Proofs to

"Least Squares Inference on Integrated Volatility and the

Relationship between Efficient Prices and Noise"

1 Preliminaries

Under Assumptions 1, 2 and 3, we have that

$$
\mathrm{E}\left[R V^{h, s}\left(N_{h, s}\right)\right]=I V+2 N_{h, s} \omega^{2},
$$

and hence we have the regression

$$
y_{h, s}=c+\beta_{0} N_{h, s}+\varepsilon_{h, s}, \quad s=1, \ldots S, h=1, \ldots, s,
$$

where $y_{h, s}=R V^{h, s}\left(N_{h, s}\right)$ and the total number of observations in the regression is $N_{t o t}=$ $S(S+1) / 2$. Set $N_{h, s}=N_{s}$ as $N_{h, s} \approx \frac{N}{s}, s=1, \ldots, S$ up to a rounding error. The above regression can be written in a matrix form as

$$
Y=X \theta+\varepsilon,
$$

where $\theta=\left(c, \beta_{0}\right)^{\prime}$. From now on, we condition on the trading times $t_{j}, j=1, \ldots, N$, which is equivalent to conditioning on the regressor matrix X.

Set $\operatorname{Var}[\varepsilon]=\Xi=\Xi(N, S)$ (we will usually suppress the dependence on N and S). Hansen \& Lunde (2006) (Equation 2) show that 1

$$
\begin{equation*}
\operatorname{Var}\left[y_{h, s}\right]=\operatorname{Var}\left[\varepsilon_{h, s}\right]=12 \kappa \omega^{4} N_{s}+8 \omega^{2} \int_{0}^{1} \sigma_{s}^{2} d s-(6 \kappa-2) \omega^{4}+\frac{2}{N_{s}} \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s+o\left(\frac{1}{N_{s}}\right), \tag{1}
\end{equation*}
$$

[^0]which is a diagonal element of Ξ. Denoting the OLS estimator $\hat{\theta}=\left(\hat{c}, \hat{\beta}_{0}\right)^{\prime}$, we have that
$$
\operatorname{Var}[\hat{\theta}]=\left(X^{\prime} X\right)^{-1} X^{\prime} \Xi X\left(X^{\prime} X\right)^{-1}
$$

Denote by X_{1} the first row of $\left(X^{\prime} X\right)^{-1} X^{\prime}$. Then

$$
\operatorname{Var}[\hat{c}]=X_{1} \Xi X_{1}^{\prime} .
$$

2 Auxiliary Lemma

Lemma 1. Under Assumptions 1, 2 and 3. it holds that for any $s, s^{\prime}, h, h^{\prime}$ for which $s=s^{\prime}$ and $h=h^{\prime}$ are not simultaneously fulfilled 2^{2}
$\operatorname{Cov}\left[R V^{h, s}\left(N_{h, s}\right), R V^{h^{\prime}, s^{\prime}}\left(N_{h^{\prime}, s^{\prime}}\right)\right]=\left\{\begin{array}{ll}\frac{2 I Q \min \left(s, s^{\prime}\right)}{N}, & \text { if }(\star) \\ \frac{2 I Q \min \left(s, s^{\prime}\right)}{N}+4 \omega^{2} \int_{\mathcal{O}} \sigma_{s}^{2} d s+\frac{N \omega^{4}(12 \kappa-4)}{\operatorname{lcm}\left(s, s^{\prime}\right)}, & \text { otherwise }\end{array}\right.$,
where $(\star):\left\{t_{j s+h}\right\}_{j=1, \ldots, N_{h, s}} \cap\left\{t_{i s^{\prime}+h^{\prime}}\right\}_{i=1, \ldots, N_{h^{\prime}, s^{\prime}}}=\varnothing$ and the set \mathcal{O} is defined in the following proof. $\operatorname{lcm}\left(s, s^{\prime}\right)$ stands for the least common multiplier of s and $s^{\prime} \cdot \frac{3}{3}$

Proof. Write the covariance $\operatorname{Cov}\left[R V^{h, s}\left(N_{h, s}\right), R V^{h^{\prime}, s^{\prime}}\left(N_{h^{\prime}, s^{\prime}}\right)\right]$ explicitly as

$$
\operatorname{Cov}\left[R V^{h, s}\left(N_{h, s}\right), R V^{h^{\prime}, s^{\prime}}\left(N_{h^{\prime}, s^{\prime}}\right)\right]=\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{2}\right] .
$$

[^1]This expression can be decomposed as

$$
\begin{aligned}
& \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{2}, \quad \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{2}\right] \\
& =\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{* 2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{* 2}\right]+2 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{* 2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{*} e_{i s^{\prime}+h^{\prime}}\right]+\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{* 2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} e_{i s^{\prime}+h^{\prime}}^{2}\right] \\
& +2 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{*} e_{j s+h}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{* 2}\right]+4 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{*} e_{j s+h}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}} e_{i s^{\prime}+h^{\prime}}\right]+2 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{*} e_{j s+h}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} e_{i s^{\prime}+h^{\prime}}^{2}\right] \\
& +\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} e_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{* 2}\right]+2 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} e_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{*} e_{i s^{\prime}+h^{\prime}}\right]+\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} e_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} e_{i s^{\prime}+h^{\prime}}^{2}\right] \\
& =\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{* 2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{* 2}\right]+4 \operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{*} e_{j s+h}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{*} e_{i s^{\prime}+h^{\prime}}\right]+\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} e_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} e_{i s^{\prime}+h^{\prime}}^{2}\right],
\end{aligned}
$$

