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Abstract

Portfolio risk can be estimated in various ways. The different methodologies

can be classified as either using only the current portfolio weights (ex-ante) or us-

ing the complete history of portfolio weights (ex-post). Although the differences

are typically negligible, at times, there can be substantial discrepancies between

the two. If a portfolio is actively managed using such risk measures, the subse-

quent impact on performance can also be significant. In this study, we formalize

these two concepts and discuss their properties in the context of portfolio risk and

performance. In an empirical illustration, we show that the risk measure choice

can have a significant impact on portfolio performance and characteristics.
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1 Introduction

Measuring portfolio risk is a central element in managing a portfolio. However, there are

various ways of estimating the risk of a portfolio. There are two groups of estimators:

Those that are based on the historical returns of the portfolio, which are typically

referred to as ex-post risk measures, and those that are based on the current portfolio

allocation and a historical estimate of the covariance matrix of market returns, which are

typically referred to as ex-ante risk measures. Such risk measures are often interpreted

as forecasts and frequently used to steer a portfolio and for regulatory purposes.

As both measures are valid risk measures, the conceptual differences between ex-post

and ex-ante volatility estimates are as profound as they are often overlooked. Ex-ante

risk measures have the distinct advantage of not requiring historical information about

the portfolio, i.e. past portfolio weights or returns. It only requires the current market

allocations and an estimate of the market covariance matrix. While ex-ante and ex-post

volatility figures differ in size and dynamics, it is less understood how they result in

very different portfolio strategies if the risk estimate is used to manage the portfolio.

Hence, in this paper we not only consider the difference in measuring the risk of a given

portfolio, ex-ante vs. ex-post, but we also, and primarily, try to understand the impact

of the different measurements on portfolio performance.

The literature concerning ex-post and ex-ante risk measures is relatively scarce.

While Steiner (2013) derives an attribution scheme to explain the difference in ex-post

and ex-ante volatility based on portfolio weights and covariance estimates, Satchell

et al. (2001) show that the ex-post tracking error of a portfolio is always larger than

the ex-ante tracking error, since portfolio weights are ex-post stochastic. Clarke et al.

(2002) derive ex-ante and ex-post correlation relationships that facilitate the perfor-

mance analysis of constrained portfolios using the fundamental law of active portfolio

management. Also, Simlai (2014) use a factor model to estimate the ex-ante market

that uses an aggregate dividend yield, the default spread, the term spread as well as

the short-term interest rate.

As many portfolio strategies are risk-targeting by nature, they require the timely

estimation of the variance-covariance matrix. This includes variance overlay strategies

and gearing schemes. Hence, a differentiation between ex-ante and ex-post volatility can

also help to explain certain portfolio investment rules (Johnson et al., 2007). Eventually,

this paper is also related to Siburg et al. (2015) who investigate the predictive power of

Value-at-Risk models and Wang and Yan (2021), who show that downside risk measures
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portfolios outperform traditional volatility target portfolios.

The following example illustrates the potential differences between both method-

ological approaches and motivates our subsequent analyses. In particular, in section

2 we formalize both concepts and derive some properties. In section 3 we apply both

approaches to typical systematic investment strategies and discuss their impact. The

final section concludes.

Motivating example

Let us consider a simple example: JB is a portfolio manager and runs a long-only vol-

targeting fund that wants to achieve a volatility level of 10% annually. JB rebalances

the strategy at the end of each month and he can take leverage up to a certain degree.

In January 2022, his manager M asks him why his portfolio runs at such a high risk

with a Value-at-Risk of 35.6% at the one percent significance level calculated based on

the last 260 trading days. However, JB wonders and replies that the actual VaR, he

measures, is only 23.97%, only slightly above his target of 23.33 percent (2.33× 10%).

So where does this discrepancy come from? It can be explained by the risk estimation

methodology.

M uses the current portfolio allocation to calculate the VaR (ex-ante VaR), because

this gives the most accurate estimate of the current level of risk. M believes his estimate

is correct as it measures the risk in the current portfolio. JB instead uses the actual

portfolio weights at each point in time in the past year to calculate the VaR (ex-post

VaR). He argues his estimate is correct as his portfolio was less leveraged when the

market volatility was high and would be so in the future. He says: “It’s like measuring

a safe driver only by his current speed. If he is just driving slowly because traffic is

heavy or there is a sharp corner, you might think that he must be a safe driver. But

how does he behave when there are no corners or other cars? If he always drives at

the same speed, then the current speed is enough to decide whether you want to drive

along. Otherwise, one should always look at how fast the driver has driven in the past.”

The same holds for the leverage or gearing of a portfolio to measure its riskiness. So

what happened to JBs’ portfolio at the beginning of 2022? A sharp increase in market

volatility in November of 2021 led to a slight decrease in portfolio leverage. While the

ex-post VaR in the left panel of Figure 1 does not change dramatically, the ex-ante

VaR measures increased quickly in November 2021 to over 30%.1 In fact, whereas the

1Note that in the plot, the Value-at-Risk decreases as it is a negative-valued risk measure.
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ex-ante VaR can change very quickly when the volatility of the market changes, the

ex-post VaR measure is much more stable, only sharply decreasing in March 2021 when

the Corona shock 260 days earlier faded out. Another perspective on this is visible in

the right panel of 1: The actual daily returns produced from the ex-post measure are

much less volatile than the returns of the ex-ante measure produced from the actual

portfolio weights in January 2022.

