Effect of Physical Activity on Executive Function during the COVID-19 Pandemic

Tan Cher Yi
Sunway University

Supervisors:
Assoc. Prof. Dr. Yong Min Hooi, Sunway University
Assoc. Prof. Dr. Alexandre Schaefer, Monash University

Introduction
Background

- Physically inactive adults:
 - Global: 27.5% (Guthold et al., 2018)
 - East and Southeast Asia: 17.3% (Guthold et al., 2018)
 - Malaysia: 25.1% (Institute for Public Health, 2020)

- Benefits of physical activity (PA) on physical and mental health ranging from:
 - Diabetes control (Jelleyman et al., 2015)
 - Anxiety and depression treatment (Naylor et al., 2018; de Oliveira et al., 2019)
 - Executive function (EF; Kamijo & Takeda, 2010; Lipowski et al., 2019; Mir et al., 2019)

The COVID-19 pandemic:

- Movement control restriction: most countries attempted to remain physically active (Ministry of Health Malaysia, 2020).
- Heightened anxiety across the globe (Chen et al., 2020) including Malaysia (Tan et al., 2021).

The reduction in PA and increased mental stress may have contributed to vulnerability in EF.
Executive Function

- EF is an umbrella term used to describe different cognitive processes which are responsible for our thought, behavior, and affection (Miyake et al., 2000; Miyake & Friedman, 2012).

- Focus of present study:
 - Attention
 - Working Memory (WM)
 - Cognitive Flexibility (CF)

Physical Activity

- Any bodily movement controlled by skeletal muscles that requires energy expenditure (Westerterp, 2013).

Fig. 1 Examples of Physical Activity (Public Health England, 2016)
Physical Activity

- The amount of PA is determined by the concept of dose – a multidimensional construct that consists of duration, frequency, and intensity (Falck et al., 2016).

- One of the ways to classify PA intensity is based on Metabolic Equivalent (MET) – the ratio of an individual’s working metabolic rate relative to the resting metabolic rate (Coelho-Ravagnani et al., 2013).

<table>
<thead>
<tr>
<th>PA Group</th>
<th>MET minutes per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>> 600</td>
</tr>
<tr>
<td>Moderate</td>
<td>600 – 2999</td>
</tr>
<tr>
<td>High</td>
<td>3000 and above</td>
</tr>
</tbody>
</table>

Methods to Quantify Physical Activity

- Objective measure:
 - accelerometers, pedometers, heart rate monitors.

- Self-reported method:
 - Questionnaire
 - Time-based diary

1. Provide detailed PA information.
2. Allow participants to self-report their PA regardless of location and dependency on wearables.
Effect of Physical Activity on Executive Function

- Dose-response hypothesis:
 - Linear relationship between PA dose and EF among healthy young adults: a greater PA dose results in a higher heart rate and cardiovascular capacity (Vogiatzis et al., 2011) as well as higher elevation of brain-derived neurotrophic factor (BDNF) production i.e., important for growth and differentiation of neurons (Jeon & Ha, 2017) which then results in much improved EF performance.
Effect of Physical Activity on Executive Function

- There was a mixed response on how PA affects EF.
- Little is known about the sustainability of these EF over time for very few included a follow-up.
- Takacs and Kassai (2019) reported that only 15% of studies had included a follow-up which ranged from 6 weeks to 12 months in their meta-analyses.

<table>
<thead>
<tr>
<th>EF Domains</th>
<th>Significant effect</th>
<th>Non-significant effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>Huertas et al., 2011; Blumenthal et al., 1989; Blum et al., 2019</td>
<td></td>
</tr>
<tr>
<td>Working Memory</td>
<td>Hansen et al., 2004; Lambourne, 2006; Lipowski et al., 2019; Eggermont et al., 2009</td>
<td></td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>Kamijo & Takeda, 2010; Patterson et al., 2018</td>
<td></td>
</tr>
</tbody>
</table>

Research Aims and Research Hypotheses
Research Aims

We examined:
✓ the effect of physical activity (high, moderate and low PA on EF (attention, working memory, cognitive flexibility).
✓ whether the effect of PA on EF sustained over 6 weeks in total.

Research Hypotheses

The hypotheses were formulated based on:
(1) dose-response in that compared to low PA group, we expected participants in high and moderate PA groups will have higher accuracy in attention and WM as well as higher CF (self-rated and task-based) at Time 2.
(2) high and moderate PA groups will also show improvement from Time 1 to Time 2 as well as from Time 1 to Time 3.
(3) similar performance will sustain over time in that we predicted that participants in high and moderate PA groups will have similar performance in attention, WM, and CF tasks at Time 3 compared to Time 2.
Method

Participants

- **105** participants (76 females, $M_{age} = 25.79, SD = 3.99, 86.70\% Chinese).
- Data was collected from May 2020 to October 2020.
- Recruitment: Word of mouth reference and online platforms.
- Compensation: RM40 Grab food voucher.

