixed q > 1, consider the standard Brownian motion W̃ on [0, 1] observed equidistantly with

q intervals, i.e., (W̃ (q)(i))i=0:q, where W̃ (q)(i) := W̃i/q denotes the ith equidistant observation from W̃ .

Denote the associated discrete MAED and range statistics of (W̃ (q)(i))i=0:q as η̃(q) and ξ̃
(q)
1 , and note

that the absolute return statistic ξ̃2 is not affected by the discrete observations. The corresponding

moments of these discrete statistics are defined similarly in Eq. (2.4) with the additional superscript

(q), e.g., µ
(q)
1 := E[η̃(q)]. For any q > 1, these moments can be easily simulated from discretely

observed Brownian motions, and the moments presented in Eq. (2.4) can be considered as the limits

of their discrete counterparts as q →∞. In Table C.1 of Appendix C, we present the simulated values

of the discrete moments and a polynomial approximation inspired by the asymptotic expansion in

Proposition 3 of Asmussen et al. (1995). This allows us to compute the discrete moments for any

choice of q without additional simulation. As will be shown, these discrete moments play the same

role as their continuous counterparts in the construction and the asymptotic properties of the OMK

estimator in the continuous case.

We are now ready to construct the discrete OMK estimator. Start with the MAED-candlestick

vector c constructed from (P (i))
i∈I(q)n

, the discrete OMK estimator is defined as:

σ̂
(q)
t (λ) := ∆−1/2

n λ′Θ(q)c, (3.17)

6Clearly, adding leading and trailing intervals without observations to In does not change the statistics associated with

In, thus we can restrict ourselves to consider In which both starts and ends with an observation.
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where Θ(q) := diag((µ
(q)
1 )−1, (ν

(q)
1 )−1, ψ−1

1 ) is the discrete counterpart of Θ that ensures the asymptotic

unbiasedness of the discrete OMK estimator. To guarantee the non-negativity of σ̂
(q)
t (λ), we require

λ ∈ Λ(q), where:

Λ(q) := {λ ∈ R3 : λ′ι = 1,λ′Θ(q)ι ≥ max{0,λ′Θ(q)e1,λ
′Θ(q)e3}}, (3.18)

which can be proved in the same manner as Proposition 3.1 in the continuous case. The following

result characterizes the asymptotic distribution of σ̂
(q)
t (λ):

Proposition 3.3. Suppose Assumption 3.1 and Assumption 3.4 hold true. For any fixed integer q > 1,

λ ∈ Λ(q) and t ∈ In, it holds as δn → 0 that:

σ̂
(q)
t (λ)

σt
= λ′Θ(q)z(q) + op(1), (3.19)

where z(q) := (η(q), ξ
(q)
1 , ξ2)′, in which η(q) and ξ

(q)
1 are the MAED and the range of the scaled equidis-

tantly observed Brownian motion (∆
−1/2
n W (q)(i))i=0:q such that W (q)(i) := Wτn,is+i∆n/q is the ith

equidistant observation of W on In.

Remark 3.5. Analogous to the discussion in Remark 3.1, it holds by the Brownian scaling law that

(η(q), ξ
(q)
1 , ξ2)

d
= (η̃(q), ξ̃

(q)
1 , ξ̃2), which implies that σ̂

(q)
t (λ) is asymptotically unbiased for all λ ∈ Λ(q). It

is worth noting that the distribution of the limiting variable z(q) comes from the equidistantly observed

Brownian motion (∆
−1/2
n W (q)(i))i=0:q which does not depend on the (possibly random) observation

times of P . This coupling result is due to Assumption 3.4 which ensures that the observation times on

In converges to a deterministic equidistant grid as ∆n. As the distribution of z(q) can be simulated for

any fixed q to an arbitrary precision, Proposition 3.3 allows us to construct valid confidence intervals

for σ̂
(q)
t (λ) in the same manner as described in Remark 3.1.

Analogous to Eqs. (3.8) and (3.9), we can construct the optimal discrete OMK and OK estimator

by choosing the variance-minimizing weight vectors λ∗ and λo for any fixed q > 1 based on the discrete

variance-covariance matrix Σ(q), whose inputs can be computed from Table C.1 for any choice of q.

The notation σ̂
(q)
t,OMK , σ̂

(q)
t,OK and σ̂

(q)
t,MAED are understood as the discrete counterparts of σ̂t,OMK ,

σ̂t,OK and σ̂t,MAED, respectively. It should also be clear that σ̂
(q)
t,OMK is BLUE among the class of

estimators {σ̂(q)
t (λ) : λ′ι = 1}. We present the optimal OK and OMK weights as a function of q in

Fig. 3.2. The figure shows that both λ∗ and λo converge to their corresponding limiting values when

q → ∞ as expected, and the speed of convergence for λ∗ appears to be slower than that of λo. For

small q (e.g., q ≤ 50), the optimal weight vectors are very different from their limiting versions based

on the continuous assumption, which reveals the impact of sparsely observed prices.

We proceed to examine the precision of σ̂
(q)
t,OMK and σ̂

(q)
t,MAED relative to σ̂

(q)
t,OK across various

choices of q. To this end, we compute the simulated asymptotic variances and 90% HDIs of the
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Figure 3.2: Plot of the optimal weight vectors λ∗ = (λ∗m, λ
∗
w, λ

∗
r)′ for the discrete OMK estimator and λo = (0, λow, λ

o
r)
′ for the

discrete OK estimator with q ≤ 500. The optimal weight vectors are computed based on the simulated/approximated moments in

Table C.1. The y-axis tick labels show the limiting values of the weights as q →∞.

limiting variables of the three estimators and benchmark them to the values of σ̂
(q)
t,OK for selective

choices of qs, which are presented in Table 3.2.

Table 3.2 shows that, as q → ∞, both the asymptotic variances and the 90% HDI widths for all

three estimators decrease monotonically and converge to the corresponding value in the continuous

case. Comparing the performance of the OK to the OMK estimator, we find that: (1) both the

asymptotic variance and the 90% HDI width of the OMK estimator are superior to those of the OK

estimator, starting from q = 3; (2) with q ≥ 20, the discrete OMK estimator starts to outperform the

continuous OK estimator in terms of both the asymptotic variance and the 90% HDI width; (3) for

any q ≥ 100, the asymptotic variance (resp. 90% HDI width) reduction of the OMK estimator over the

OK estimator is about 40% (resp. 24%) already, which is close to the precision gain in the continuous

case.

For the performance of the MAED estimator, its asymptotic variance and the 90% HDI width

converge slower to the limiting values as q →∞. We note that the MAED estimator is undefined for

q = 1 since η(1) ≡ 0, and its 90% HDI width for q ≤ 4 is infinite due to the non-trivial probability7 of

the event η(q) ≡ 0. In general, the MAED estimator for small q performs rather poorly when compared

to the OK estimator. With q ≥ 100, the performance of the MAED estimator becomes somewhat more

reliable.

Concluding from above, Table 3.2 clearly demonstrates that the OMK estimator dominates the

OK estimator for any choice of q, and the precision gain increases with q. Therefore, when ultra high-

frequency data is available, the OMK estimator is always preferred over the OK estimator, regardless

of the choice of q. With about 100 observations in the interval In, the OMK estimator can reduce

the variance of the OK estimator by about 40% and the 90% HDI width by about 24%. The HDI

7It is easy to show that Prob(η(q) = 0) = 21−q, which is the probability that a q step Gaussian random walk is monotonic.
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Asymptotic Variance 90% HDI Width

q OMK OK MAED OMK
OK

MAED
OK

OMK OK MAED OMK
OK

MAED
OK

1 0.5 0.5 – 1 – 6.148 6.148 – 1 –

2 0.284 0.284 2.327 1 8.203 2.450 2.450 ∞ 1 ∞
3 0.191 0.206 1.025 0.928 4.977 1.744 1.827 ∞ 0.955 ∞
4 0.148 0.171 0.635 0.863 3.710 1.448 1.581 ∞ 0.915 ∞
5 0.123 0.152 0.458 0.814 3.016 1.284 1.450 7.317 0.886 5.048

6 0.108 0.139 0.360 0.777 2.589 1.180 1.367 3.681 0.863 2.694

7 0.0977 0.130 0.301 0.749 2.306 1.108 1.309 2.748 0.847 2.099

8 0.0902 0.124 0.261 0.729 2.109 1.056 1.267 2.315 0.834 1.828

9 0.0845 0.119 0.233 0.712 1.967 1.016 1.233 2.063 0.824 1.673

10 0.0801 0.115 0.213 0.699 1.858 0.985 1.206 1.899 0.816 1.574

20 0.0614 0.0953 0.139 0.644 1.461 0.846 1.079 1.385 0.784 1.284

30 0.0553 0.0881 0.119 0.628 1.351 0.798 1.030 1.253 0.775 1.217

40 0.0521 0.0840 0.109 0.620 1.296 0.772 1.002 1.186 0.770 1.183

50 0.0500 0.0814 0.103 0.615 1.261 0.755 0.984 1.144 0.768 1.162

60 0.0486 0.0796 0.0985 0.611 1.237 0.744 0.971 1.114 0.766 1.147

70 0.0475 0.0782 0.0953 0.608 1.219 0.735 0.961 1.092 0.764 1.136

80 0.0467 0.0770 0.0929 0.606 1.205 0.728 0.954 1.075 0.763 1.127

90 0.0460 0.0761 0.0909 0.605 1.194 0.722 0.947 1.061 0.762 1.120

100 0.0455 0.0754 0.0893 0.604 1.185 0.717 0.942 1.049 0.762 1.114

500 0.0403 0.0680 0.0747 0.593 1.098 0.672 0.889 0.944 0.756 1.062

1000 0.0392 0.0663 0.0717 0.591 1.080 0.662 0.877 0.921 0.755 1.051

10000 0.0375 0.0637 0.0670 0.589 1.052 0.647 0.857 0.886 0.754 1.033

100000 0.0370 0.0629 0.0656 0.589 1.043 0.642 0.851 0.875 0.754 1.028

∞ 0.0368 0.0625 0.0650 0.589 1.039 0.640 0.848 0.870 0.754 1.026

Table 3.2: Simulated asymptotic variances and the 90% HDI widths of the limiting variables of σ̂
(q)
t,OMK , σ̂

(q)
t,OK and σ̂

(q)
t,MAED,

namely λ∗′Θ(q)z(q), λo′Θ(q)z(q) and e′1Θ
(q)z(q), with various choices of q. The simulation setting is described in Appendix C.

The columns with heading OMK
OK

and MAED
OK

present the ratio of the corresponding statistics to those of the OK estimator.
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widths with different confidence levels are also reduced by a similar amount, which can be seen from

Table C.2 in Appendix C. As to the MAED estimator, we do not recommend to use it as a standalone

spot volatility estimator due to its inferior precision relative to the OMK estimator.

However, σ
(q)
t,MAED preserves the jump-robustness as a discrete version of Theorem 3.2 holds under

Assumption 3.4. To see this, we note that for any q > 1, m constructed from (P (i))
i∈I(q)n

is bounded

above by its counterpart constructed from (Pt)t∈In , which also holds when a jump is present. As

a special case, with q = 2 one can show that m ≤ min(|r1|, |r2|), where r1 and r2 are the returns

over the two subintervals on In which satisfy r1 + r2 = r. Hence, the jump-robustness of m in this

case can also be seen from the nearest neighbourhood truncation method of Andersen et al. (2012).

Consequently, σ
(q)
t,MAED provides jump-robust spot volatility estimates in the discrete case at the cost

of a mild precision loss.

The jump-robustness of σ
(q)
t,MAED leads naturally to a discrete S-test with the statistic S

(q)
t :=

ln(σ̂
(q)
t,OK/σ̂

(q)
t,MAED). From a discrete version of Corollary 3.1, the asymptotic distribution of S

(q)
t under

the null is the discrete counterpart of Eq. (3.12) while the test statistic diverges under the alternative.

We provide critical values of the discrete version of the test for any q ∈ N in Table C.2 of Appendix

C. We caution that such critical values are not always available when Prob(η(q) = 0) is non-trivial,

which can be avoided by choosing some moderately large q (e.g., q ≥ 10). Also, a discrete version8

of Proposition 3.2 holds in the presence of a drift burst since discrete observations do not change the

asymptotic order of the drift burst. As a result, the test statistic S
(q)
t is still valid for drift burst

detection in the discrete case.

As to the performance of the continuous OMK estimator in the discrete case, we have σ̂t(λ)/σt =

λ′Θz(q) + op(1) due to Proposition 3.3, which suggests that the continuous OMK estimator is in

general not asymptotically unbiased, since E[λ′Θz(q)] = λmµ
(q)/µ1 +λwν

(q)
1 /ν1 +λr < 1. To quantify

the bias of the continuous OMK estimator and compare its performance against the discrete OMK

estimator, we compute the asymptotic relative bias (ARBias), the asymptotic mean squared relative

error (AMSRE) and the asymptotic 90% coverage rate (ACR90%) of σ̂t(λ) for a wide range of q, which

are defined as follows:

ARBias(q) := E[λ′Θz(q)], AMSRE(q) :=
E[(λ′Θz(q) − 1)2]

Var[λ′Θ(q)z(q)]
,

ACR90%(q) := Prob((λ′Θz(q))−1 ∈ `0.9(λ′Θz)).

(3.20)

Note that AMSRE(q) compares the asymptotic mean squared relative error of the continuous OMK

estimator against the asymptotic variance factor of the discrete OMK estimator (since the latter is

8Note that one needs to alter the asymptotic distribution in Eq. (3.13) to account for discrete observations. However,

this asymptotic distribution is infeasible in practice as it depends on the unknown parameter β. We therefore omit this

result in the paper.
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unbiased), which measures the relative performance of the continuous OMK estimator to its discrete

version in the mean squared sense. We present the above statistics for the continuous optimal OMK,

OK and the MAED estimators in Table 3.3.