Figure 1 to go here.

Measuring the riskiness of a portfolio can have a severe impact on for example capital

requirements. Hence, the use of ex-ante or ex-post risk metrics might be very important

from a risk management perspective. Nevertheless, we argue here that this choice also

renders the performance attribution of volatility-targeting portfolios. We find that the

use of an ex-post instead of an ex-ante measured risk target can not stabilize portfolio

allocations, but can also increase portfolio performance overall; especially in market

times of high volatility.

2 Ex-post vs. ex-ante volatility

Let us now get a better understanding of the conceptual differences and similarities

between ex-post and ex-ante volatility and formalize a theoretical framework. The

general difference between ex-ante and ex-post risk estimators is whether only the

current portfolio weights are used or the sample history of weights.

Let us assume that an investor can invest in N risky financial assets with arithmetic

return rt,n, n = 1, . . . , N . We denote the vector of time-t returns as rt = (rt,1, . . . , rt,N)

be the (N × 1) with mean vector µ and (N × N) variance-covariance matrix Σ. Let

ωt = (ωt,1, . . . , ωt,N) be portfolio allocation in the N assets at time t. We do not

constrain ωt to add up to 1 so that the investor does not need to be fully invested

or can take leverage. We also allow for taking short positions but the results do not

depend on it.

The portfolio return at time t is calculated by

rpt =
N∑

n=1

ωt−1,n · rt,n = ω′
t−1rt (1)
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and the estimated empirical portfolio variance over the period from t = 1 to t = T is

then given by

σ̂2
expost =

1

T − 1

T∑
t=1

(rpt − r̄p)2 , where r̄p =
1

T

T∑
t=1

rpt . (2)

It proves useful to rewrite this expression as

σ̂2
expost =

1

T − 1

T∑
t=1

(
N∑

n=1

ωt−1,n · rt,n −
1

T

T∑
t=1

N∑
n=1

ωt−1,n · rt,n

)2

=
1

T − 1

T∑
t=1

(
N∑

n=1

ωt−1,n (rt,n − r̄n)

)2

(3)

where r̄n = 1
T

∑T
t=1 rt,n. This is also called ex-post volatility estimate, as it considers the

variability portfolio weights over time. Let us further denote the matrix of all portfolio

weights by

Ω =


ω0,1 · · · ωT−1,1

...
. . .

...

ω0,N · · · ωT−1,N


(N×T )

. (4)

With this, we can show that the ex-post volatility given in equation (3) is the scaled

trace of the quadratic matrix product Ω′ΣΩ.

Proposition 1. The ex-post volatility of a portfolio given in equation (3) can be written

in matrix notation as

σ̂2
expost =

1

T
tr
(
Ω′Σ̂Ω

)
+ ρ, (5)

where Σ̂ = 1
T−1

R̃′R̃, R̃ is the matrix of all de-meaned asset returns of dimension T×N ,
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Ω is given in equation (4) and ρ is a quadratic form given by

ρ =
1

T − 1
vec (Ω)′ ·


r̃1r̃

′
1 − R̃′R̃/T · · · 0

...
. . .

...

0 · · · r̃T r̃T
′ − R̃′R̃/T


︸ ︷︷ ︸

=:Φ

·vec (Ω)

=
1

T − 1
vec (Ω)′ Φ vec (Ω) , (6)

where r̃t = (rt,1 − r̄1, . . . , rt,N − r̄N)
′ ∀t = 1, . . . , T .

The proof of Proposition 1 is in Appendix A.

This is an interesting result since the trace of a matrix is also equivalent to the

sum of its eigenvalues, which is also the variance of the first k principal components

of the matrix Ω′Σ̂Ω. Similar results involving the Wishart traces are used for the

derivation of the distribution of mean-variance style portfolio weights in Okhrin and

Schmid (2006). While it holds that σ̂2
expost is a consistent and unbiased estimator for

the portfolio variance, it can also be shown that the limt→∞ ρ = 0 by applying a law of

large numbers for weighted sums (Jamison et al., 1965).

On the contrary, ex-ante volatility is typically determined based only on a current

(forward-looking) weight vector ωT = (ωT,1, . . . , ωT,N)
′, i.e. the current composition

of the portfolio, and by assuming (or knowing) the true forward-looking variance-

covariance matrix of the asset returns Σ. Then the ex-ante variance of a portfolio

at time T is given by

σ2
exante =

N∑
i=1

N∑
j=1

ωT,iωT,jσi,j = ω′
TΣωT . (7)

In other words, ex-ante volatility refers to a forward-looking estimation of a port-

folio’s volatility, considering the current portfolio positioning while anticipating co-

variances deemed representative for the specified forecasting period of the investment.

