Proofs to
"Least Squares Inference on Integrated Volatility and the

Relationship between Efficient Prices and Noise”

1 Preliminaries

Under Assumptions 1, 2 and 3, we have that
E [RV"*(Ny,)] = IV + 2N,
and hence we have the regression
Yns =C+ BoNns+ens, s=1,...85 h=1,...,s,

where y s = RVh’S(Nh,S) and the total number of observations in the regression is Ny, =
S(S+1)/2. Set Ny = Ny as Npo ~ X s =1,...,5 up to a rounding error. The above

s ?

regression can be written in a matrix form as
Y = X0 +e¢,

where 6 = (¢, fp)’. From now on, we condition on the trading times t;, j = 1,..., N, which
is equivalent to conditioning on the regressor matrix X.

Set Var [¢] = Z = Z(N, S) (we will usually suppress the dependence on N and S). Hansen
& Lunde (2006) (Equation 2) show tha

1

1
2 1

Var [y.s] = Var [ej.s] = 12kw* N, + 8w2/0§ds — (6K — 2)w* + N / otH'(s)ds + o (ﬁ) , (1)
0 S 0 S

n their case with regular sampling H'(t) = 1, here we combine their result with a result contained in
Equation (25) of Zhang, Mykland & Ait-Sahalia (2005). Alternatively, our expression follows directly from
Equation (27) in Zhang et al. (2005) after accounting for the difference in notation.
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which is a diagonal element of 2. Denoting the OLS estimator § = (¢, Bo)’, we have that
Var[f] = (X'X) ' X'EX(X'X) .
Denote by X; the first row of (X'X)~1X’. Then

Var[d] = X;=X].

2 Auxiliary Lemma

Lemma 1. Under Assumptions 1, 2 and 3, it holds that for any s,s’, h,h' for which s = &
and h = h' are not simultaneously fulﬁlledﬂ

21Q min(s,s’ .
Q#()’ if ()

Cov[RV™*(Npe), RV (Ny,o1)] =

?

21Q min(s,s") Not(12r—4)  upornise

N
N + 4w? f(’) O'gdS + lem(s,s’)

where (x) = {tjsin}j=1,..N,., (Wtisen tiz1,...N,, , = D and the set O is defined in the following

proof. lem(s, ') stands for the least common multiplier of s and s'
Proof. Write the covariance Cov[RV"*(Nj,.,), RV?*' ( Ny +)] explicitly as

Nh,s Nh/,s/

Cov[RV™*(Npo), RV (Nyv.o)] = Cov | 32 D vy
j=1 i=1

2The case s = s’ and h = h’ corresponds to the variance of RV"*(N}, 5), which is given in Equation ().
31t holds that max(s,s’) < lem(s,s’) < ss’. For coprime s and ', lem(s, s’) = ss’.
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This expression can be decomposed as
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Np,s Nyt s Np,s Nyt st
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where the last equation follows because all other terms are zero. The first term is a covariance
between two estimators for IV in the absence of noise. Consider the case when the s’-mesh
is a proper subgrid of the s-mesh (or vice versa), e.g., the s = 2,h = 1 (comprising the
ticks t1,t3,t5,...) and 8’ = 4, h' = 1 (comprising the ticks ¢y, 5, tg, .. .) combination. In these
cases, using Lemma 2.1 in Hausman (1978), it follows that the covariance between them is

equal to the variance of the more efficient one, i.e.,

N S Ny s’ Nh,s *92 .
o h, 2 i %2 _ Var |:Zj:1 Tjerh] , if Nh,s > Nh’,s’
ov E T]S-i—h’ TZS/-f—h/ N
o = Var [ ZZ;{S/ Tst/Jrh/] , otherwise.
1 . : /)
2 4y c* min(s, s
= o.H'(s)ds +0(1/N) = ———————> + 0(1/N),
max(Nhﬁ,Nh/,S/)/ s ( ) + ( / ) N + ( / )

where the expression for the variance of a sparse realized variance under irregular sampling follows
from Equation (25) in Zhang et al. (2005). In the remaining cases, when one of the subgrids
does not represent a proper subset of the other one, the above result can be seen as a first order
approximation. In these cases, the covariance is in fact smaller than the variance of the more

efficient one, but the difference between the two terms is of a smaller order than the variance.
The second term vanishes if {tjerh}j:l,...,Nh’s m{tis/Jrh’}i:l,...,Nh/’S/ = o since then the sum-
mands are uncorrelated. In the remaining cases we have {tjerh}j:l,...,Nh’s ﬂ{tis’—l—h’}i:l,...,Nh/,s/ =
A, which is a set with % elements. For {{{t;s+n} € A} U{{tiv+n} € A}}, denote t* =
Max(t(j_1)s4hs t(i—1)sn) and tx = min(t;sp, tisypr), where the dependence on i, j, s, h, s', h' is de-

liberately suppressed. Since €jsip = U(j_1)s4h — Ujs+h, We have that for each individual summand



in the second term, there are 3 possibilities:

