
Proofs to

”Least Squares Inference on Integrated Volatility and the

Relationship between Efficient Prices and Noise”

1 Preliminaries

Under Assumptions 1, 2 and 3, we have that

E
[
RV h,s(Nh,s)

]
= IV + 2Nh,sω

2,

and hence we have the regression

yh,s = c + β0Nh,s + εh,s, s = 1, . . . S, h = 1, . . . , s,

where yh,s = RV h,s(Nh,s) and the total number of observations in the regression is Ntot =

S(S + 1)/2. Set Nh,s = Ns as Nh,s ≈ N
s
, s = 1, . . . , S up to a rounding error. The above

regression can be written in a matrix form as

Y = Xθ + ε,

where θ = (c, β0)
′. From now on, we condition on the trading times tj, j = 1, . . . , N , which

is equivalent to conditioning on the regressor matrix X .

Set Var [ε] = Ξ = Ξ(N, S) (we will usually suppress the dependence on N and S). Hansen

& Lunde (2006) (Equation 2) show that1

Var [yh,s] = Var [εh,s] = 12κω4Ns + 8ω2

1∫

0

σ2
sds− (6κ− 2)ω4 +

2

Ns

1∫

0

σ4
sH

′(s)ds+ o

(
1

Ns

)

, (1)

1In their case with regular sampling H ′(t) = 1, here we combine their result with a result contained in
Equation (25) of Zhang, Mykland & Aı̈t-Sahalia (2005). Alternatively, our expression follows directly from
Equation (27) in Zhang et al. (2005) after accounting for the difference in notation.

1



which is a diagonal element of Ξ. Denoting the OLS estimator θ̂ = (ĉ, β̂0)
′, we have that

Var[θ̂] = (X ′X)−1X ′ΞX(X ′X)−1.

Denote by X1 the first row of (X ′X)−1X ′. Then

Var[ĉ] = X1ΞX
′
1.

2 Auxiliary Lemma

Lemma 1. Under Assumptions 1, 2 and 3, it holds that for any s, s′, h, h′ for which s = s′

and h = h′ are not simultaneously fulfilled,2

Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] =







2IQmin(s,s′)
N

, if (⋆)

2IQmin(s,s′)
N

+ 4ω2
∫

O
σ2
sds+

Nω4(12κ−4)
lcm(s,s′)

, otherwise

,

where (⋆) : {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
= ∅ and the set O is defined in the following

proof. lcm(s, s′) stands for the least common multiplier of s and s′.3

Proof. Write the covariance Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] explicitly as

Cov[RV h,s(Nh,s), RV h′,s′(Nh′,s′)] = Cov





Nh,s∑

j=1

r2js+h,

Nh′,s′∑

i=1

r2is′+h′



 .

2The case s = s′ and h = h′ corresponds to the variance of RV h,s(Nh,s), which is given in Equation (1).
3It holds that max(s, s′) ≤ lcm(s, s′) ≤ ss′. For coprime s and s′, lcm(s, s′) = ss′.
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This expression can be decomposed as

Cov







Nh,s
∑

j=1

r
2
js+h,

N
h′,s′
∑

i=1

r
2
is′+h′







= Cov







Nh,s
∑

j=1

r
∗2
js+h,

N
h′,s′
∑

i=1

r
∗2
is′+h′






+ 2Cov







Nh,s
∑

j=1

r
∗2
js+h,

N
h′,s′
∑

i=1

r
∗

is′+h′eis′+h′






+ Cov







Nh,s
∑

j=1

r
∗2
js+h,

N
h′,s′
∑

i=1

e
2
is′+h′







+ 2Cov







Nh,s
∑

j=1

r
∗

js+hejs+h,

N
h′,s′
∑

i=1

r
∗2
is′+h′






+ 4Cov







Nh,s
∑

j=1

r
∗

js+hejs+h,

N
h′,s′
∑

i=1

r
∗

is′+h′eis′+h′






+ 2Cov







Nh,s
∑

j=1

r
∗

js+hejs+h,

N
h′,s′
∑

i=1

e
2
is′+h′







+ Cov







Nh,s
∑

j=1

e
2
js+h ,

N
h′,s′
∑

i=1

r
∗2
is′+h′






+ 2Cov







Nh,s
∑

j=1

e
2
js+h ,

N
h′,s′
∑

i=1

r
∗

is′+h′eis′+h′






+ Cov







Nh,s
∑

j=1

e
2
js+h,

N
h′,s′
∑

i=1

e
2
is′+h′







= Cov







Nh,s
∑

j=1

r
∗2
js+h,

N
h′,s′
∑

i=1

r
∗2
is′+h′






+ 4Cov







Nh,s
∑

j=1

r
∗

js+hejs+h,

N
h′,s′
∑

i=1

r
∗

is′+h′eis′+h′






+ Cov







Nh,s
∑

j=1

e
2
js+h,

N
h′,s′
∑

i=1

e
2
is′+h′






,

where the last equation follows because all other terms are zero. The first term is a covariance