where the last equation follows because all other terms are zero. The first term is a covariance between two estimators for $I V$ in the absence of noise. Consider the case when the s^{\prime}-mesh is a proper subgrid of the s-mesh (or vice versa), e.g., the $s=2, h=1$ (comprising the ticks $t_{1}, t_{3}, t_{5}, \ldots$) and $s^{\prime}=4, h^{\prime}=1$ (comprising the ticks $t_{1}, t_{5}, t_{9}, \ldots$) combination. In these cases, using Lemma 2.1 in Hausman (1978), it follows that the covariance between them is equal to the variance of the more efficient one, i.e.,
$\begin{aligned} \operatorname{Cov}\left[\begin{array}{l}N_{h, s} \\ N_{j s+h} \\ r_{j+h}, \\ N_{h^{\prime}, s^{\prime}} \\ \left.r_{i s^{\prime}+h^{\prime}}^{* 2}\right]\end{array}\right. & = \begin{cases}\operatorname{Var}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{* 2}\right], & \text { if } N_{h, s} \geq N_{h^{\prime}, s^{\prime}} \\ \operatorname{Var}\left[\sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{* 2}\right], \text { otherwise. }\end{cases} \\ & =\frac{2}{\max \left(N_{h, s}, N_{h^{\prime}, s^{\prime}}\right)} \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s+o(1 / N)=\frac{c^{*} \min \left(s, s^{\prime}\right)}{N}+o(1 / N),\end{aligned}$
where the expression for the variance of a sparse realized variance under irregular sampling follows from Equation (25) in Zhang et al. (2005). In the remaining cases, when one of the subgrids does not represent a proper subset of the other one, the above result can be seen as a first order approximation. In these cases, the covariance is in fact smaller than the variance of the more efficient one, but the difference between the two terms is of a smaller order than the variance.

The second term vanishes if $\left\{t_{j s+h}\right\}_{j=1, \ldots, N_{h, s}} \cap\left\{t_{i s^{\prime}+h^{\prime}}\right\}_{i=1, \ldots, N_{h^{\prime}, s^{\prime}}}=\varnothing$ since then the summands are uncorrelated. In the remaining cases we have $\left\{t_{j s+h}\right\}_{j=1, \ldots, N_{h, s}} \cap\left\{t_{i s^{\prime}+h^{\prime}}\right\}_{i=1, \ldots, N_{h^{\prime}, s^{\prime}}}=$ \mathcal{A}, which is a set with $\frac{N}{\operatorname{lcm}(s, r)}$ elements. For $\left\{\left\{\left\{t_{j s+h}\right\} \in \mathcal{A}\right\} \bigcup\left\{\left\{t_{i s^{\prime}+h^{\prime}}\right\} \in \mathcal{A}\right\}\right\}$, denote $t^{*}=$ $\max \left(t_{(j-1) s+h}, t_{(i-1) s^{\prime}+h^{\prime}}\right)$ and $t_{*}=\min \left(t_{j s+h}, t_{i s^{\prime}+h^{\prime}}\right)$, where the dependence on $i, j, s, h, s^{\prime}, h^{\prime}$ is deliberately suppressed. Since $e_{j s+h}=u_{(j-1) s+h}-u_{j s+h}$, we have that for each individual summand
in the second term, there are 3 possibilities:
$\operatorname{Cov}\left[r_{j s+h}^{*} e_{j s+h}, r_{i s^{\prime}+h^{\prime}}^{*} e_{i s^{\prime}+h^{\prime}}\right]=\left\{\begin{array}{ll}0, & \text { if } t_{j s+h} \neq t_{i s^{\prime}+h^{\prime}} \text { and } t_{(j-1) s+h} \neq t_{(i-1) s^{\prime}+h^{\prime}} \\ \omega^{2} \int_{t^{*}}^{t_{j s+h}} \sigma_{s}^{2} d s, & \text { if } t_{j s+h}=t_{i s^{\prime}+h^{\prime}} \\ \omega^{2} \int_{t_{(j-1) s+h}}^{t_{s}} \sigma_{s}^{2} d s, & \text { if } t_{(j-1) s+h}=t_{(i-1) s^{\prime}+h^{\prime}}\end{array}\right.$.
It follows that

$$
\begin{aligned}
4 \mathrm{Cov}\left[\sum_{j=1}^{N_{h, s}} r_{j s+h}^{*} e_{j s+h}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} r_{i s^{\prime}+h^{\prime}}^{*} e_{i s^{\prime}+h^{\prime}}\right] & =4 \omega^{2} \sum_{\mathcal{A}}\left(\int_{t^{*}}^{t_{j s+h}} \sigma_{s}^{2} d s+\int_{t_{(j-1) s+h}}^{t_{*}} \sigma_{s}^{2} d s\right) \\
& =4 \omega^{2} \sum_{\mathcal{A}}\left(\int_{t^{*}}^{t_{*}} \sigma_{s}^{2} d s\right)=4 \omega^{2} \int_{\mathcal{O}} \sigma_{s}^{2} d s,
\end{aligned}
$$

where $\mathcal{O}=\bigcup_{t_{j s+h} \in \mathcal{A}, t_{i s^{\prime}+h^{\prime}} \in \mathcal{A}}\left[t_{*}, t^{*}\right]$. Since the set \mathcal{A} has $\frac{N}{\operatorname{lcm}\left(s, s^{\prime}\right)}$ elements and each of the integrals $\int_{t^{*}}^{t_{*}} \sigma_{s}^{2} d s$ is of order $O\left(\frac{1}{\max \left(N_{h, s}, N_{h^{\prime}, s^{\prime}}\right)}\right)$ and $\frac{1}{\max \left(N_{h, s}, N_{h^{\prime}, s^{\prime}}\right)}=\frac{\min \left(s^{\prime}, s\right)}{N}$, it follows that $\int_{\mathcal{O}} \sigma_{s}^{2} d s$ is of order $O\left(\frac{\min \left(s, s^{\prime}\right)}{\operatorname{lcm}\left(s, s^{\prime}\right)}\right)$.