ARBias(q) AMSRE(q) ACR90%(q)

q OMK OK MAED OMK OK MAED OMK OK MAED

2 0.305 0.487 0.149 1.816 1.165 0.333 0.030 0.261 0.053

3 0.393 0.559 0.257 2.117 1.257 0.605 0.063 0.346 0.101

4 0.458 0.607 0.337 2.233 1.272 0.806 0.101 0.412 0.148

5 0.508 0.641 0.398 2.253 1.261 0.950 0.142 0.463 0.194

6 0.547 0.667 0.446 2.225 1.241 1.050 0.182 0.505 0.236

7 0.579 0.688 0.485 2.177 1.219 1.118 0.222 0.538 0.275

8 0.605 0.706 0.517 2.120 1.197 1.162 0.260 0.567 0.311

9 0.627 0.721 0.543 2.062 1.178 1.189 0.294 0.590 0.343

10 0.645 0.733 0.566 2.006 1.159 1.205 0.326 0.611 0.373

20 0.747 0.805 0.690 1.611 1.048 1.166 0.532 0.722 0.558

30 0.792 0.838 0.746 1.415 1.001 1.100 0.630 0.768 0.645

40 0.820 0.859 0.779 1.302 0.976 1.055 0.686 0.795 0.695

50 0.839 0.873 0.802 1.229 0.961 1.024 0.723 0.812 0.728

60 0.852 0.883 0.819 1.179 0.952 1.003 0.748 0.823 0.751

70 0.863 0.892 0.833 1.142 0.946 0.987 0.767 0.832 0.768

80 0.872 0.898 0.843 1.114 0.942 0.976 0.782 0.839 0.781

90 0.879 0.904 0.852 1.093 0.939 0.967 0.793 0.845 0.792

100 0.886 0.909 0.860 1.075 0.937 0.959 0.803 0.849 0.801

500 0.949 0.958 0.937 0.966 0.944 0.931 0.877 0.889 0.875

1000 0.964 0.970 0.956 0.963 0.955 0.941 0.889 0.896 0.887

∞ 1 1 1 1 1 1 0.9 0.9 0.9

Table 3.3: Performances of the continuous optimal OMK (σ̂t,OMK), optimal OK (σ̂t,OK) and MAED (σ̂t,MAED) estimators in the

discrete observation setting. The evaluation metrics ARBias, AMSRE and CR90% are defined in Eq. (3.20) with various choices

of q in the first column of the table, where q + 1 represents the number of observations on the interval In used to construct the

estimators.

Table 3.3 clearly presents the bias induced by discrete observations for the three continuous

estimators, which can be quite substantial for small q (e.g., more than 20% in magnitude for q ≤ 10),

but in general diminishes as q → ∞. The MAED estimator is most sensitive to this bias, followed

by the OMK and the OK estimators in descending order. This bias in general inflates the AMSRE

of the continuous estimators relative to their discrete versions when q is small (except for the MAED

estimator with q ≤ 5 where the variance of the discrete MAED estimator explodes), but small AMSRE

reductions are expected for moderate to large q due to a shrinkage effect9. However, regardless of the

choice of q, the coverage rates of the continuous estimators are all distorted from the nominal level

of 90%, and the distortion is sizeable even with q = 100. These results demonstrate the importance

of the correction for discrete observations when constructing the OMK estimators, especially when q

is relatively small. For q ≥ 1000 and suppose the measurement errors are negligible, one can safely

ignore the effect of discrete observations and use the simple continuous OMK estimators.

9This is also known as the Stein effect (Stein, 1956). Intuitively, the continuous estimators are biased towards zero, which

also simultaneously reduce their variances and improve the mean squared error of the unbiased discrete estimators.
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3.6 Measurement Errors

In practice, we do not observe the efficient prices (P (i))i=0:Nn , but rather prices contaminated by

measurement errors due to the presence of bid-ask spread, rounding, and other trading activities,

commonly known as the market microstructure (MMS) noise. The impact of measurement errors on the

realized volatility (RV) estimator or the spot volatility estimator in the infinite-k setting is well-studied

(see e.g., Aı̈t-Sahalia and Jacod (2014); Bandi and Russell (2008); Hansen and Lunde (2006); Zhang

et al. (2005); Zu and Peter Boswijk (2014) among many others). The impact of measurement errors

on spot volatility estimators in the fixed-k framework, however, is not yet studied in the literature, as

Bollerslev et al. (2021) and Li et al. (2022) implicitly assume Assumption 3.2 in their analyses, which

ignores both discrete observations and measurement errors. As the MAED exploits the full price path

on In which can be more sensitive to the range and the return, in this section we analyse the impact

of measurement errors on the OMK estimator and discuss potential remedies.

We start with the following assumption about the measurement error on some interval In with q

intervals:

Assumption 3.5. Suppose Assumptions 3.1 and 3.4 hold true. We assume that the observed price

process on [0, T ], denoted by (P ε(i))i=0:Nn, takes the following form:

P ε(i) := P (i) + ε(i),∀i, (3.21)

where (ε(i))i∈Z is a zero-mean time series such that for all i ∈ Z, we have ε(i) = Op(1) and:

k−1
n

kn∑
j=1

|ε(i+ j)| = Op(k
d−1/2
n ), d ∈ [0, 1/2), (3.22)

as kn →∞.

Remark 3.6. The Op(1) noise assumption is referred to as the ‘fixed noise’ setting in Aı̈t-Sahalia and

Jacod (2014), which is commonly discussed in the context of integrated variance estimation. The

above assumption only requires the noise process to be zero mean and asymptotically negligible when

we average over kn consecutive terms as kn → ∞. Apart from these conditions, we do not restrict

the form of heterescedasticity, endogeneity, or dependence of the noise, as these are irrelevant in the

asymptotic analysis below. This is in stark contrast to the study of noise-robust integrated variance

estimation, which normally require intricate assumptions on the structure of the MMS noise process

for identification (e.g., Hansen and Lunde (2006); Bandi and Russell (2008); Barndorff-Nielsen et al.

(2008); Aı̈t-Sahalia et al. (2011); Varneskov (2017); Jacod et al. (2019)). The parameter d controls

for the level of long memory in ε(i), similar to the degree of fractional integration as in Granger and

Joyeux (1980); Baillie (1996), and d < 1/2 is required to ensure that the variance of the sample mean

in Eq. (3.22) vanishes in the limit. This assumption is satisfied by almost all existing models for the
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MMS noise. For example, any short memory noise specification as in Zhang (2006) and Aı̈t-Sahalia

et al. (2011) trivially satisfies the above assumption with d = 0. It can be shown that the more

complicated noise specifications in Varneskov (2017); Jacod et al. (2019) also satisfy this assumption

for d < 1/2 according to their assumption on the polynomial α- or ρ-mixing coefficient.

We first show that the coupling result in Proposition 3.3 no longer holds and the discrete OMK

estimator diverges in the presence of MMS noise:

Proposition 3.4. Under Assumptions 3.1 and 3.5, construct σ̂t(λ) from (P ε(i))
i∈I(q)n

on the interval In

for some fixed q > 1 and λ ∈ Λ(q). As δn → 0, it holds that:

σ̂t(λ) = ∆−1/2
n λ′Θ(q)ε(q) +Op(1). (3.23)

where ε(q) := (ηε, ξε1, ξ
ε
2)′, in which ηε, ξε1 and ξε2 are the MAED, the range and the absolute return of

the process (ε(i))
i∈I(q)n

, respectively.

Proposition 3.4 suggests that σ̂t(λ) = Op(δ
−1/2
n ), so the OMK estimator explodes towards infinity

in the limit when the noise is present. Intuitively, the observed price process is dominated by the

noise process in the limit, and the MAED-candlestick vector of the observed price process c converges

to that of the noise process, ε(q), which diverges when scaled by ∆
−1/2
n . This result implies that one

cannot choose ∆n to be as small as possible in practice, as the noise-induced bias completely swamps

the spot volatility estimates when ∆n is small. Therefore, the OMK estimator is not robust to the

presence of MMS noise, and empirically one needs to choose a large ∆n to ‘sparse sample’ the price

process and dampen the impact of noise. However, for the impact of noise to drop to a tolerable level,

one might require an oversized ∆n which heavily distorts the finite sample distribution of the OMK

estimator and defeats the purpose of spot volatility estimation.

To mitigate the above problem, we develop a noise-robust OMK estimator using the pre-averaging

method of Jacod et al. (2009, 2010) in the fixed-k framework. We consider an interval In = [s, s+ ∆n]

with qn+1 observations (P ε(i))
i∈I(qn)

n
such that I

(qn)
n := {is, is+1, . . . , is+qn}. Similar to the discussion

in the previous section we shall assume that the first and the last observations are at the edges of

In. We set qn = O(δ−θn ) for some θ ∈ (0, 1). Under Assumption 3.4 and from our discussion in the

previous section, we have ∆n = Op(δ
1−θ
n ) = op(1), so In is a shrinking interval in the limit as desired,

but it contains an increasing (instead of fixed) number of observations in the limit.

On In, we pick a pre-averaging window kn = O(δε−θn ) strictly bounded above by qn for some

ε ∈ (0, θ) so that kn →∞ while kn/qn → 0. Construct the following pre-averaged price process:

P̄ (i) =
1

kn

kn−1∑
j=0

P ε(i− j), i ∈ I(qn)
n , (3.24)
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where we use at most kn observations prior to time s to compute the first kn averaged prices. Using

(P̄ (i))
i∈I(qn)

n
as the price observations, we compute the pre-averaged MAED-candlestick vector c :=

(m̄, w̄, |r̄|)′, where the bar notation highlights the pre-averaging procedure. The pre-averaged OMK

estimator is defined as:

ˆ̄σt(λ) := ∆−1/2
n λ′Θc, (3.25)

and note that Θ is the same as in Theorem 3.1. We deduce the following asymptotic result:

Proposition 3.5. Under Assumption 3.5, choose θ ∈ (0, 1) and ε ∈ (0, θ) that satisfy (θ − ε)/(1− ε) >

1/(2− 2d). As δn → 0, it holds for all t ∈ In and λ ∈ Λ that:

ˆ̄σt(λ)

σt
= λ′Θz + op(1), (3.26)

where z is defined as in Theorem 3.1.

Remark 3.7. Note that the asymptotic distribution of ˆ̄σt(λ) is the same as that of Theorem 3.1 in

the continuous case, which may seem surprising at first. Intuitively, the impact of noise diminishes

as the pre-averaging window kn → ∞. However, the condition kn = o(qn) ensures that the pre-

averaged price process is asymptotically equivalent to the efficient price, as the pre-averaging window

is asymptotically negligible compared to the length of the interval. In the absence of MMS noise, one

can set kn = 1, and ˆ̄σt(λ) simply reduces to σ̂
(q)
t (λ) with q =∞. This asymptotic setting can thus be

considered as an ‘in-fill’ asymptotic limit on the fixed-k interval In. As pre-averaging does not alter

the asymptotic orders of jumps or drift bursts, one can show that ˆ̄σt,MAED is jump-robust in view

of Theorem 3.2, and the pre-averaged S-test, denoted as S̄t := ln ˆ̄σt,OK − ln ˆ̄σt,MAED, has the same

asymptotic distribution as St in the presence of jumps or drift-bursts as discussed in Corollary 3.1 and

Proposition 3.2.

Remark 3.8. It is worth noting that we can consider θ, ε and d as nuisance parameters as they do not

play a role in the asymptotic distribution of ˆ̄σt(λ). The condition (θ− ε)/(1− ε) > 1/(2− 2d) ensures

that the impact of the MMS noise is asymptotically negligible. For example, with short memory noise

so that d = 0, we need (θ− ε)/(1− ε) > 1/2, or 2θ− ε > 1. There are clearly infinitely many possible

choices of θ and ε, such as θ = 3/4 and ε = 1/4. In general, we need larger θ and ε to account for a

larger d, but choices of θ and ε for any d < 1/2 are always available, which allows Eq. (3.26) to hold

in the presence of long memory noises. For d ≥ 1/2, no choices of θ and ε could satisfy this condition,

and Eq. (3.26) no longer holds true due to the excess persistence in the noise process.

Proposition 3.5 shows that ˆ̄σt(λ) is asymptotically robust to a very flexible specification of the

MMS noise. In practice, ˆ̄σt(λ) is very simple to construct as one only needs to decide kn and qn and

construct the continuous OMK estimator on the pre-averaged prices. Although in theory kn and qn

26



should be chosen based on the unknown parameters δn, θ, ε and d, they only control for the rate of

explosion for kn and qn which is required for the asymptotic result, but they are irrelevant in finite

sample as we only pick finite kn and qn to construct ˆ̄σt(λ). As a result, ˆ̄σt(λ) is still biased in finite

sample due to MMS noise and discretely observed prices.

To provide some guidance on the choices of kn and qn, we note that one should always choose kn

large enough to fully dampen the impact of MMS noise. Therefore, for the purpose of noise reduction

it is tempting to choose kn as large as possible. However, we stress that one needs to pick qn much

larger relative to kn (in theory qn/kn →∞) for Eq. (3.26) to hold approximately true. A finite qn/kn

introduces a negative finite sample bias (and hence a distortion of the finite sample distribution) to

ˆ̄σt(λ) due to the pre-averaging of price increments. Intuitively, in finite sample, pre-averaging the price

process also smooths the efficient price path, which effectively reduces the corresponding MAED and

range statistics and generates a negative bias. As spot volatility estimators are typically constructed

in intervals of pre-determined lengths (e.g., a 10-minute window used in Bollerslev et al. (2021); Li

et al. (2022)), we recommend to choose the smallest kn which shrinks the impact of the MMS noise to

a negligible level. Therefore, if one believe that the noise is already negligible without pre-averaging

(which may be the case when one choose a large ∆n), then one can simply pick kn = 1.

