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Abstract 

This paper extends the traditional microstructure models by introducing an additional agent, the 

independent valuator, whose sole objective is to provide accurate estimates of securities’ fundamental 

value. As our agents operate in an opaque market, investors and valuators share information about their 

noisy estimates of the fundamental value. This in turn affects asset prices as both agents aim at 

correcting discrepancies between those. We document strong empirical support for this model in 

corporate bond markets and show it is helpful to understand various findings documented in the 

literature, such as the implementation shortfall of return-based strategies or the dependence structure 

across pricing sources. We find that distortions between traded prices and index valuations are a key 

factor driving the cross-section of contiguous future corporate bond returns, that can neither be 

explained by the risk of individual bond issues nor by widely accepted proxies for the microstructural 

noise embedded in traded prices. 
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1. Introduction 

Corporate bond markets are widely acknowledged to be illiquid markets.a Although this statement is 

bounded by notions of relativity, the simple fact that most corporate bonds don’t trade at least once 

every day is probably the most outspoken illustration of this illiquidity.b Another feature of corporate 

bond markets is their opacity, which originates both from the limited post-trade transparency as well as 

the vivid lack of pre-trade transparency. Although investors have access to quote information, those are 

usually non-firm, updated infrequently and not distributed homogeneously to market participants. 

Moreover, contrary to equity markets, information about the best bids and asks, as well as the order 

book depth, is not available to investors.  

The illiquidity and opacity of corporate bond markets pose challenges for investors. Beyond the 

difficulty to find a counterparty, the uncertainty around the fundamental value of securities is probably 

the most important one in the absence of an efficient price discovery mechanism. Indeed, even in the 

presence of post-trade transparency, market participants can’t wait for demand and supply to meet in 

order to obtain a value for the assets they hold in portfolio or to form investment views. To palliate to 

the lack of transparent transaction-based price information, market participants have to rely on so-called 

‘valuation’ models.  

The early 1970s saw the first index providers entering fixed income markets, an innovation that paved 

the way for the progressive introduction of daily index valuations.c The rapid adoption of those 

benchmarks have made them an essential reference for market participants, not only because they are 

at the heart of relative performance and tracking error objectives, but also because they facilitate price 

discovery. The broad disclosure of index ‘prices’ has provided many investors with an anchor to what 

is generally accepted to be a sound estimate of the fundamental value of an instrument. Today, daily 

index ‘prices’ are the norm for fixed-income benchmarks. Nevertheless, we still on average observe 

index ‘prices’ at a higher frequency than traded prices, despite the increase in the liquidity of corporate 

bond markets over time. Given the inherent market illiquidity, index valuators face similar challenges 

as investors and do need to rely on proprietary models, that most often combine multiple inputs such as 

valuation models, dealers’ quotes or past traded prices. 

As investors anchor to index valuations and as those independent valuators incorporate information 

from past transactions, a natural question to ask is to what extent this reliance on each other’s 

 
a Bessembinder et al. (2020) provide a very detailed overview of the fixed income markets’ microstructure, in 

which they discuss how these key market characteristics have evolved over time and  provide a perspective on 

current developments. 
b Edwards et al. (2007) report that transactions are highly clustered in time and that the median bond only trade 

about 48% of the days in their sample period, going as low as 2.7% for the first percentile of the distribution. 
c Reilly et al. (1992) review and compare the major corporate bond benchmarks, including Lehman Brothers, 

Merrill Lynch and Salomon Brothers, going back to 1976. 



 
 

information influences prices. The market microstructure literature has investigated at length the 

interaction between investors demanding immediacy and liquidity providers. Amongst others, it has 

shed light on the determinants of the costs of trading and their relationship with illiquidity, two inter-

dependent notions that are highly relevant in corporate bond markets given their opacity. But, while the 

role of liquidity providers is well understood, the role of the valuators has received little attention in the 

literature. 