However, the definition of ex-ante volatility in equation (7) also appears unconventional.

The term constant portfolio/asset weights implies an ideal scenario where the portfo-

lio is rebalanced flawlessly to its initial weighting at any point during the investment

period is a very impractical assumption.

Therefore, it’s crucial to recognize that the ex-ante volatility does not describe a

buy-and-hold portfolio strategy. In reality, if assets are initially purchased and then
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held, their weights will naturally drift based on each asset’s relative return compared

to the portfolio return. The opposite of this is a continuously rebalanced portfolio.

Corollary 1. The ex-post volatility of a portfolio given in equation (5) equals the ex-

ante volatility in equation (7) if (i) portfolio weights are constant over time (continuous

rebalancing) and (ii) the historical variance-covariance matrix is an unbiased estimator

for the true (forward-looking) variance-covariance matrix.

The proof of Corollary 1 is given in Appendix A.

Distributional considerations

Besides equivalence between the two variance measurements, one could also ask about

the distributional properties of the ex-post and ex-ante variance. For this, let us as-

sume that rt
i.i.d.∼ N (µ,Σ) for all t. Then it holds that the estimate of the covariance

follows a Wishart distribution with scaling parameter Σ and degrees of freedom T ,

Σ̂ ∼ W (Σ, T − 1), (Muirhead, 2009, Corollary 3.2.2). Given a portfolio allocation

ω ∈ RN such that ω′Σω ̸= 0, the estimated ex-ante portfolio variance now follows a

Chi-squared distribution with T degrees of freedom, i.e. ω′Σ̂ω
/
ω′Σω ∼ χ2

T (Muirhead,

2009, Corollary 3.2.9).

The situation is somewhat more tricky for the ex-post variance as we need to derive

distributional properties for a trace of a Wishart distribution. First of all, given that

Ω is non-random and has full column rank, it holds that ΩSΩ′ ∼ W(ΩΣΩ′, T ), where

T > N − 1 is the degrees of freedom (Muirhead, 2009, Theorem 3.2.5). Kourouklis

and Moschopoulos (1985) show some properties for the trace of a Wishart-distributed

random matrix derived from the Normal distribution. A closed-form solution for the

distribution of the trace only exists under specific circumstances (Pham-Gia et al., 2015)

and Glueck and Muller (1998) show that the trace of a Wishart equals a weighted sum

of non-central chi-squared random variables and constants. It holds from the definition

of the chi-squared distribution that the sum of independent chi-squared variables is also

chi-squared distributed with the degree of freedom is the sum of the degrees of freedom

of the independent chi-squared variables. Hence, by construction, we would expect that

the dispersion of the distribution of the ex-post variance is greater than the estimated

ex-ante variance.

In the following simulation, we compare the distribution of the ex-post and ex-ante

variances for two different portfolio strategies: A long-only risk-parity portfolio and
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a long-short momentum type portfolio.2 Figure 2 shows the simulated distribution

of monthly annualized portfolio volatility for different points in time, namely a low

(30.03.2018) and a high (31.03.2020) volatility market environment.

Figure 2 to go here.

The top panel compares the distributions of the ex-ante and ex-post portfolio volatil-

ity for the long-only risk-parity portfolio. It shows that both distributions do not differ

significantly, no matter the market environment. This is because the portfolio weights

in the long-only case are more stable and the actual ex-ante and ex-post portfolio strate-

gies are very similar in-sample. In contrast, the lower row portrays the same comparison

for the long-short momentum portfolio and illustrates a considerably lower dispersion

for the ex-ante volatility distribution. While this holds for all market environments,

note that the ex-post distributions for the long-only as well as the long-short are very

similar. These results fit the distributional considerations from above that the ex-post

volatility has a wider dispersion than the ex-ante. All in all, these results are a strong

indicator that long-short portfolio management based on ex-ante volatility might differ

from an ex-post strategy.

3 Empirical application

3.1 Data

We use daily data for 55 futures markets, which cover a typical liquid multi-asset

universe, see e.g. Pedersen et al. (2021). All data are retrieved from Bloomberg. The

sample period is January 1980 to September 2023. The futures and some basic empirical

properties are summarized in Table 1.

Table 1 to go here.

We compute arithmetic returns based on the rolled ratio-adjusted time series of

prices. All futures contracts are rolled either on their last trading day or on the first

day of the expiration month whichever is earlier. As futures are traded on margin

accounts that earn interest, the market returns can be interpreted as excess returns.

All returns are in local currency.

2The strategies and data will be introduced in detail in the empirical section 3.
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At first, we inspect the correlations between all markets. To account for timezone

discrepancies in Figure 3 we show the correlations of the monthly returns. The sector

clusters can be easily identified.

Figure 3 to go here.

