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Abstract 

Value investing in the credit market aims to identify mispricings by determining whether a 

bond’s credit spread adequately compensates for its risk. To assess how successful value 

approaches are in capturing mispricings, we use a decomposition of credit returns into a risk 

and a repricing component. We show that existing value factors from the literature earn not 

only from mispricings but also from taking more risk. To better control for risk, we construct 

a novel machine learning based value factor and find that it outperforms existing value factors 

while earning less from risk taking and more from mispricings. 

 

Key highlights 

1. We successfully replicate a large set of value factors from the literature. 

2. Surprisingly, we find that all existing value factors earn substantially from risk. 

3. We introduce a machine learning based value factor, whose performance is driven less by 

risk and more by mispricings, and generates an information ratio above 3. 
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Introduction 

Academic studies have shown that value investing is a successful investment strategy, as 

undervalued, “cheap”, securities tend to outperform overvalued, “expensive”, securities in 

many asset classes (Assness, Moskowitz and Pedersen, 2013). The exact approach to 

determining cheap or expensive securities differs between asset classes, but the goal is the 

same: to identify relative mispricings. In the equity market, the valuation of a stock is often 

determined by comparing its market price to a fundamental anchor, such as the company’s 

book value (Fama and French, 1992). Similarly, in the credit market, the typical value 

approach aims to determine whether the bond’s market price of risk, in other words its credit 

spread, is a sufficient compensation for a corporate bond’s risk (L’Hoir and Boulhabel, 2010; 

Houweling and van Zundert, 2017). 

There is an active debate on the source of the value premium in the equity market as some 

claim that it is indeed a reward for mispricing (Lakonishok, Shleifer and Vishny, 1994; 

Piotroski and So, 2012), while others argue that it is instead a compensation for bearing 

additional risk (Fama and French, 1993; Zhang, 2005; Choi, 2013). In the credit market, 

unlike in the equity market and despite the growing literature on value investing in credit, 

there is no standard definition of the value factor. This makes it difficult to assess "the" value 

premium. In addition, there has not been much discussion of the source of the value premium. 

Mispricing is generally thought to drive the performance of the value factor in the credit 

market, but the evidence is relatively sparse. 

We examine the effectiveness of value investing in the credit market and compare a large set 

of existing credit value factors from the literature to assess their performance and identify the 

driving forces. To the best of our knowledge, such a study has not been done before and can 

therefore help to deepen our understanding of value investing. For the empirical analyses, we 
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use monthly bond data from January 1994 to December 2022. Our dataset contains 1.2 

million bond-month observations and is larger in the time-series and/or cross-section 

dimensions than the datasets used in prior studies. 

Our paper makes three contributions to the literature. First, we review the literature on value 

investing in credits, categorize the wide range of approaches and replicate them; we show 

that, while there is large heterogeneity in the cross-section of value factors, the majority 

performs well in our extended sample period. Second, we decompose the credit excess return 

over duration-matched Treasuries into a carry and repricing component. Large carry returns 

are driven by higher credit spreads and thus capture risk, while high repricing returns are 

driven by larger credit spread changes and thus result from initial mispricings. This 

decomposition allows us to show that all existing value factors beat the market not only by 

earning from mispricings but also from taking more risk. Third, recognizing the need for 

better risk controls, we propose a new value factor based on machine learning (ML), 

specifically a Gradient Boosted Regression tree. This new value factor earns 85% of its 

performance from repricing, better controls for risk, and yields an information ratio of 3.13, 

higher than any of the existing approaches. These results also hold when several robustness 

checks are applied.  

Our results highlight the importance of performance attribution in assessing the alignment 

between ex-ante investment intent and ex-post investment outcome. More specifically, our 

results suggest that investors who engage in value strategies should carefully consider 

whether or not they are “true” value investors.  

In the following sections, we provide an overview of value investing in credits, introduce a 

decomposition of the credit return into carry and repricing, discuss the data used, analyze the 

performance of existing value factors based on this decomposition and introduce an ML-
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driven value factor. Based on these insights, we then discuss the performance of the new 

value factor when compared to the existing ones and finish with several robustness checks. 

 

Value investing in credits 

Value investing has been studied in a variety of asset classes. The exact implementation of 

the value factor varies depending on the specifics of the asset. In the equity market, the book-

to-price ratio (B/P) of Fama and French (1992) is widely accepted as the standard value 

factor definition. In the credit market, there is no such widely accepted value factor definition 

(yet). In the absence of a standard approach, several definitions have been proposed over the 

past two decades. 

The earliest work on the value factor in the credit market focuses on the valuation properties 

of the (option-adjusted) credit spread, which is the spread of a corporate bond over the yield 

of duration-matched Treasuries adjusted for any embedded options. The “spread valuation” 

factor of Hottinga, van Leeuwen, and van IJserloo (2001, henceforth “HLIJ”) is simply the 

credit spread and finds bonds with the widest spreads to be the most attractive due to their 

higher initial yields and greater upside potential.2  

Thereafter, studies adopt the equity market approach of comparing the market price of risk to 

a fundamental anchor or “fair value” to understand whether bonds are cheap for a reason 

(value traps) or not (mispricings). Here, we can discern two streams. Firstly, there are studies 

that compare the credit spread with an individual bond or company characteristic and then 

use the resulting ratio as a value factor. Correia, Richardson, and Tuna (2012, CRT) use the 

Distance-to-Default (DtD) of the issuer to account for the default risk of a firm. Secondly, 

 
Bonds trading close to par (low spread) have only limited room left for a price increase (spread decrease) while there is 

much more downside potential.
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there are studies that estimate a fair spread in a (regularized) regression on the credit spread 

with bond characteristics (Houweling and van Zundert, 2017, HZ), firm characteristics 

(L’Hoir and Boulhabel, 2010, LHB) or a combination of bond and firm controls (Kaufmann, 

Messow, and Wisser, 2023, KMW). In all cases, the residual of the regression serves as the 

value measure, being the difference between the market spread and the estimated fair spread.  