The third term is also zero whenever $\left\{t_{j s+h}\right\}_{j=1, \ldots, N_{h, s}} \cap\left\{t_{i s^{\prime}+h^{\prime}}\right\}_{i=1, \ldots, N_{h^{\prime}, s^{\prime}}}=\varnothing$. In the remaining cases we have that for each $j, i: t_{j s+h} \in \mathcal{A}, t_{i s^{\prime}+h^{\prime}} \in \mathcal{A}$ there are four correlated pairs of noise terms, e.g., if $t_{j s+h}=t_{i s^{\prime}+h^{\prime}}$, then the following four pairs are correlated: $e_{j s+h}^{2}, e_{i s^{\prime}+h^{\prime}}^{2}$; $e_{(j-1) s+h}^{2}, e_{i s^{\prime}+h^{\prime}}^{2} ; e_{j s+h}^{2}, e_{(i-1) s^{\prime}+h^{\prime}}^{2}$ and $e_{(j-1) s+h}^{2}, e_{(i-1) s^{\prime}+h^{\prime}}^{2}$. Take, for example, the first pair and consider its covariance:

$$
\begin{aligned}
\operatorname{Cov}\left[e_{j s+h}^{2}, e_{i s^{\prime}+h^{\prime}}^{2}\right]= & \mathrm{E}\left[e_{j s+h}^{2} e_{i s^{\prime}+h^{\prime}}^{2}\right]-\mathrm{E}\left[e_{j s+h}^{2}\right] \mathrm{E}\left[e_{i s^{\prime}+h^{\prime}}^{2}\right] \\
= & \mathrm{E}\left[u_{j s+h}^{2} u_{i s^{\prime}+h^{\prime}}^{2}\right]+\mathrm{E}\left[u_{(j-1) s+h}^{2} u_{i s^{\prime}+h^{\prime}}^{2}\right]+\mathrm{E}\left[u_{j s+h}^{2} u_{(i-1) s^{\prime}+h^{\prime}}^{2}\right] \\
& +\mathrm{E}\left[u_{(j-1) s+h}^{2} u_{(i-1) s^{\prime}+h^{\prime}}^{2}\right]-\mathrm{E}\left[e_{j s+h}^{2}\right] \mathrm{E}\left[e_{i s^{\prime}+h^{\prime}}^{2}\right] \\
= & \mu_{4}+3 \omega^{4}-4 \omega^{4}=\mu_{4}-\omega^{4}=(3 \kappa-1) \omega^{4} .
\end{aligned}
$$

The remaining three pairs can be similarly shown to have the same covariance. Thus, it follows

$$
\operatorname{Cov}\left[\sum_{j=1}^{N_{h, s}} e_{j s+h}^{2}, \sum_{i=1}^{N_{h^{\prime}, s^{\prime}}} e_{i s^{\prime}+h^{\prime}}^{2}\right]=\frac{N \omega^{4}(12 \kappa-4)}{\operatorname{lcm}\left(s, s^{\prime}\right)} .
$$

3 Proof of Theorem 1

Calculating X_{1}

We have

$$
X^{\prime} X=\left(\begin{array}{cc}
N_{t o t} & \sum_{s, h} N_{s} \\
\sum_{s, h} N_{s} & \sum_{s, h} N_{s}^{2}
\end{array}\right)
$$

and in the following we suppress the double summation indices s, h when unambiguous. Then

$$
\operatorname{det}\left(X^{\prime} X\right)=N_{t o t} \sum N_{s}^{2}-\left(\sum N_{s}\right)^{2}
$$

and

$$
\left(X^{\prime} X\right)^{-1}=\frac{1}{\operatorname{det}\left(X^{\prime} X\right)}\left(\begin{array}{cc}
\sum N_{s}^{2} & -\sum N_{s} \\
-\sum N_{s} & N_{t o t}
\end{array}\right)
$$

The first row of $\left(X^{\prime} X\right)^{-1}$ is

$$
\left(\frac{\sum N_{s}^{2}}{N_{t o t} \sum N_{s}^{2}-\left(\sum N_{s}\right)^{2}}-\frac{\sum N_{s}}{N_{t o t} \sum N_{s}^{2}-\left(\sum N_{s}\right)^{2}}\right)
$$

Set

$$
A=\frac{1}{N_{t o t} B-C^{2}}, \text { with } B=\sum N_{s}^{2} \text { and } C=\sum N_{s} .
$$

We then have:

$$
\left.X_{1}=\left(\begin{array}{c}
A B-A C N_{1} \\
A B-A C N_{2} \\
A B-A C N_{2}
\end{array}\right\} 2 \text { times } \begin{array}{c}
\\
\vdots \\
A B-A C N_{S} \\
\vdots \\
A B-A C N_{S}
\end{array}\right\} S \text { times }{ }^{\prime} \text {. }
$$

Calculating $\operatorname{Var}[\hat{c}]$

Given the block structure of X_{1} and Ξ, we can write

$$
X_{1} \Xi X_{1}^{\prime}=\sum_{s=1}^{S} \sum_{r=1}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)}
$$

where $\xi_{i j}^{(s, r)}$ is the $i j$ element in the (s, r)-block of Ξ. Let us look at the terms A, B and C.
For B we have
$\lim _{S \rightarrow \infty} B=\lim _{S \rightarrow \infty} \sum N_{s}^{2}=\lim _{S \rightarrow \infty} \sum_{s=1}^{S} \sum_{h=1}^{s} N_{s}^{2}=\lim _{S \rightarrow \infty} \sum_{s=1}^{S} s N_{s}^{2}=N^{2} \lim _{S \rightarrow \infty} \sum_{s=1}^{S} \frac{1}{s}=N^{2} \lim _{S \rightarrow \infty}\left(\ln (S)+\gamma_{0}\right)$
with γ_{0} the Euler-Mascheroni constant. Similarly, we can derive $C=N S$. It follows that

$$
\begin{aligned}
\lim _{S \rightarrow \infty} A & =\lim _{S \rightarrow \infty} \frac{1}{\frac{S(S+1)}{2} N^{2}\left(\ln (S)+\gamma_{0}\right)-N^{2} S^{2}} \\
& =\lim _{S \rightarrow \infty} \frac{2}{N^{2}\left(S^{2} \ln (S)+S^{2}\left(\gamma_{0}-2\right)+S \ln (S)+S \gamma_{0}\right)}
\end{aligned}
$$