3.2 Setup

As shown above, if a portfolio is managed passively, i.e. ωt ≡ ω, then ex-ante and

ex-post volatilities coincide. Consequently, here we consider two standard actively

managed portfolios:

1. Volatility-scaled long-only (’long’), e.g Harvey et al. (2018) and

2. Time series momentum (’TSMOM’), e.g Moskowitz et al. (2012).

Whilst the long-only portfolio simply allocates to each instrument inversely pro-

portionally to a forecast of its volatility, for the latter a forecast of the future market

returns based on past returns is required. In its simplest form Levine and Pedersen

(2016) define a TSMOM signal as the past 1-year return, i.e.

splain mom
n,t = r1Yn,t . (8)

As this signal is not comparable across different markets, a normalization is required.

A generic implementation which divides the plain signal in (8) by an estimate of the

volatility is suggested by Harvey et al. (2021), so that we define3

smom
n,t =

r1Yn,t
σ̂1Y
n,t

. (9)

We now distinguish scaled and unscaled weights. The latter are the portfolio weights

pre-gearing whilst the former are the portfolio weights that are intended to achieve the

volatility target. For both investment strategies cases, the portfolio weights are obtained

by scaling each market’s signal by an estimate of its volatility, i.e.

ωunscaled
n,t =

sn,t
σ̂n,t

. (10)

3It should be noted that this definition includes the common normalization of using the sign function
if σ̂1Y

n,t is defined as |r1Yn,t |, see Moskowitz et al. (2012). The definition using a generic volatility estimate
is favorable because using the sign function dictates to flip from a full long-position to a fully short
and vice versa.
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It should be noted that the volatility estimates in (9) and (10) serve different purposes

and need not be the same. The former makes signals comparable whilst the latter

translates this comparability to the risk that is taken in each instrument.4 As these

are volatilities of individual instruments, there is no distinction between ex-ante and

ex-post volatility. For both we use exponentially weighted moving averages (ewma),

σ̂2
n,t = λ σ̂2

n,t−1 + (1− λ) r2n,t. (11)

The parameter 0 < λ < 1 controls how much weight is given to the most recent

information.

So far these portfolio weights are not designed to attain a target level of risk. For

this, an estimate of the portfolio volatility is needed which could be either an ex-ante

or an ex-post measure as described above. For the ex-post volatility estimate, we need

the unscaled portfolio returns, i.e.

rp, unscaledt = ωunscaled
t−1

′ rt. (12)

For the ex-ante risk, an estimate of the market returns covariance matrix, Σt, is

required. Differences in the trading hours can cause spuriously low correlations. In

practice, this has been solved by using overlapping average returns. Pedersen et al.

(2021) suggest to estimate volatilities and the correlation matrix C separately, i.e.

Σ̂t = Ĉt ◦ σ̂tσ̂
′
t, where ◦ denotes the (element-wise) Hadamard product.

Pedersen et al. (2021) suggest that volatility estimates are the center of mass of

60 days and the correlation estimates of 150 days.5 The unified parameter entails the

advantage of having comparable estimates across ex-ante and ex-post measures.6 Also

following again Pedersen et al. (2021), the correlation matrix is estimated using 3-day

4If momentum signals are defined as the (unscaled) return over the preceding year the signal mag-
nitude depends on the volatility of the underlying instrument, e.g. a 10% return in New York Natural
Gas is not five times as extreme as a 2% return in a Treasury future. Consequently, these need to
be related to each instrument’s volatility. A similar argument applies to positions. If, for example,
the last year’s return in the aforementioned Nat Gas future was one standard deviation and the same
for the Treasury future, the cash allocated to each Nat Gas future would need to be about five times
smaller than for the Treasury futures to make the equal signals to equal risk. In summary, a five times
higher last year’s return in Nat Gas needs to be mapped to a five times smaller position to deploy the
correct amount of risk.

5The center of mass is defined as com =
∑

(1 − λ)λi i and relates to the more common measure
half-live hl as follows: com =

∑∞
i=1(1− λ)λii = λ/(1− λ) and hl = −1/ log2(λ).

6For ex-post only the volatility is estimated whilst for ex-ante the volatilities and correlations are
estimated separately.
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overlapping returns to mitigate time-zone differences across the futures. We use the

same pre-averaging for the returns that are used for volatility estimates to ensure the

comparability between ex-ante and ex-post estimates.

The desired target volatility for the portfolio σtarget = 10% p.a. is achieved by

adjusting the unscaled weighted in (10) by the ratio of the target volatility and the

current estimate of the portfolio volatility, i.e.