In this paper, we propose a model that expands on the traditional market microstructure model, in which 

an investor engages with a dealer, by introducing an additional agent, being the independent valuator, 

whose aim is solely to provide accurate estimates of the fundamental value of securities. We focus 

specifically on the interaction between the investor and the valuator and its influence on prices. As we 

let the agents evolve in an opaque market, they have limited access to information and are forced to 

share noisy estimates of their past valuations. We show that this sharing of information has important 

implications for asset prices, that we test empirically. We leverage on our model to provide new insights 

on various empirical findings documented in the literature. Overall, this model helps in fostering our 

understanding of the role and influence of independent valuators in illiquid and opaque markets, of what 

drives pricing discrepancies between index valuations and traded prices and how those are resolved 

over time, but also, of the relevance that each pricing source should carry for investors. 

Our paper contributes to various streams in the corporate bond asset pricing literature. First and 

foremost, we show that the pricing distortions between traded prices and index valuations are a key 

factor in explaining the cross-section of future contiguous corporate bond returns. While the information 

contained in those deviations has been studied in the context of the measurement of illiquidity by 

Jankowitsch et al. (2011), their impact of asset prices has remained largely undocumented in the 

literature. We find that this factor can neither be explained by the risk of individual bond issues nor by 

widely accepted proxies for the microstructural noise embedded into traded prices. Specifically, we 

show that these pricing distortions are a distinct phenomenon from the well documented bid-ask bounce 

effect, described in amongst others Roll (1984). 

Next, we propose a minor adjustment to the return calculation methodology commonly used in the 

literature that relies on the record of transactions available in TRACE. Specifically, our enhancement 

guarantees an overlapping implementation lag in the cross-section, i.e. a common evaluation moment, 

which, although trivial in itself, is a crucial determinant of the ability to implement any strategy aiming 

at harvesting factor premia. This allows us to make a clear distinction between the ‘explainability’ and 

the ‘harvestability’ of factor premia. Our work contributes to the debate on ‘harvestable’ factor premia 

in illiquid markets. Specifically, we add to the findings of Dickerson et al. (2023b), who document large 

implementation shortfalls for return-based predictors, by providing insights into the drivers of this 

implementation shortfall. Consistent with the implication of our model, we show that the convergence 



 
 

across pricing sources drives to a large extent the instantaneous price adjustments that are behind the 

large drop in significance of factors, such as reversal, once properly accounting for an implementation 

lag. We confirm the results of Dickerson et al. (2023b) and show that the documented short-term 

reversal effect is explained by distortions across pricing sources and cannot be harvested in practice. 

Moreover, this paper contributes to the market microstructure literature in various ways. First, as 

discussed above, by introducing an additional agent that interacts with investors by sharing information 

and influences traded prices. Second, our work also contributes to the debate on the relative importance 

of various costs resulting from the demand of immediacy of investors. Our paper shed light on the 

pervasive influence of dealer inventory imbalances on future corporate bond returns, which is found to 

be the sole market microstructure proxy to be significant after controlling for an implementation lag. 

This finding is consistent with those of Khang and King (2004) and a broader literature concerned with 

the capital commitment of dealers. We show that accumulated net positions by dealers lead to reversals 

in both pricing sources, a phenomenon distinct from the reversal driven by the convergence across 

pricing sources. 

Finally, this paper contributes to the discussion on what the preferred choice of pricing source should 

be for both market participants and researchers. Amongst others, Kelly and Pruitt (2022), Bai et al. 

(2023) investigate the robustness of their results across pricing sources, while  Andreani et al. (2023) 

compare the distributional properties of various sources to identify the potential presence of liquidity 

issues and market microstructure noise. The consensus seems to favor evaluated pricing sources from 

index providers such as ICE or Bloomberg, over the use of transaction prices from TRACE. This choice 

is either justified by the relevance of those index series for investors, as a large investor base follows 

and pays for those return series, or based on correlation motives, as those timeseries display lower 

negative serial correlation, indicating they are less contaminated by microstructural noise. In this paper, 

we show that both pricing sources carry relevant information for price discovery. While we confirm that 

traded prices are contaminated by microstructure effects to a much larger extent than index prices, we 

also shed light on the diffusion of information across pricing sources by showing that evaluated prices 

incorporate valuable market information contained in traded prices with a delay. To this aim, we extend 

the work of Andreani et al. (2023) by providing a more rigorous framework to investigate the lead-lag 

relationship across pricing sources. We show that once trades are matched and returns decomposed, the 

hypothesis that index prices lead traded prices is rejected. Moreover, our analysis highlights the 

importance of controlling for risk when investigating the dependence structure as cross-serial 

correlations are not robust to their inclusion. 