We conclude this section by proposing a plausible finite sample correction to the bias due to

pre-averaging. Via simulation, we discover the following approximated asymptotic distribution of c:

∆−1/2
n c

d
≈ σtz(q), (3.27)

when we fix qn/kn = q for any q ≥ 10 and let qn → ∞. Based on this observation, we propose the

following ‘discrete’ pre-averaged OMK estimator in practice:

ˆ̄σ
(q̃)
t (λ) := ∆−1/2

n λ′Θ(q̃)c, (3.28)

where q̃ := qn/kn, and Θ(q̃) is defined as in Eq. (3.17) but with non-integer number of obser-

vations, whose values can be obtained using our polynomial approximations10 in Table C.1. For

the estimators ˆ̄σ
(q̃)
t,OMK and ˆ̄σ

(q̃)
t,OK , the corresponding optimal weight vectors are computed based

on Eqs. (3.8) and (3.9) with the variance-covariance matrix Σ(q̃) whose elements can also be ob-

tained from Table C.1. For statistical inference of the estimators and the modified S-test denoted as

S̄
(q̃)
t := ln ˆ̄σ

(q̃)
t,OK − ln ˆ̄σ

(q̃)
t,MAED, we obtain the related critical values for the confidence intervals and the

S-test based on the polynomial approximations in Table C.2. Note that q̃ plays a similar role as q in

the discrete OMK estimator, so a larger q̃ is preferred as it reduces the asymptotic variance factor of

ˆ̄σ
(q̃)
t (λ), which indicates that the choice of kn is a classic bias-variance trade-off for a fixed qn.

10Note that if q̃ ∈ [1, 10], we compute the associate moments using cubic interpolation from the simulated moments with

integer q in Table C.1.
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Eq. (3.27) is a surprising observation, as it suggests that the impact of pre-averaging on the

MAED and range statistics is similar to the impact of discrete observations (which is discussed in

Table 3.3). The polynomial approximations are natural interpolation method to obtain the moments

and critical values for non-integer q̃. We are unable to justify these results theoretically, as it requires

a careful study on the probabilistic nature of Brownian moving averages, which is beyond the scope of

this paper. Nevertheless, our simulation results in Fig. 4.2 show convincingly that ˆ̄σ
(q̃)
t (λ) has much

better finite sampler performance than ˆ̄σt(λ) with less bias and better coverage rates, which provides

a credible finite sample correction to the pre-averaged OMK estimator and is thus recommended in

practice.

4 Simulation Study

We conduct a comprehensive simulation study to examine the properties of the MAED-related statistics

proposed in this paper. The log-price process P is generated according to a two-factor stochastic

volatility model, following Li et al. (2022):

dPt = σtdWt + Jt, σ2
t = V1,t + V2,t

dV1,t = 0.0128(0.4068− V1,t)dt+ 0.0954
√
V1,t(ρdWt +

√
1− ρ2dB1,t)

dV2,t = 0.6930(0.4068− V2,t)dt+ 0.7023
√
V1,t(ρdWt +

√
1− ρ2dB2,t),

(4.1)

where W , B1 and B2 are independent standard Brownian motions, and we set ρ = −0.7 to capture

the leverage effect between financial price and volatility shocks. We simulate 10000 paths of P based

on Eq. (4.1) on the unit interval [0, 1] normalized as a trading day with 390 minutes or 23400 seconds.

The Euler discretization step is set to be 2.34×10−5, or 10 steps per second. We initialize P0 = ln 20 so

that the asset is traded at roughly $20 on the trading day, and we fix V1,0 = V2,0 = 0.5. To account for

discretely observed prices with different number of observations, we generate equidistant observation

times τn,i = i/Nn with Nn = 46800, which corresponds to 2 observations per second. The efficient

price observed at a discrete grid is therefore {P (i)}i=0:Nn .

For the specification of the measurement error, we follow Christensen et al. (2022) and consider

the following model for the observed price:

P ε(i) = P (i) + ε(i), ε(i) ∼ N (0, ω2
i ), (4.2)

where ωi = ϕστn,i/
√
Nn. The parameter ϕ captures the overall magnitude of the measurement error.

Following Christensen et al. (2022), we set ϕ = 2, which represents a moderate contamination level

(Christensen et al., 2014).

We first examine the performance of the OMK, OK and MAED estimators for the end-of-day

volatility σ1 in the absence of jumps and drift bursts. We compute these estimators based on sub-

intervals of the form In = [1 − ∆n, 1] with 390 · ∆n ∈ {1, 5, 10, 15, · · · , 120}, so the interval length
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ranges from one minute to two hours with a step of five minutes. To demonstrate the importance of

correcting for discrete price observations, we consider both the discrete and the continuous versions of

the three estimators. Taking the OMK estimator as an example, we consider both σ̂
(q)
1,OMK with the

correct choice of q and the corresponding optimal λ∗ as shown in Fig. 3.2, as well as its continuous

counterpart σ̂1,OMK by treating q = ∞ with the optimal weight vector given in Eq. (3.8). The

estimators σ̂
(q)
1,OK , σ̂1,OK , σ̂

(q)
1,MAED and σ̂1,MAED are defined in a similar fashion.

To evaluate the performance of the estimators, we compute the following evaluation measures for

a general estimator σ̂1 ∈ {σ̂(q)
1,OMK , σ̂1,OMK , σ̂

(q)
1,OK , σ̂1,OK , σ̂

(q)
1,MAED, σ̂1,MAED}:

RBias := E[σ̂1/σ1 − 1], MSRE := E[(σ̂1/σ1 − 1)2], CR90% := Prob[σ1 ∈ CI90%(σ̂1)], (4.3)

where RBias, MSRE and CR90% stand for the relative bias, the mean squared relative error and the

90% coverage rate of CI90%(σ̂1), the 90% confidence interval11 of σ̂1, respectively.

0 10 20 30 40 50 60

-0.15

-0.1

-0.05

0

0 10 20 30 40 50 60

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Simulated RBias, MSRE and CR90% of σ̂
(q)
1,OMK , σ̂

(q)
1,OK and σ̂

(q)
1,MAED and their continuous versions. All estimators

are constructed on the interval [1−∆n, 1] with the choice of ∆n indicated by the x-axis. The results are computed based on 10000

simulated paths of the model in Eqs. (4.1) and (4.2) in the absence of jumps and drift bursts. The Efficient (resp. Observed) Price

in the figure headings indicate that the results are computed from {Pi} (resp. {P εi }).

The simulation results for the estimators of σ1 is presented in Fig. 4.1. Several interesting findings

can be concluded from this figure. First, the results constructed from the efficient price is largely in

line with our results in Table 3.3 by comparing RBias, MSRE and CR090% with their asymptotic

versions defined in Eq. (3.20). In general, as ∆n → 0, the discrete estimators appear unbiased with

correct coverage rates, while the continuous estimators are biased downwards with distorted coverage

11See Remark 3.1 and Table C.2 for the construction of the 90% confidence intervals of the related estimators.
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rates. The MSREs of the estimators show that the OMK estimator clearly dominates the OK and the

MAED estimators which have similar performances. It also shows that the continuous versions of the

estimators can indeed have smaller MSREs than their discrete counterparts, which is consistent with

Table 3.3.

In the presence of measurement errors, all six estimators are heavily biased upwards, and the size

of the bias explodes as ∆n → 0. This leads to inflated MSREs and distorted coverage rates, as is

shown in the second row of Fig. 4.1, which is consistent with Proposition 3.4. It is worth pointing

out that the OK estimator is the least biased estimator among the three estimators, followed by the

OMK and the MAED estimators. This is due to the fact that MAED is more sensitive to the presence

of measurement errors, relative to range or return. Also, the continuous versions of the estimators

appear less biased than the discrete versions as the positive noise-induced bias is partially offset by the

negative bias due to discretely observed price process. The MSRE advantage of the OMK estimator is

less pronounced in the presence of measurement errors, and the CR90% of the estimators are visibly

distorted even for a relatively large ∆n.

The results in Fig. 4.1 clearly demonstrate the impact of discrete price observations and measure-

ment errors on the estimators considered. In the absence of measurement errors, the bias introduced

by discrete observations can be corrected by using the discrete estimators, which is particularly rele-

vant when q is small. However, in the presence of measurement errors, all the estimators are biased

upwards, which can have a non-trivial effect on the distribution of the estimators even for a relatively

large choice of ∆n. For example, with a window length of 10 minutes which is used in Bollerslev et al.

(2021); Li et al. (2022), all six estimators are biased upwards by about 10% with various degrees of

coverage rate distortions. These results suggest that the aforementioned estimators may be unreliable

in the presence of measurement errors, especially when ∆n is small.

We proceed to show that the impact of measurement errors can be greatly alleviated by the

pre-averaging procedure, and the discrete pre-averaged OMK estimator can effectively eliminate the

finite sample bias due to pre-averaging. To simplify the exposition, we consider the 10-minute interval

In = [1− 10/390, 1] with qn = 1200. On In, we construct the pre-averaged estimators ˆ̄σ1,OMK , ˆ̄σ1,OK

and ˆ̄σ1,MAED, as well as their bias-corrected versions ˆ̄σ
(q̃)
1,OMK , ˆ̄σ

(q̃)
1,OK and ˆ̄σ

(q̃)
1,MAED using 1 ≤ kn ≤ 60,

so that q̃ ≥ 20. We present the results in Fig. 4.2.

The first row of Fig. 4.2 presents the performance of the pre-averaged estimators in the absence

of measurement errors. We clearly see that ˆ̄σ1,OMK , ˆ̄σ1,OK and ˆ̄σ1,MAED have a non-trivial negative

bias12 which enlarges as kn grows, resulting in significantly inflated MSRE and highly distorted CR90%.

On the contrary, the bias of the bias-corrected estimators are much less pronounced (less than 3% in

12The size of this bias is consistent with those reported in Table 3.3. For example, with kn = 60 so that q̃ = 20, the bias

of the continuous OK estimator is about 20%, which is consistent with Fig. 4.2.
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Figure 4.2: Simulated RBias, MSRE and CR90% of the pre-averaged spot volatility estimators. All estimators are constructed

on [1 − 10/390, 1] with qn = 1200 and 1 ≤ kn ≤ 60. The results are computed based on 10000 simulated paths of the model in

Eqs. (4.1) and (4.2) in the absence of jumps and drift bursts. The Efficient (resp. Observed) Price in the figure headings indicate

that the results are computed from {Pi} (resp. {P εi }).

absolute value) for all values of kn with much lower MSER and reliable coverage rates. The MSREs

of the bias-corrected estimators increases almost linearly as a function of kn, which is consistent with

the numerical values in Table 3.2. For example, with kn = 30 and q̃ = 40, the simulated MSRE of

ˆ̄σ
(q̃)
1,OMK is around 0.05, which coincides with the asymptotic variance factor of σ̂

(q)
1,OMK with q = 40

documented in Table 3.2. If the measurement error is absent, then it is optimal to choose kn = 1

which minimizes the MSRE, and the bias-correction is also less important since qn is large.

When measurement error is present, the second row of Fig. 4.2 shows that the bias induced by

the measurement error diminishes as one increases kn. With kn ≥ 20, all estimators have almost

identical performance when compared to the case without measurement error. This is strong evidence

supporting the effectiveness of the pre-averaging procedure in eliminating the impact of measurement

error. More importantly, as one needs to choose an adequate kn to eliminate the impact of measurement

error, the bias-corrected pre-averaged estimators are clearly superior to their original counterparts for

any kn ≥ 20.

We now examine the behaviour of the MAED estimator and the S-test statistic in the presence

of jumps or drift bursts. We consider a practical setting where the estimators and the S-test are

constructed in a rolling window fashion. Starting with the presence of a jump, we consider the

following simple specification of Jt:

Jt = 1l {t≥τJ}Ξ, (4.4)
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where a fixed jump occurs at time τJ with a fixed size Ξ. We consider Ξ ∈ {0, 0.1, 0.5, 1} to represent

the no/small/medium/large jump case, and we fix τJ = 330/390 so the jump occurs at 15:30 on the

simulated trading day. The jump process is then added to Pt to generated the jump-augmented prices.

To conserve space, we only report the simulation results in the presence of measurement errors.

We construct ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,MAED, and S̄

(q̃)
t on intervals of the form [t−∆n, t] for 390·t ∈ {300, . . . , 360},

which corresponds to the minute-by-minute grid points from 3:00-4:00 in a trading day. To conserve

space, we fix ∆n ∈ {5/390, 10/390} and kn = 20 so that q̃ = 6 · 390∆n and the impact of measurement

error is negligible (as shown in Fig. 4.2). For each t, we report the RBias of ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED, as

well as the rejection rates of S̄
(q̃)
t under conventional significance levels. The simulation results are

presented in Fig. 4.3.
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Panel 2: ∆n = 10/390
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Figure 4.3: Simulated RBias of ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED and the rejection rates of S̄

(q̃))
t in the presence of a jump. For each t ∈

{300/390, . . . , 360/390}, we compute ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,MAED, and S̄

(q̃)
t on the interval [t − ∆n, t]. The results are computed based on

10000 random draws of the price process according to Eq. (4.1) with Nn = 23400 and the jump specification in Eq. (4.4). The

vertical dashed black line indicates the location of the jump, and Ξ shows the size of the jump.
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Focusing on the case Ξ = 0 in Fig. 4.3, we first see that both ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED are almost

unbiased, and the rejection rates of S̄
(q̃)
t are close to the nominal level for all t and both choices of

∆n. When Ξ 6= 0, both ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED are biased whenever a jump is present in In, and the bias

in general increases with Ξ. However, we clearly see that ˆ̄σ
(q̃)
t,OK is always more biased than ˆ̄σ

(q̃)
t,MAED.

More importantly, the relative bias of ˆ̄σ
(q̃)
t,MAED is bounded above (by about 0.4) regardless of the size

of the jump, while the relative bias of ˆ̄σ
(q̃)
t,OK explodes as Ξ increases. This result is consistent with

Theorem 3.2 which shows that the MAED estimator has a bounded bias in the presence of a jump

regardless of the size and location of the jump, while the bias of the OK estimator explodes as jump

size increases. The discrepancy between ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED generates power for the S-test, which is

clearly higher as the size of the jump becomes larger. The performance of the S-test is largely similar

for both choices of ∆n, but the power of the test is in general better for smaller choices of ∆n, as

the (fixed) jump becomes larger relative to the (shrinking) MAED and candlestick statistics of the

continuous price path.