ωscaled
t = ωunscaled

t

σtarget

σ̂t

. (13)

For the investment strategies above we compute the historical time series of portfolio

weights both with the ex-ante and with the ex-post gearing methodology. Rather than

merely considering performance, we are interested in the risk properties of the two

methodologies. First, we test whether the volatility target is attained. To this end,

we compute the corresponding portfolio returns and statistically test for the difference

between the overall volatility and the volatility target. Second, we test how accurate

value-at-risk (VaR) forecasts are. We test both parametric and nonparametric VaR

forecasts. Given the time series of unscaled portfolio weights ωunscaled
t we estimate ex-

ante and ex-post volatilities as laid out above and forecast VaR as

V aRex ante, param
t = cα · σ̂ex ante

t and (14)

V aRex post, param
t = cα · σ̂ex post

t , (15)

respectively, where cα is the (1 − α)-percentile of the Normal distribution. For the

nonparametric VaR, we use the percentiles of the realized returns. Similar to the

definition of the ex-ante and ex-post volatility estimators the nonparametric VaRs are

defined as

V aRex ante, non-param
t =

N∑
n=1

ωn,tQ1−α (rn 1:t) and (16)

V aRex post, non-param
t = Q1−α (r

p
1:t) , (17)

where Q1−α denotes the (1 − α)-percentile of the empirical distribution. By (rn 1:t we

denote the vector of market returns for the nth market from time 1 to t and similarly

by rp1:t we denote the vector of (unscaled) portfolio returns until time t.

For all methods, we statistically test whether the frequency of breaching the forecasted
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VaR deviates significantly from their respective expected values.

3.3 Results

A summary of the historical performance measures is shown in Table 3. The differences

are generally small. For both the long-only and the momentum strategy, the mean

performance is higher for the ex-ante portfolio. However, it also overshoots the target

volatility significantly for the momentum case. On the other side, the ex-post volatil-

ity measured portfolio under-shoots the volatility target of ten percent p.a. for both

strategies. While the Sharpe ratio is higher for the ex-ante volatility target strategies,

the turnover is lower for the ex-post portfolio.

Table 3 to go here.

Table 4 reports the correlation between the ex-ante and ex-post returns, between

the corresponding portfolio volatilities, and the correlation between the gearing factors

for each portfolio, i.e. high correlation implies practically no difference between the ex-

ante and ex-post portfolios. However, while we see almost no differences for the long-

only portfolio, for which the correlations between all portfolio returns, volatilities, and

gearing factors are above 95%, the picture looks different for the momentum strategy.

Although the portfolio returns are also highly correlated with 0.97, this correlation

drops when looking at the volatilities to 0.92 and even further to 0.81 for the gearing

factors. This indicates that in terms of portfolio positioning, both strategies can differ

significantly at times; underlining the importance of this research.

Table 4 to go here.

These dynamics could also be concluded for the time series plots in Figures 4 and

5. Here, volatility and gearing are displayed for the total sample and also specifically

for the years 2007 and 2008, the Great Financial Crisis (GFC). It is apparent in both

plots that the ex-post volatility and therefore the ex-post gearing factor are much less

volatile than their ex-ante counterparts. This is due to the moving average effects in

the ex-post estimation methods as each portfolio weight only differs slightly from the

previous and so produces a more stable return distribution.

Figure 4 and Figure 5 to go here.
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The unleveraged portfolio weights in Figure 6 for the long-only and momentum

strategies eventually show the difference in portfolio characteristics. The short position

and higher portfolio variability in the lower panel for the momentum signals should

lead to more distinguishable results.

Figure 6 to go here.

Testing the realized portfolio volatilities for differences to their target, we find that,

in all cases, the realized volatility is close to the target. The results are displayed in

Table 5. Here, we can see that the ex-post geared portfolio undershoots the target

significantly (at different significant levels for the two strategies). In contrast, the ex-

ante portfolio overshoots the target volatility for the momentum case. Note that the

fact that small deviations are statistically significant is owed to the daily frequency of

the data which provides us with a large number of observations.

Figure 4 to go here.

For many investors, a key metric is value-at-risk (VaR). Here, we test how frequently

the predicted VaR has been breached compared to the VaR level. The results for the

parametric VaR are shown in Table 6. There are three columns for each ex-ante and ex-

post VaR with the empirical frequency and the bootstrapped 5th and 95th percentiles

as confidence bands for both the long-only and the momentum portfolios. First, the ex-

ante portfolio overshoots the target risk only at the 1% level for the long-only portfolio

but leads to a statistically significantly higher rate of VaR breaches at all levels for the

momentum portfolio. The ex-post strategy, in contrast, is conservative for both long-

only and momentum at the 5% level, with significantly lower rates of VaR breaches and

only overshoots at the 1% level for the momentum portfolio.

Table 6 to go here.

The results for the non-parametric VaRs are shown in Table 7. The most interest-

ing observation can be made for the ex-ante non-parametric VaR for the momentum

portfolio. The VaR is breached at all levels more than 30% of the time, i.e. the fore-

casts tend to be substantially too low. This is caused by the property of the ex-ante

estimate to only depend on the current weight. If the portfolio weights adapt according

to the market behavior and there is a change in the market regime the estimate can be

substantially off.

Table 7 to go here.
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4 Conclusion

Portfolio risk can be estimated in various ways. The main distinction between the

methodologies is whether only the current portfolio weights are used together with a

historical estimate of the market returns covariance matrix or whether each market

return is matched with its corresponding historical weight. We find that, in many

cases, the differences are small and the impact of key performance metrics is unaffected.