The rest of the paper is organized as follows. Section 2 introduces our model focusing on the interaction 

between valuators and investors, and clarifies the implication for reversals. Section 3 covers the data 

and methodologies, and introduces our enhanced approach for return computation that correctly handles 



 
 

the introduction of an implementation lag. Section 4 sets the stage by reviewing some key empirical 

findings documented in the literature. Section 5 focuses on the empirical evaluation of the model 

implication for reversals. Finally, in Section 6, we conclude. 

 

2. Modelling the role of the independent valuator 

To better understand the interaction between the price at which securities trade in opaque and illiquid 

marketsd and the independent valuations provided as a service by external agents, we propose a simple 

model that builds upon the work of amongst others Roll (1984)e. It introduces an additional agent in the 

traditional microstructure models that consider the interaction between liquidity providers and 

investors, namely the independent valuator, whose only role is to provide estimates of the unknown 

fundamental value of securities. This agent is external to the market in the sense that it neither provides 

nor demand liquidity. While the valuation services he provides play a key role in the trading behavior 

of market participants, they are by no means ‘real’ prices as no transaction ever takes place at those 

levels. Thus, they are not affected by trading frictions, or at least not directly as we will discuss below, 

while transaction prices are.f In our model, consistent with the market microstructure theory, those 

frictions present in ‘realized’ transaction prices emanate from the presence of a liquidity provider that 

accommodates investors’ demand for immediacy and requires a compensation for the various risk and 

costs she faces, namely the inventory risk, the search costs and the risk of information asymmetry. With 

full knowledge of the exposed key differences between valuations and transaction prices, we will 

henceforth refer conveniently to both as ‘pricing’ sources, as in our model agents rely on that set of 

information for estimating the unknown fundamental value of securities. 

 

2.1. Introducing the valuator 

In our setting, all agents operate within an illiquid and opaque market which is characterized by a limited 

set of public information and the ability to rely on external valuation services to estimate the true 

unknown fundamental value of securities. More specifically, investors and valuators share noisy 

information about their past valuations that is processed together with the arrival of news to form 

estimates of the unknown fundamental value of securities. As they are allowed to process the 

 
d Bessembinder et al. (2020) review the microstructure of fixed-income markets and contrast it with equity 

markets. They link the opacity in fixed income markets to, amongst others, the lower post- and pre-trade 

transparency and the lower market integration amongst venues. One determinant of market integration being 

regulation, they note that equity markets have faced higher regulatory pressure compared to the fixed income 

markets. Another determinant is the degree of competition, which in fixed-income markets is being impacted by 

the limited pre-trade transparency and the high search costs. 
e The seminal work of Roll (1984) has implications beyond equity markets. Amongst others, Bao et al. (2011) 

leverage on the model developed by Roll (1984) to measure the illiquidity of corporate bonds. 
f Moreover, valuations are usually expressed as bid prices. 



 
 

information set differently, they do not have to agree in expectation on the unknown fundamental value 

of securities. Their expertise allows them to overcome the challenge of a limited information set and to 

form approximatively correct expectations about the true unobservable fundamental value, whereby the 

traded prices and independent valuations only deviate from the unknow true value due to respectively 

trading frictions or valuations errors. As a result, residual trading frictions and valuation errors lead 

valuations and traded prices to temporarily diverge. Moreover, past divergences contained in both 

trading prices and independent valuations are processed by agents to update their estimate of the asset 

fundamental value, which in turn affect their trading decisions and valuation adjustments. As at least 

one of the agent is concerned by the resolution of those distortions, both valuations and transaction 

prices are cointegrated and converge following the emergence of pricing source deviations. We present 

below the details of the model and discuss the key implications for the dynamics of both transaction 

prices and valuations. 