Several studies recognize the need for better risk control and adopt a multi-stage approach. 

Israel, Palhares, and Richardson (2018, IPR) combine two value signals and thereafter 

neutralize the Duration-Times-Spread (DTS) exposure of their signal. Heckel, Amghar, Haik, 

Laplènie and de Carvalho (2020, HAHLC) combine multiple value signals and then 

neutralize the sector, spread, duration and size dimensions using their local scoring 

methodology. Shen, Pathammavong, and Chen (2019, SPC) estimate their value signal within 

sectors. Polbennikov, Desclèe, and Dubois (2021, PDD) sequentially run bond and firm level 

regressions to estimate their value signal. 

Finally, there are also studies that try to more directly transfer the B/P approach from the 

equity market to the credit market. Bektic, Wenzler, Wegener, Schiereck and Spielmann 

(2019, BWWSS) simply use the B/P ratio of the stock as their value factor for the bond. 

Bartram, Grinblatt, and Nozawa (2020, BGN) introduce a bond market equivalent that 

compares the book value of a bond (par value adjusted for premium/discount at issuance) to 

its market value (bond price). 

This is an extensive set of eleven value factors, but what is the right or “true” way to 

approach value investing in the credit market? To answer this question, we replicate and 

compare the value factors from the literature based on the information disclosed in the papers 

(see Appendix A for more details on the replication). In the remainder of the paper, we refer 

to the value factors from the different papers by the abbreviations introduced above. Before 
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showing the replication results, we first present our method for decomposing the return of 

each value factor into two driving forces. 

 

Credit return decomposition 

The goal of value investing is to identify mispriced securities, whose market price will revert 

to their fundamental value over time as relevant information is priced in by market 

participants. There is a lively debate in the equity market about the source of the value 

premium. Some argue that it is actually a reward for mispricing, such as overreaction to new 

information (Lakonishok, et al., 1994). Others argue that it is instead a compensation for 

taking on higher risk, such as low earnings on assets (Fama and French, 1993) or high 

financial leverage (Choi, 2005). The unobservability of the risk premium in the equity market 

complicates this discussion. 

In the credit market, the risk premium is in fact observable as the credit spread and therefore, 

we are able to assess whether a bond’s risk premium changed after the initial investment and 

to consequently determine if a bond was likely to be mispriced or not. For example, for a 

bond with an initial credit spread of 200bps that drops to 150bps (resp. increases to 250bps) 

in the next period, a spread tightening (resp. widening) is observed, which indicates that the 

bond likely was mispriced assuming no significant market and/or curve movement in that 

given period. There would be no indication of a mispricing if the spread remained unchanged.  

Based on this observation, we work with the following well-known decomposition of the 

credit return into a spread level component and a spread change component. We focus on 

credit excess returns over duration-matched Treasuries, rather than total returns, based on the 

assumption that investors in the corporate bond market primarily seek to capture risk premia 

driven primarily by the default premium, independent of the term risk premium (van 
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Binsbergen, Nozawa and Schwert, 2023). The credit return 𝑅𝑡→𝑡+𝜏 of a corporate bond over 

the period from 𝑡 to 𝑡 + 𝜏 can be approximated by performing an 𝑘th order Taylor expansion: 

𝑅𝑡→𝑡+𝜏 = 𝑆𝑡 × 𝜏 − Δ𝑆𝑡+𝜏
𝑑𝑃𝑡
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where 𝑆𝑡 is the spread at time 𝑡, 𝜏 is the holding period, 𝑃𝑡 is the bond price at time 𝑡 and 

Δ𝑆𝑡+𝜏 = 𝑆𝑡+𝜏 − 𝑆𝑡 is the spread change over the holding period. In this equation, we 

recognize the bond duration (first order), convexity (second order), and higher order 

derivatives of bond price to credit spread. The equation can be rewritten as: 
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. 

This formulation shows that the sources of credit return are (i) spread pick-up or carry, which 

is a compensation for bearing risk, and (ii) spread change or repricing, which results from 

changes in the credit spread. We demonstrate below in Table 2 that carry investing indeed 

comes with a lot of extra risk versus the market. The carry and repricing components are only 

weakly correlated3, which means that it should be possible to earn more from one without 

increasing the other.  

We believe that a successful value factor in the credit market should earn (most of) its 

outperformance from repricing, as positive repricing returns are an indication of holding 

bonds with reverting mispricings, while higher carry returns are merely a compensation for 

taking on more risk. 

 

 
3 Over the 1994-2022 sample, we find an average cross-sectional Pearson (Spearman’s rank) correlation of -0.3% (6.9%) 

between carry and repricing return.
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Data 

Our data set contains monthly observations from January 1994 to December 2022. The bonds 

that we consider are constituents of the Bloomberg US Aggregate Corporate index 

(containing Investment Grade (IG) bonds) and the Bloomberg US Corporate High Yield 

(HY) index. As a result of the index construction rules, smaller and less liquid bonds are not 

included in these indices. Within this sample, we focus on senior bonds, rated between AAA 

and CCC-. Also, we only consider bonds that are issued by a listed company, as certain value 

factors require equity or accounting information for their construction. We exclude bonds at 

the start of the month if they were not rated, or if their credit spread or market value is 

missing. In addition, bonds are excluded when there is missing coverage for any of the inputs 

for the value factor replication. 

Bond data is sourced from Bloomberg and includes bond characteristics and analytics such as 

market value, time to maturity, credit rating, credit spread and returns. If a bond defaults, 

Bloomberg bases the last price on the expected recovery rate. Thus, we have no survivorship 

bias in this study. Firm data is obtained from Compustat and includes fundamentals such as 

assets, total debt and earnings and equity market data like the market cap and equity return is 

collected from Datastream Prices and analyst forecasts are finally obtained from I/B/E/S 

Estimates. As a robustness test, we also obtain returns based on actual trades from the Trade 

Reporting and Compliance Engine (TRACE) over the period 2005-2020, using the filters 

proposed in Dick-Nielsen (2009) and Dick-Nielsen (2014).  