The expression

$$
\operatorname{Var}[\hat{c}]=X_{1} \Xi X_{1}^{\prime}=\sum_{s=1}^{S} \sum_{r=1}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)}
$$

can be decomposed as

$$
\begin{align*}
\sum_{s=1}^{S} & \sum_{r=1}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)} \\
& =\sum_{s=1}^{S} \sum_{i=1}^{s} \sum_{j=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i j}^{(s, s)}+\sum_{s=1}^{S} \sum_{r \neq s}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)} \\
& =\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}+\sum_{s=1}^{S} \sum_{i=1}^{s} \sum_{j \neq i}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i j}^{(s, s)}+\sum_{s=1}^{S} \sum_{r \neq s}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)} \tag{2}
\end{align*}
$$

The term $\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}$

Since $X_{1}^{(s)}$ does not depend on i, we have

$$
\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}=\sum_{s=1}^{S}\left(X_{1}^{(s)}\right)^{2} \sum_{i=1}^{s} \xi_{i i}^{(s, s)}
$$

We have that (ignoring the $o\left(\frac{1}{N_{s}}\right)$ term)

$$
\xi_{i i}^{(s, s)}=\underbrace{a N_{s}+b}_{\text {noise error }}+\underbrace{\frac{c}{N_{s}}}_{\text {discretization error }}
$$

where, by comparing to Equation (11), we see that

$$
a=12 \kappa \omega^{4}, \quad b=8 \omega^{2} \int_{0}^{1} \sigma_{s}^{2} d s-(6 \kappa-2) \omega^{4}, \quad c=2 \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s
$$

The inner sum is

$$
\sum_{i=1}^{s} \xi_{i i}^{(s, s)}=\sum_{i=1}^{s}\left(a \frac{N}{s}+b+\frac{c s}{N}\right)=a N+b s+\frac{c s^{2}}{N} .
$$

Further

$$
\left(X_{1}^{(s)}\right)^{2}=\left(A B-A C \frac{N}{s}\right)^{2}=A^{2} B^{2}-2 A^{2} B C \frac{N}{s}+A^{2} C^{2} \frac{N^{2}}{s^{2}}
$$

Finally, we have

$$
\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}=\sum_{s=1}^{S}\left(a N+b s+\frac{c s^{2}}{N}\right)\left(A^{2} B^{2}-2 A^{2} B C \frac{N}{s}+A^{2} C^{2} \frac{N^{2}}{s^{2}}\right)
$$

Since

$$
\begin{array}{ll}
\sum_{s=1}^{S} s^{2}=\frac{1}{6}\left(2 S^{3}+3 S^{2}+S\right), & \sum_{s=1}^{S} s=\frac{1}{2}\left(S^{2}+S\right) \\
\lim _{S \rightarrow \infty}\left(\sum_{s=1}^{S} \frac{1}{s}-\ln (S)\right)=\gamma_{0}, & \lim _{S \rightarrow \infty}\left(\sum_{s=1}^{S} \frac{1}{s^{2}}-\frac{\pi^{2}}{6}\right)=0 \\
A^{2} B^{2} \in O\left(\frac{1}{S^{4}}\right), & A^{2} B C \in O\left(\frac{1}{N S^{3} \ln (S)}\right), \\
A^{2} C^{2} \in O\left(\frac{1}{N^{2} S^{2}(\ln (S))^{2}}\right) &
\end{array}
$$

we obtain that as $S \rightarrow \infty$ and $N \rightarrow \infty, \sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}$ is dominated by $\frac{2 \pi^{2} a N}{3\left(S\left(\ln (S)+\gamma_{0}\right)+\left(\ln (S)+\gamma_{0}\right)-2 S\right)^{2}}$ which is of order $O\left(\frac{N}{S^{2}(\ln (S))^{2}}\right)$.

The term $\sum_{s=1}^{S} \sum_{i=1}^{s} \sum_{j \neq i}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i j}^{(s, s)}$

For this term we need the covariance between two realized variances computed at the same sampling frequency (within an (s, s)-block) but with non-overlapping grids. As we are working under an iid noise framework, this covariance is not affected by the noise. Using the same arguments as Barndorff-Nielsen \& Shephard (2002), it follows that this covariance is equal to
$\xi_{i j}^{(s, s)}=\operatorname{Cov}\left[R V^{h, s}\left(N_{h, s}\right), R V^{h^{\prime}, s}\left(N_{h^{\prime}, s}\right)\right]=\frac{2}{N_{s}} \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s+o\left(\frac{1}{N_{s}}\right)=\frac{c}{N_{s}}+o\left(\frac{1}{N_{s}}\right)$.
Then we have

$$
\sum_{s=1}^{S} \sum_{i=1}^{s} \sum_{j \neq i}^{s}\left(X_{1}^{(s)}\right)^{2} \xi_{i j}^{(s, s)}=\sum_{s=1}^{S}\left(X_{1}^{(s)}\right)^{2} \sum_{i=1}^{s} \sum_{j \neq i}^{s} \frac{c s}{N}=\sum_{s=1}^{S}\left(X_{1}^{(s)}\right)^{2} \frac{s^{2}(s-1) c}{N}
$$

Substituting in $\left(X_{1}^{(s)}\right)^{2}$ yields

$$
\begin{aligned}
\sum_{s=1}^{S}\left(X_{1}^{(s)}\right)^{2} \frac{s^{2}(s-1) c}{N} & =\sum_{s=1}^{S}\left(A^{2} B^{2}-2 A^{2} B C \frac{N}{s}+A^{2} C^{2} \frac{N^{2}}{s^{2}}\right) \frac{s^{2}(s-1) c}{N} \\
& =\sum_{s=1}^{S} c A^{2} B^{2} \frac{s^{2}(s-1)}{N}-2 c A^{2} B C s(s-1)+c A^{2} C^{2} N(s-1)
\end{aligned}
$$

This sum is of order $O\left(\frac{1}{N}\right)$ and thus negligible.