0, if tjsin # tisr+n and L _1)spn 7 Li—1)s 4 n/
x * _ tissn .
Cov [rjerhejS-l-ha i Cis | = 4 w? [t otds, if tjsin = tistns

2 [t 2 : —
o 1)ath O'SdS, if t(j—l)s-{-h = t(i—l)s’-{-h’

It follows that

Np.s Nps o tis+n ty
4 Cov Z TisthC€is+h Z Tiyineisin | = 4w’ Z / o2ds + / o2ds
=1 =t A tr tG—1)s+hn
t
= 4w22 /af,ds :4w2/03d5,
A \j o

where O =,

jstnEAL; /+h/eA[t*’ t*]. Since the set A has lcm(%s,) elements and each of the integrals

nd

fttf o2ds is of order O (
order O (%‘95'))

lem(s,s’)

o | _ min(s'e) 2
maX(thNh/’s/)) and SNy = o i follows that [, oZds is of

The third term is also zero whenever {tjsyn}j=1,..N,, ﬂ{tis/ﬁ'h/}i:l,...,Nhl’sl = @. In the re-
maining cases we have that for each j,7 : tjs4n € A, tjy1p € A there are four correlated pairs
of noise terms, e.g., if tjs4, = ;s 1n/, then the following four pairs are correlated: e?s ho e?s, h
e? e? ;€2 e? and e? e? Take, for example, the first pair and

(j—1)s+h> Cis'+h'5 Clsthr €i—1)s'+h/ (G—1)s+h> €(i—1)s'+h'* ) pie, p

consider its covariance:

Cov [e?erh, e?surh/] = E [e?erhe?surh/] —E [e?Hh] E [e?surh/]
= E [u?s-i-huzzs”rh’] +E [u(2j—1)s+huzzs’+h’] +E [U?s-l—hu%i—l)s’—l—h’}
+E {u(2j—1)s+hu(2i—1)s’+h’} -k [e?s—i-h] E [ezzsurh’]

= g+ 3wt — 4wt =y —wt = (38 — 1w

The remaining three pairs can be similarly shown to have the same covariance. Thus, it follows

Np,s Nh’, ’
ov ej5+h’ e’is/-i-h/ = .
7j=1 =1

lem(s, s')



3 Proof of Theorem 1

Calculating X;
We have

Ntot ZNS
X/X — S,h

)

>N, YN?
s,h s,h

and in the following we suppress the double summation indices s, h when unambiguous. Then

det(X'X) = NtOtZNf - (Z Ns>27

and

1 ZNz _ZNS

(XX) =
det(X X) _ Z NS Ntot

The first row of (X'X)~! is

>NZ o > N _
Nieot 3o N2—(32 Ns)? Niot 32 N2—(3" No)?
Set

1

A=
Ny B — C?’

with B=Y N? and C =) N,



We then have:

AB — ACN;
\
AB — ACN,
2 times
AB — ACN,
Xl == /
\
AB — ACNg
S times
AB — ACNg )

Calculating Var[¢]

Given the block structure of X; and =, we can write

s S s r
IS 3 9 9 ST
s=1 r=1 i=1 j=1
where SZ(]“) is the ij element in the (s,7)-block of Z. Let us look at the terms A, B and C.