The final dataset contains a total of 1,235,195 bond-month observations. Table 1 summarizes 

the dataset. On average, the sample consists of 3,549 bonds per month, ranging from 1,872 at 

the start to 5,441 at the end of the sample. The average bond is BBB+ rated and has a credit 

spread of 185 bps, a time to maturity of 10.6 years, an outstanding amount of $554 mln and a 
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credit return of 0.11% per month. Further, the total market capitalization per month is on 

average close to $2.1 trillion, of which 85% is IG-rated and 15% is HY-rated. 

Table 1: Summary Statistics  

 Mean Percentile 

  5% 25% 50% 75% 95% 

Number of observations 3,549      

Rating BBB+ AA- A BBB+ BBB- BB- 

Spread (bps) 185 55 94 136 207 451 

Time to Maturity (in years) 10.6 1.6 3.8 6.8 14.4 28.5 

Amount outstanding ($ mln) 554 210 279 403 632 1506 

Credit return (per month) 0.11% -2.06% -0.45% 0.10% 0.68% 2.36% 

Note: Sample period 1994-2022. The individual statistics are computed cross-sectionally and are then aggregated over time. The spread is 
the option-adjusted credit spread. The rating is the middle rating between ratings provided by Fitch, Moody’s and S&P. The credit return is 
the excess return over duration-matched Treasuries. 

 

The cross-section of value factors 

In a first analysis, we determine how similar (or different) the value factors are. Figure 1 

shows the rank correlation between each pair of value factors. Somewhat surprisingly, we 

find a relatively low mean (median) pairwise correlation of 36% (29%) and only one 

correlation above 60% (between CRT and HLIJ). The lack of high correlations and the wide 

variety of approaches in the set of value factors suggest that the value factors are not that 

similar after all, which hints at the existence of a value “factor zoo” in the credit market. 
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Figure 1: Rank correlation matrix of all replicated value factors 

 

Note: Sample period 1994 – 2022. Spearman’s rank correlations are computed cross-sectionally and then aggregated over time. 

 

To assess the viability of value investing in the credit market and to compare the different 

value factors, we perform sorted-portfolio backtests by constructing quintile portfolios based 

on each of the value factors and holding the bonds until the portfolio is rebalanced. For the 

main results, we analyze equally weighted portfolios (while the market is value-weighted) 

and a one-month holding period, but the results are also robust to alternative specifications 

such as value-weighted portfolios or a twelve-month holding period (see below).  

Table 2 presents summary statistics for the backtested value portfolios. Panel A shows that 

the top portfolios of all value factors outperform the market while at the same time being 

more volatile. Nevertheless, all value factors, except for BWWSS, achieve a higher Sharpe 

ratio than the market. We find that HLIJ shows both the highest return and the highest 

volatility for the top portfolio, at 4.17% and 10.39%, respectively. Since HLIJ is a pure carry 
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strategy, i.e. it buys the bonds with the highest spreads, this demonstrates that carry comes 

with a lot of risk. BWWSS, on the other hand, has the lowest top portfolio return of all value 

factors, indicating that simply using the de-facto definition of the equity market value factor 

is not very successful in the credit market and that having a credit-specific definition is 

warranted. Panel B shows that all the value factors, except for BWWSS, have positive top-

minus-bottom information ratios (IRs), with IPR being the highest with an IR of 1.92 and a 

median IR of 0.67. Panel C shows CAPM regression results for the top-minus-bottom 

portfolios. All value factors tend to be risk-seeking as CAPM betas are positive and range 

from 0.08 to 1.06. Despite their risk tilts, 9 (7) out of 11 value factors show positive and 

significant CAPM alpha’s at the 5% (1%) significance level, with the highest being IPR with 

an alpha of 2.71% (t-stat of 6.92) and a median CAPM alpha of 1.71%. Note that these 

results include (considerable) out-of-sample periods for most value factors, which makes the 

positive results strong evidence in favor of value investing in the credit market. 

Table 2: Performance statistics of all replicated value factors 

 Market BGN BWWSS CRT HAHLC HLIJ HZ IPR KMW LHB PDD SPC 

Panel A: Top 

Return 1.04% 3.43% 1.13% 3.22% 2.83% 4.17% 2.56% 3.96% 2.89% 3.77% 3.92% 4.02% 

Volatility 4.73% 9.61% 8.38% 10.38% 5.30% 10.39% 7.39% 6.08% 5.72% 7.93% 9.16% 8.54% 

Sharpe ratio 0.22 0.36 0.13 0.31 0.53 0.40 0.35 0.65 0.51 0.48 0.43 0.47 

Panel B: Top-minus-bottom 

Outperformance  3.05% -0.19% 2.95% 3.04% 4.13% 2.47% 4.42% 2.96% 3.56% 3.58% 4.05% 

Tracking error  6.68% 5.23% 8.45% 1.96% 8.83% 4.77% 2.30% 2.15% 3.93% 5.38% 4.11% 