Lastly, we examine impact of a drift burst to the MAED and the OK estimators and the perfor-

mance of the S-test. We follow the simulation design of Christensen et al. (2022) and consider the

following alternative drift burst-augmented price process P db:

dP dbt = −3sgn(τdb − t)
|τdb − t|α

1l {t∈[τ−,τ+]}dt+ σdbt dWt,

σdbt =



√
V1,t + V2,t t ∈ [0, τ−) ∪ (τ+, 1]√
V1,t + V2,t

|τdb−τ−|β
|τdb−t|β

dWt, t ∈ [τ−, τdb]√
V1,t + V2,t

|τdb−τ+|β
|τdb−t|β

dWt, t ∈ (τdb, τ+]

,

(4.5)

where sgn(x) returns the sign of x, and jumps are assumed absent in the above model. The model

assumes that a drift burst occurs in the interval [τ−, τ+] with the drift burst time τdb := (τ− + τ+)/2.

We set [τ−, τ+] = [320/390, 340/390], so that the drift burst interval is 20 minutes, which occurs at

around 15:30 in a trading day. The specification of σdbt ensures that it is continuous on [0, 1] with a

possible singularity at τdb if β > 0.

Following the suggestions in Christensen et al. (2022), we consider the following four cases of

the drift burst parameters: (1) pure volatility burst, (α, β) = (0, 0.2); (2) pure drift burst, (α, β) =

(0.55, 0); (3) drift-volatility burst without arbitrage, (α, β) = (0.55, 0.4); (4) drift-volatility burst with

arbitrage, (α, β) = (0.75, 0.2). An example of the simulated price and spot volatility paths for each

case is presented in Fig. 4.4. The figure illustrates the magnitude of the drift burst and volatility

burst with various choice of parameters. In detail, larger α and β induce more pronounced drift and

volatility bursts. In particular, it is very difficult to distinguish drift bursts with different β, which is

consistent with the observation in Christensen et al. (2022).
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Figure 4.4: Simulated drift burst-augmented efficient price and spot volatility paths. For different choices of α and β, the paths are

simulated according to Eq. (4.5) with the choices of α and β given in the legend. The two vertical lines shows the interval [τ−, τ+].

We construct ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,MAED, and S̄

(q̃)
t using the same simulation setting as Fig. 4.3. As the spot

volatility estimates explode during a drift burst or a volatility burst, we present the average volatility

estimates alongside σdbt instead of the relative bias of the volatility estimates for a more transparent

visualization. We present the simulation result in Fig. 4.5.

Several interesting findings can be concluded from Fig. 4.5. In the pure volatility burst case,

both ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED explode as t → τdb. However, the rejection rates of S̄

(q̃)
t are only mildly

distorted from the nominal rates as volatility explodes, suggesting that pure volatility bursts are

unlikely to be detected by the S-test. When the drift burst is present, ˆ̄σ
(q̃)
t,OK always explodes as

t→ τdb, while ˆ̄σ
(q̃)
t,MAED first decreases as we enter [τ−, τ+], but may explode towards infinity together

with ˆ̄σ
(q̃)
t,OK if τdb ∈ In. This is due to the drift burst reversal after the local price infimum at τdb, which

by construction induces an explosive inward price movement and drives σ̂
(q)
t,MAED upwards. Also, it is

clear that all the spot volatility estimates are strikingly different from the true spot volatility, especially

when a drift burst is present.

In the presence of drift bursts, the rejection rates of S̄
(q̃)
t clearly demonstrate its usefulness in

monitoring the birth and turning point of drift bursts for different choices of ∆n, regardless of whether

arbitrage opportunities are present. For the interval [t−∆n, t] and as t gradually increases pass τ−, the

unidirectional price movements drive ˆ̄σ
(q̃)
t,OK and ˆ̄σ

(q̃)
t,MAED toward opposite directions, which inflates

S̄
(q̃)
t and leads to rejections of the S-test. This result is consistent with our theoretical results in

Proposition 3.2. Importantly, as the MAED estimator has the opposite sign of the bias in the presence

of a jump or a drift burst (see Fig. 4.3), the behaviour of ˆ̄σ
(q̃)
t,MAED also allows us to identify whether

a rejection of the S-test is likely due to a single jump or a drift burst.

5 Empirical Illustrations

We conduct a small empirical study to demonstrate the usefulness of the OMK estimator and the

S-test in practice. We obtain the tick-by-tick transaction prices for Apple (ticker: AAPL) from
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Panel 1: ∆n = 5/390
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Panel 2: ∆n = 10/390
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Figure 4.5: Simulated expectation of ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,MAED and the rejection rates of S̄

(q̃)
t in the presence of drift/volatility burst. For

each t ∈ {300/390, . . . , 360/390}, we compute ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,MAED, and S̄

(q̃)
t on the interval [t − ∆n, t]. The results are computed

based on 10000 random draws of the price process according to Eq. (4.5) with Nn = 23400 and the drift burst parameters specified

in the titles of the figures. The two vertical lines shows the interval [τ−, τ+].
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the TAQ dataset in WRDS during the period 2016-2021. The transaction prices are timestamped in

microseconds. We apply standard data filters13 in Barndorff-Nielsen et al. (2009); Holden and Jacobsen

(2014) to remove possible outliers. We also ignore trading days with early market closure, namely the

day before Independence Day and Christmas Day, and the day after Thanksgiving Day. The final

sample comprises of 1499 trading days.

We split each trading day into 5-minute sampling windows rolling forward every minute, which

gives 386 intervals in total. On each interval, we construct ˆ̄σ
(q̃)
t,OK , ˆ̄σ

(q̃)
t,OMK and ˆ̄σ

(q̃)
t,MAED, as well as the

S̄
(q̃)
t test statistic. To determine the choice of kn required to dampen the impact of measurement error,

we construct a volatility signature plot in the spirit of Andersen et al. (2000) by plotting the mean

and median of the (pre-averaged) OMK estimators evaluated over all intervals against the choices

of kn, which is presented in Fig. 5.1. The volatility signature plots clearly suggest the presence of

measurement error, as the average volatility estimates are higher for kn = 1 and decay as kn becomes

larger. This pattern is in general consistent with Fig. 4.2 and suggests that a plain OMK estimator

can be biased upwards due to the presence of measurement errors. As a conservative choice, we pick

kn = 30 to construct the pre-averaged estimators throughout the empirical analysis, which yields an

average q̃ of approximately 130 across all intervals, so the expected variance reduction of the OMK

estimator to the OK estimator is close to the theoretical limit of 40%.
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Figure 5.1: Volatility signature plots of OMK estimates against choices of kn. The left (resp. right) figure plots the average

(resp. median) of ˆ̄σ
(q̃)
t,OMK evaluated over all 5-minute intervals in the sample against different choices of kn.

We first show that the OMK estimator can be used to improve the precision of the OK estimator

for spot volatility estimation. To this end, we split the trading days into two subsets: days with

pre-scheduled FOMC announcements and those without announcements. We present the average

spot volatility estimates based on the pre-averaged OMK and the OK estimators alongside with the

averaged 90% HDIs in Fig. 5.2.

13We use the SAS code from Holden and Jacobsen (2014) to extract transaction data with the prevailing NBBO quotes

from the TAQ dataset. We then apply the filter rules P1-2 and T1-4 in Barndorff-Nielsen et al. (2009) to the transaction

prices to remove potential outliers.
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Figure 5.2: Averaged spot volatility estimates for AAPL based on the pre-averaged OMK and the OK estimator on FOMC and

non-FOMC days during 2016-2021. The x-axis represents the right endpoints of a 5-minute interval, starting from 9:00-9:05, rolling

forward every one minute. The blue and grey shaded areas are the average 90% HDIs of the OMK and OK estimators, respectively.

From Fig. 5.2, we clearly see a large volatility spike right after 14:00 on FOMC days, which is

absent on non-FOMC days. This shows that FOMC meetings are associated with big volatility spikes,

which is consistent with the findings in Bollerslev et al. (2021). More importantly, the OMK and

the OK estimators provide almost identical average spot volatility estimates in both subsets, but the

average 90% HDIs of the OMK estimator are visibly narrower than those of the OK estimator. This

clearly demonstrates the superiority of the OMK estimator to the OK estimator in generating more

precise spot volatility measurements.

To illustrate the usefulness of the S-test, we select some representative cases and present them

in Fig. 5.3. Panel 1 of the figure presents the 5-minute volatility estimates and the S-tests in a 30-

minute window around two FOMC meetings at 14:00. The price paths of both sub-figures in panel

1 reacts immediately after the FOMC announcement time with a sharp increase in the OK volatility

estimates. However, the S-test results suggest that the two FOMC meetings have fundamentally

different implications to the price paths. In detail, the FOMC meeting on 16th March 2016 leads to

a price increase with nearly monotonic price paths around 14:00. This generates large discrepancy

between the OK and the MAED spot volatility estimates and leads to strong rejections of the S-test.

On the contrary, the FOMC meeting on 21st March 2018 generates oscillatory price paths, which can be

interpreted as a volatility burst that drives up both the OK and the MAED estimators. Consequently,

the S-test is not rejected in this interval.

Panel 2 of Fig. 5.3 presents two different scenarios where the S-test is strongly rejected in the

absence of macroeconomic news announcements. The left sub-figure of Panel 2 depicts a gradual and

roughly monotonic price decrease from 10:00-10:15, whereas the right sub-figure shows a rapid price

increase, or a gradual jump, during 15:00-15:05. In both sub-figures, the local trends are immediately
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Panel 1: FOMC announcements with different reactions
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Panel 2: Local price trends and gradual jumps
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Figure 5.3: Price paths, volatility estimates, and the associated S-tests. In the top panel of the four figures, the observed price path

is plotted against the left y-axis, while the 5-minute pre-averaged OK and MAED estimators are plotted against the right y-axis.

The lower panel of the four figures presents the associated 5-minute S-test statistics and the critical values.
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reflected in the OK volatility estimates but ignored by the MAED volatility estimates, generating a

strong sequence of rejections of the S-test.

Fig. 5.3 provides strong empirical evidence supporting the effectiveness of the S-test in detecting

local price trends. It is worth noting that we are unable to find individual jumps in the tick-by-tick

prices of AAPL which leads to a rejection of the S-test. Instead, the rejections are typically caused

by ‘gradual jumps’ similar to what we have discussed in Fig. 5.3. This finding is consistent with the

finding in Christensen et al. (2014) that price jumps are in fact very rare events, and the empirically

detected price jumps are likely caused by the gradual jumps in the tick-by-tick data.
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Figure 5.4: Average rejection rates of the S-test. The x-axis represents the right endpoints of a 5-minute interval, starting from

9:00-9:05, rolling forward every one minute. Each symbol represents the percentage of rejections in the same time of day averaged

over the sampling period. The significance level of the rejection rates are given in the legend of the figure.

As the S-test can reliably detect drift bursts or flash crashes, it is meaningful to know how frequent

the S-test is rejected in practice, which implies the frequency of drift bursts in practice. We plot the

average rejection rates of the S-test against calendar time in Fig. 5.4. The figure shows that the

rejection rates are fairly close to the nominal level through the trading day, with only minor excess

rejections after 14:00, which is possibly due to the FOMC meetings. This result suggests that observed

prices on average behave like a continuous martingale in a 5-minute interval, and genuine drift bursts

or flash crashes are rare events in the tick-by-tick prices of AAPL that do not substantially increase

the average rejection rates of the S-test.

6 Concluding Remarks

In this paper, we propose the MAED statistic, which is a novel and easy-to-construct statistic based

on high-frequency asset prices. We show that MAED summarizes the inward movements from a price

path, which contains unique information about the price variation that complements the candlestick

statistics. By combining the MAED statistic with the candlestick statistics, we propose the OMK

estimator for spot volatility estimation which can in theory improve the asymptotic variance of the

OK estimator of Li et al. (2022) by about 40% percent in the fixed-k framework of Bollerslev et al.

(2021). We further show that the MAED estimator can be used to provide jump-robust spot volatility
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estimates. This result is used to construct the S-test, a pivotal test for the spot detection of ex-

plosive directional price movements. Pre-averaged versions of the new estimators and the S-test are

constructed to mitigate the impact of measurement errors. Our simulation and empirical illustrations

verify the superiority of the OMK estimator to the OK estimator and demonstrate the effectiveness

of the S-test. Overall, these results highlight the empirical relevance of the MAED statistic. As the

candlestick data for regular trading intervals is widely available from online trading platforms, we

advocate data providers to also provide the MAED statistic, which allows regular investors to obtain

more precise volatility measurements and detect local explosive price movements at a lower cost than

purchasing tick-by-tick data.