between two estimators for IV in the absence of noise. Consider the case when the s′-mesh

is a proper subgrid of the s-mesh (or vice versa), e.g., the s = 2, h = 1 (comprising the

ticks t1, t3, t5, . . .) and s′ = 4, h′ = 1 (comprising the ticks t1, t5, t9, . . .) combination. In these

cases, using Lemma 2.1 in Hausman (1978), it follows that the covariance between them is

equal to the variance of the more efficient one, i.e.,

Cov





Nh,s∑

j=1

r∗2js+h,

Nh′,s′∑

i=1

r∗2is′+h′



 =







Var
[
∑Nh,s

j=1 r∗2js+h

]

, if Nh,s ≥ Nh′,s′

Var
[
∑Nh′,s′

i=1 r∗2is′+h′

]

, otherwise.

=
2

max(Nh,s, Nh′,s′)

1∫

0

σ4
sH

′(s)ds+ o(1/N) =
c∗ min(s, s′)

N
+ o(1/N),

where the expression for the variance of a sparse realized variance under irregular sampling follows

from Equation (25) in Zhang et al. (2005). In the remaining cases, when one of the subgrids

does not represent a proper subset of the other one, the above result can be seen as a first order

approximation. In these cases, the covariance is in fact smaller than the variance of the more

efficient one, but the difference between the two terms is of a smaller order than the variance.

The second term vanishes if {tjs+h}j=1,...,Nh,s

⋂
{tis′+h′}i=1,...,Nh′,s′

= ∅ since then the sum-

mands are uncorrelated. In the remaining cases we have {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
=

A, which is a set with N
lcm(s,r) elements. For {{{tjs+h} ∈ A}⋃{{tis′+h′} ∈ A}}, denote t∗ =

max(t(j−1)s+h, t(i−1)s′+h′) and t∗ = min(tjs+h, tis′+h′), where the dependence on i, j, s, h, s′, h′ is de-

liberately suppressed. Since ejs+h = u(j−1)s+h − ujs+h, we have that for each individual summand
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in the second term, there are 3 possibilities:

Cov
[
r∗js+hejs+h, r

∗
is′+h′eis′+h′

]
=







0, if tjs+h 6= tis′+h′ and t(j−1)s+h 6= t(i−1)s′+h′

ω2
∫ tjs+h

t∗
σ2
sds, if tjs+h = tis′+h′

ω2
∫ t∗

t(j−1)s+h
σ2
sds, if t(j−1)s+h = t(i−1)s′+h′

.

It follows that

4Cov





Nh,s∑

j=1

r∗js+hejs+h,

Nh′,s′∑

i=1

r∗is′+h′eis′+h′



 = 4ω2
∑

A






tjs+h∫

t∗

σ2
sds+

t∗∫

t(j−1)s+h

σ2
sds






= 4ω2
∑

A





t∗∫

t∗

σ2
sds



 = 4ω2

∫

O

σ2
sds,

where O =
⋃

tjs+h∈A,tis′+h′∈A
[t∗, t

∗]. Since the set A has N
lcm(s,s′) elements and each of the integrals

∫ t∗
t∗ σ2

sds is of order O
(

1
max(Nh,s,Nh′,s′)

)

and 1
max(Nh,s,Nh′,s′ )

= min(s′,s)
N , it follows that

∫

O
σ2
sds is of

order O
(
min(s,s′)
lcm(s,s′)

)

.