Information ratio  0.46 -0.04 0.35 1.56 0.47 0.52 1.92 1.37 0.91 0.67 0.98 

Panel C: Top-minus-bottom CAPM statistics          

CAPM alpha  1.48% -0.60% 1.08% 1.71% 2.03% 1.02% 2.71% 1.67% 2.10% 2.02% 2.22% 

t-stat  2.13* -1.10 1.61 6.34** 2.97** 2.30* 6.92** 6.65** 5.02** 3.50** 4.74** 

CAPM beta  0.87 0.66 1.06 0.08 1.06 0.48 0.21 0.18 0.61 0.82 0.73 

Note: Sample period 1994-2022. The backtest uses quintile portfolios and a one-month holding period. Return, volatility, outperformance, 
tracking error and CAPM alpha statistics in Panels A, B and C are given in annualized percentages. CAPM statistics in Panel C are 

estimated by regressing the top-minus-bottom portfolio return for each value factor on a constant and the market return. The market return 

series is the market-value weighted return of all bonds in the sample at each point in time. Robust standard errors are used for the t-statistic 
calculation. * denotes statistical significance at the 5% level and ** at the 1% level. 
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The top-minus-bottom performance of the value factor is driven by the buying and shorting 

of bonds. However, shorting bonds can be difficult in practice. Therefore, to assess the 

relative importance of the long and short sides, we look at the contribution of both sides for 

all value factors in Table 3. In general, we find that about 2/3th of the performance comes 

from the long side and 1/3th from the short side. This means that the value factors are 

generally able to detect bonds with increasing spreads that do not reverse, and benefit from 

shorting them, but that they do not completely drive the top-minus-bottom results. 

Table 3: Long versus short side contribution 

Note: Sample period 1994-2022. The backtest uses quintile portfolios and a one-month holding period. Outperformance and tracking error 
are given in annualized percentages. The market return series is the market-value weighted return of all bonds in the sample over time. 

 

So far, we have evaluated the value factors based on their overall performance. In order to 

understand how much of the performance of the value factors is actually due to the repricing 

of mispriced bonds and how much due to earning a higher carry, we decompose the top-

minus-bottom returns according to the credit return decomposition introduced above. Figure 

2 shows the performance decomposition of the top-minus-bottom portfolios from an absolute 

perspective (left) and a relative (right) perspective. We find that all value factors except for 

BWWSS and CRT earn from repricing, with a median (maximum) contribution of 54% 

(72%). At the same time, we find that all value factors earn from carry, with a median 

(minimum) contribution of 46% (28%). Taken together, this shows that the value factors do 

not earn all of their performance from mispricings, but that risk is also a significant driver of 

 BGN BWWSS CRT HAHLC HLIJ HZ IPR KMW LHB PDD SPC 

Panel A: Top-minus-market 

Outperformance 2.39% 0.09% 2.18% 1.79% 3.12% 1.52% 2.92% 1.85% 2.73% 2.88% 2.98% 

Tracking error 5.56% 4.27% 6.16% 1.49% 6.19% 3.28% 2.32% 1.58% 3.65% 4.97% 4.26% 

Information ratio 0.43 0.02 0.35 1.20 0.50 0.46 1.26 1.17 0.75 0.58 0.70 

Panel B: Bottom-minus-market 

Outperformance -0.66% 0.27% -0.77% -1.25% -1.01% -0.96% -1.49% -1.10% -0.82% -0.70% -1.07% 

Tracking error 1.93% 1.40% 2.56% 1.47% 2.96% 2.07% 2.18% 1.65% 1.94% 1.70% 1.52% 

Information ratio -0.34 0.20 -0.30 -0.85 -0.34 -0.46 -0.69 -0.67 -0.42 -0.41 -0.71 
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performance. In addition, there is considerable dispersion across the value factors, with 

BWWSS and CRT earning nothing from repricing, KMW and HAHLC earning most of their 

performance from repricing, and the other value factors falling in between. 

Figure 2: Carry and repricing attribution 

 

Note: Sample period 1994-2022. The carry and repricing return are calculated in accordance with the credit return decomposition. Each plot 
is sorted in ascending order on its “repricing” value, i.e. on the repricing return level for the figure on the left and on the repricing return 
fraction for the figure on the right. The y-limits in the right figure are capped between 0% and 100% for visibility reasons.  

 

Next, we examine whether the larger contribution of repricing is actually beneficial for the 

(risk-adjusted) performance of the value factors. Table 4 shows the regressions of the fraction 

of performance attributable to repricing on the outperformance, tracking error and 

information ratio of the value factor top-minus-bottom portfolios. We find that value factors 

with a higher mispricing fraction do not have significantly higher returns, but they do have 

significantly tracking error and higher information ratios as a 10% increase in mispricing 

fraction reduces the tracking error by 0.70% (t-stat of -3.57) per year and increases the 

information ratio by 0.17 (t-stat of 6.07). These results suggest that earning more from 

repricing is indeed beneficial from an investment perspective as the risk-adjusted 

performance improves.  
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Table 4: Repricing benefit regression 

  Outperformance Tracking error Information ratio 

Constant coef 2.13% 7.86% 0.10 

 t-stat 2.31* 8.27** 0.98 

Repricing % coef 2.25% -6.99% 1.73 

 t-stat 1.33 -3.57** 6.07** 

# Obs  11 11 11 

𝑅2   0.25 0.66 0.66 

Note: Sample period 1994-2022. Outperformance, tracking error and information ratio top-minus-bottom portfolio statistics are separately 

regressed on a constant and the respective repricing fractions. Repricing fractions are capped between 0 and 100%. Robust standard errors 
and a small sample correction are used for the t-statistic calculation. * denotes statistical significance at the 5% level and ** at the 1% level. 

 

All the value approaches tested above are linear in nature. These linear approaches implicitly 

assume that the spread is linearly related to the risk controls and that there are no significant 

non-linear effects or interaction effects. Several value factors attempt to control for such risks 

by introducing a separate risk overlay (e.g. IPR and HAHLC).4 We believe that modeling the 

non-linear and interaction effects directly instead of through a multi-step approach could be a 

more effective way to constructing a “true” value factor that earns most of its performance 

from repricing returns. To this end, we explore a machine learning (ML) approach next. 