However, in some cases where the portfolio strategy depends on the market regime the

ex-ante risk measure can be misleading as it does not account for the change in the

portfolio weights. This affects primarily value-at-risk forecasts, especially for the non-

parametric or historical simulation version. As this version is often used for regulatory

purposes in risk monitoring, this paper gives valuable insights into the question of which

portfolios such a measure is not suitable.

In addition, this paper also studies the theoretical properties of both volatility mea-

sures, derives an applicable formula for the ex-post volatility, and proves the differences

to the ex-ante volatility in a simulation study.

Finally, we can also note that volatility target portfolios with dynamic levels of

gearing or leverage are especially prone to errors in risk estimation and should be

managed with the right metrics. Hence, our study also relates to other non-momentum

and overlay portfolio strategies which not only invest in future contracts but also in

other asset classes in which transaction costs can be sustainably higher. For such

portfolios, the difference in performance can even be bigger and more costly.
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A Proofs

Proof of Proposition 1. Using the definition of Ω from equation (4), we can write the

portfolio variance in equation (3) in matrix notation as

σ̂2
expost =

1

T − 1

T∑
t=1

(
N∑

n=1

ωt−1,n (rt,n − r̄n)

)2

︸ ︷︷ ︸
=(ωt−1,1,...,ωt−1,N)

′
(rt,1−r̄1,...,rt,N−r̄N)

=
1

T − 1

T∑
t=1

(
ω′

t−1r̃t
)2

=
1

T − 1

T∑
t=1

ω′
t−1r̃tr̃

′
tωt−1, where r̃t = rt − r̄

=
1

T − 1

[
ω′

0, . . . ,ω
′
T−1

]
·


r̃1r̃

′
1 · · · 0

...
. . .

...

0 · · · r̃T r̃T
′

 ·


ω0

...

ωT−1



=
1

T − 1
vec (Ω)′ ·


r̃1r̃

′
1 · · · 0

...
. . .

...

0 · · · r̃T r̃T
′

 · vec (Ω)

=
1

T − 1
vec (Ω)′ ·


R̃′R̃/T · · · 0

...
. . .

...

0 · · · R̃′R̃/T

 · vec (Ω)

+
1

T − 1
vec (Ω)′ ·


r̃1r̃

′
1 − R̃′R̃/T · · · 0

...
. . .

...

0 · · · r̃T r̃T
′ − R̃′R̃/T

 · vec (Ω)

=
1

T − 1
vec (Ω)′ ·


R̃′R̃/T · · · 0

...
. . .

...

0 · · · R̃′R̃/T

 · vec (Ω) + ρ

=
1

T − 1
vec (Ω)′ ·

(
IT ⊗

(
R̃′R̃/T

))
· vec (Ω) + ρ

∗
=

1

T − 1

1

T
vec (Ω)′ · vec

(
R̃′R̃ ·Ω

)
+ ρ =

1

T
vec (Ω)′ · vec

(
R̃′R̃

T − 1
·Ω

)
+ ρ

=
1

T
vec (Ω)′ · vec

(
Σ̂ ·Ω

)
+ ρ =

1

T
tr
(
Ω′Σ̂Ω

)
+ ρ (18)
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where IT is the identify matrix of dimension T , ⊗ denotes the Kronecker product,

ι = (1, . . . , 1)′ is a vector of ones with length T and tr the trace of a (square) matrix.

∗ is the result of vec (A ·B) = (IT ⊗ A) · vec (B).

Proof of Corollary 1. For (ii) we note that the true forward-looking variance-covariance

matrix Σ is usually unknown, so we can only estimate the ex-ante variance of a portfolio

by replacing Σ in equation (7) by the unbiased estimator Σ̂ = 1
T−1

R̃′R̃. Then

σ̂2
exante =

1

T − 1

T∑
t=1

(
N∑

n=1

ωT−1,n (rt,n − r̄n)

)2 ∣∣ωt,n = ωs,n = ωT−1,n ∀t ̸= s

=
1

T − 1

T∑
t=1

(
ω′

T−1r̃t
)2

= ω′
T−1

(
1

T − 1

T∑
t=1

r̃tr̃
′
t

)
ωT−1

= ω′
T−1

(
1

T − 1
R̃′R̃

)
ωT−1 = ω′

T−1Σ̂ωT−1. (19)

As Σ̂ is unbiased, so is the ex-ante estimate: E (σ̂2
exante) = σ2

exante. Rewriting Ω = ω · ι′

from equation (4) for ωs = ωt = ω ∀t ̸= s, σ̂2
expost in (5) can be rewritten as

σ̂2
expost =

1

T
tr
(
Ω′Σ̂Ω

)
+ ρ =

1

T
tr
(
ιω′Σ̂ωι′

)
+ ρ

=
1

T
ω′Σ̂ω tr (ιι′) + ρ =

1

T
ω′Σ̂ω · T + ρ

= ω′Σ̂ω + ρ. (20)

Now we can focus on ρ and find that

ρ =
1

T − 1
vec (Ω)′ ·


r̃1r̃

′
1 − R̃′R̃/T · · · 0

...
. . .