The third term is also zero whenever {tjs+h}j=1,...,Nh,s

⋂{tis′+h′}i=1,...,Nh′,s′
= ∅. In the re-

maining cases we have that for each j, i : tjs+h ∈ A, tis′+h′ ∈ A there are four correlated pairs

of noise terms, e.g., if tjs+h = tis′+h′ , then the following four pairs are correlated: e2js+h, e
2
is′+h′ ;

e2(j−1)s+h, e
2
is′+h′ ; e2js+h, e

2
(i−1)s′+h′ and e2(j−1)s+h, e

2
(i−1)s′+h′ . Take, for example, the first pair and

consider its covariance:

Cov
[
e2js+h, e

2
is′+h′

]
= E

[
e2js+he

2
is′+h′

]
− E

[
e2js+h

]
E
[
e2is′+h′

]

= E
[
u2js+hu

2
is′+h′

]
+ E

[

u2(j−1)s+hu
2
is′+h′

]

+ E
[

u2js+hu
2
(i−1)s′+h′

]

+E
[

u2(j−1)s+hu
2
(i−1)s′+h′

]

− E
[
e2js+h

]
E
[
e2is′+h′

]

= µ4 + 3ω4 − 4ω4 = µ4 − ω4 = (3κ − 1)ω4.

The remaining three pairs can be similarly shown to have the same covariance. Thus, it follows

Cov





Nh,s∑

j=1

e2js+h,

Nh′,s′∑

i=1

e2is′+h′



 =
Nω4(12κ − 4)

lcm(s, s′)
.
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3 Proof of Theorem 1

Calculating X1

We have

X ′X =







Ntot

∑

s,h

Ns

∑

s,h

Ns

∑

s,h

N2
s







,

and in the following we suppress the double summation indices s, h when unambiguous. Then

det(X ′X) = Ntot

∑

N2
s −

(∑

Ns

)2

,

and

(X ′X)−1 =
1

det(X ′X)






∑
N2

s −
∑

Ns

−
∑

Ns Ntot




 .

The first row of (X ′X)−1 is

(
∑

N2
s

Ntot

∑
N2

s−(
∑

Ns)
2 −

∑
Ns

Ntot

∑
N2

s−(
∑

Ns)
2

)

.

Set

A =
1

NtotB − C2
, with B =

∑

N2
s and C =

∑

Ns.
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We then have:

X1 =


























AB − ACN1

AB −ACN2

AB −ACN2







2 times

...

AB −ACNS

...

AB −ACNS







S times


























′

.

Calculating Var[ĉ]

Given the block structure of X1 and Ξ, we can write

X1ΞX
′
1 =

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij .

where ξ
(s,r)
ij is the ij element in the (s, r)-block of Ξ. Let us look at the terms A, B and C.

For B we have

lim
S→∞

B = lim
S→∞

∑

N2
s = lim

S→∞

S∑

s=1

s∑

h=1

N2
s = lim

S→∞

S∑

s=1

sN2
s = N2 lim

S→∞

S∑

s=1

1

s
= N2 lim

S→∞
(ln(S) + γ0)

with γ0 the Euler-Mascheroni constant. Similarly, we can derive C = NS. It follows that

lim
S→∞

A = lim
S→∞

1
S(S+1)

2
N2(ln(S) + γ0)−N2S2

= lim
S→∞

2

N2(S2 ln(S) + S2(γ0 − 2) + S ln(S) + Sγ0)

The expression

Var[ĉ] = X1ΞX
′
1 =

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij
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can be decomposed as

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij

=

S∑

s=1

s∑

i=1

s∑

j=1

(

X
(s)
1

)2

ξ
(s,s)
ij +

S∑

s=1

S∑

r 6=s

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij

=
S∑

s=1

s∑

i=1

(

X
(s)
1

)2

ξ
(s,s)
ii +

S∑

s=1

s∑

i=1

s∑

j 6=i

(

X
(s)
1

)2

ξ
(s,s)
ij +

S∑

s=1

S∑

r 6=s

s∑

i=1

r∑

j=1

X
(s)
1 X

(r)
1 ξ

(s,r)
ij (2)

The term
∑S

s=1

∑s
i=1

(

X
(s)
1

)2

ξ
(s,s)
ii

Since X
(s)
1 does not depend on i, we have

S∑

s=1

s∑

i=1

(

X
(s)
1

)2

ξ
(s,s)
ii =

S∑

s=1

(

X
(s)
1

)2
s∑

i=1

ξ
(s,s)
ii

We have that (ignoring the o
(

1
Ns

)

term)

ξ
(s,s)
ii = aNs + b

︸ ︷︷ ︸

noise error

+
c

Ns
︸︷︷︸

discretization error

,

where, by comparing to Equation (1), we see that

a = 12κω4, b = 8ω2

1∫

0

σ2
sds− (6κ− 2)ω4, c = 2

1∫

0

σ4
sH

′(s)ds

The inner sum is

s∑

i=1

ξ
(s,s)
ii =

s∑

i=1

(

a
N

s
+ b+

cs

N

)

= aN + bs+
cs2

N
.