 

Machine Learning based Value factor 

So far, we have found that the value factors proposed in the literature achieve an attractive 

(risk-adjusted) return, but are also associated with certain limitations. As a result, the existing 

value factors earn both through repricing and carry. By using more flexible models in the 

form of Gradient Boosted Regression (GBR) trees, we address the structural issues. GBR can 

take into account non-linearities, as well as interaction effects, to better model dependencies, 

thereby reducing the risk bias and making the return earned more dependent on the actual 

 
The risk overlays are successful, as the same value factors with their risk overlay removed have significantly higher risk 

exposure and lower risk-adjusted performance. The results are available upon request and are not included here because 

discussing the different risk overlays in detail is outside the scope of this paper.
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spread change and less dependent on structurally taking more risk exposure through a higher 

carry. It should be mentioned that it is not the aim of this study to run a horse race to find the 

best ML model. Our choice of a tree-based model is consistent with, for example, Hanauer, 

Kononova, and Rapp (2021), who show that a tree-based ML value factor outperforms 

traditional value factors in the equity market. 

Trees sequentially partition explanatory variables into non-overlapping domains. Each 

observation lies in a single domain, and each domain is associated with an expected value of 

the dependent variable. The algorithm looks for splits that define these areas in a way that 

maximizes the explained variation of the dependent variable in the context of “training” data. 

Boosted trees follow the idea of using a large number of very simple sub models – so-called 

weak learners. The very simple trees are trained sequentially to explain the variation that has 

not been explained by previously estimated trees. The impact of a single tree (and, therefore, 

the overall model complexity) is subsequently mitigated by multiplying the explained 

variation by a “decay rate”. The decay rate is one of the “hyperparameters” that have to be 

chosen and that define the complexity of the model (i.e. the number of nodes per tree and 

number of interactions between features). The other two common hyperparameters are the 

number of trees and the depth of the single trees. We run our model with hyperparameters 

[number of trees, learning rate, max depth] = [400, 0.1, 5]. We show later that our results do 

not depend on the exact specification of the hyperparameters. 

As input for the boosted regression trees, we use a broad set of features, which have already 

been used in the studies reported above. The features used are listed in the Appendix. These 

features are a mix of market data, balance sheet data, ratings and sectors. Table 6 shows the 

associated quintile performance for the ML based value factor (henceforth “HMH”) from 

1994 to 2022. We can see that the top quintile portfolio (Q1) is also associated with the 

highest returns and the highest risk-adjusted performance. The top quintile achieves an 
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outperformance of 2.47% and an IR of 2.11 while the top-minus-bottom performance is 

4.35% with an IR of 3.13. In addition, outperformances and information ratios are 

monotonically increasing across the quintiles, indicating attractive properties of our proposed 

value factor. 

Table 6: Performance statistics of HMH 

Note: Sample period 1994-2022. The backtest uses quintile portfolios and a one-month holding period. Outperformance, tracking error and 

CAPM alpha statistics in Panels A and B are given in annualized percentages. CAPM statistics in Panel B are estimated by regressing the 
portfolio returns on a constant and the market return. The market return series is the market-value weighted return of all bonds in the sample 

at each point in time. Robust standard errors are used for the t-statistic calculation. * denotes statistical significance at the 5% level and ** at 
the 1% level. 

 

Figure 3 plots the top-minus-bottom performance decomposition over time for HMH. We can 

see that the repricing and carry contributions are stable over time. This is remarkable for the 

repricing component because it means that HMH is able to identify true mispricings 

regardless of the underlying market environment.  

 Q1 Q2 Q3 Q4 Q5 Q1 – Q5 

Panel A: Top-minus-market 

Outperformance 2.47% 1.09% 0.36% -0.53% -1.88% 4.35% 

Tracking error 1.17% 1.41% 1.95% 0.82% 1.19% 1.39% 

Information ratio 2.11 0.78 0.18 -0.64 -1.58 3.13 

Panel B: CAPM statistics 

CAPM Alpha 2.44% 0.93% 0.08% -0.57% -1.73% 4.16% 

t-stat 11.24** 4.19** 0.30 -3.78** -9.63** 20.20** 

CAPM Beta 0.03 0.16 0.26 0.04 -0.15 0.18 
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Figure 3: Top-minus-bottom outperformance decomposition over time 

 

Note: Sample period 1994-2022. The carry and repricing return are calculated in accordance with the credit return decomposition. Log 
cumulative returns are used. 

 

Comparing HMH to existing Value factors 

In the previous section we have seen that the HMH signal is a powerful value factor on its 

own. In this section, we shed light on the question whether it also improves upon the existing 

value factors that were presented above.  

Table 7 summarizes the backtest results for all value factors including HMH. We can see, 

that HMH outperforms the other value approaches on a risk-adjusted basis with an IR of 3.13. 

The higher IR is not only accomplished by a high outperformance, but importantly by the 

lowest tracking error, which implies that it is most successful in controlling for risks. In 

addition, the CAPM alpha is the most significant for HMH resulting in a t-statistic of 20.20.  

Table 7: Value top-minus-bottom performance 

 BGN BWWSS CRT HAHLC HLIJ HZ IPR KMW LHB PDD SPC HMH 

Panel A: Top-minus-bottom             

Outperformance 3.05% -0.19% 2.95% 3.04% 4.13% 2.47% 4.42% 2.96% 3.56% 3.58% 4.05% 4.35% 

Tracking error 6.68% 5.23% 8.45% 1.96% 8.83% 4.77% 2.30% 2.15% 3.93% 5.38% 4.11% 1.39% 

Information ratio 0.46 -0.04 0.35 1.56 0.47 0.52 1.92 1.37 0.91 0.67 0.98 3.13 

Panel B: CAPM statistics             

CAPM Alpha 2.04% -1.06% 1.35% 2.87% 2.44% 1.60% 4.60% 2.71% 2.95% 2.67% 3.29% 4.16% 

t-stat 2.25* -1.68 1.68 8.62** 3.05** 3.25** 11.49** 7.92** 5.67** 4.17** 7.81** 20.20** 

CAPM Beta 0.96 0.84 1.54 0.17 1.63 0.84 -0.17 0.24 0.58 0.87 0.73 0.18 

Note: Sample period 1994-2022. The backtest uses quintile portfolios and a one-month holding period. Outperformance, tracking error and 

CAPM alpha statistics in Panels A and B are given in annualized percentages. CAPM statistics in Panel B are estimated by regressing the 
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top-minus-bottom portfolio return for each value factor on a constant and the market return. The market return series is the market-value 

weighted return of all bonds in the sample at each point in time. Robust standard errors are used for the t-statistic calculation. * denotes 
statistical significance at the 5% level and ** at the 1% level. 