The term $\sum_{s=1}^{S} \sum_{r \neq s}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{1}^{(s)} X_{1}^{(r)} \xi_{i j}^{(s, r)}$

For this term we use Lemma 1. The covariance $\xi_{i j}^{(s, r)}$ is affected by whether the numbers s and r are coprime or not. Consider first the case (I) when s and r are coprime. This implies that the number of common observations in an s-subgrid and r-subgrid is $\frac{N}{s r}$ for all s-subgrids and r-subgrids. From Lemma 1, it follows that in this case the covariance $\xi_{i j}^{(s, r)}$ can be written as

$$
\xi_{i j}^{(s, r)}=a^{*} \frac{N}{s r}+b^{*} \int_{\mathcal{O}} \sigma_{s}^{2} d s+\frac{c^{*} \min (s, r)}{N}
$$

where

$$
a^{*}=12 \kappa \omega^{4}-4 \omega^{4}, \quad b^{*}=4 \omega^{2}, \quad c^{*}=2 \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s
$$

In the second case (II) s and r are not coprime. In such an (s, r)-block there are two possibilities: (II.1) in $\operatorname{lcm}(s, r)$ out of the $s r$ elements in the block, the number of common points on both subgrids is $\frac{N}{\operatorname{lcm}(s, r)}$, (II.2) in the remaining $s r-\operatorname{lcm}(s, r)$ cases the subgrids do not share observations. In case (II.1) we have

$$
\xi_{i j}^{(s, r)}=a^{*} \frac{N}{\operatorname{ccm}(s, r)}+b^{*} \int_{\mathcal{O}} \sigma_{s}^{2} d s+\frac{c^{*} \min (s, r)}{N},
$$

while in case (II.2) it holds that

$$
\xi_{i j}^{(s, r)}=\frac{c^{*} \min (s, r)}{N}
$$

As in all cases (I, II. 1 and II.2), $\xi_{i j}^{(s, r)}$ does not depend on i and j, and because for coprime s and $r, \operatorname{lcm}(s, r)=s r$, we can write in general that

$$
\begin{aligned}
\sum_{i=1}^{s} \sum_{j=1}^{r} \xi_{i j}^{(s, r)} & =\left(a^{*} \frac{N}{\operatorname{lcm}(s, r)}+b^{*} \int_{\mathcal{O}} \sigma_{s}^{2} d s+\frac{c^{*} \min (s, r)}{N}\right) \operatorname{lcm}(s, r)+\frac{c^{*} \min (s, r)}{N}(s r-\operatorname{lcm}(s, r)) \\
& =a^{*} N+b^{*} \int_{\mathcal{O}} \sigma_{s}^{2} d s \operatorname{lcm}(s, r)+\frac{c^{*} s r \min (s, r)}{N} \\
& \approx a^{*} N+b^{*} \min (s, r)+\frac{c^{*} s r \min (s, r)}{N}
\end{aligned}
$$

where the last approximation is employed for operational reasons in the sense that $\int_{\mathcal{O}} \sigma_{s}^{2} d s$ term is of order $O\left(\frac{\min (s, r)}{\operatorname{lcm}(s, r)}\right)$ (and as we show in the sequel, terms involving b^{*} are asymptotically negligible). As the matrix Ξ is symmetric, we express

$$
\sum_{s=1}^{S} \sum_{r \neq s}^{S} X_{1}^{(s)} X_{1}^{(r)} \sum_{i=1}^{s} \sum_{j=1}^{r} \xi_{i j}^{(s, r)}=2 \sum_{s=1}^{S} \sum_{r>s}^{S} X_{1}^{(s)} X_{1}^{(r)} \sum_{i=1}^{s} \sum_{j=1}^{r} \xi_{i j}^{(s, r)} .
$$

Substituting in the above derived equation for $\sum_{i=1}^{s} \sum_{j=1}^{r} \xi_{i j}^{(s, r)}, X_{1}^{(s)}$ and $X_{1}^{(r)}$ results in

$$
\begin{aligned}
2 \sum_{s=1}^{S} & \sum_{r>s}^{S} X_{1}^{(s)} X_{1}^{(r)} \sum_{i=1}^{s} \sum_{j=1}^{r} \xi_{i j}^{(s, r)}=2 \sum_{s=1}^{S} \sum_{r>s}^{S} A^{2}\left(B-C \frac{N}{s}\right)\left(B-C \frac{N}{r}\right)\left(a^{*} N+b^{*} s+\frac{c^{*} s^{2} r}{N}\right) \\
& =2\left(\frac{S(S-1)}{2} a^{*} A^{2} B^{2} N+b^{*} A^{2} B^{2} \sum_{s=1}^{S} \sum_{r>s}^{S} s+\frac{c^{*} A^{2} B^{2}}{N} \sum_{s=1}^{S} \sum_{r>s}^{S} s^{2} r\right. \\
& -a^{*} A^{2} B C N^{2} \sum_{s=1}^{S} \sum_{r>s}^{S}\left(\frac{1}{r}+\frac{1}{s}\right)-b^{*} A^{2} B C N \sum_{s=1}^{S} \sum_{r>s}^{S}\left(1+\frac{s}{r}\right)-c^{*} A^{2} B C \sum_{s=1}^{S} \sum_{r>s}^{S}\left(s^{2}+s r\right) \\
& \left.+a^{*} A^{2} C^{2} N^{3} \sum_{s=1}^{S} \sum_{r>s}^{S} \frac{1}{r s}+b^{*} A^{2} C^{2} N^{2} \sum_{s=1}^{S} \sum_{r>s}^{S} \frac{1}{r}+c^{*} A^{2} C^{2} N \sum_{s=1}^{S} \sum_{r>s}^{S} s\right) .
\end{aligned}
$$