Further

(

X
(s)
1

)2

=

(

AB − AC
N

s

)2

= A2B2 − 2A2BC
N

s
+ A2C2N

2

s2
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Finally, we have

S∑

s=1

s∑

i=1

(

X
(s)
1

)2

ξ
(s,s)
ii =

S∑

s=1

(

aN + bs +
cs2

N

)(

A2B2 − 2A2BC
N

s
+ A2C2N

2

s2

)

Since

S∑

s=1

s2 =
1

6
(2S3 + 3S2 + S),

S∑

s=1

s =
1

2
(S2 + S),

lim
S→∞

(
S∑

s=1

1

s
− ln(S)

)

= γ0, lim
S→∞

(
S∑

s=1

1

s2
− π2

6

)

= 0,

A2B2 ∈ O

(
1

S4

)

, A2BC ∈ O

(
1

NS3 ln(S)

)

,

A2C2 ∈ O

(
1

N2S2(ln(S))2

)

we obtain that as S → ∞ and N → ∞,
∑S

s=1

∑s
i=1

(

X
(s)
1

)2

ξ
(s,s)
ii is dominated by

2π2aN
3(S(ln(S)+γ0)+(ln(S)+γ0)−2S)2

which is of order O
(

N
S2(ln(S))2

)

.

The term
∑S

s=1

∑s
i=1

∑s
j 6=i

(

X
(s)
1

)2

ξ
(s,s)
ij

For this term we need the covariance between two realized variances computed at the

same sampling frequency (within an (s, s)-block) but with non-overlapping grids. As we are

working under an iid noise framework, this covariance is not affected by the noise. Using the

same arguments as Barndorff-Nielsen & Shephard (2002), it follows that this covariance is

equal to

ξ
(s,s)
ij = Cov

[

RV h,s(Nh,s), RV h′,s(Nh′,s)
]

=
2

Ns

1∫

0

σ4
sH

′(s)ds+ o

(
1

Ns

)

=
c

Ns

+ o

(
1

Ns

)

.

Then we have

S∑

s=1

s∑

i=1

s∑

j 6=i

(

X
(s)
1

)2

ξ
(s,s)
ij =

S∑

s=1

(

X
(s)
1

)2
s∑

i=1

s∑

j 6=i

cs

N
=

S∑

s=1

(

X
(s)
1

)2 s2(s− 1)c

N
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Substituting in
(

X
(s)
1

)2

yields

S∑

s=1

(

X
(s)
1

)2 s2(s− 1)c

N
=

S∑

s=1

(

A2B2 − 2A2BC
N

s
+ A2C2N

2

s2

)
s2(s− 1)c

N

=
S∑

s=1

cA2B2s
2(s− 1)

N
− 2cA2BCs(s− 1) + cA2C2N(s− 1).

This sum is of order O
(

1
N

)
and thus negligible.

The term
∑S

s=1

∑S
r 6=s

∑s
i=1

∑r
j=1X

(s)
1 X

(r)
1 ξ

(s,r)
ij

For this term we use Lemma 1. The covariance ξ
(s,r)
ij is affected by whether the numbers

s and r are coprime or not. Consider first the case (I) when s and r are coprime. This

implies that the number of common observations in an s-subgrid and r-subgrid is N
sr

for all

s-subgrids and r-subgrids. From Lemma 1, it follows that in this case the covariance ξ
(s,r)
ij

can be written as

ξ
(s,r)
ij = a∗

N

sr
+ b∗

∫

O

σ2
sds+

c∗min(s, r)

N
,

where

a∗ = 12κω4 − 4ω4, b∗ = 4ω2, c∗ = 2

1∫

0

σ4
sH

′(s)ds.

In the second case (II) s and r are not coprime. In such an (s, r)-block there are two

possibilities: (II.1) in lcm(s, r) out of the sr elements in the block, the number of common

points on both subgrids is N
lcm(s,r)

, (II.2) in the remaining sr − lcm(s, r) cases the subgrids

do not share observations. In case (II.1) we have

ξ
(s,r)
ij = a∗

N

lcm(s, r)
+ b∗

∫

O

σ2
sds+

c∗min(s, r)

N
,

9



while in case (II.2) it holds that

ξ
(s,r)
ij =

c∗min(s, r)

N
.