We conclude this paper by discussing some unsolved questions for future research. First, although

moments and critical values of the MAED statistic of a Brownian motion can be easily simulated, its

analytical distribution and moments are still unknown and deserve individual investigation. Second,

MAED is not the only functional that summarizes the inward price movements, which can also be

(partially) summarized by, e.g., the maximal drawdown (Magdon-Ismail et al., 2004). It is therefore

important to study whether the inward price movements can be more efficiently summarized by an

alternative statistic. Third, as pointed out by Li et al. (2022); Bollerslev et al. (2022), one can also

construct optimal estimators for σpt for a general p based on the candlestick data. It is likely that the

performance of these candlestick-based estimators can be substantially improved by also incorporating

the MAED statistic. However, how to optimally combine the MAED statistic with the candlestick

data is a non-trival task, which provides ample room for future research.
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Appendices

A Proofs

Proof of Proposition 3.1. We begin with the following set of inequalities for m, w and |r| constructed

from (Pt)t∈In , which in fact holds with probability 1 for the three statistics constructed from arbitrary

processes by construction:

m ≥ 0, w ≥ 0, |r| ≥ 0,

w −m ≥ 0, w − |r| ≥ 0, m+ |r| − w ≥ 0.
(A.1)

The first five inequalities should be immediate. For the last one, note that:

m = sup
h∈In
{wh − |rh|} ≥ ws+∆ − |rs+∆| = w − |r|, (A.2)

which gives the desired result. Therefore, for arbitrary non-negative real numbers {αk}k=1:6, the

following sum is guaranteed to be positive:

α1(m+ |r| − w) + α2(w −m) + α3(w − |r|) + α4m+ α5w + α6|r|

= (α1 − α2 + α4)︸ ︷︷ ︸
αm

m+ (−α1 + α2 + α3 + α5)︸ ︷︷ ︸
αw

w + (α1 − α3 + α6)︸ ︷︷ ︸
αr

|r| ≥ 0.
(A.3)

The non-negativity condition of αk is equivalent to the following set of inequalities, which can be

derived by eliminating the negative terms in αm, αw and αr:

αm + αw ≥ 0, αw + αr ≥ 0, αm + αw + αr ≥ 0. (A.4)

Therefore, we can conclude that, for any vector α := (αm, αw, αr)
′, α′c ≥ 0 with probability 1 if the

above set of inequality holds. In vector form, the above three inequalities can be rewritten as:

αm + αw = α′(e1 + e2) = α′(ι− e3) ≥ 0⇔ α′ι ≥ α′e3,

αw + αr = α′(e2 + e3) = α′(ι− e1) ≥ 0⇔ α′ι ≥ α′e1

αm + αw + αr = α′ι ≥ 0.

(A.5)

We can thus summarize the above three inequalities succinctly by α′ι ≥ max{0,α′e1,α
′e3}. Finally,

the proposition is recovered by setting α = Θλ, and clearly adding the linear constraint λ′ι = 1

does not violate the set of inequalities above. One can also easily show that there are infinitely many

choices of λ ∈ Λ. This completes the proof.

Proof of Theorem 3.1. The proof is in the spirit of the proofs of Theorem 1 in Bollerslev et al. (2021)

and Li et al. (2022). Following their proofs, we shall assume that jumps are absent in the interval

such that P is continuous on In, as the probability of observing a jump converges to zero as ∆n → 0.
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We also use the strengthened version of Assumption 3.1 by assuming that the conditions hold with

T1 =∞ using a localization procedure (see the discussion in Li et al. (2022)).

We now turn to the proof of the theorem. We start with a fundamental inequality which is used

repeatedly in the proofs:

Lemma A.1. For arbitrary processes X = (Xt) and Y = (Yt) defined on some interval I = [s, h]

satisfying Xs = Ys = 0, it holds that:

| sup
t∈[s,h]

Xt − sup
t∈[s,h]

Yt| ≤ sup
t∈[s,h]

|Xt − Yt|, | inf
t∈[s,h]

Xt − inf
t∈[s,h]

Yt| ≤ sup
t∈[s,h]

|Xt − Yt|. (A.6)

Proof. Since Xs = Ys = 0, we must have supt∈[s,h]Xt ∧ supt∈[s,h] Yt ≥ 0. To prove the first inequality

of the lemma, we first suppose that supt∈[s,h]Xt ≥ supt∈[s,h] Yt. Then:

| sup
t∈[s,h]

Xt − sup
t∈[s,h]

Yt| = sup
t∈[s,h]

(Xt − sup
τ∈[s,h]

Yτ ) ≤ sup
t∈[s,h]

(Xt − Yt) ≤ sup
t∈[s,h]

|Xt − Yt|, (A.7)

And the first inequality of the lemma follows by a symmetry argument. For the second inequality in

the lemma, it suffices to notice that:

| inf
t∈[s,h]

Xt − inf
t∈[s,h]

Yt| = | sup
t∈In

(−Xt)− sup
t∈[s,h]

(−Yt)| = | sup
t∈[s,h]

Xt − sup
t∈[s,h]

Yt| ≤ sup
t∈[s,h]

|Xt − Yt|, (A.8)

where the last estimate follows from the first inequality of the lemma. This completes the proof.

Let us define the processes ξ1,h and ξ2,h as the range and absolute return of the scaled Brownian

motion (∆−1/2Wt)t∈[s,h]. We shall prove the following estimates:

sup
h∈In
|wh −

√
∆nσsξ1,h| = op(∆

1/2
n ), sup

h∈In
||rh| −

√
∆nσsξ2,h| = op(∆

1/2
n ). (A.9)

We first look at the second supremum above:

sup
h∈In

∣∣∣|rh| −√∆nσsξ2,h

∣∣∣ = sup
h∈In

∣∣∣∣∣ ∫ hs btdt+
∫ h
s σtdWt

∣∣− σs|Wh −Ws|
∣∣∣

≤ sup
h∈In

∣∣∣∣∣ ∫ hs btdt∣∣+
∣∣ ∫ h

s σtdWt

∣∣− σs|Wh −Ws|
∣∣∣

≤ sup
h∈In
|
∫ h
s btdt|+ sup

h∈In

∣∣∣| ∫ hs σtdWt| − σs|Wh −Ws|
∣∣∣

≤
∫ s+∆n

s |bt|dt+ sup
h∈In

∣∣∣ ∫ hs (σt − σs)dWt

∣∣∣
= Op(∆n) +Op(∆

1/2+κ
n ) = op(∆

1/2
n ),

(A.10)

which follows by repeatedly applying the (reverse) triangle inequality, and the last estimate follows
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from Eqs. (A.1) and (A.2) of Li et al. (2022). For the first supremum in Eq. (A.9), we note that:

|wh −
√

∆nξ1,h|

=
∣∣∣ sup
t∈[s,h]

{Pt − Ps} − inf
t∈[s,h]

{Pt − Ps} − σs sup
t∈[s,h]

{Wt −Ws}+ σs inf
t∈[s,h]

{Wt −Ws}
∣∣∣

≤
∣∣∣ sup
t∈[s,h]

{Pt − Ps} − σs sup
t∈In(h)

{Wt −Ws}
∣∣∣+
∣∣∣ inf
t∈[s,h]

{Pt − Ps} − σs inf
t∈[s,h]

{Wt −Ws}
∣∣∣

≤2 sup
t∈[s,h]

∣∣∣(Pt − Ps)− σs(Wt −Ws)
∣∣∣,

(A.11)

where the first inequality follows from the triangle inequality and the second inequality follows from

Lemma A.1. Consequently:

sup
h∈In
|wh −

√
∆nξ1,h| ≤2 sup

h∈In
sup
t∈[s,h]

∣∣∣(Pt − Ps)− σs(Wt −Ws)
∣∣∣

≤2 sup
h∈In

∣∣∣(Ph − Ps)− σs(Wh −Ws)
∣∣∣

≤2 sup
h∈In

∣∣∣ ∫ hs bτdτ +
∫ h
s (στ − σs)dWτ

∣∣∣
≤2
∫ s+∆n

s |bt|dt+ sup
h∈In

∣∣∣ ∫ hs (στ − σs)dWτ

∣∣∣ = op(∆
1/2
n ),

(A.12)

where the last estimate is identical to that in Eq. (A.10). As a direct consequence of Eq. (A.9) with

the help of Lemma A.1, we obtain the following estimates for the MAED, range and return of (Pt)t∈In :

|m−
√

∆nσsη| = | sup
h∈In
{wh − |rh|} −

√
∆nσs sup

h∈In
{ξ1,h − ξ2,h}|

≤ sup
h∈In
|wh −

√
∆nσsξ1,h − |rh|+

√
∆nσsξ2,h|

≤ sup
h∈In
|wh −

√
∆nξ1,h|+ sup

h∈In
||rh| −

√
∆nξ2,h| = op(∆

1/2
n ),

|w −
√

∆nσsξ1| ≤ sup
h∈In
|wh −

√
∆nξ1,h| = op(∆

1/2
n ),

||r| −
√

∆nσsξ2| ≤ sup
h∈In
||rh| −

√
∆nξ2,h| = op(∆

1/2
n ).

(A.13)

An alternative proof of the above result related to w and |r| can be found in Li et al. (2022). Therefore,

by Slutsky theorem, we conclude the following coupling result for the MAED-candlestick vector:

c = (m,w, |r|)′ =
√

∆nσs(η, ξ1, ξ2)′ + op(∆
1/2
n ) =

√
∆nσsz + op(∆

1/2
n ). (A.14)

where the op(∆
1/2
n ) term is understood as a compatible vector with op(1) elements. By a standard

continuous mapping argument, we arrive at:

σ̂t(λ) = ∆−1/2
n λ′Θc = σsλ

′Θz + op(1). (A.15)

Finally, it suffices to notice that, for any t ∈ In, σs/σt
p−→ 1 by the right continuity and boundedness

of σt. We can therefore divide both sides of the above convergence by σt and obtain:

σ̂t(λ)

σt
= λ′Θz + op(1), (A.16)

which is the desired coupling result. This completes the proof.
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Proof of Theorem 3.2. We begin by introducing some notations. For a process A constructed from P ,

we use the notation A◦ to denote the corresponding process constructed from P ◦ instead. We shall

also set h < τ and h◦ ≥ τ to denote the time before and after the jump. It should be clear that

wh − |rh| ≡ w◦h − |r◦h|.

To prove the result related to the OK estimator, one simply needs to realize that as ∆n → 0, it

holds that:

|w◦ − w| = J +Op(∆
1/2
n ), ||r◦| − |r|| = J +Op(∆

1/2
n ), (A.17)

due to the scaling of the Brownian motion. Since J = Op(1), we conclude that:

|σ̂◦t,OK − σ̂t,OK | = ∆−1/2
n |λowν−1

1 (w − w◦) + λorψ
−1
1 (|r| − |r◦|)|

≤ ∆−1/2
n (|λowν−1

1 ||w − w
◦|+ |λorψ−1

1 |||r| − |r
◦||)

= ∆−1/2
n (|λowν−1

1 |+ |λ
o
rψ
−1
1 |)J +Op(1) = Op(∆

−1/2
n ).

(A.18)

This implies the result related to the OK estimator in Eq. (3.10).

We proceed to prove the result related to the MAED estimator in Eq. (3.10). Consider two

scenarios, J > 0 and J < 0. We use the superscripts + and − to distinguish the signs of the jump,

e.g. P ◦,+h◦ represents the jump-augmented price process at time h◦ conditioning on that the jump is

positive. We also define the supremum and infimum processes of P on In(h) as:

uh := sup
t∈In(h)

{Pt − Ps}, lh := inf
t∈In(h)

{Pt − Ps}, (A.19)

and the jump-augmented versions u◦,±h and l◦,±h are well understood. Let us first assume J > 0. Since

J is strictly bounded away from zero, in the limit with probability 1, we have P ◦,+h◦ = Ph◦ + J > Ph

as the jump dominates the price increments before and after the jump which are of order Op(∆
1/2
n ).

Consequently, we see that in the limit with probability 1:

u◦,+h◦ = Pτ − Ps + J + sup
t∈[τ,h◦]

(Pt − Pτ ), l◦,+h◦ = lτ , |r◦,+h◦ | = Ph◦ − Ps + J, (A.20)

which implies that:

w◦,+h◦ − |r
◦,+
h◦ | = sup

t∈[τ,h◦]
(Pt − Pτ )− (Ph◦ − Pτ )− lτ . (A.21)

Similarly, when J < 0, we have in the limit with probability 1:

u◦,−h◦ = uτ , l◦,−h◦ = Pτ − Ps + J + inf
t∈[τ,h◦]

(Pt − Pτ ), |r◦,−h◦ | = −(Ph◦ − Ps + J), (A.22)

which leads to:

w◦,−(h◦)− |r◦,−(h◦)| = u(τ)− inf
t∈[τ,h◦]

(Pt − Pτ ) + (Ph◦ − Pτ ). (A.23)
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As we do not know the direction of the jump, we can bound |m − m◦| by the maximum absolute

difference in both cases:

|m−m◦| ≤ |m−m◦,+| ∨ |m−m◦,−|

≤ sup
h◦≥τ
{|wh◦ − |rh◦ | − w◦,+h◦ + |r◦,+h◦ || ∨ |wh◦ − |rh◦ | − w

◦,−
h◦ + |r◦,−h◦ ||}

(A.24)

Note that by triangle inequality:

sup
h◦≥τ
{|wh◦ − |rh◦ | − w◦,+h◦ + |r◦,+h◦ ||}

= sup
h◦≥τ

∣∣∣uh◦ − sup
t∈[τ,h◦]

(Pt − Pτ )− lh◦ + lτ − |rh◦ |+ (Ph◦ − Pτ )
∣∣∣

≤ sup
h◦≥τ

|uh◦ − |rh◦ ||+ sup
h◦≥τ

|lh◦ − lτ |+ sup
h◦≥τ

| sup
t∈[τ,h◦]

(Pt − Pτ )− (Ph◦ − Pτ )|

≤u∆n + sup
t∈[τ,s+∆n]

(Pt − Pτ )− 2 inf
t∈[τ,s+∆n]

(Pt − Pτ ).

(A.25)

Similarly:

sup
h◦≥τ
{|wh◦ − |rh◦ | − w◦,−h◦ + |r◦,−h◦ ||}

= sup
h◦≥τ

∣∣∣uh◦ − uτ − lh◦ + inf
t∈[τ,h◦]

(Pt − Pτ )− |rh◦ | − (Ph◦ − Pτ )
∣∣∣

≤ sup
h◦≥τ

|uh◦ − uτ |+ sup
h◦≥τ

| − |rh◦ | − lh◦ |+ sup
h◦≥τ

| inf
t∈[τ,h◦]

(Pt − Pτ )− (Ph◦ − Pτ )|

≤2 sup
t∈[τ,s+∆n]

(Pt − Pτ )− l∆n − inf
t∈[τ,s+∆n]

(Pt − Pτ ).