We start by denoting 𝑃𝑡
𝑇 the clean price at which a security has been traded at time 𝑡, where the 

superscript 𝑇 indicates that the source of the pricing information are transaction prices. For simplicity 

and without loss of generality, we assume that securities are zero-coupon bonds. This allows to define 

𝑝𝑡
𝑇 = 𝑙𝑛𝑃𝑡

𝑇 as the log price, such that Δ𝑝𝑡
𝑇 are the log returns. In the presence of alternative pricing 

information emanating from various independent valuators, such as index providers, we also denote 𝑃𝑡
𝐼 

the evaluated price of that same security at time 𝑡, where the superscript 𝐼 indicates that the source of 

the pricing information are index valuations, and 𝑝𝑡
𝐼 = 𝑙𝑛𝑃𝑡

𝐼 is the log price. Following amongst others 

Roll (1984) and Bao et al. (2011), we assume that transaction prices consists of two components, one 

that captures the unknown fundamental value 𝑓𝑡  of the security in the absence of trading frictions and 

a transitory component 𝑢𝑡
𝑇 originating from those frictions, uncorrelated with the fundamental value. 

We assume that the independent valuation follows a similar process, whereby it captures both the 

unknown fundamental value and some valuation error 𝑢𝑡
𝐼 . 

 𝑝𝑡
𝑇 = 𝑓𝑡 + 𝑢𝑡

𝑇  (2-1) 

 𝑝𝑡
𝐼 = 𝑓𝑡 + 𝑢𝑡

𝐼   (2-2) 

As a result, the deviations of prices away from the true unknown fundamental value are solely driven 

by trading frictions or valuation errors. We refer to conveniently to both sources of deviations as noise. 

It is useful to rewrite the previous equations as the cumulative sum of changes in both the fundamental 

value and the noise terms to illustrate how potentially those accumulate into prices. 

 
𝑝𝑡

𝑇 = 𝑓0 + ∑ ∆𝑓𝑖

𝑡

𝑖=1

+ 𝑢0
𝑇 + ∑ ∆𝑢𝑖

𝑇

𝑡

𝑖=1

  
(2-3) 



 
 

 
𝑝𝑡

𝐼 = 𝑓0 + ∑ ∆𝑓𝑖

𝑡

𝑖=1

+ 𝑢0
𝐼 + ∑ ∆𝑢𝑖

𝐼

𝑡

𝑖=1

 
(2-4) 

It follows from the above definitions that the noise accumulation can lead to and is the sole source of 

price distortions across pricing source 𝐷𝑡  that we define as the difference between traded the prices 𝑝𝑡
𝑇 

and the index valuations 𝑝𝑡
𝐼. As such, small pricing distortions can accumulate over time, leading to the 

representation in equation (2-6). 

𝐷𝑡 = 𝑝𝑡
𝑇 − 𝑝𝑡

𝐼 = (𝑢0
𝑇 − 𝑢0

𝐼 ) + ∑(∆𝑢𝑖
𝑇 − ∆𝑢𝑖

𝐼)

𝑡

𝑖=1

 
(2-5) 

𝐷𝑡 = 𝐷0 + ∑(∆𝐷𝑖 )

𝑡

𝑖=1

 
(2-6) 

As an investor would trade up until the level at which it can transact 𝑝𝑡
𝑇 corresponds to her expectation 

𝐸𝑡
𝑇[𝑓𝑡 ] of the unknown fundamental value, we assume that in equilibrium both are equal. Likewise, 

the independent valuator would only agree to report a valuation level of 𝑝𝑡
𝐼 if it corresponds to its 

expectation 𝐸𝑡
𝐼[𝑓𝑡 ] of the unknown fundamental value.  

 𝑝𝑡
𝑇 = 𝐸𝑡

𝑇[𝑓𝑡 ]  (2-7) 

 𝑝𝑡
𝐼 = 𝐸𝑡

𝐼[𝑓𝑡 ] (2-8) 

In our model, the market for this security is characterized by a high level of opacity, due e.g. to a lack 

of pre-trade transparency, and high illiquidity. The latter translates into sparse information emanating 

from transaction prices, which hinders the price discovery process and potentially forces market 

participants to rely on alternative information sources to estimate the fundamental value of the security. 