As in all cases (I, II.1 and II.2), ξ
(s,r)
ij does not depend on i and j, and because for coprime

s and r, lcm(s, r) = sr, we can write in general that

s∑

i=1

r∑

j=1

ξ
(s,r)
ij =



a∗
N

lcm(s, r)
+ b∗

∫

O

σ2
sds+

c∗min(s, r)

N



 lcm(s, r) +
c∗min(s, r)

N
(sr − lcm(s, r))

= a∗N + b∗
∫

O

σ2
sds lcm(s, r) +

c∗srmin(s, r)

N

≈ a∗N + b∗ min(s, r) +
c∗srmin(s, r)

N

where the last approximation is employed for operational reasons in the sense that
∫

O
σ2
sds

term is of order O
(

min(s,r)
lcm(s,r)

)

(and as we show in the sequel, terms involving b∗ are asymptot-

ically negligible). As the matrix Ξ is symmetric, we express

S∑

s=1

S∑

r 6=s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij = 2

S∑

s=1

S∑

r>s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij .

Substituting in the above derived equation for
∑s

i=1

∑r
j=1 ξ

(s,r)
ij , X

(s)
1 and X

(r)
1 results in

2

S∑

s=1

S∑

r>s

X
(s)
1 X

(r)
1

s∑

i=1

r∑

j=1

ξ
(s,r)
ij = 2

S∑

s=1

S∑

r>s

A2

(

B − C
N

s

)(

B − C
N

r

)(

a∗N + b∗s+
c∗s2r

N

)

= 2

(

S(S − 1)

2
a∗A2B2N + b∗A2B2

S∑

s=1

S∑

r>s

s+
c∗A2B2

N

S∑

s=1

S∑

r>s

s2r

− a∗A2BCN2
S∑

s=1

S∑

r>s

(
1

r
+

1

s

)

− b∗A2BCN
S∑

s=1

S∑

r>s

(

1 +
s

r

)

− c∗A2BC
S∑

s=1

S∑

r>s

(
s2 + sr

)

+a∗A2C2N3

S∑

s=1

S∑

r>s

1

rs
+ b∗A2C2N2

S∑

s=1

S∑

r>s

1

r
+ c∗A2C2N

S∑

s=1

S∑

r>s

s

)

.

We first show that the terms involving b∗ are asymptotically negligible. This can be confirmed

by considering that
∑S

s=1

∑S
r>s s ∈ O (S3),

∑S
s=1

∑S
r>s

(
1 + s

r

)
∈ O (S2) and

∑S
s=1

∑S
r>s

1
r
∈

10



O (S). The term b∗A2B2
∑S

s=1

∑S
r>s s is dominant and of order O

(
1
S

)
and hence asymp-

totically negligible. Next, we look at limits of terms involving a∗. To this end consider the

sums

S∑

s=1

S∑

r>s

(
1

r
+

1

s

)

=

S∑

s=1

(
S∑

r=1

1

r
−

s∑

r=1

1

r

)

+

S∑

s=1

1

s
(S − s)

= 2

S∑

s=1

(ln(S) + γ0)−
S∑

s=1

(ln(s) + γ0)− S = S(ln(S) + γ0)− 0.5 ln(S)− 0.5 ln(2π) + o(1).

S∑

s=1

S∑

r>s

1

rs
=

S∑

s=1

1

s

(
S∑

r=1

1

r
−

s∑

r=1

1

r

)

=
S∑

s=1

1

s
(ln(S) + γ0)−

S∑

s=1

1

s
(ln(s) + γ0)

= (ln(S) + γ0)
2 − 0.5 (ln(S))2 − γ1 − γ0(ln(S) + γ0) = 0.5 (ln(S))2 + γ0 ln(S)− γ1 + o(1).

where we have used that lim
S→∞

(
∑S

s=1 ln(s)− ln
(√

2πS
(
S
e

)S
))

= 0 by Sterling’s approx-

imation and lim
S→∞

(
∑S

s=1
ln(s)
s

− 0.5 (ln(S))2
)

= γ1, where γ1 is the first Stieltjes constant

equal to approximately −0.0728 (see, e.g., Havil (2003)). Thus, we obtain

S(S − 1)

2
A2B2N =

1

2

4N(S2 − S)(ln(S) + γ0)
2

(S2(ln(S) + γ0) + S(ln(S) + γ0)− 2S2)2

=
2N(S2 − S)

(

S2 + S − 2S2

ln(S)+γ0

)2 =
2N

(

S + 1− 2S
ln(S)+γ0

)2 +O

(
N

S3

)

.