(A.26)

Combining the results from two cases, we arrive at:

sup
h◦≥τ
{|wh◦ − |rh◦ | − w◦,+h◦ + |r◦,+h◦ || ∨ |wh◦ − |rh◦ | − w

◦,−
h◦ + |r◦,−h◦ ||}

≤
(
u∆n + sup

t∈[τ,s+∆n]
(Pt − Pτ )− 2 inf

t∈[τ,s+∆n]
(Pt − Pτ )

)
∨(

2 sup
t∈[τ,s+∆n]

(Pt − Pτ )− l∆n − inf
t∈[τ,s+∆n]

(Pt − Pτ )
)

≤w + 2 sup
t∈[τ,s+∆n]

(Pt − Pτ )− 2 inf
t∈[τ,s+∆n]

(Pt − Pτ ).

(A.27)

Finally, accounting for the unknown location of the jump, we take supremum over τ to arrive at:

sup
τ∈(s,s+∆n)

|m−m◦| ≤ w + 2 sup
t∈[s,s+∆n]

(Pt − Ps)− 2 inf
t∈[s,s+∆n]

(Pt − Ps) = 3w. (A.28)

Since we have already shown in Theorem 3.1 that ∆
−1/2
n w = σsξ1 + op(1), the required result follows

by a standard continuous mapping theorem. This complete the proof.

Proof of Corollary 3.1. The corollary directly follows from Theorems 3.1 and 3.2 by the continuous

mapping theorem. This completes the proof.
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Proof of Proposition 3.2. We start with the normalized price process P̆ dbt := P dbt ∆
β−1/2
n , ∀t ∈ In, and

without loss of generality, we shall take bs > 0 as the negative case follows by a symmetry argument.

For the case 0 < α− β < 1/2, we first prove the following estimate:

sup
t∈In
|P̆ dbt − P̆ dbs −∆−1/2

n σs
∫ t
s f(u)dWu| = op(1), (A.29)

where f(t) = ( t−s∆n
)−β for t ∈ In, and it is understood that P̆ dbs := Ps∆

β−1/2
n . This is easily seen as

follows:

sup
t∈In
|P̆ dbt − P̆ dbs −∆−1/2

n σs
∫ t
s f(u)dWu| = bs sup

t∈In
∆β−1/2
n

∫ t
s(u− s)

−αdu

= bs∆
β−1/2
n

∫ s+∆n

s (u− s)−αdu = bsO(∆1/2−α+β
n ) = op(1).

(A.30)

Eq. (A.30) directly implies the following results, which can be derived in a similar manner as the proof

of Eq. (A.13):

∆−1/2
n |∆β

nm− σsm̆| = op(1), ∆−1/2
n |∆β

nw − σsw̆| = op(1), ∆−1/2
n |∆β

n|r| − σs|r̆|| = op(1), (A.31)

where m̆, w̆ and r̆ are the MAED, range, and return of (
∫ t
s f(u)dWu)t∈In , respectively. Note that

∆
β−1/2
n m is the MAED of (P̆ dbt )t∈In due to the scaling property of MAED, and likewise for ∆

β−1/2
n |r|

and ∆
β−1/2
n w. It now suffices to notice that:

(
∫ t
s f(u)dWu)t∈In = (W̆τt)t∈In

d
=

1√
1− 2β

(Bt)t∈In , (A.32)

where τt =
∫ t
s f(u)2du and W̆ is another standard Brownian motion independent of W and B. The first

equality above is an application of the Dambis-Dubins-Schwarz theorem (see e.g., Barndorff-Nielsen

and Shiryaev (2015)), which states that every continuous martingale is a time-changed Brownian

motion, with the time change t 7→ τt given by the integrated variance of the continuous martingale.

The second equality follows by the scaling law of a Brownian motion and the fact that:

∫ s+∆n

s f(u)2du =
∆n

1− 2β
, (A.33)

so 1/
√

1− 2β is the correct scaling factor for (Bt)t∈In . Eq. (A.32) directly implies the following joint

equality in distribution by the continuous mapping theorem:

(m̆, w̆, |r̆|)′ d=

√
∆n

1− 2β
z̆. (A.34)

Finally, by the Slutsky theorem, we can combine the three estimates in Eq. (A.31) to arrive at:

∆β
nc = σs(m̆, w̆, |r̆|)′ + op(1)

d
= σs

√
∆n

1− 2β
z̆, (A.35)

which implies Eq. (3.13) by a continuous mapping argument.
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We now turn to the case α− β > 1/2. In this case, we can use the following convenient result of

Christensen et al. (2022):

|P̆ dbt − P̆ dbs | = Op(∆
1/2−α+β
n ) +Op(1), (A.36)

where Op(∆
1/2−α+β
n ) is due to drift that explodes in the limit, and Op(1) is due to diffusion which is

the same as the previous case. This directly implies that:

∆β−1/2
n w = ∆β−1/2

n |r| = Op(∆
1/2−α+β
n ), (A.37)

as w and |r| are linear in P dbt , which implies the result related to the OK estimator in Eq. (3.14).

Now to prove the result related to m, we shall establish the following result, which states that the

probability for P̃ dbt (and hence P dbt ) to be monotonically non-decreasing on In approaches 1 in the

limit:

lim
∆n→0

Pr(P̆ dbt1 − P̆
db
t2 ≤ 0) = 1, ∀t1 ≤ t2 ∈ In. (A.38)

To prove this, we examine the event P̆ dbt1 − P̆
db
t2 ≤ 0 in detail:

P̆ dbt1 − P̆
db
t2 = −bs∆β−1/2

n

∫ t2
t1

(u− s)−αdu−∆β−1/2
n σs

∫ t2
t1
f(u)dWu

∼ N
(
bs∆

β−1/2
n

(t1 − s)1−α − (t2 − s)1−α

1− α
,∆2β−1

n σ2
s

(t2 − s)1−2β − (t1 − s)1−2β

1− 2β

)
,

(A.39)

which implies that:

Pr(P̆ dbt1 − P̆
db
t2 ≤ 0) = Φ

(
bs
√

1− 2β

σs(1− α)

(t2 − s)1−α − (t1 − s)1−α√
(t2 − s)1−2β − (t1 − s)1−2β

)
. (A.40)

where Φ(x) is the cumulative density function of a standard normal distribution. Now consider the

change of variable t̃1 = (t1− s)/∆n, t̃2 = (t2− s)/∆n such that t̃1 < t̃2 ∈ [0, 1]. The above probability

becomes:

Pr(P̆ dbt1 − P̆
db
t2 ≤ 0) = Φ

(
bs
√

1− 2β

σs(1− α)
·∆1/2−α+β

n

(t̃1−α2 − t̃1−α1 )√
t̃1−2β
2 − t̃1−2β

1

)
. (A.41)

The above result directly implies that, for any choice of t̃1 < t̃2 ∈ [0, 1],

lim
∆n→0

Pr(P̆ dbt1 − P̆
db
t2 ≤ 0)→ Φ(K ·∆1/2−α+β

n ) = 1, (A.42)

for some constant K > 0 by the assumption that bs > 0, while the case t̃1 = t̃2 is trivial since

Pr(P̆ dbt1 − P̆
db
t1 ≤ 0) = 1 for all n. This proves Eq. (A.38). Also, we note that bs < 0 would imply an

asymptotically non-increasing P dbt in this case. Finally, it suffices to notice that the event m = 0 is

identical to the event that P dbt is monotonically non-increasing or non-decreasing on In. Therefore,

Eq. (A.42) imply that, for every fixed ε > 0:

Pr(∆β−1/2
n m > ε) = Pr(∆β−1/2

n sup
h∈In
{wh − |rh|} > ε)

= Pr(P̆ dbt1 − P̆
db
t2 > ε,∃t1 < t2|P dbt ≥ P dbs ,∀t ∈ In) Pr(P dbt ≥ P dbs ,∀t ∈ In)

+ Pr(∆β−1/2
n m > ε|P dbt < P dbs ,∃t ∈ In) Pr(P dbt < P dbs ,∃t ∈ In)

→0 · 1 + 0 = 0,

(A.43)
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Eq. (A.43) shows that, by definition, ∆
β−1/2
n m

p−→ 0, which leads to the result related to the MAED

estimator in Eq. (3.14) by a standard continuous mapping argument. This completes the proof.

Proof of Proposition 3.3. We shall continue on the premise of the discussion in the beginning of the

proof of Theorem 3.1. We start by showing that ∆n = Op(δn) for any fixed q under Assumption 3.4.

Indeed, we have:∣∣∣∆n −
q−1∑
j=0

δn
ατn,is+j

∣∣∣ =
∣∣∣ q∑
j=1

(∆τn,is+j −
δn

ατn,is+j−1

)
∣∣∣ ≤ q∑

j=1

∣∣∣∆τn,is+j − δn
ατn,is+j−1

∣∣∣ = Op(δ
1+κ
n ), (A.44)

by Assumption 3.4(3) and the triangle inequality. This implies that:

∆n = δn ·Op(1) +Op(δ
1+κ
n ) = Op(δn) + op(δn), (A.45)

by the boundedness of αt, as desired.

We now return to the proof. We start by the precise definitions of the limiting variables of the

OMK estimator in z(q):

η(q) : = max
1≤j≤q

{ξ(q)
1 (j)− |ξ(q)

2 (j)|}, ξ
(q)
1 := ξ

(q)
1 (q), ξ

(q)
2 := ξ

(q)
2 (q),

ξ
(q)
1 (j) : = ∆−1/2

n max
1≤i,i′≤j

|W (q)(is + i)−W (q)(is + i′)|,

ξ
(q)
2 (j) : = ∆−1/2

n |W (q)(is + j)−W (q)(is)|,

(A.46)

and recall that W (q)(i) := W
τ
(q)
n,i

is the ith equidistant observation of W on In, where τ
(q)
n,i := τn,is +

i∆n/q is the ith equidistant grid on In. We shall also define W (i) := Wτn,is+i as the non-equidistant

observations of W , and construct η, ξ1, ξ2, ξ1(j), ξ2(j) as in Eq. (A.46) but based on (W (i))
i∈I(q)n

instead of (W (q)(i))
i∈I(q)n

. The only difference between (η(q), ξ
(q)
1 , ξ

(q)
2 ) and (η, ξ1, ξ2) is the observation

times of W , and the superscript (q) denotes whether the underlying process is observed equidistantly

or not. However, as we shall show later in this proof, these two versions of the limiting variables are

asymptotically equivalent due to Assumption 3.4(3).

We start with a lemma which shows that the observation times {τn,i}i∈I(q)n
and {τ (q)

n,i }i∈I(q)n
are

asymptotically equivalent:

Lemma A.2. It holds for all 1 ≤ j ≤ q that |τn,is+j − τ
(q)
n,is+j

| = Op(δ
1+κ
n ).

Proof. Since ∆n = Op(δn), we may deduce that αt contains no jump on In with probability 1 in the

limit. Therefore, we can assume that α has the following representation without loss of generality:

αt = ατn,is +
∫ t
τn,is

b′sds+
∫ t
τn,is

σ′sdWs, (A.47)

where t ∈ In and the processes b′s and σ′s satisfy Assumption 3.1. In view of Eq. (A.10), we can further

simplify αt to a continuous martingale with fixed volatility in the limit on In:

αt = ατn,is + σ′τn,is

∫ t
τn,is

dWs + op(δ
1/2
n ). (A.48)
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We therefore have ατn,is+j = ατn,is +Op(δ
1/2
n ) for all 1 ≤ j ≤ q. By Assumption 3.4(3) and the triangle

inequality, we have:∣∣∣∆τn,is+j − δn
ατn,is

∣∣∣ ≤ ∣∣∣∆τn,is+j − δn
ατn,is+j−1

∣∣∣+ ∣∣∣δn(ατn,is+j−1 − ατn,is )
ατn,is+j−1ατn,is

∣∣∣ = Op(δ
1+κ
n ) +Op(δ

3/2
n ). (A.49)

For κ < 1/2 we can ignore the last term and conclude that |∆τn,is+j − δn/ατn,is | = Op(δ
1+κ
n ). This

first leads to the estimate:∣∣∣∆n −
qδn
ατn,is

∣∣∣ =
∣∣∣τn,is+q − τn,is − qδn

ατn,is

∣∣∣ ≤ q∑
i=1

|∆τn,is+i − δn/ατn,is | = Op(δ
1+κ
n ). (A.50)

Note that this implies ∆n/δn = q/ατn,is + op(1). We thus have, for each j:

|τn,is+j − τ
(q)
n,is+j

| =
∣∣∣τn,is+j − τn,is − j∆n

q

∣∣∣ ≤ ∣∣∣ j∑
i=1

(∆τn,is+i − δn/ατn,is )
∣∣∣+

j

q

∣∣∣ qδn
ατn,is

−∆n

∣∣∣
= Op(δ

1+κ
n ) +Op(δ

1+κ
n ) = Op(δ

1+κ
n ),

(A.51)

as desired. This completes the proof.