We further assume that market participants assess the security’s fundamental value given a limited set 

of information that comprises past transaction prices 𝑝𝑡−1
𝑇 , past index valuations 𝑝𝑡−1

𝐼  and some new 

public information 𝜀𝑡
𝑇. We assume those innovations to have zero mean and to be uncorrelated to past 

prices, i.e. essentially being surprises. More specifically, investors and valuators estimate the unknown 

fundamental value as follows: 

 𝐸𝑡
𝑇[𝑓𝑡 ] = (1 − 𝜔𝑡

𝑇) 𝑝𝑡−1
𝐼 + 𝜔𝑡

𝑇𝑝𝑡−1
𝑇 + 𝜀𝑡

𝑇  (2-9) 

 𝐸𝑡
𝐼[𝑓𝑡 ] = (1 − 𝜔𝑡

𝐼) 𝑝𝑡−1
𝐼 + 𝜔𝑡

𝐼𝑝𝑡−1
𝑇 + 𝜀𝑡

𝐼 (2-10) 

In such a setup, investors essentially assume that the most recent pricing information, coming both from 

transaction prices and from index valuations, contains valuable information about the fundamental 

value of the security and update it by some innovation term 𝜀𝑡
𝑇 as new information is released. The 𝜔𝑡

𝑇 



 
 

parameter characterizes the relative confidence investors have in the different pricing sources, allowing 

them to integrate explicitly the information contained in the price differential across pricing sources in 

the estimation of the fundamental value. The intensity at which investors incorporate information 

originating from the other agent is (1 − 𝜔𝑡
𝑇) and can dynamically change over time.g  

Such a specification nests some interesting cases and we thus review the implications of some 

parameters value. The case where 𝜔𝑡
𝑇 = 1 represents the Martingale hypothesis in traded prices, 

whereby 𝐸[𝑝𝑡
𝑇] = 𝑝𝑡−1

𝑇  and investors blindly take the past traded price as their estimate of the security’s 

fundamental value in the absence of news. This hypothesis is amongst others used by Bartram et al. 

(2020). Alternatively, the case where 𝜔𝑡
𝑇 = 0 corresponds to a setting in which investors assume that 

the past index valuations are unbiased estimates of the fundamental value. Under the Martingale 

hypothesis in index prices, whereby 𝐸[𝑝𝑡
𝐼] = 𝑝𝑡−1

𝐼 , this case is closely related to the work of 

Jankowitsch et al. (2011) who assume that index valuations capture the true fundamental value of 

securities and model the deviation of traded prices from the expected value to capture the inventory risk 

and search costs that affect traded prices. We will discuss later the interpretation of alternative parameter 

values. 

It is important to note that assuming such functional form for the estimation of the fundamental value 

by investors conveniently allows both pricing sources to be cointegrated, within some reasonable 

intensity parameter values. Indeed, substituting equation (2-9) in equation (2-7), we can rewrite the 

process for traded prices as a function of past index and transaction prices, as well as the change in 

traded prices as a function of the past distance between the pricing sources 𝐷𝑡−1, which characterizes 

the error correction relationshiph.  

 𝑝𝑡
𝑇 = (1 − 𝜔𝑡

𝑇) 𝑝𝑡−1
𝐼 + 𝜔𝑡

𝑇 𝑝𝑡−1
𝑇 + 𝜀𝑡

𝑇  (2-11) 

 ∆𝑝𝑡
𝑇 = −(1 − 𝜔𝑡

𝑇)𝐷𝑡−1 +  𝜀𝑡
𝑇 (2-12) 

While equation (2-12) describes the process by which past price distortions feed into future transaction 

prices, not all parameter values for 𝜔𝑡
𝑇 ensure that the error correction process is well behaved. More 

specifically, for 𝜔𝑡
𝑇 > 1 errors do not correct and transaction prices further diverge from index prices. 

When 𝜔𝑡
𝑇 = 1, the change in traded prices is independent of deviations across pricing sources, while 

 
g Note that in our model, a price observation is conveniently available at time 𝑡 − 1. This is also a requirement we 

impose in the empirical analysis conducted in this paper. In reality, corporate bonds trade on a very infrequent 

basis. In the case a price is not available, this might force investors to rely on older transaction prices (i.e., executed 

prior to 𝑡 − 1) and potentially put more weight on the external valuations. This extension of our model would 

constitute an interesting avenue of research as this introduce a potential additional driver for the intensity 𝜔𝑡
𝑇, 

namely the age of the transaction information. 
h See Murray (1994) for an intuitive discussion, as well as Granger (1981) and Engle and Granger (1987) for a 

formal description. 