For B we have

S S

lim B = hm ZNz = lim ZZNQ hm ZSNS2 = N? lim Z% :stlijn (In(S) + o)

S—o0 S—o00 S—o0
s=1 h=1 s=1 s=1

with 7 the Euler-Mascheroni constant. Similarly, we can derive C'= NS. It follows that
1
lim A = lim =
S—00 S=00 Sl + )N2(ln(S) + 7o) — N252

2
= lim

S—o0 N2(S2 ID(S) + 32(’70 — 2) + SlH(S) + S’}/())

The expression

S T

5 s
Var[d] = X12X] = ZZ ZX(S (T)fsr)

s=1 r=1 i=1 j=1



can be decomposed as

S s

S
S)IDIHBREBIRL

s=1 r=1 i=1 j=1

S s S s r

s=1 i=1 j=1 s=1 r#s i=1 j=1

S s S s s s S s r
:ZZ<X1(S)> (ss+ (X(s>2 +ZZZZX X(rf(sr 2)

s=1 i=1 s=1 i=1 j#i s=1 r#s i=1 j=1

2
The term 255:1 Yo <X£S)> fz‘(f’S)

Since X{S) does not depend on 7, we have

S

S () e = 3 (x)’ Zf

=1 i=1 s=1

We have that (ignoring the o < ) term)

(s,8) c
=alN;+b —
S (A 7
noise error ~~~

discretization error

?

where, by comparing to Equation (I), we see that

1 1
a=12kw!, b= 8w2/0§ds — (6k — 2)w?, c= 2/0;4H'(s)ds
0 0

The inner sum is

S S 2
(s,;8) N cs cs

Further

2

2 2
(X{S)) — (AB - A0E> = A’B? — 24 BO— +A2(J2N
S



Finally, we have

s

SY (K0 e -

s=1 i=1

E

2 N N2
aN +bs + 2o ) [ A2B? —242BC2 4 42022
N S 52

@
Il
—_

Since

S
2_1 3 2 1 2
> s = (257435 +9), D s= (5% +9),

2
we obtain that as S — oo and N — oo, Zil Yoo <X1(8)) fl(fs) is dominated by

2n%aN E which is of order O <

3(S(In(S)+70)+(n(S)+0)—25 FEP )

s
The term 5, 50, 50, (X17) e
For this term we need the covariance between two realized variances computed at the
same sampling frequency (within an (s, s)-block) but with non-overlapping grids. As we are
working under an iid noise framework, this covariance is not affected by the noise. Using the

same arguments as Barndorff-Nielsen & Shephard (2002), it follows that this covariance is

equal to

(575)_ h,s h',s o 2 4 ]- o C 1
€57 = Cov | RV (Ny,.), RVY"*(Nv,,)| = / JSH«S)dHO(E) ‘E“(E)'

Then we have

i - i( ) (5.5) :i<X(s)>Qii§:i<X(s)>2 s?(s —1)c
s=1 i=1 j#i s=1 ' 1=1 j#i N s=1 ' N



2
Substituting in <X{S)) yields

S

5 1 N N2\ s2(s — 1
() 2 S )

s=1 s=1

s
= ZCAQBTS - _ 2cA’BCs(s — 1) + cA*C?N(s — 1).

This sum is of order O (%) and thus negligible.
The term ZS ) Z#S > Zj lX(S (T)S (s,7)

For this term we use Lemma [Il The covariance fz(jr) is affected by whether the numbers
s and r are coprime or not. Consider first the case (I) when s and r are coprime. This
implies that the number of common observations in an s-subgrid and r-subgrid is 8— for all
(s,r)

s-subgrids and r-subgrids. From Lemma [ it follows that in this case the covariance f

can be written as

N * mi
é—’fj,T) —a* = + b* /O’gds + C mln(S, 7")’
sr N

(@]

where

1
a* = 12kw* — 4w, b = 4wt = Q/UEH'(s)ds.

0

In the second case (II) s and r are not coprime. In such an (s,r)-block there are two
possibilities: (I1.1) in lem(s,r) out of the sr elements in the block, the number of common

points on both subgrids is (I1.2) in the remaining sr — lem(s, r) cases the subgrids

_N
lem(s,r)?

do not share observations. In case (I1.1) we have

N ¢ min(s, )
(§,T) — % b* 2d )
¢ “ lem(s, r) * /03 ot N ’
@



while in case (I1.2) it holds that

(s,;) € min(s,7)

gz'f = N

As in all cases (I, II.1 and 11.2), 5(5 "™ does not depend on i and j, and because for coprime

s and 7, lem(s,r) = sr, we can write in general that

N “mi -
lezlf(” = a*m%—b*/afds—k%w lcm(s,r)—f-%(s’r)(sr—lcm(s,r))
‘ o

=a"N+b" /agds lem(s,r) +
0

c*srmin(s,r)