Lemma A.2 implies the following result for every 1 ≤ j ≤ q:

|W (is + j)−W (is + j)(q)| = Op(|τn,is+j − τ
(q)
n,is+j

|1/2) = Op(δ
1/2+κ/2
n ), (A.52)

since |Wt −Ws| = Op(|t− s|1/2), thus we can also conclude that:

max
1≤j≤q

|W (is + j)−W (q)(is + j)| = op(δ
1/2
n ), (A.53)

as q is assumed to be finite and κ > 0. We now prove the following estimates, which is the discrete

counterpart of Eq. (A.9):

max
1≤j≤q

|w(j)−
√

∆nσsξ
(q)
1 (j)| = op(δ

1/2
n ), max

1≤j≤q
||r(j)| −

√
∆nσsξ

(q)
2 (j)| = op(δ

1/2
n ). (A.54)

Starting with the second claim:

max
1≤j≤q

||r(j)| −
√

∆nσsξ
(q)
2 (j)| = max

1≤j≤q
||r(j)| −

√
∆nσsξ2(j) +

√
∆nσsξ2(j)−

√
∆nσsξ

(q)
2 (j)|

≤ max
1≤j≤q

||r(j)| −
√

∆nσsξ2(j)|+
√

∆nσs max
1≤j≤q

|ξ2(j)− ξ(q)2 (j)|

≤ sup
h∈In

||rh| −
√

∆nσsξ2,h|+ σs max
1≤j≤q

|W (j)−W (q)(j)|

≤ op(δ1/2n ) + op(δ
1/2
n ) = op(δ

1/2
n ),

(A.55)

where in the second inequality, the first term is due to the fact the supremum of a continuous process

is not smaller than the maximum of the discrete version of the same process. The estimates in the

third line of the above equation therefore follows from Eq. (A.10) and Eq. (A.52). The first claim in
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Eq. (A.54) can be proved in a similar manner:

max
1≤j≤q

|w(j)−
√

∆nσsξ
(q)
1 (j)| = max

1≤j≤q
|w(j)−

√
∆nσsξ1(j) +

√
∆nσsξ1(j)−

√
∆nσsξ

(q)
1 (j)|

≤ max
1≤j≤q

|w(j)−
√

∆nσsξ1(j)|+
√

∆nσs max
1≤j≤q

|ξ1(j)− ξ(q)1 (j)|

≤ sup
h∈In

|wh −
√

∆nσsξ1,h|+ 2σs max
j∈I(q)n

|W (j)−W (q)(j)|

≤ op(δ1/2n ) + op(δ
1/2
n ) = op(δ

1/2
n ),

(A.56)

where the second inequality follows since:

max
1≤j≤q

√
∆n|ξ1(j)− ξ(q)1 (j)|

= max
1≤j≤q

∣∣∣ max
1≤i,i′≤j

|W (is + i)−W (is + i′)| − max
1≤i,i′≤j

|W (q)(is + i)−W (q)(is + i′)|
∣∣∣

≤ max
1≤i,i′≤q

∣∣∣|W (is + i)−W (is + i′)| − |W (q)(is + i)−W (q)(is + i′)|
∣∣∣

≤ max
1≤i,i′≤q

∣∣∣W (is + i)−W (q)(is + i)−W (is + i′) +W (q)(is + i′)|
∣∣∣

≤ max
1≤i≤q

|W (is + i)−W (q)(is + i)|+ max
1≤i′≤q

|W (is + i′) +W (q)(is + i′)|

=2 max
j∈I(q)n

|W (j)−W (q)(j)| = op(δ
1/2
n ).

(A.57)

In the same vein as the derivation of Eq. (A.13), Eq. (A.54) directly leads to the following result:

|m−
√

∆nσsη
(q)| ≤ max

1≤j≤q
|w(j)−

√
∆nσsξ

(q)
1 (j)|+ max

1≤j≤q
||r(j)| −

√
∆nσsξ

(q)
2 (j)|

≤ op(δ1/2n ) + op(δ
1/2
n ) = op(δ

1/2
n ),

|w −
√

∆nσsξ
(q)
1 | ≤ max

1≤j≤q
|w(j)−

√
∆nσsξ

(q)
1 (j)| = op(δ

1/2
n ),

||r| −
√

∆nσsξ2| ≤ max
1≤j≤q

||r(j)| −
√

∆nσsξ
(q)
2 (j)| = op(δ

1/2
n ).

(A.58)

Following the same procedure as in Eqs. (A.14) and (A.15), the above results leads to the desired

coupling result in Eq. (3.19) via the Slutsky theorem and the continuous mapping theorem, which

completes the proof.

Proof of Proposition 3.4. Following the notation in Eq. (3.16), we write mε, wε, and |rε| (resp. m, w,

and r) as the MAED, range, and absolute return of (P ε(i))
i∈I(q)n

(resp. (P (i))
i∈I(q)n

), respectively. We

also define the processes wε(j) and rε(j) as the running range and return up to the jth observation,

where 1 ≤ j ≤ q. Similarly, define ξε1(j) and ξε2(j) as the running range and absolute up to the jth

observation constructed from (ε(i))i=is:is+j . The key to the proof is the following result:

Lemma A.3. It holds for all 1 ≤ j ≤ q that: wε(j) = ξε1(j) +Op(δ
−1/2
n ), |rε(j)| = ξε2(j) +Op(δ

−1/2
n ).
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Proof. For the first claim, we have:

|wε(j)− ξε1(j)| =
∣∣∣ max
1≤h,h′≤j

|P ε(is + h)− P ε(is + h′)| − max
1≤h,h′≤j

|ε(is + h)− ε(is + h′)|
∣∣∣

≤ max
1≤h,h′≤j

∣∣∣|P ε(is + h)− P ε(is + h′)| − |ε(is + h)− ε(is + h′)|
∣∣∣

≤ max
1≤h,h′≤j

|P ε(is + h)− ε(is + h)− (P ε(is + h)− ε(is + h))|

= max
1≤h,h′≤j

|P (is + h)− P (is + h)| = w(j) = Op(δ
−1/2
n ).

(A.59)

where the first inequality follows from Lemma A.1, the second inequality is the reverse triangle in-

equality, and the last estimate follows from the proof of Proposition 3.3. Similarly:

||rε(j)| − ξε2(j)| ≤ |rε(j)− ε(is + j) + ε(is))| = |r(j)| = Op(δ
−1/2
n ). (A.60)

The two results above directly imply the lemma, and the proof is complete.

As a direct consequence of Lemma A.3 with an application of Lemma A.1, we see that:

|mε − ηε| =
∣∣∣ max
1≤j≤q

{wε(j)− |rε(j)|} − max
1≤j≤q

{ξε1(j)− ξε2(j)}
∣∣∣

≤ max
1≤j≤q

∣∣∣wε(j)− ξε1(j)− (|rε(j)| − ξε2(j))
∣∣∣

≤ max
1≤j≤q

|wε(j)− ξε1(j)|+ max
1≤j≤q

||rε(j)| − ξε2(j)| = Op(δ
−1/2
n ),

|wε − ξε1| = |wε(q)− ξε1(q)| = Op(δ
−1/2
n ),

||rε| − ξε2| = ||rε(q)| − ξε2(q)| = Op(δ
−1/2
n ).

(A.61)

By the Slutsky theorem, we have the following result in vector form:

(mε, wε, |rε|) = (ηε, ξε1, ξ
ε
2) +Op(δ

−1/2
n ), (A.62)

which can be written in the vector form cε = ε(q) +Op(δ
−1/2
n ), where cε := (mε, wε, |rε|)′. It now suffice

to notice that, by a continuous mapping argument:

σ̂εt(λ) =
λ′Θ(q)cε√

∆n
= ∆−1/2

n (λ′Θ(q)ε(q) +Op(δ
−1/2
n )) = ∆−1/2

n λ′Θ(q)ε(q) +Op(1), (A.63)

as desired. This completes the proof.

Proof of Proposition 3.5. We shall continue on the premise of the discussion in the beginning of the

proof of Theorem 3.2. Following the reasoning in Eq. (A.44), we can conclude that ∆n = Op(δ
1−θ
n ) =

op(1). We first show that the pre-averaging procedure can ‘recover’ the efficient price from noisy

observations in the following sense:

max
i∈I(qn)

n

|P̄ (i)− P (i)| = Op(δ
1/2+ε−θ
n ) +Op(δ

(ε−θ)(d−1/2)
n ), (A.64)

To see this, note that we have:

max
i∈I(qn)

n

|P̄ (i)− P (i)| ≤ max
i∈I(qn)

n

∣∣∣ 1

kn

kn−1∑
j=0

(P (i− j)− P (i))
∣∣∣+ max

i∈I(qn)
n

∣∣∣ 1

kn

kn−1∑
j=0

ε(i− j)
∣∣∣

= Op(
√
knδn) +Op(k

d−1/2
n ) = Op(δ

(1+ε−θ)/2
n ) +Op(δ

(ε−θ)(d−1/2)
n ),

(A.65)
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where the second estimate is a direct result of Assumption 3.5. For the first estimate:

max
i∈I(qn)

n

∣∣∣ 1

kn

kn−1∑
j=0

(P (i− j)− P (i))
∣∣∣ = max

i∈I(qn)
n

∣∣∣ kn−1∑
j=1

kn − j
kn

(P (i− j)− P (i− j + 1))
∣∣∣

= max
i∈I(qn)

n

∣∣∣ ∫ τn,iτn,i−kn+1
g(s)bsds+

∫ τn,i
τn,i−kn+1

g(s)σsdWs

∣∣∣ = Op(
√
knδn),

(A.66)

where g(t) = 1− j/kn for t ∈ [τn,i−j , τn,i−j+1) which summarizes the impact of the pre-averaging, and

the last estimate is due to the boundedness of bt and σt and the estimate τn,i − τn,i−kn+1 = O(knδn)

(in view of Eq. (A.44)), and note that g(t) does not change the asymptotic order of the estimates as

it is bounded above by 1. Let c = (m,w, |r|) denote the MAED-candlestick vector constructed from

(P (i))
i∈I(qn)

n
, then Eq. (A.64) directly implies that:

|c− c| = Op(δ
(1+ε−θ)/2
n ) +Op(δ

(ε−θ)(d−1/2)
n ). (A.67)

To conserve space, we shall only prove the above estimate for the range statistic, and the corresponding

results for the MAED and the return follow by a similar argument. We have:

|w̄ − w| ≤ max
i,i′∈I(qn)

n

||P̄ (i)− P̄ (i′)| − |P (i)− P (i′)||

≤ 2 max
i∈I(qn)

n

|P̄ (i)− P (i)| = Op(δ
(1+ε−θ)/2
n ) +Op(δ

(ε−θ)(d−1/2)
n ),

(A.68)

which is the desired asymptotic order, where the first inequality is due to Lemma A.1. We thus see

that:

∆−1/2
n |λ′Θc− λ′Θc| = Op(δ

ε/2
n ) +Op(δ

(ε−θ)(d−1/2)−(1−θ)/2
n ) = op(1), (A.69)

where the last estimate holds iff ε > 0 and (ε− θ)(d− 1/2)− (1− θ)/2 > 0. One should verify that the

latter condition is equivalent to (θ− ε)/(1− ε) > 1/(2− 2d), which gives the require range of θ and ε.

We proceed to show that |∆−1/2
n λ′Θc− σtλ′Θz| = op(1) in the limit, which implies Eq. (3.26) in

view of Eq. (A.69). Note that this result is very similar to Proposition 3.3 except that the number of

observations qn in In diverges instead of being constant. By modifying the asymptotic order of ∆n in

Lemma A.2, it follows that:

|τn,is+j − τ
(qn)
n,is+j

| = Op(δ
1−θ+κ
n ) +Op(δ

3(1−θ)/2
n ), 1 ≤ j ≤ qn, (A.70)

where τ
(qn)
n,i := τn,is + i∆n/qn is the ith equidistant grid on In as in Lemma A.2. This implies that:

max
1≤j≤qn

|W (is + j)−W (qn)(is + j)| = Op(δ
(1−θ+κ)/2
n ) +Op(δ

3(1−θ)/4
n ) = op(δ

(1−θ)/2
n ), (A.71)

where (W (qn)(i))
i∈I(qn)

n
is the (qn + 1)-times equidistant observations of W on In. Let us also write

(W
(qn)
t )t∈In as the right continuous version of (W (qn)(i))

i∈I(qn)
n

, which is understood as a discretized

version of W on In. Proposition 1 of Asmussen et al. (1995) gives an estimate of the asymptotic order

of the discretization error:

sup
t∈In
|Wt −W (qn)

t | = Op(
√

(∆n/qn)| ln qn|) = Op(δ
1/2
n

√
| ln δn|). (A.72)
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for any α > 0. This result and Eq. (A.71) further imply that |c − σs∆1/2
n z| = op(δ

(1−θ)/2
n ). We note

that this can be proved using similar arguments as the proof of Eq. (A.58), and for brevity we only

show the result for the range statistic. We have:

|w − σs∆1/2
n ξ1| ≤ |w − σs∆1/2

n ξ
(qn)
1 |+ σs∆

1/2
n |ξ

(qn)
1 − ξ1|

≤ op(
√

∆n) + 2σs∆
1/2
n sup

t∈In
|Wt −W (qn)

t |

≤ op(δ(1−θ)/2
n ) +Op(δ

1−θ/2
n

√
| ln δn|) = op(δ

(1−θ)/2
n ),

(A.73)

where ξ
(qn)
1 is understood as the range statistic of (W (qn)(i))

i∈I(qn)
n

. The first estimate in the first

inequality is due to Eq. (A.13), and the final estimate follows since O(
√
δn| ln δn|) = o(1). Finally, it

suffices to notice that:

|ˆ̄σt(λ)− σsλ′Θz| ≤ ∆−1/2
n |λ′Θc− λ′Θc|+ |∆−1/2

n λ′Θc− σsλ′Θz|

≤ op(1) + op(1) = op(1),
(A.74)

which implies ˆ̄σt(λ) = σsλ
′Θz + op(1). We can thus obtain Eq. (3.26) by dividing σt on both sides of

this relation following the same logic as Eq. (A.16), and the proof is complete.