 
 

𝜔𝑡
𝑇 < 1 implies that traded prices converge toward index prices. We will discuss later the distribution 

of parameter values that ensures our system is well behaved. 

Although no arbitrage activity can guarantee the cointegration relationship, as index valuations are not 

tradeable assets, we can provide additional strength to this relationship by further imposing that index 

valuations also approximate the true fundamental value of the asset using a similar estimation function. 

More specifically, we assume that independent valuators have access to the same information set as 

investors, namely past index valuations and traded prices, as well as to new information revealed over 

the period from 𝑡 − 1 to 𝑡. We allow those agents to process the information differently by introducing 

a coefficient 𝜔𝑡
𝐼 that is specific to the valuators and allows them to weigh past price and valuation 

information differently from investors. The intensity at which valuators incorporate information 

originating from the other agent is 𝜔𝑡
𝐼 and can also dynamically change over time. Likewise, the term 

𝜀𝑡
𝐼 allows them to process new information differently. Here as well, we assume those innovations to 

have zero mean and to be uncorrelated to past prices.  

Following the same reasoning as for traded prices, we can substitute equation (2-10) in equation (2-8) 

to define the process of independent valuations as a function of the available information set. Deducting 

𝑝𝑡−1
𝐼  on each side of equation (2-13) allows here as well to shed light on the error correction relationship 

that independent valuators enforce with intensity 𝜔𝑡
𝐼. 

 𝑝𝑡
𝐼 = (1 − 𝜔𝑡

𝐼) 𝑝𝑡−1
𝐼 + 𝜔𝑡

𝐼  𝑝𝑡−1
𝑇 + 𝜀𝑡

𝐼  (2-13) 

 ∆𝑝𝑡
𝐼 = 𝜔𝑡

𝐼  𝐷𝑡−1 + 𝜀𝑡
𝐼 (2-14) 

So far we have shed light on how the sharing of information affects both traded prices and independent 

valuations, in respectively equations (2-11) and (2-13). We have also characterized how price 

discrepancies across pricing sources arise and build up over time, in equation (2-5), as well as by which 

mechanisms those errors are corrected, in respectively equations (2-12) and (2-14). 

Another decomposition of returns, for both the traded prices and the independent valuations, is useful 

to consider and will serve as the basis for our empirical analysis in the remainder of this paper. To 

retrieve this alternative definition, we can simply take the difference in the log prices defined in 

equations (2-11) and (2-13) and their lagged versions. We then obtain the following decomposition of 

returns: 

 ∆𝑝𝑡
𝑇 = ∆𝑝𝑡−1

𝐼 + 𝜔𝑡
𝑇∆𝐷𝑡−1  + ∆𝜔𝑡

𝑇𝐷𝑡−2  + ∆𝜀𝑡
𝑇 (2-15) 

 ∆𝑝𝑡
𝐼 = ∆𝑝𝑡−1

𝐼 + 𝜔𝑡
𝐼∆𝐷𝑡−1  + ∆𝜔𝑡

𝐼𝐷𝑡−2  + ∆𝜀𝑡
𝐼 (2-16) 

Both processes are similar with the same set of independent variables driving the returns of both the 

investors and the independent valuators. The first term on the right hand side is the previous month 



 
 

return in index prices. The implies that in the absence of price distortions and news, investors 

incorporate with delay into traded prices the information content of index valuations. This leads to 

positive cross-autocorrelation in returns between transaction price returns and past index returns. 

Likewise, valuation increments are serially correlated. The second term captures the contribution from 

the change in price distortions. Note the dependence on the investors and the independent valuators 

preferences, captured by respectively 𝜔𝑡
𝑇 and 𝜔𝑡

𝐼, for the directionality and the degree to which they 

incorporate price distortions into prices, which might potentially differ. Finally, the third term reflects 

the contribution to returns from the marginal change in the agents’ intensity to process the distortions.  

Note that the above return decompositions shed light on the influence on asset prices of both the past 

levels and past changes in distortions. We will henceforth conveniently refer to any of those, or both, as 

‘pricing distortions’. 