N

c*srmin(s, )

~ *N b* :
a*N + b min(s,r) + N

where the last approximation is employed for operational reasons in the sense that [ o o2ds

term is of order O <r2$((j :)) ) (and as we show in the sequel, terms involving b* are asymptot-

ically negligible). As the matrix = is symmetric, we express
S T

s S s r
R IRCEID 9 FEEEEI W WCEID W

s=1 r#s i=1 j=1 s=1 r>s i=1 j=1

Substituting in the above derived equation for Y77 | >0 | & ()X and X" results in

S N N c*sr
QZZX(S (”2258’“’_222142(3—0;) (3—07) (a*N+b*s+ N)

s=1 r>s =1 j=1 s=1 r>s
S(S_)*QQ ¥ A2 P2 CAszS t 2
=2 ——a"A*B*N + V" A°B s+
s S
a*A*BCN? Z Z ( > b*A2BCN Z Z (1 - i) — P A’BCY Y (57 + sr)
; 1;>81 . s 1s 1 r>s . s s=1 r>s
+at APCPNTY Y — U ACEN? >N — AN > 3) .
s=1 r>s s=1 r>s s=1 r>s

We first show that the terms involving b* are asymptotically negligible. This can be confirmed
by considering that Y37, 327, s € O(5%), 3201, 00, (1+2) € O(S?) and 320, 307,
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O (S). The term b*A*B? ZS 1 ZDS s is dominant and of order O (%) and hence asymp-

totically negligible. Next, we look at limits of terms involving a*. To this end consider the

suims

S 1 1
) = "2 n(8) + ) — 3 +(ns) + 20

I
=3
&)
_|_
=)

|
o
ot
=3
&)

|

)
=
2
=3
&)
_|_
g

Il

0.5 (In(S))? 4+ 40 In(S) — 71 + o(1).

where we have used that Slim (Zil In(s) — In <\/ 2rS (%)S>> = 0 by Sterling’s approx-
—00

imation and lim (Zle lnis) - 0.5 (ln(S))2> = =, where =, is the first Stieltjes constant

S—

equal to approximately —0.0728 (see, e.g., Havil (2003)). Thus, we obtain

S(S=1) oy _ AN(S? = S)(In(S) + 70)?

1
> 2(S2(In(S) + o) + S(In(S) + 7o) — 252)°
_ 2N(S2-S5)  _ 2N +o(ﬁ)

(45— p)  (S+1- 52 57

S)+v0 In(S)+70

a1 1\ ANS(In(S) + ) (S(In(S) + ) — 0.5In(S) — 0.5 In(2n))
oY (1) = - (52(1n(8) + 70) + S(In(S) + 7o) — 257

AN N
R )
( * _1n<5>+%>

s=1 r>s

9 3 A73 5.1 B 4NSQ(O5 +’yoln(S)—’yl)
AN ZZ rs (S2(In(S) + )+ S(In(S) + o) — 252)2
NS? (2 (In( +%) —273—4%)
(52(In(S) + 7o) + Sn(S) + 7o) — 252)
2N N(27% + 4m)

(s+1- m(;ﬁf (S(In(S) + o) + (In(S) + 70) — 25)*

s=1 r>s
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(29 +471)N
(Sn(S)+70)+(In(S)+v0)—2

calculate the terms with ¢*. We have 327, 325 % = 1/1555+1/245 —1/125° —1/245% +
1/60S, 25, 5% (52 +sr) = 5/245% + 1/125% — 5/245% — 1/12S, and 37 7% s =

r>Ss

Summing up the three terms, we obtain — BE +0 (%) It remains to

1/65% —1/6S. Considering the order of the terms A2B? A?BC and A2C?, the leading term

turns out to be

AR SN 45¢*

1
5°r = +0(—=|.
N 2 (N)
s=1 r>s 15N (1—m+%>

Final Result

Let N — oo and S = aN” for a > 0 and 3 € [0.5,1). Summing everything up together

results in

2(m%a — 6(73 + 271 )a*)N 8Sc*

3(S(S) +70) + ((5) +70) 257 15y ——

Varle] = S +0 (N2,

Let n = 2(n%a — 6(73 + 2v)a*) and § = %< Substituting S = aN” we can rewrite

Var[é] = #N”ﬁ(lnw))? +6aN? ! 4o (N2 (In(N)) ™) 4 0 (NP1) |

4 Proof of Corollary 1

The choice of # determines the speed of convergence and the dominating terms. The highest