−A2BCN2

S∑

s=1

S∑

r>s

(
1

r
+

1

s

)

= −4NS(ln(S) + γ0) (S(ln(S) + γ0)− 0.5 ln(S)− 0.5 ln(2π))

(S2(ln(S) + γ0) + S(ln(S) + γ0)− 2S2)2

= − 4N
(

S + 1− 2S
ln(S)+γ0

)2 +O

(
N

S3

)

.

A2C2N3

S∑

s=1

S∑

r>s

1

rs
=

4NS2
(
0.5 (ln(S))2 + γ0 ln(S)− γ1

)

(S2(ln(S) + γ0) + S(ln(S) + γ0)− 2S2)2

=
NS2

(
2 (ln(S) + γ0)

2 − 2γ2
0 − 4γ1

)

(S2(ln(S) + γ0) + S(ln(S) + γ0)− 2S2)2

=
2N

(

S + 1− 2S
ln(S)+γ0

)2 − N(2γ2
0 + 4γ1)

(S(ln(S) + γ0) + (ln(S) + γ0)− 2S)2
.

11



Summing up the three terms, we obtain − (2γ2
0
+4γ1)N

(S(ln(S)+γ0)+(ln(S)+γ0)−2S)2
+ O

(
N
S3

)
. It remains to

calculate the terms with c∗. We have
∑S

s=1

∑S
r>s s

2r = 1/15S5+1/24S4−1/12S3−1/24S2+

1/60S,
∑S

s=1

∑S
r>s (s

2 + sr) = 5/24S4 + 1/12S3 − 5/24S2 − 1/12S, and
∑S

s=1

∑S
r>s s =

1/6S3− 1/6S. Considering the order of the terms A2B2, A2BC and A2C2, the leading term

turns out to be

c∗A2B2

N

S∑

s=1

S∑

r>s

s2r =
4Sc∗

15N
(

1− 2
ln(S)+γ0

+ 1
S

)2 +O

(
1

N

)

.

Final Result

Let N → ∞ and S = αNβ for α > 0 and β ∈ [0.5, 1). Summing everything up together

results in

Var[ĉ] =
2(π2a− 6(γ2

0 + 2γ1)a
∗)N

3 (S(ln(S) + γ0) + (ln(S) + γ0)− 2S)2
+

8Sc∗

15N
(

1− 2
ln(S)+γ0

+ 1
S

)2 +O
(
N−1/2

)
.

Let η = 2
3
(π2a− 6(γ2

0 + 2γ1)a
∗) and δ = 8c∗

15
. Substituting S = αNβ we can rewrite

Var[ĉ] =
η

β2α2
N1−2β(ln(N))−2 + δαNβ−1 + o

(
N1−2β(ln(N))−2

)
+ o

(
Nβ−1

)
.

4 Proof of Corollary 1

The choice of β determines the speed of convergence and the dominating terms. The highest

speed of convergence of the estimator is achieved when N1−2β(ln(N))−2 = Nβ−1 which holds

for βN = 2
3

(

1− ln(ln(N))
ln(N)

)

converging to β = 2/3 from below. For βN = 2
3

(

1− ln(ln(N))
ln(N)

)

,

we have that N1−2βN (ln(N))−2 = NβN−1 = N−1/3(ln(N))−2/3. Thus, with S = αNβN , the

asymptotic variance can be expressed as

lim
N→∞

Var
[
N1/6(ln(N))1/3 ĉ

]
= lim

N→∞

η

β2
Nα

2
+ δα =

9η

4α2
+ δα.
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Minimizing this expression with respect to α gives

α∗ =
3

√

9η

2δ

for which Var
[
N1/6(ln(N))1/3 ĉ

]
= 2.48 3

√

δ2η.

Recalling that a = 12κω4, a∗ = 12κω4 − 4ω4, c∗ = 2
∫ 1

0
σ4
sH

′(s)ds, denoting IQ =
∫ 1

0
σ4
sH

′(s)ds and setting κ = 1 (normal noise) we can write η = 8ω4(π2 − 4(γ2
0 + 2γ1)) and

δ = 16IQ
15

and thus

α∗ = 3

√

33.75ω4(π2 − 4(γ2
0 + 2γ1))

IQ
.