<table>
<thead>
<tr>
<th>PA Group</th>
<th>Number of participants</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>29</td>
<td>470.44</td>
<td>170.22</td>
</tr>
<tr>
<td>Moderate</td>
<td>46</td>
<td>1647.77</td>
<td>587.20</td>
</tr>
<tr>
<td>High</td>
<td>30</td>
<td>3963.47</td>
<td>1033.88</td>
</tr>
</tbody>
</table>

Note: After one month of PA recording, 71.74\% ($n = 33$) from the moderate physical activity group and 90\% ($n = 27$) from the high PA maintained similar PA to the 14-day recording.
Research Design

• 3 between-subjects (PA group: high, moderate, low) x 3 within-subjects (Time of measurement: Time 1, Time 2, Time 3) mixed research design.

Measures

• Phone interview (OR online platforms, e.g., WhatsApp, Zoom)
 o Attention: Symbol Digit Modalities Test (Hinton et al., 2005)
 o Working memory: Digit Span Backwards (Wechsler, 1997)
 o Cognitive flexibility: Cognitive Flexibility Scale (Martin & Rubin, 1995) and Guilford’s Alternate Uses Test (Guilford, 1967)

• Online survey:
 o Screening and demographic data
 o Perceived Social Isolation: Social Isolation Scale (Cotten et al., 2013)
 o Socioeconomic status: Scale of Subjective Status (Adler et al., 2008)
 o Mood and Feelings: Mood and Feelings Questionnaire (Costello & Angold, 1988)
 o Stress: Perceived Stress Scale (Cohen et al., 1983)
 o Physical activity diary

Procedure

• Upon an agreed time and day, participants completed psychological measures and several EF tasks by phone and/or the methods (Time 1).
• Time 1 served as practice measurements.

• All participants recorded their daily physical activity in a diary for 14 days. After 14 days, participants completed post-test (Time 2) on similar psychological measures and executive function.

• One month after Time 2, participants were tested on similar psychological measures and executive function (Time 3).
Data Analysis

- SPSS version 25 (Hayes, 2017)
- 3 (PA group: high, moderate, low) x 3 (Time: Time 1, Time 2, Time 3) mixed factorial analysis of variance (ANOVA)
- One-way ANOVA
- Paired-samples t-test
- Additional analyses: one-way ANOVA and linear regression among participants from low PA group

Key Findings & Discussion
Effect of Physical Activity on Executive Function

- Both high and moderate PA doses (i.e., combination of PA duration, frequency, and intensity) are equally beneficial for attention and WM when compared to low PA dose after 14 days of PA recording.

- Our high and moderate PA group had improved significantly in attention and WM accuracy after recording PA diary for 14 days (Time 2 vs. Time 1). These findings are important as attention and WM accuracy are linked with skills and abilities required to solve everyday problems, e.g., proofreading and quality of work directly (Shafto, 2015) and fluid intelligence to solve problems independent of learning and experience (Jaeggi et al., 2010). Hence, both EF domains are closely related to professional and educational success in a long run.

Effect of Physical Activity on Executive Function

- The was a maintenance of one-month effect from the high and moderate PA groups on attention accuracy, WM accuracy, self-rated CF, and task-based CF.

- The findings of this study contribute to the overall body of knowledge on that a culmination of intensity, type, and duration in PA leaves a longer effect than previously thought.
Effect of Physical Activity on Executive Function

- Low physical activity exerted a significant detrimental effect on attention as demonstrated by our low PA group after 14 days of diary and at the end of the study period compared to baseline.
- The decline in low PA is not due to mood and feelings, stress, and perceived social isolation.
- We are however cautious with this finding as data was collected when the movement restriction was still in its early days.

Limitations and Future Studies:
- Most of our participants are Chinese (86.7%).
- Current study did not take account the impact of sleep on executive function.
- A longer follow-up (e.g., 2 to 12 months) and use of heart rate monitor as supplement for PA diary.
Theoretical Implication:

- This study contributes to the understanding of a linear dose-response relationship between PA and EF among healthy adult populations.
 - The higher the PA dose, the greater the EF performance.

Practical Implication:

- It's important to stay physically active during the pandemic to maintain high levels of EF.
 - **Government and organizations:**
 - Increase access for PA participation and have more culturally sensitive facilities.
 - **Individuals:**
 - Virtual exercise class, stair climbing, and use of exercise alert applications.

Conclusion:

- Current study added new knowledge related to the sustainability effect of PA on EF and included a more objective form of measuring exercise virtually by using PA diary during the COVID-19 pandemic.
- The cognitive-training industry has spent more than $8 billion by 2021 in designing cognitive training protocols (Ahuja, 2019). It's important to wisely select interventions or protocols with long-term benefits so that one will get the most out of resources and time invested. Current study showed a cost-effective way of enhancing one's EF in the long-run via involving in PA actively.
Thank you!

Please contact me at
19025766@imail.sunway.edu.my