speed of convergence of the estimator is achieved when N1=2%(In(N))~2 = N#~! which holds

for By = 2 <1 — m&%ﬁ”) converging to = 2/3 from below. For gy = 2 (1 — 1“&?%”),
we have that N'=20¥(In(N))=2 = N1 = N=13(In(N))~2/3. Thus, with S = a N~ the
asymptotic variance can be expressed as

lim Var [NYS(In(N))'/3¢] = lim —— + 6a = M s
(6%

N—oo

12



Minimizing this expression with respect to a gives

for which Var [N'/6(In(N))Y/3 ¢] = 2.48/6%n.

10" = 12kt — 4wt o = 2f01 olH'(s)ds, denoting 1Q =

Recalling that a = 12kw
fol olH'(s)ds and setting k = 1 (normal noise) we can write n = 8w*(7? — 4(72 + 27;)) and

d = % and thus

. 5]33.75wH(m2 — 4(vE +271))
o =
1Q)

5 Proof of Theorem 2

This proof follows closely the proof of Theorem 1. Denote by X5 the second row of (X' X )1 X"

Then
Var[fy] = XoZX5.
Since W2 = /2 it follows that

1
Var[@?] = ZXQEXé.

13



Using notation from above, X5 is given by:

—AC 4+ Nyt AN,
\
—AC + Nt ANs
2 times
—AC + Ny AN,
XQ — /
\
—AC + N;otANg
S times
—AC + N;otANg )

Calculating Var [Bo]

Given the block structure of X; and =, we can write
s S s r
NN NI
s=1 r=1

=1 =1 j=1

Using the decomposition in Eq. (@), with Xé') in the place of Xf), we examine each term

separately.

2
The term Y7 7% <X2(3)> fz‘(z‘s’s)

Since Xés) does not depend on i, we have
SN ()2 ) ()2 § o)
>3 () e = 3 () el
s=1 i=1 s=1 i=1

where

2 N2 N N?
(X§S)> = (_AC - NtotA_> = ACE = 28O+ ANy~
s s s

14



Thus, we obtain

abs ()2 £(5.5) { cs’ 2,42 2 N 2a2 V2
ZZ(X2 ) oo = Z(aN—I—bs—i—W) (AC — 2A°CNi - + A Nwtg)

s=1 i=1 s=1

Using results from above, it follows that as S — oo and N — oo, the leading term in the

2

expression is given by m.
S s s (s) 2 (s,8)
The term >0, >, Zj;éz‘ <X2 ) §ij

As in Theorem 1, this term is of smaller order than the previous term and thus asymp-

totically negligible.
S S s r s r) ~(s,7
The term 25:1 Zr#s Zi:l Zj:l Xé )Xé )gz(] )

As above we examine the cases I: s and r coprime, II.1: s and 7 not coprime with number
of common points on both subgrids ﬁ (lem(s, r) elements), and 11.2: s and r not coprime
with no common points on the subgrids (sr —lem(s, ) elements). Proceeding as in the proof

of Theorem 1, it can be shown that terms involving b* are asymptotically negligible. From

the terms involving a*, the dominating term can be shown to be “ﬁ
The three terms involving ¢* are of the same order, so it becomes important to con-

sider them in more detail. The first one, 2'3*’%\2702 25:1 Zf s s?r has a leading term given

by %, the second one —2¢*A2C' Ny, Y27, 25#8(32 + sr) has a leading term given

by —%, and the third one 2C*A?N?,N Zle Zf# s has a leading term given by
3

c*S3 c*s
30N3(In(S))2"

IN3 (5] Summing up the three terms, we obtain

Final Result

Let N — oo and S = aN” for a > 0 and 3 € [0.5,1). Summing everything up together

results in

Var|w?] = EVar[ﬁA | = E (a_* + L) +o (N7
T4 "4\ N T 30N3(In(S))? ‘

15



Substituting S = N in the above equation results in

1 /a* c*adN38
4

Varle') = 7 5+ 3053 (in(a) + mn(N))z) o (V).

The two terms in the brackets are of the same order, O (N71), if § = 2 <1n1(1111(1%)) + 1). It

follows that for 8 < % <1“1(rllr(1§\f[\)7)) i 1)

. N a _
A}gn@Var[wﬂ = IN +o(N7).
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