 

We also show the associated drawdowns of HMH compared to the second best signal (IPR) 

and the median signal (LHB) in Figure 4. We see that LHB suffers from serious drawdowns 

at several points in time, IPR already substantially improves over this and HMH hardly 

suffers from any drawdowns. This shows that HMH provides strong downside risk protection 

compared to the other value factors, i.e. HMH is best at avoiding the “value traps". 

Figure 4: Drawdowns over time for selected value factors

 

Note: Sample period 1994-2022. Drawdowns are calculated for top-minus-bottom-bottom portfolios of each value factor. Results are only 

shown for three selected value factors for visibility reasons. The “median” (“best”) here refers to the value factor with the median (best) 
performance among all value factors excluding HMH. 

 

As another way to compare the value factors, we focus on the exposure to traditional 

corporate bond risk exposures. For all value factors, we measure the top and bottom portfolio 

exposure to credit ratings, sectors (Bloomberg Class3), issuer size quintile buckets (ranging 

from small to large) and time to maturity quintile buckets (ranging from short to long) for 

each month. Then, to determine the overall exposure to a particular risk dimension, we 

calculate the “total MAD” as the sum of the median absolute deviation (MAD) between the 

top and bottom portfolio exposure for each sub-category (i.e. AA rated bonds or large issuers) 
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of a risk dimension (i.e. rating or issuer size). A lower (higher) total MAD value indicates 

that the top and bottom portfolios are better (worse) able to stay in line with each other for a 

particular dimension. Figure 5 shows the combined results for all the risk dimensions. We 

find that there is clear dispersion in the exposure to risk dimensions amongst the different 

value factors. HLIJ has the highest exposure to the risk dimensions, which showcases that a 

carry strategy inherently takes large bets on all risk dimensions, while HMH has the lowest 

exposure to all risk dimensions and any of the risk dimensions individually, which shows that 

by better controlling for risk in the value estimation it is possible to significantly reduce the 

exposure to relevant risk dimensions. This reduction in risk exposures makes HMH less 

exposed to systemic shocks and therefore less risky than the other value factors. 

Figure 5: Traditional risk exposures 

 

Note: Sample period 1994-2022. The total MAD is calculated for credit rating, sector (Bloomberg Class3), size (quintile buckets on issuer 
size) and maturity (quintile buckets on time to maturity). All calculations are done for the top-minus-bottom portfolios of each value factor. 

 

Next, we assess what the lower exposure to risk dimensions means for the HMH performance 

decomposition compared to the other value factors. Figure 6 shows the decomposition of the 

carry and repricing returns in absolute (left) and relative (right) terms. From the left chart, we 



20 
 

can see that HMH earns the least from carry and the most from repricing, which is the 

desirable outcome for a value factor. This assessment also holds when looking at the relative 

decomposition on the right. HMH earns 85% of its outperformance from repricing and only 

15% from carry. Thus, we can see that HMH behaves more like a “true” value factor 

compared to the existing value factors. 

Figure 6: Carry and repricing attribution 

Note: Sample period 1994-2022. The carry and repricing return are calculated in accordance with the credit return decomposition. All 

calculations are done for the top-minus-bottom portfolios of each value factor. Each plot is sorted in ascending order on its “repricing” 

value, i.e. on the repricing return level for the figure on the left and on the repricing return fraction for the figure on the right. The y-limits in 
the right figure are capped between 0% and 100% for visibility reasons.  

 

It is also expected that a more flexible model that is closer to a “true” value factor should be 

able to correctly identify more extreme mispricings. Figure 7 shows the repricing and carry 

returns of portfolios based on the top x% of scores, ranging in small steps from 2.5% (highly 

concentrated) to 100% (the entire market) for each value factor. Indeed, for most value 

factors, we observe that the repricing return initially rises, but then suddenly falls as the 

portfolio becomes more concentrated. At the same time, the carry return shoots up. This 

means that the “deep value” opportunities identified by many value factors are actually fairly 

priced or even expensive. In contrast, for HMH, we find that the repricing return continues to 

rise as the portfolios become more concentrated, while the carry return barely changes, 

confirming that it is able to successfully navigate even the more complex cases.  
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Figure 7: Carry and repricing attribution for concentrated portfolios 

 

Note: Sample period 1994-2022. A grid of backtests with increasingly concentrated portfolios is run, ranging in small steps from 100% (the 

entire market) to 2.5% (highly concentrated) for each value factor, and the carry and repricing return is tracked for each value factor. The 

carry and repricing return are calculated in accordance with section “Credit return decomposition” from above. The x-axis shows the 
portfolio formation rule, e.g. 20% means that the best 20% scores of the respective value factor were used to create the portfolio. 
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As a final check, we run spanning regressions of HMH on all other value factors and the 

market return for the top-minus-bottom portfolios. This regression yields a statistically and 

economically significant alpha of 2.27% per year (t-stat of 14.6), indicating that HMH adds 

value on top of the existing value factors. 

 

Robustness 

In this section, we perform a battery of checks to evaluate the robustness of our results. The 

main results are labeled as "Base Case". Specifically, we look at the following dimensions: 

• Deciles: Use deciles instead of quintiles portfolios. 