 

2.2.  Well-behaved system 

In our system both agents are assumed to be rational in the sense that they are concerned by the 

deviations of their transaction prices and index valuations away from fundamentals. This implies that 

at least one agent aims at correcting price distortions and that none of them exhibits an irrational 

behavior that would contribute to further increase the difference between traded prices and index 

valuations. Such behaviors ensure that the system is well-behaved and that distortions correct over time, 

i.e., that index valuations and transaction prices converge. Our assumptions effectively impose 

restrictions on the distribution of parameter values for the intensities 𝜔𝑡
𝑇 and 𝜔𝑡

𝐼. To understand what 

those agent’s behavior assumptions impose in terms of intensity, it is useful to consider equations (2-12) 

and (2-14).  

To ensure a well-behaved system, investors should, on average, at worst disregard any price distortion 

and a best contribute to the resolution of those differences by setting limits on the price at which they 

are willing to trade. Likewise, valuators should, on average, at worst disregard those distortions and at 

best adjust their valuations. This implies that the price distortions should contribute to the reversal in at 

least one of the pricing source. This is one of the key implications of this model. 

Such behaviors impose bounds on the expected value of the parameter values of the intensities 𝜔𝑡
𝑇 and 

𝜔𝑡
𝐼. Indeed, investors can disregard deviations by setting their intensity to 1 or contribute to the 

resolution of the distortions by imposing a lower than 1 intensity. This thus defines the upper bound of 

their intensities. At the same time, investors could overreact in their aim to close the gap between traded 

prices and index valuations, this would lead to a negative intensity. Would the intensity be below -1, the 

process would be explosive and the prices would not converge. We thus need to impose that the lower 

boundaries for the investors’ intensities is set at -1, such that: 



 
 

𝐸[𝜔𝑡
𝑇] ∈ [−1,1]  (2-17) 

Likewise, valuators can disregard distortions by setting their intensities to 0 or contribute to the 

resolution of the deviations by imposing a positive intensity. The latter results from the fact that 

distortions are here expressed from the view point of the investor. Any intensities above 1 would 

indicate that valuators overreact in their adjustment and a value of above 2 would lead valuations to 

never converge. We thus have to impose the following restriction on the expected parameter values of 

the valuators’ intensities: 

 𝐸[𝜔𝑡
𝐼] ∈ [0,2]  (2-18) 

Note finally that as at least one of the agents needs to contribute to the convergence, both parties cannot 

on average set their intensities at the boundaries. Moreover, note that setting boundaries for the expected 

parameters values is less restrictive that forcing agent to continuously work toward a convergence of 

the prices. Temporary deviations from those bounds can easily be motivated when the arrival of news 

surprises randomly supports the price discrepancy. 

 

2.3. Model implications 

To summarize, our model introduces an additional agent in the traditional microstructure models, 

namely the independent valuator whose only role is to provide estimates of the unknown fundamental 

value of securities. The opacity and illiquidity of the market forces both investors and valuators to rely 

on a limited public information set containing past traded prices and index valuations. As they share 

with each other noisy information about their past estimates of the asset fundamental value, it introduces 

some serial dependence structure in returns, that takes the form of both serial auto- and cross-correlation 

between return series. In our model, distortions across pricing sources emanates from both trading 

frictions and valuation errors. Those are processed into valuations and transaction prices at a rate that 

is agent specific. Under some reasonable assumptions about the rationality of agents, agents adjust the 

price at which they are willing to trade and/or their valuations in a way as to resolve pricing source 

deviations such that those ultimately converge.  

By focusing on the interaction between valuators and investors, this model provides valuable insights 

on the relationship between traded prices and index valuations. While the literature has documented the 

presence of large deviations between transaction prices and composite valuationsi, as well as of a 

 
i E.g., Jankowitsch et al. (2011) find deviations TRACE prices and composite valuations, from both Markit and 

Bloomberg, that are much larger than the bid-ask spread. They attribute those to trading frictions originating from 

the search costs faced by investors demanding liquidity and the inventory costs dealer charge for bearing price 

risk. 