B The OMK Estimator for Spot Variance

Follow the setting in Section 3.2, we start by defining an OMK estimator for σ2
t . Let the vector

c2 := (m2,mw,m|r|, w2, |r|2, w|r|)′ collects all second order statistics computed from MAED, range

and absolute return, and let Θ2 := diag(µ−1
2 , γ−1

1 , γ−1
2 , ν−1

2 , ψ−1
2 , γ−1

0 )′ denote the corresponding matrix

of normalizing factors. The OMK estimator of spot variance is defined as:

σ̂2
t (λ) := ∆−1/2

n λ′Θ2c2, (B.1)

for some weight vector λ = (λmm, λmw, λmr, λww, λrr, λwr)
′ that adds up to one. Using a similar

argument as Theorem 3.1, one can prove the following coupling result:

σ̂2
t (λ)

σ2
t

= λ′Θ2z2 + op(1), (B.2)

where z2 := (η2, ηξ1, ηξ2, ξ
2
1 , ξ

2
2 , ξ1ξ2)′. Following the discussion after Remark 3.1, we can pick optimal

weight vectors by minimizing Var[λ′Θ2z2] subject to λ′ι = 1 where the variance-covariance matrix

Var[Θ2z2] can be easily simulated. We find the optimal OMK weights and the corresponding minimized

variance to be approximately:

λ∗2 ≈ (0.523, 0.683,−0.004,−0.816,−0.170, 0.784)′, Var[λ∗′2 Θ2z2] ≈ 0.153. (B.3)

Restricting λmm = λmw = λmr = 0, the optimal OK weight and the corresponding minimized variance

are (which can be derived in closed form):

λo2 ≈ (0, 0, 0, 1.7103, 0.0544,−0.7647)′, Var[λo′2 Θ2z2] ≈ 0.2594. (B.4)
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Therefore, the optimal OMK estimator has an asymptotic variance factor that is about 41% smaller

than that of the optimal OK estimator for σ2
t , so that the variance reduction is almost the same as

the OMK estimator for σt.

It is worth noting that the ‘practical version’ of the Garman-Klass estimator can be obtained by

further restricting λmm = λmw = λmr = λwr = 0, which takes the form14 σ̂2
t,GK ≈ ∆

−1/2
n (0.5031w2 −

0.3949r2). We find that avar(σ̂2
t,GK/σ

2
t ) ≈ 0.2686, which is worse than our OK estimator here due to

the restriction on the weight vector. In fact, we have Var[e1Θ2z2] ≈ 0.270, so the MAED estimator of

σ2
t has almost identical performance to the Garman-Klass estimator in the continuous case. Finally, we

note that the optimal OK variance factor of 0.2594 can be improved slightly to 0.2587 if we decompose

w and |r| further into high, low and close returns based on the method of Meilijson (2011) (see also

the discussion in Bollerslev et al. (2022)). As the improvement is empirically insignificant, we do not

pursue this approach further in this paper.

C Simulated Moments and Critical Values of the MAED-Based Statistics

This section provides a comprehensive guidance on the choice of various moments and critical values

for the OMK estimator and the S-test in the discrete case under Assumption 3.4. We note that the

results in the continuous case is obtained by letting q →∞.

We start by simulating the vector (η̃(q), ξ̃
(q)
1 , ξ̃2)′ with various choices of q, which can be easily

constructed from a standard Brownian motion equidistantly observed with q+1 observations on [0, 1].

As q can take any natural number, we consider the following simulation scheme to make full use of

our computational resources:

1. For q ∈ {2, 3, 4, . . . 10}, we draw 109 replications of (η̃(q), ξ̃
(q)
1 , ξ̃2)′.

2. For q ∈ {11, 12, . . . , 200}, we draw 108 replications of (η̃(q), ξ̃
(q)
1 , ξ̃2)′.

3. For q ∈ {201, 202, . . . , 2000, 2005, 2010, . . . , 5000, 5010, 5020, . . . , 104, 105, 106, 107, 108}, we draw

107 replications of (η̃(q), ξ̃
(q)
1 , ξ̃2)′.

First, in Table C.1 we present the simulation results related to the first two moments of (η̃(q), ξ̃
(q)
1 , ξ̃2)′,

namely µ
(q)
1 , µ

(q)
2 , ν

(q)
1 , ν

(q)
2 , γ

(q)
0 , γ

(q)
1 and γ

(q)
2 . We compute these moments by their corresponding

Monte Carlo averages for each q. For q ≤ 10, we directly use the simulated values, which has the

highest precision in our simulation schemes. The standard error of the simulated moments are also

presented in Panel 2 of the table to assess the precision of the simulated moments. For q ≥ 11, we

14Note that the original definition in Garman and Klass (1980) is σ̂2
t,GK ≈ ∆

−1/2
n (0.5w− (ln 2− 1)|r|), which has a slightly

larger variance than the variance-optimal version given here.
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propose to use the following polynomial approximation for the aforementioned moments:

Y (q) =
k∑
i=0

βiq
−i/2 + u(q), (C.1)

where Y (q) ∈ {µ(q)
1 , µ

(q)
2 , ν

(q)
1 , ν

(q)
1 , γ

(q)
0 , γ

(q)
1 , γ

(q)
2 } are the simulated moments to be approximated and

u(q) is a nearly zero-mean residual term. The specification of the regression is inspired by Proposition

3 of Asmussen et al. (1995), which derive an asymptotic expansion for moments of reflected Brownian

motion up to the q−1/2 term. In fact, the analytical coefficient β1 in Panel 3 of Table C.1 is due to

Asmussen et al. (1995), which is also used in Andersen et al. (2008). We find that a cubic approximation

works very well across all q ≥ 11 for the candlestick-based moments, i.e., ν
(q)
1 , ν

(q)
2 and γ

(q)
0 , while a

quartic approximation is needed for the MAED-based moments with 11 ≤ q ≤ 200. The regression

standard error and the R2 are presented in the table to evaluate the precision of the polynomial

approximation. It should be clear that one can view β0s in Panel 4 as the simulated moments in the

continuous case by letting q →∞.

The simulation precision in Table C.1 is worth discussing. As the Monte Carlo means are asymp-

totically normal by a standard central limit theorem, one can interpret a simulated moment ±2×SE as

its 95% confidence bounds. Panel 1 thus shows that, for q ≤ 10, the simulated µ
(q)
1 , µ

(q)
2 , γ

(q)
1 , γ

(q)
2 and

ν
(q)
2 are precise up to the 4th digits after the decimal point, as the width of the 95% confidence bounds

are narrower than 10−4. ν
(q)
2 and γ

(q)
0 are slightly less accurate, but the 95% confidence bounds indicate

that the simulated error is likely to be smaller than ±0.0001. Turning to Panels 2 and 3, all the R2s

of the regressions are virtually 1, which suggests almost perfect fit of the polynomials to the simulated

moments for the range of q considered. The fitted values are more precise for 11 ≤ q ≤ 200 due to the

larger Monte Carlo size, and one can observe that the relative size of the SEs among different panels

roughly correspond to the Monte Carlo size. Importantly, assuming that the regression specification

is correct, one can use the fitted value ±2×regression SE to gauge the precision of approximated mo-

ments for any choice of q. The table thus shows that the largest approximation error of the moments

is likely to be within ±0.001 for ν
(q)
2 and γ

(q)
0 . In particular, µ

(q)
1 and ν

(q)
1 , which determines the bias

of the OMK estimator, can be approximated accurately up to the third digit after the decimal point.

This result demonstrates the quality of the simulated moments and the validity of our polynomial

approximation.

Based on the simulated values of (η̃(q), ξ̃
(q)
1 , ξ̃2)′, we also provide approximated critical values for

σ̂
(q)
t,OK , σ̂

(q)
t,OMK , σ̂

(q)
t,MAED and S

(q)
t with α ∈ {10%, 5%, 1%}. Critical values for non-conventional choices

of α are available upon request, but they are omitted here for conciseness. Taking the critical values for

the α% HDI of σ̂
(q)
t,OMK as an example. For each q and the associated Monte Carlo size, we first compute

z̃(q) := (η̃(q), ξ̃
(q)
1 , ξ̃2)′ and Θ(q) = diag((µ

(q)
1 )−1, (ν

(q)
1 )−1, ψ−1

1 ), where µ
(q)
1 and ν

(q)
1 can be found in

Table C.1. This allows us to compute Var[Θ(q)z̃(q)], and hence λ∗, from the Monte Carlo draws based
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q =

Y (q) =
µ
(q)
1 µ

(q)
2 γ

(q)
1 γ

(q)
2 ν

(q)
1 ν

(q)
2 γ

(q)
0

Panel 1: Simulated Moments

2 0.165 0.0908 0.159 0.0683 0.963 1.228 1.068

3 0.284 0.164 0.294 0.143 1.052 1.382 1.117

4 0.373 0.227 0.406 0.207 1.111 1.496 1.152

5 0.440 0.283 0.500 0.259 1.153 1.584 1.178

6 0.494 0.331 0.578 0.302 1.186 1.655 1.199

7 0.536 0.374 0.643 0.337 1.212 1.714 1.216

8 0.571 0.412 0.699 0.367 1.233 1.764 1.231

9 0.601 0.445 0.747 0.391 1.251 1.807 1.243

10 0.626 0.475 0.789 0.412 1.267 1.845 1.254

Panel 2: Simulated SE of the Simulated Moments×104

2 0.0797 0.1732 0.0998 0.0423 0.0696 0.4427 0.4442

3 0.0911 0.1658 0.1224 0.0603 0.0865 0.4486 0.4470

4 0.0939 0.1619 0.1345 0.0704 0.0986 0.4547 0.4502

5 0.0942 0.1595 0.1421 0.0771 0.1080 0.4602 0.4532

6 0.0937 0.1579 0.1474 0.0822 0.1154 0.4650 0.4559

7 0.0930 0.1568 0.1515 0.0864 0.1215 0.4691 0.4583

8 0.0923 0.1560 0.1549 0.0902 0.1265 0.4728 0.4604

9 0.0918 0.1553 0.1579 0.0935 0.1308 0.4760 0.4623

10 0.0914 0.1548 0.1606 0.0965 0.1345 0.4788 0.4639

Panel 3: Quartic Approximation for 11 ≤ q ≤ 200

β0 1.107 1.306 1.776 0.807
√

8/π 4 ln 2 3/2

β1 -1.568 -3.483 -3.860 -1.310
√

2/πζ(1/2) 8ζ(1/2)/π 2ζ(1/2)/π

β2 2.756 2.532 0.116 0.400 2.745 0.501

β3 1.005 1.002 -0.0128 0.841 -0.0694

β4 -1.689 -0.479 -1.924 -2.438

Reg SE×104 0.2838 0.5826 0.6532 0.4039 0.4419 1.5430 1.3476

R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel 4: Cubic Approximation for 201 ≤ q
β0 1.106 1.303 1.774 0.807 Same as 11 ≤ q ≤ 200

β1 -1.533 -3.368 -3.791 -1.302 Same as 11 ≤ q ≤ 200

β2 -0.541 1.067 1.596 0.127 Same as 11 ≤ q ≤ 200

β3 3.994 9.344 4.727 Same as 11 ≤ q ≤ 200

Reg SE×104 0.8799 2.0336 2.2531 1.6825 1.5086 5.5544 5.0471

R2 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9981

Table C.1: Simulated and approximated values for the moments of (η̃(q), ξ̃
(q)
1 , ξ̃2)′. In Panel 1, we present the simulated moments

for each 2 ≤ q ≤ 10, and the corresponding standard errors (SE) are presented in Panel 2. Panels 3 and 4 present the estimated

coefficients of the polynomial regression Y (q) =
∑4
i=0 βiq

−i/2 + u(q) based on different ranges of q, with the regression SE and R2.

Note that ζ(x) is the Riemann Zeta function.
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on Eq. (3.8). Consequently, we obtain the simulated distribution of λ∗′Θ(q)z̃(q), which coincides with

the asymptotic distribution of the OMK estimator according to Proposition 3.3. With a significance

level of (1 − α)%, we construct `α(λ∗′Θ(q)z̃(q)) = [Bα−(λ∗′Θ(q)z̃(q)), Bα+(λ∗′Θ(q)z̃(q))] such that the

number of observations in `α(λ∗′Θ(q)z̃(q)) is exactly (1− α)% times the Monte Carlo size, where the

critical values Bα±(λ∗′Θ(q)z̃(q)) are chosen by minimizing Bα+(λ∗′Θ(q)z̃(q)) − Bα−(λ∗′Θ(q)z̃(q)) over

the grid of simulated values of (λ∗′Θ(q)z̃(q))−1. Similar to Table C.1, we suggest to use the exact

simulated critical values for q ≤ 10 and provide polynomial approximations for q > 10. We present

the values and their associated SEs of the simulated/approximated critical values in Table C.2.

We summarize some key results in Table C.2. First, we focus on the results in Panel 1a. By

comparing critical values of OMK and OK estimators for 3 ≤ q ≤ 10, we find that the HDI widths of

the OMK estimator is always narrower than that of the OK estimator, regardless of the choices of q

or α. This is in line with our conclusion in Table 3.2 that the OMK estimator outperforms the OK

estimator for any choices of q > 2. The critical values of the MAED estimator and the associated test

statistic is not available for various choices of q due to the non-negligible probability of η̃(q) = 0 when

q is small. In Panel 1b, the simulated standard errors are computed from the asymptotic variance

of an order statistic, as all the critical values presented here are in essence an order statistic of the

simulated distribution. Panel 1b thus shows that the simulated critical values for small q is reasonably

precise for the OMK and the OK estimators, with SEs below 0.0001 for most choices of q. The SEs

of the simulated critical values for the MAED estimator and the test statistic is noisier, especially for

small q and α, but as q increases, the SEs shrinks to a similar scale relative to those of the OK and

OMK estimators.

Polynomial approximation coefficients of the critical values for different ranges of q are presented

in Panels 2 and 3 of Table C.2. For each regression, the order of the polynomial approximation is chosen

such that the coefficient of an additional term is statistically insignificant. By comparing Panel 2 with

Panel 3, we see that the polynomial approximation is somewhat more complicated for 11 ≤ q ≤ 200

and for the MAED-related critical values, with a maximum of 8 polynomial terms for the MAED

estimator with α = 1%. However, all the regressions have R2 ≈ 1 and similar level of regression SEs

around 0.001. These results suggest very accurate fit to the simulated critical values, which are used

in our simulation and empirical analyses. It is worth noting that in Panel 3, β0 can be regarded as

the critical values for the limiting case when the continuous price path is observed. MATLAB codes

to compute the critical values according to Table C.2 are provided in the supplementary material of

the paper.
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