• 12m: Twelve-month holding period instead of one-month holding period (originated 

by Jegadeesh and Titman, 1993). 

• Top-Market: Top-minus-market portfolios instead of top-minus-bottom portfolios. 

• Value-weighted: Value-weighted portfolios instead of equal-weighted portfolios. 

• IG only: Evaluate on the IG part of the universe only. 

• HY only: Evaluate on the HY part of the universe only. 

• TRACE: Use TRACE transaction prices instead of Bloomberg index prices to 

calculate returns following Bessembinder, Kahle, Maxwell, and Xu (2008) and Dick-

Nielsen (2009). 

Table 8 shows the corresponding results in terms of risk-adjusted performance and the 

percentage of return that can be explained by repricing. The results for HMH are strong 

regardless of the analysis. Looking at the combined average of all seven scenarios, HMH 

delivers the highest risk-adjusted return and the largest share of repricing. Notably, HMH 

performs even better with more concentrated portfolios (deciles). This is in contrast to the 

signal with the best alternative performance (IPR), where the quintile performance was better 
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than the decile performance. Furthermore, the performance and the repricing percentage do 

not depend on whether the portfolios are value- or equal-weighted. In fact, the risk-adjusted 

performance of HMH with value-weighting of 3.17 is even better than the base case of 3.13. 

It is also interesting to see that the results for both IG and HY hold up. The performance of 

most value factors is substantially worse in the HY sample compared to the IG sample, while 

for HMH the performance in the HY sample is only slightly below the IG sample. It is also 

worth noting that the results for the top-minus-market and 12-month holding period scenarios 

are also satisfactory. These scenarios align the strategy with portfolios that are more realistic, 

and again, the risk-adjusted performance and repricing percentage are highest for HMH. 

Finally, we can see that the results for HMH are also superior with TRACE returns compared 

to the other value factors, which shows that the results are not dependent on the exact return 

series that are used. 

Table 8: Robustness of top-minus-bottom performance 

Note: Sample period 1994-2022. Backtests with different configurations are run and the information ratio and repricing fraction of the top-

minus-bottom portfolios is tracked for each value factor. The repricing return is calculated in accordance with the credit return 

decomposition. All tests cover the 1994-2022 period, except for the TRACE robustness test, which covers the 2015-2020 period. The 
highest value in each row is shown in bold. 

 

 
 BGN BWWSS CRT HAHLC HLIJ HZ IPR KMW LHB PDD SPC HMH 

Information 

ratio 

Base Case 0.46 -0.04 0.35 1.56 0.47 0.52 1.92 1.37 0.91 0.67 0.98 3.13 

Deciles 0.47 -0.07 0.35 1.61 0.46 0.56 1.59 1.40 0.81 0.51 0.83 3.50 

12m 0.43 0.23 0.32 0.65 0.37 0.39 0.98 0.89 0.35 0.47 0.63 1.68 

Top-Market 0.43 0.02 0.35 1.20 0.50 0.46 1.26 1.17 0.75 0.58 0.70 2.10 

Value weighted 0.43 -0.10 0.27 1.42 0.43 0.45 1.75 0.96 0.74 0.66 0.85 3.17 

IG only 0.35 -0.19 0.18 1.53 0.32 0.48 1.62 0.94 0.91 0.82 0.91 3.03 

HY only 0.31 -0.15 0.27 0.96 0.38 0.44 0.62 0.49 0.56 0.39 0.84 2.41 

TRACE 0.32 0.03 0.27 1.26 0.37 0.26 1.56 1.04 0.56 0.42 0.52 2.12 

Repricing % 

Base Case 42% -914% -16% 72% 11% 35% 61% 71% 58% 54% 65% 85% 

Deciles 37% -306% -20% 71% 5% 37% 50% 69% 48% 40% 57% 85% 

12m 35% -45% -31% 43% -15% 13% 33% 42% 7% 29% 38% 65% 

Top-Market 32% -1,453% -17% 66% 13% 25% 43% 54% 41% 36% 45% 83% 

Value weighted 54% -127% -32% 76% 10% 38% 66% 62% 62% 60% 66% 85% 

IG only 76% 0% -43% 89% 17% 46% 84% 71% 70% 67% 73% 88% 

HY only -7% -96% -58% 54% -22% -4% -3% 118% 11% -7% 37% 79% 

TRACE 51% -717% -18% 73% 13% 10% 59% 78% 62% 59% 68% 85% 
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Next, we want to show that the HMH results are robust to changing the hyperparameters of 

the underlying ML model. For this purpose, we keep the number of trees at 400 and the 

learning rate at 0.1 and vary the tree depth from 1 to 10, since the three hyperparameters are 

somewhat interchangeable: increasing the number of trees or the tree depth increases the 

complexity, while increasing the learning rate reduces the number of steps needed to arrive at 

a more complex model. Figure 8 shows the corresponding results. We can see that the results 

are robust to the exact specification and that we have not simply chosen the best model. 

There is initially a trade-off between model complexity and the risk-adjusted performance 

and the repricing fraction: the more complex the model, the higher the IR and the repricing 

fraction. However, this trade-off flattens out as the tree depth increases, indicating that the 

model begins to overfit the training data. Blitz et al. (2023) recommend in such cases to 

choose the simplest model that achieves the required level of complexity for the modeling 

task, which here means a tree depth much higher than 1 but lower than 10. 

Figure 8: HMH performance sensitivity to changing tree depth  

 

Note: Sample period 1994-2022. Backtests for variants of HMH with tree depth ranging from 1 to 10 are run and the information ratio and 

repricing fraction of the top-mins-bottom portfolio is tracked. The repricing return is calculated in accordance with the credit return 
decomposition. 