We first show that the terms involving b^{*} are asymptotically negligible. This can be confirmed by considering that $\sum_{s=1}^{S} \sum_{r>s}^{S} s \in O\left(S^{3}\right), \sum_{s=1}^{S} \sum_{r>s}^{S}\left(1+\frac{s}{r}\right) \in O\left(S^{2}\right)$ and $\sum_{s=1}^{S} \sum_{r>s}^{S} \frac{1}{r} \in$
$O(S)$. The term $b^{*} A^{2} B^{2} \sum_{s=1}^{S} \sum_{r>s}^{S} s$ is dominant and of order $O\left(\frac{1}{S}\right)$ and hence asymptotically negligible. Next, we look at limits of terms involving a^{*}. To this end consider the sums

$$
\begin{aligned}
\sum_{s=1}^{S} \sum_{r>s}^{S} & \left(\frac{1}{r}+\frac{1}{s}\right)=\sum_{s=1}^{S}\left(\sum_{r=1}^{S} \frac{1}{r}-\sum_{r=1}^{s} \frac{1}{r}\right)+\sum_{s=1}^{S} \frac{1}{s}(S-s) \\
& =2 \sum_{s=1}^{S}\left(\ln (S)+\gamma_{0}\right)-\sum_{s=1}^{S}\left(\ln (s)+\gamma_{0}\right)-S=S\left(\ln (S)+\gamma_{0}\right)-0.5 \ln (S)-0.5 \ln (2 \pi)+o(1) . \\
\sum_{s=1}^{S} \sum_{r>s}^{S} \frac{1}{r s} & =\sum_{s=1}^{S} \frac{1}{s}\left(\sum_{r=1}^{S} \frac{1}{r}-\sum_{r=1}^{s} \frac{1}{r}\right)=\sum_{s=1}^{S} \frac{1}{s}\left(\ln (S)+\gamma_{0}\right)-\sum_{s=1}^{S} \frac{1}{s}\left(\ln (s)+\gamma_{0}\right) \\
& =\left(\ln (S)+\gamma_{0}\right)^{2}-0.5(\ln (S))^{2}-\gamma_{1}-\gamma_{0}\left(\ln (S)+\gamma_{0}\right)=0.5(\ln (S))^{2}+\gamma_{0} \ln (S)-\gamma_{1}+o(1) .
\end{aligned}
$$

where we have used that $\lim _{S \rightarrow \infty}\left(\sum_{s=1}^{S} \ln (s)-\ln \left(\sqrt{2 \pi S}\left(\frac{S}{e}\right)^{S}\right)\right)=0$ by Sterling's approximation and $\lim _{S \rightarrow \infty}\left(\sum_{s=1}^{S} \frac{\ln (s)}{s}-0.5(\ln (S))^{2}\right)=\gamma_{1}$, where γ_{1} is the first Stieltjes constant equal to approximately -0.0728 (see, e.g., Havil (2003)). Thus, we obtain

$$
\begin{aligned}
\frac{S(S-1)}{2} A^{2} B^{2} N & =\frac{1}{2} \frac{4 N\left(S^{2}-S\right)\left(\ln (S)+\gamma_{0}\right)^{2}}{\left(S^{2}\left(\ln (S)+\gamma_{0}\right)+S\left(\ln (S)+\gamma_{0}\right)-2 S^{2}\right)^{2}} \\
& =\frac{2 N\left(S^{2}-S\right)}{\left(S^{2}+S-\frac{2 S^{2}}{\ln (S)+\gamma_{0}}\right)^{2}}=\frac{2 N}{\left(S+1-\frac{2 S}{\ln (S)+\gamma_{0}}\right)^{2}}+O\left(\frac{N}{S^{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
-A^{2} B C N^{2} \sum_{s=1}^{S} \sum_{r>s}^{S}\left(\frac{1}{r}+\frac{1}{s}\right) & =-\frac{4 N S\left(\ln (S)+\gamma_{0}\right)\left(S\left(\ln (S)+\gamma_{0}\right)-0.5 \ln (S)-0.5 \ln (2 \pi)\right)}{\left(S^{2}\left(\ln (S)+\gamma_{0}\right)+S\left(\ln (S)+\gamma_{0}\right)-2 S^{2}\right)^{2}} \\
& =-\frac{4 N}{\left(S+1-\frac{2 S}{\ln (S)+\gamma_{0}}\right)^{2}}+O\left(\frac{N}{S^{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
A^{2} C^{2} N^{3} \sum_{s=1}^{S} \sum_{r>s}^{S} \frac{1}{r s} & =\frac{4 N S^{2}\left(0.5(\ln (S))^{2}+\gamma_{0} \ln (S)-\gamma_{1}\right)}{\left(S^{2}\left(\ln (S)+\gamma_{0}\right)+S\left(\ln (S)+\gamma_{0}\right)-2 S^{2}\right)^{2}} \\
& =\frac{N S^{2}\left(2\left(\ln (S)+\gamma_{0}\right)^{2}-2 \gamma_{0}^{2}-4 \gamma_{1}\right)}{\left(S^{2}\left(\ln (S)+\gamma_{0}\right)+S\left(\ln (S)+\gamma_{0}\right)-2 S^{2}\right)^{2}} \\
& =\frac{2 N}{\left(S+1-\frac{2 S}{\ln (S)+\gamma_{0}}\right)^{2}}-\frac{N\left(2 \gamma_{0}^{2}+4 \gamma_{1}\right)}{\left(S\left(\ln (S)+\gamma_{0}\right)+\left(\ln (S)+\gamma_{0}\right)-2 S\right)^{2}}
\end{aligned}
$$

Summing up the three terms, we obtain $-\frac{\left(2 \gamma_{0}^{2}+4 \gamma_{1}\right) N}{\left(S\left(\ln (S)+\gamma_{0}\right)+\left(\ln (S)+\gamma_{0}\right)-2 S\right)^{2}}+O\left(\frac{N}{S^{3}}\right)$. It remains to calculate the terms with c^{*}. We have $\sum_{s=1}^{S} \sum_{r>s}^{S} s^{2} r=1 / 15 S^{5}+1 / 24 S^{4}-1 / 12 S^{3}-1 / 24 S^{2}+$ $1 / 60 S, \sum_{s=1}^{S} \sum_{r>s}^{S}\left(s^{2}+s r\right)=5 / 24 S^{4}+1 / 12 S^{3}-5 / 24 S^{2}-1 / 12 S$, and $\sum_{s=1}^{S} \sum_{r>s}^{S} s=$ $1 / 6 S^{3}-1 / 6 S$. Considering the order of the terms $A^{2} B^{2}, A^{2} B C$ and $A^{2} C^{2}$, the leading term turns out to be

$$
\frac{c^{*} A^{2} B^{2}}{N} \sum_{s=1}^{S} \sum_{r>s}^{S} s^{2} r=\frac{4 S c^{*}}{15 N\left(1-\frac{2}{\ln (S)+\gamma_{0}}+\frac{1}{S}\right)^{2}}+O\left(\frac{1}{N}\right)
$$