5 Proof of Theorem 2

This proof follows closely the proof of Theorem 1. Denote byX2 the second row of (X ′X)−1X ′.

Then

Var[β̂0] = X2ΞX
′
2.

Since ω̂2 = β̂0/2 it follows that

Var[ω̂2] =
1

4
X2ΞX

′
2.

13



Using notation from above, X2 is given by:

X2 =


























−AC +NtotAN1

−AC +NtotAN2

−AC +NtotAN2







2 times

...

−AC +NtotANS

...

−AC +NtotANS







S times


























′

.

Calculating Var[β̂0]

Given the block structure of X1 and Ξ, we can write

X2ΞX
′
2 =

S∑

s=1

S∑

r=1

s∑

i=1

r∑

j=1

X
(s)
2 X

(r)
2 ξ

(s,r)
ij .

Using the decomposition in Eq. (2), with X
(·)
2 in the place of X

(·)
1 , we examine each term

separately.

The term
∑S

s=1

∑s
i=1

(

X
(s)
2

)2

ξ
(s,s)
ii

Since X
(s)
2 does not depend on i, we have

S∑

s=1

s∑

i=1

(

X
(s)
2

)2

ξ
(s,s)
ii =

S∑

s=1

(

X
(s)
2

)2
s∑

i=1

ξ
(s,s)
ii

where

(

X
(s)
2

)2

=

(

−AC +NtotA
N

s

)2

= A2C2 − 2A2CNtot
N

s
+ A2N2

tot

N2

s2
.
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Thus, we obtain

S∑

s=1

s∑

i=1

(

X
(s)
2

)2

ξ
(s,s)
ii =

S∑

s=1

(

aN + bs+
cs2

N

)(

A2C2 − 2A2CNtot
N

s
+ A2N2

tot

N2

s2

)

Using results from above, it follows that as S → ∞ and N → ∞, the leading term in the

expression is given by π2a
6N(ln(S))2

.

The term
∑S

s=1

∑s
i=1

∑s
j 6=i

(

X
(s)
2

)2

ξ
(s,s)
ij

As in Theorem 1, this term is of smaller order than the previous term and thus asymp-

totically negligible.

The term
∑S

s=1

∑S
r 6=s

∑s
i=1

∑r
j=1X

(s)
2 X

(r)
2 ξ

(s,r)
ij

As above we examine the cases I: s and r coprime, II.1: s and r not coprime with number

of common points on both subgrids N
lcm(s,r)

(lcm(s, r) elements), and II.2: s and r not coprime

with no common points on the subgrids (sr− lcm(s, r) elements). Proceeding as in the proof

of Theorem 1, it can be shown that terms involving b∗ are asymptotically negligible. From

the terms involving a∗, the dominating term can be shown to be a∗

N
.

The three terms involving c∗ are of the same order, so it becomes important to con-

sider them in more detail. The first one, 2 c∗A2C2

N

∑S
s=1

∑S
r 6=s s

2r has a leading term given

by 8c∗S3

15N3(ln(S))2
, the second one −2c∗A2CNtot

∑S
s=1

∑S
r 6=s(s

2 + sr) has a leading term given

by − 5c∗S3

6N3(ln(S))2
, and the third one 2C∗A2N2

totN
∑S

s=1

∑S
r 6=s s has a leading term given by

c∗S3

3N3(ln(S))2
. Summing up the three terms, we obtain c∗S3

30N3(ln(S))2
.

Final Result

Let N → ∞ and S = αNβ for α > 0 and β ∈ [0.5, 1). Summing everything up together

results in

Var[ω̂2] =
1

4
Var[β̂0] =

1

4

(
a∗

N
+

c∗S3

30N3(ln(S))2

)

+ o
(
N−1

)
.
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Substituting S = αNβ in the above equation results in

Var[ω̂2] =
1

4

(
a∗

N
+

c∗α3N3β

30N3(ln(α) + β ln(N))2

)

+ o
(
N−1

)
.

The two terms in the brackets are of the same order, O (N−1), if β = 2
3

(
ln(ln(N))
ln(N)

+ 1
)

. It

follows that for β < 2
3

(
ln(ln(N))
ln(N)

+ 1
)

lim
N→∞

Var[ω̂2] =
a∗

4N
+ o

(
N−1

)
.
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