...

0 · · · r̃T r̃T
′ − R̃′R̃/T

 · vec (Ω)

=
1

T − 1
vec (Ω)′ ·


r̃1r̃

′
1 · · · 0

...
. . .

...

0 · · · r̃T r̃T
′

 · vec (Ω)

︸ ︷︷ ︸
= 1

T−1

∑T
t=1ω′r̃tr̃t′ω=ω′( 1

T−1

∑T
t=1 r̃tr̃t

′)ω=ω′ ˆΣω

− 1

T
tr
(
Ω′Σ̂Ω

)
︸ ︷︷ ︸

=ω′ ˆΣω

= ω′Σ̂ω − ω′Σ̂ω = 0. (21)

Hence, it holds that σ̂2
expost = ω′Σ̂ω + 0 = σ̂2

exante. This completes the proof.
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B Figures

Figure 1: Portfolio Value-at-Risk measures and leverage

Figure 2: Distribution of annualized portfolio volatilities
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Figure 3: Correlations of monthly future returns

Figure 4: Rolling volatility estimate

17



Figure 5: Portfolio Gearing Factor

Figure 6: Portfolio weights over time

18



C Tables

Table 1: Summary of futures markets (equity, bonds, and currencies).

Ticker Name Sector µ σ Start date

XP1 Index SFE S&P ASX Price Index Equities 5.3 16.4 2000-05-03
CF1 Index Euronext CAC 40 Index Future Equities 6.7 21.7 1988-12-08
GX1 Index Eurex DAX Index Future Equities 7.3 22.2 1990-11-26
ST1 Index FTSE/MIB Index Future Equities 6.0 23.3 2004-03-23
TP1 Index TSE TOPIX Tokyo Price Index Equities 2.9 22.2 1990-05-17
EO1 Index Euronext Amsterdam Index Equities 7.9 20.7 1989-01-03
IB1 Index MEFF Madrid IBEX 35 Index Equities 8.0 23.0 1992-07-21
Z 1 Index FTSE 100 Index Future Equities 5.0 17.8 1988-02-29
ES1 Index S&P 500 mini-Future Equities 7.1 19.7 1997-09-10
YM1 Comdty SFE 3 Year Australian Bond Bonds 0.6 1.2 1989-12-11
XM1 Comdty SFE 10 Year Australian Bond Bonds 0.4 1.2 1987-09-21
DU1 Comdty Eurex 2 Year Euro SCHATZ Bonds 0.5 1.3 1997-03-10
OE1 Comdty Eurex 5 Year Euro BOBL Bonds 2.0 3.3 1991-10-07
RX1 Comdty Eurex 10 Year Euro BUND Bonds 3.2 5.7 1990-11-26
UB1 Comdty Eurex 30 Year Euro BUXL Bonds 3.1 12.3 1998-10-05
CN1 Comdty Montreal Exchange 10 Yr. Fut. Bonds 2.8 6.2 1989-09-18
JB1 Comdty JGB Future Bonds 2.6 4.5 1985-10-21
G 1 Comdty Long Gilt Future Bonds 2.1 7.7 1982-11-19
TU1 Comdty CBOT 2 Yr. US Treasury Note Bonds 1.0 1.6 1990-06-26
FV1 Comdty CBOT 5 Yr. US Treasury Note Bonds 2.1 4.0 1988-05-23
TY1 Comdty CBOT 10 Yr. US Treasury Note Bonds 3.7 6.6 1982-05-04
US1 Comdty CBOT US Treasure Bond Fut. Bonds 3.8 11.2 1980-01-01
AD1 Curncy CME Australian Dollar Curncy 2.7 11.6 1987-01-13
BP1 Curncy CME British Pound Curncy 1.1 9.8 1986-05-28
EC1 Curncy CME Euro Foreign Exchange Curncy -0.6 9.4 1998-05-20
JY1 Curncy CME Japanese Yen Curncy -1.4 10.7 1986-05-23
NO1 Curncy CME Norwegian Krone Curncy 0.1 12.6 2002-05-17
SE1 Curncy CME Swedish Krona Curncy -0.1 11.9 2002-05-17
SF1 Curncy CME Swiss Franc Curncy 1.1 11.3 1986-04-07
CD1 Curncy CME Canadian Dollar Curncy 0.9 7.5 1986-04-04
NV1 Curncy CME New Zealand Dollar Curncy 2.3 12.7 1997-05-08

Notes: All statistics are computed over the respective full sample. µ is the annualized
mean return of each future and σ is the volatility in percent. Data source: Bloomberg.
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Table 2: Summary of futures markets (commodities).