Final Result

Let $N \rightarrow \infty$ and $S=\alpha N^{\beta}$ for $\alpha>0$ and $\beta \in[0.5,1)$. Summing everything up together results in

$$
\operatorname{Var}[\hat{c}]=\frac{2\left(\pi^{2} a-6\left(\gamma_{0}^{2}+2 \gamma_{1}\right) a^{*}\right) N}{3\left(S\left(\ln (S)+\gamma_{0}\right)+\left(\ln (S)+\gamma_{0}\right)-2 S\right)^{2}}+\frac{8 S c^{*}}{15 N\left(1-\frac{2}{\ln (S)+\gamma_{0}}+\frac{1}{S}\right)^{2}}+O\left(N^{-1 / 2}\right) .
$$

Let $\eta=\frac{2}{3}\left(\pi^{2} a-6\left(\gamma_{0}^{2}+2 \gamma_{1}\right) a^{*}\right)$ and $\delta=\frac{8 c^{*}}{15}$. Substituting $S=\alpha N^{\beta}$ we can rewrite

$$
\operatorname{Var}[\hat{c}]=\frac{\eta}{\beta^{2} \alpha^{2}} N^{1-2 \beta}(\ln (N))^{-2}+\delta \alpha N^{\beta-1}+o\left(N^{1-2 \beta}(\ln (N))^{-2}\right)+o\left(N^{\beta-1}\right) .
$$

4 Proof of Corollary 1

The choice of β determines the speed of convergence and the dominating terms. The highest speed of convergence of the estimator is achieved when $N^{1-2 \beta}(\ln (N))^{-2}=N^{\beta-1}$ which holds for $\beta_{N}=\frac{2}{3}\left(1-\frac{\ln (\ln (N))}{\ln (N)}\right)$ converging to $\beta=2 / 3$ from below. For $\beta_{N}=\frac{2}{3}\left(1-\frac{\ln (\ln (N))}{\ln (N)}\right)$, we have that $N^{1-2 \beta_{N}}(\ln (N))^{-2}=N^{\beta_{N}-1}=N^{-1 / 3}(\ln (N))^{-2 / 3}$. Thus, with $S=\alpha N^{\beta_{N}}$, the asymptotic variance can be expressed as

$$
\lim _{N \rightarrow \infty} \operatorname{Var}\left[N^{1 / 6}(\ln (N))^{1 / 3} \hat{c}\right]=\lim _{N \rightarrow \infty} \frac{\eta}{\beta_{N}^{2} \alpha^{2}}+\delta \alpha=\frac{9 \eta}{4 \alpha^{2}}+\delta \alpha
$$

Minimizing this expression with respect to α gives

$$
\alpha^{*}=\sqrt[3]{\frac{9 \eta}{2 \delta}}
$$

for which $\operatorname{Var}\left[N^{1 / 6}(\ln (N))^{1 / 3} \hat{c}\right]=2.48 \sqrt[3]{\delta^{2} \eta}$.
Recalling that $a=12 \kappa \omega^{4}, a^{*}=12 \kappa \omega^{4}-4 \omega^{4}, c^{*}=2 \int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s$, denoting $I Q=$ $\int_{0}^{1} \sigma_{s}^{4} H^{\prime}(s) d s$ and setting $\kappa=1$ (normal noise) we can write $\eta=8 \omega^{4}\left(\pi^{2}-4\left(\gamma_{0}^{2}+2 \gamma_{1}\right)\right)$ and $\delta=\frac{16 I Q}{15}$ and thus

$$
\alpha^{*}=\sqrt[3]{\frac{33.75 \omega^{4}\left(\pi^{2}-4\left(\gamma_{0}^{2}+2 \gamma_{1}\right)\right)}{I Q}}
$$

5 Proof of Theorem 2

This proof follows closely the proof of Theorem 1. Denote by X_{2} the second row of $\left(X^{\prime} X\right)^{-1} X^{\prime}$. Then

$$
\operatorname{Var}\left[\hat{\beta}_{0}\right]=X_{2} \Xi X_{2}^{\prime}
$$

Since $\hat{\omega}^{2}=\hat{\beta}_{0} / 2$ it follows that

$$
\operatorname{Var}\left[\hat{\omega}^{2}\right]=\frac{1}{4} X_{2} \Xi X_{2}^{\prime}
$$

Using notation from above, X_{2} is given by:

$$
\left.X_{2}=\left(\begin{array}{c}
-A C+N_{t o t} A N_{1} \\
\\
-A C+N_{t o t} A N_{2} \\
-A C+N_{t o t} A N_{2} \\
\vdots \\
-A C+N_{t o t} A N_{S} \\
\vdots \\
-A C+N_{t o t} A N_{S}
\end{array}\right\} S \text { times } \begin{array}{l}
\\
\end{array}\right)^{\prime} .
$$

Calculating $\operatorname{Var}\left[\hat{\beta}_{0}\right]$

Given the block structure of X_{1} and Ξ, we can write

$$
X_{2} \Xi X_{2}^{\prime}=\sum_{s=1}^{S} \sum_{r=1}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{2}^{(s)} X_{2}^{(r)} \xi_{i j}^{(s, r)}
$$

Using the decomposition in Eq. (2), with $X_{2}^{(\cdot)}$ in the place of $X_{1}^{(\cdot)}$, we examine each term separately.