 

It can be concluded that the presented results are robust as they hold up to changes in 

portfolio construction, changes in the sample and model changes. 
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Conclusion 

This paper examines the effectiveness of value investing in the credit market. Given the lack 

of a standard value factor definition for credit, we replicate a comprehensive set of value 

factors and evaluate their performance. We find heterogeneity in the cross-section of value 

factors in terms of their definitions and signal correlations. Nevertheless, we can replicate 

results of earlier papers and find that most value factors perform well in our extended sample 

as 9 out of 11 value factors show positive and significant CAPM alpha’s at the 5% 

significance level. 

To understand what drives the performance of the value factors, we utilize a decomposition 

of credit returns into a carry component, which is mainly driven by taking more risk, and a 

repricing component, which is mainly driven by initial mispricings. This decomposition 

shows that existing value factors earn substantially from both components. We also show that 

value factors that earn more from the repricing component tend to have higher risk-adjusted 

returns. This supports the idea that the repricing component is closely related to mispricing. 

Therefore, we conclude that a “true” value factor should derive (most of) its performance 

from repricing. 

In addition to measuring the degree of repricing, we also explore how to further increase 

(decrease) the repricing (carry) return of the value factor. To this end, we go beyond linear 

models (with risk overlays) and introduce a machine learning-based value factor that is able 

to outperform existing value factors and better identify mispricings: 85% of its performance 

comes from repricing, it controls better for risk, it achieves an IR of 3.13 and earns a CAPM 

alpha of 4.17% (t-stat of 20.21) per year. These results hold up under several robustness 

checks.  
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Our study shows that investors who use systematic strategies for corporate bonds should take 

a close look at whether they are actually value investors or carry investors in disguise (or a 

mix of both). Fortunately, our introduced value factor based on state-of-the-art machine 

learning techniques helps bringing investors closer to harvesting “true” value in the credit 

market. 
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Appendix A: Value factor replication 

We perform a replication study of a large set of value factors in the credit market. Table A1 

provides an overview of the eleven selected papers from the literature that are included in the 

replication study. 

Table A1: Literature on value investing in the corporate bond market 

Acronym Year Title 

HLIJ 2001 Successful Factors to Select Outperforming Corporate Bonds 

LHB 2010 A Bond-Picking Model for Corporate Bond Allocation 

CRT 2012 Value Investing in Credit Markets 

HZ 2017 Factor Investing in the Corporate Bond Market 

IPR 2018 Common Factors in Corporate Bond Returns 

BWWSS 2019 Extending Fama-French Factors to Corporate Bond Markets 

SPC 2019 Fixed-Income Value Factor 

HAHLC 2020 
Factor Investing in Corporate Bond Markets: Enhancing Efficacy Through 

Diversification and Purification! 

PDD 2021 Implementing Value and Momentum Strategies in Credit Portfolios 

KMW 2022 Putting Credit Factor Investing Into Practice 

BGN 2023 Book-to-Market, Mispricing, and the Cross-Section of Corporate Bond Returns 

 

In order to replicate the value factors from the different papers as closely as possible, we use 

the following systematic process: 

• First, we thoroughly read the paper and note down all the relevant implementation 

details. 

• Second, we label each step in the methodology as “signal construction” or “portfolio 

construction”. 

• Third, we implement the value factor by following the signal construction steps as 

closely as possible. We chose not to implement the portfolio construction steps as our 

aim is to compare the standalone value factors and not the wide variety of 

implementations, which would add another layer of complexity to the comparison. 
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It is important to mention that the papers, alongside different portfolio construction 

methodologies, use a variety of security types (corporate bonds and credit default swaps), 

data providers (e.g. Bloomberg Barclays and ICE BofA), selection criteria (e.g. excluding 

financials, subordinated bonds, high yield bonds, or privates) and sample periods. This means 

that it is not trivial to exactly replicate the tables and statistics from the original papers to 

assess the success of the replication. Moreover, the value factors also might not have been 

specifically designed for the sample used in our paper, resulting in potentially different 

results than on the original sample. These differences in samples, however, can also be 

viewed as positive, as it allows us to compare the value factors using considerable out-of-

sample data, making this replication study a particularly good test on the robustness and 

effectiveness of value investing in the credit market.  
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Appendix B: Machine Learning based Value factor 

Table B1: Features used for the estimation of HMH 

Feature Description 

Bond Option Adjusted Duration Bond Duration adjusted for embedded options 

Bond Excess Return Volatility 12m Bond Excess return volatility of the last 12month 

Equity Volatility Equity Volatility based on 130 day historical volatility 

Equity Momentum 1m-12m One-month Equity Momentum - Twelve-month Equity Momentum 

B/P Book to Price 

Texas Ratio 
Texas Ratio is the ratio of total non-performing assets to the sum of tangible common equity and 

loan loss reserves 

FCF to Interest Expenses Free Cashflow to Interest Expenses 

FCF to Debt Free Cashflow to Debt 

Return on Equity Return on Equity 

Debt to Assets Debt to Assets 

Analyst Recommendation Average of Analyst Recommendations 

Retained Earnings to Assets Retained Earnings to Total Assets 

Earnings Yield Earnings Yield: Analyst estimate of the twelve-month EPS divided by stock price. 

Earnings Yield Variability 
Earnings Variability: Deviation of the earnings yield from its 24 months moving average divided 
by its rolling standard deviation 

Short Term Debt to Debt Short Term Debt to Total Debt 

External Financing Ratio of change in external capital to Total Assets 

FCF to NOA Free Cashflow to Net Operating Assets 

Cash to Assets Cash to Total Assets 

Long Term Debt Long Term Debt 

Coverage Ratio Interest Payments to EBIT 

Tier1 Tier 1 capital 

FCF to NOA 1y change Relative change in Free Cashflow to Net Operating Assets over one year 

Return on Assets Return on Assets 

Gross Profits to Assets Gross Profits to Total Assets 

Rating Rating (AAA to CCC-) 

Sector Bloomberg sector classification 

 