Ticker Name Sector µ σ Start date

QS1 Comdty ICE Gas Oil Future Agris. 14.6 33.9 1989-07-04
KC1 Comdty NYBOT CSC C Coffee Future Agris -1.6 34.6 1980-01-01
CC1 Comdty NYBOT CSC Cocoa Future Agris -2.9 28.7 1980-01-01
CT1 Comdty NYBOT CTN Nr. 2 Cotton Fu Agris 0.9 24.2 1980-01-01
SB1 Comdty NYBOT CSC Nr. 11 World Su Agris 3.0 36.1 1980-01-01
C 1 Comdty CBOT Corn Future Agris -3.4 23.4 1980-01-01
S 1 Comdty CBOT Soybean Future Agris 3.7 21.9 1980-01-01
BO1 Comdty CBOT Soybean Oil Future Agris 0.2 23.6 1980-01-01
SM1 Comdty CBOT Soybean Meal Future Agris 8.2 24.0 1980-01-01
W 1 Comdty CBOT Wheat Future Agris -5.6 26.8 1980-01-01
LH1 Comdty CME Lean Hogs Future Agris 3.6 24.7 1986-04-02
LC1 Comdty CME Live Cattle Future Agris 3.3 15.1 1980-01-01
LA1 Comdty LME Primary Aluminum Future Metals -0.9 21.2 1997-07-24
LP1 Comdty LME Copper Future Metals 7.5 25.0 1997-06-30
LN1 Comdty LME Nickel Future Metals 11.5 38.1 1997-07-24
LX1 Comdty LME Zinc Future Metals 3.0 28.5 1997-07-24
GC1 Comdty COMEX Gold 100 Troy Oz. Metals 0.1 18.3 1980-01-01
SI1 Comdty COMEX Silver Future Metals -1.1 30.1 1980-01-01
JA1 Comdty OSE Platinum Future Metals 4.0 23.5 1984-01-27
CO1 Comdty ICE Brent Crude Oil Future Energy 14.6 35.5 1988-06-24
CL1 Comdty NYMEX Light Sweet Crude Oil Energy 10.0 38.3 1983-03-31
XB1 Comdty NYMEX Reformulated Gasoline Energy 15.6 39.9 2005-10-04
HO1 Comdty NYMEX NY Harbor ULSD Fut. Energy 16.3 35.3 1986-07-01
NG1 Comdty NYMEX Natural Gas Energy -8.1 50.9 1990-04-04

Notes: All statistics are computed over the respective full sample. µ is the annualized
mean return of each future and σ is the volatility in percent. Data source: Bloomberg.

Table 3: Portfolio performance for long-only and TSMOM strategy.

Long Long Momentum Momentum

Measure ex-ante ex-post ex-ante ex-post

Return (%) 6.91 6.08 12.72 10.57

Volatility (%) 10.04 9.34 10.69 9.85

Sharpe 0.69 0.65 1.19 1.07

MDD (%) -27.32 -26.32 -20.67 -21.88

Turnover 12.18 11.41 71.86 63.50

Note: The table reports annualized mean results for portfolio returns. ’MDD’ denotes
the maximum drawdown.
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Table 4: Correlation for long and momentum strategy for future asset returns

Returns Volatility Gearing

Long 0.99 0.97 0.95

Momentum 0.97 0.92 0.81

Note: The table reports the overall correlation between ex-ante and ex-post portfolio
returns volatilities, and gearing factors for each strategy.

Table 5: Portfolio volatilities for ex-ante and ex-post risk methods.

Strategy risk method vol (%) p-value 5% conf (%) 95% conf (%)

long ex-ante 10.04 68.96 9.88 10.20

ex-post 9.34 0.00 9.18 9.48

momentum ex-ante 10.69 0.00 10.53 10.86

ex-post 9.85 14.40 9.68 10.02

Table 6: Testing parametric Value-at-Risk for long and momentum future strategy.

Strategy Level ex-ante 5% conf 95% conf ex-post 5% conf 95% conf

long 1.0% 1.44 1.26 1.63 1.11 0.95 1.27

2.5% 2.56 2.32 2.80 2.13 1.91 2.36

5.0% 4.87 4.54 5.21 3.91 3.61 4.22

momentum 1.0% 2.13 1.90 2.37 1.71 1.51 1.92

2.5% 3.59 3.29 3.88 2.70 2.44 2.95

5.0% 5.43 5.07 5.80 4.55 4.21 4.88

Table 7: Testing non-parametric Value-at-Risk for long and momentum future strategy

Strategy Level ex-ante p-val 5% 95% ex-post p-val 5% 95%

long 1.0% 0.02 0.0 0.00 0.05 1.41 0.00 1.24 1.60

2.5% 0.04 0.0 0.01 0.07 2.95 0.40 2.68 3.21

5.0% 0.09 0.0 0.05 0.14 5.47 3.44 5.09 5.82

momentum 1.0% 28.89 0.0 28.17 29.61 1.50 0.00 1.31 1.70

2.5% 29.59 0.0 28.86 30.34 3.01 0.48 2.74 3.28

5.0% 30.84 0.0 30.10 31.58 5.49 2.88 5.13 5.84

Note: Non-Parametric VaR: rolling 260d percentile weighted by current weights (ex-
ante) and rolling 260d percentile for portfolio returns (ex-post).
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