The term $\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{2}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}$

Since $X_{2}^{(s)}$ does not depend on i, we have

$$
\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{2}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}=\sum_{s=1}^{S}\left(X_{2}^{(s)}\right)^{2} \sum_{i=1}^{s} \xi_{i i}^{(s, s)}
$$

where

$$
\left(X_{2}^{(s)}\right)^{2}=\left(-A C+N_{\text {tot }} A \frac{N}{s}\right)^{2}=A^{2} C^{2}-2 A^{2} C N_{\text {tot }} \frac{N}{s}+A^{2} N_{\text {tot }}^{2} \frac{N^{2}}{s^{2}}
$$

Thus, we obtain

$$
\sum_{s=1}^{S} \sum_{i=1}^{s}\left(X_{2}^{(s)}\right)^{2} \xi_{i i}^{(s, s)}=\sum_{s=1}^{S}\left(a N+b s+\frac{c s^{2}}{N}\right)\left(A^{2} C^{2}-2 A^{2} C N_{t o t} \frac{N}{s}+A^{2} N_{t o t}^{2} \frac{N^{2}}{s^{2}}\right)
$$

Using results from above, it follows that as $S \rightarrow \infty$ and $N \rightarrow \infty$, the leading term in the expression is given by $\frac{\pi^{2} a}{6 N(\ln (S))^{2}}$.

The term $\sum_{s=1}^{S} \sum_{i=1}^{s} \sum_{j \neq i}^{s}\left(X_{2}^{(s)}\right)^{2} \xi_{i j}^{(s, s)}$

As in Theorem 1, this term is of smaller order than the previous term and thus asymptotically negligible.

The term $\sum_{s=1}^{S} \sum_{r \neq s}^{S} \sum_{i=1}^{s} \sum_{j=1}^{r} X_{2}^{(s)} X_{2}^{(r)} \xi_{i j}^{(s, r)}$

As above we examine the cases I: s and r coprime, II.1: s and r not coprime with number of common points on both subgrids $\frac{N}{\operatorname{lcm}(s, r)}(\operatorname{lcm}(s, r)$ elements), and II.2: s and r not coprime with no common points on the subgrids $(s r-\operatorname{lcm}(s, r)$ elements). Proceeding as in the proof of Theorem 1, it can be shown that terms involving b^{*} are asymptotically negligible. From the terms involving a^{*}, the dominating term can be shown to be $\frac{a^{*}}{N}$.

The three terms involving c^{*} are of the same order, so it becomes important to consider them in more detail. The first one, $2 \frac{c^{*} A^{2} C^{2}}{N} \sum_{s=1}^{S} \sum_{r \neq s}^{S} s^{2} r$ has a leading term given by $\frac{8 c^{*} S^{3}}{15 N^{3}(\ln (S))^{2}}$, the second one $-2 c^{*} A^{2} C N_{\text {tot }} \sum_{s=1}^{S} \sum_{r \neq s}^{S}\left(s^{2}+s r\right)$ has a leading term given by $-\frac{5 c^{*} S^{3}}{6 N^{3}(\ln (S))^{2}}$, and the third one $2 C^{*} A^{2} N_{\text {tot }}^{2} N \sum_{s=1}^{S} \sum_{r \neq s}^{S} s$ has a leading term given by $\frac{c^{*} S^{3}}{3 N^{3}(\ln (S))^{2}}$. Summing up the three terms, we obtain $\frac{c^{*} S^{3}}{30 N^{3}(\ln (S))^{2}}$.

Final Result

Let $N \rightarrow \infty$ and $S=\alpha N^{\beta}$ for $\alpha>0$ and $\beta \in[0.5,1)$. Summing everything up together results in

$$
\operatorname{Var}\left[\hat{\omega}^{2}\right]=\frac{1}{4} \operatorname{Var}\left[\hat{\beta}_{0}\right]=\frac{1}{4}\left(\frac{a^{*}}{N}+\frac{c^{*} S^{3}}{30 N^{3}(\ln (S))^{2}}\right)+o\left(N^{-1}\right) .
$$

Substituting $S=\alpha N^{\beta}$ in the above equation results in

$$
\operatorname{Var}\left[\hat{\omega}^{2}\right]=\frac{1}{4}\left(\frac{a^{*}}{N}+\frac{c^{*} \alpha^{3} N^{3 \beta}}{30 N^{3}(\ln (\alpha)+\beta \ln (N))^{2}}\right)+o\left(N^{-1}\right) .
$$

The two terms in the brackets are of the same order, $O\left(N^{-1}\right)$, if $\beta=\frac{2}{3}\left(\frac{\ln (\ln (N))}{\ln (N)}+1\right)$. It follows that for $\beta<\frac{2}{3}\left(\frac{\ln (\ln (N))}{\ln (N)}+1\right)$

$$
\lim _{N \rightarrow \infty} \operatorname{Var}\left[\hat{\omega}^{2}\right]=\frac{a^{*}}{4 N}+o\left(N^{-1}\right) .
$$

References

Barndorff-Nielsen, O. E. \& Shephard, N. (2002), 'Econometric analysis of realized volatility and its use in estimating stochastic volatility models', Journal of the Royal Statistical Society Series B64(2), 253-280.

Hansen, P. R. \& Lunde, A. (2006), 'Realized variance and market microstructure noise', Journal of Business and Economic Statistics 24, 127-161.

Hausman, J. A. (1978), 'Specification test in econometrics', Econometrica 46, 1251-1272.
Havil, J. (2003), Exploring Euler's Constant, Princeton University Press, New Jersey.
Zhang, L., Mykland, P. A. \& Aït-Sahalia, Y. (2005), 'A tale of two time scales: Determining integrated volatility with noisy high frequency data', Journal of the American Statistical Association 100, 1394-1411.

[^0]: ${ }^{1}$ In their case with regular sampling $H^{\prime}(t)=1$, here we combine their result with a result contained in Equation (25) of Zhang, Mykland \& Ait-Sahalia (2005). Alternatively, our expression follows directly from Equation (27) in Zhang et al. (2005) after accounting for the difference in notation.

[^1]: ${ }^{2}$ The case $s=s^{\prime}$ and $h=h^{\prime}$ corresponds to the variance of $R V^{h, s}\left(N_{h, s}\right)$, which is given in Equation (1). ${ }^{3}$ It holds that $\max \left(s, s^{\prime}\right) \leq \operatorname{lcm}\left(s, s^{\prime}\right) \leq s s^{\prime}$. For coprime s and $s^{\prime}, \operatorname{lcm}\left(s, s^{\prime}\right)=s s^{\prime}$.