 
 

significant serial dependence structure in returns across pricing sourcesj, little attention has been 

devoted to the dynamics of those distortions and their impact on asset prices. This model aim at partially 

filling this gap and provides a theoretical framework to understand some empirical findings documented 

in the literature as well as new insights presented in this paper. 

The first implication of our model is that distortions across pricing sources is a key factor driving the 

contiguous future corporate bond returns. If agents jointly or independently force prices to converge, 

this leads to reversal in returns. In our model, this dynamic is distinct from the microstructure noise that 

can also be a source of serial correlation. The second insight is that this convergence does not have to 

occur solely in transaction prices but can also take place within index valuations. This results from the 

limited information set available to valuators, which forces them to rely on past transaction prices to 

estimate the unknown fundamental asset value.  

This model elegantly offers concrete testable hypothesis that we will explore in the remainder of this 

paper. First and foremost, are agents concerned by deviation between valuation and traded prices? Do 

both investors and valuators care about those distortions? At which speed do agents aim at correcting 

those distortions? How important are those distortions in explaining the return dependence structure 

relative to other explanatory variables documented in the microstructure literature that aim at capturing 

the risks and costs that liquidity providers face? Do those deviations explain reversals in returns and the 

implementation shortfall of reversal strategies? 

 

3. Data and methodology 

3.1. Enhanced return methodology 

To test the above hypotheses, we propose an improved methodology to investigate the ‘harvestable’ 

premium associated with predictors in illiquid markets. It palliates to a few shortcomings present in 

various approaches put forward in the literature that uses TRACE to compute bond returns, and is 

generalizable to any panel dataset with sparse price information due to infrequent trading. 

Our approach is very simple. In a few words, it preserves the literature standard of using end-of-month 

prices to measure return-based signals but uses beginning-of-month prices for measuring the 

performance of return-based predictors.  

This methodology leverages on a large body of literature that aims at cleaning the set of transactions 

reported in TRACE and at measuring corporate bond returns out of those. More specifically, we follow 

the Dick-Nielsen (2009, 2014) to clean the TRACE database and to select the subset of relevant 

 
j E.g., Andreani et al. (2023) provide empirical evidence of a cross-autocorrelation structure between TRACE 

returns and index prices. They associate those correlation with the illiquidity of corporate bond markets. 



 
 

transactions. Based on those, we construct volume-weighted average daily corporate bond prices in line 

with Bessembinder et al. (2008).k Finally, we follow the literaturel and set a maximum search window 

around a common evaluation moment, fixed at 5 business daysm. This allows us to define the end-of-

month price as the last available price in the search window [T-4, T] and the beginning-of-month price 

as the first available price in the interval [T+1, T+5], where T is set to be the last business day of the 

month. We assign the time 𝑡 with a superscript 𝑒 or 𝑏, to indicate whether prices or returns are taken 

from the end- or beginning-of-month windows, respectively. This approach allows us to cleanly 

dissociate the measurement of return-based signals, evaluated on prices at 𝑡𝑒, the moment the trading 

decision is made (exactly at month end, 𝑡), and, their implementation, which then takes place in prices 

at 𝑡𝑏. More importantly, the difference between prices at 𝑡𝑒 and 𝑡𝑏 also allows us to measure precisely 

the implementation shortfall of the strategy, for which we denote this window as 𝑡𝑖. Figure 1 below 

illustrates what the proposed methodology entails for the selection of transactions within both the end-

of-month (𝐸𝑂𝑀) and beginning-of-month (𝐵𝑂𝑀) search windows and the resulting implementation 

shortfall, where S, T and U refers to consecutive end of months and T+/-d corresponds to respectively 

the end-of-month date T plus or minus d business days. 

While there is broad consensus in the literature on the how to clean the TRACE dataset, we observe 

large divergences in signal and return measurement across studies that relies on those transactions for 

that purpose. Below, we shed lights on some limitations that we have identified across various studies, 

with the aim to provide new standards for future researchers using not only this dataset but any dataset 

with infrequent pricing information. Our methodology brings forward a number of simple 

enhancements.n  

First, it ensures that the strategy is implementable both at the individual bond level, by imposing an 

implementation lago, as well as across bonds (i.e. within a portfolio). This is a requirement for any 

strategy relying on full set of cross-sectional information to be implementable.p This guarantee is 

provided by a unique and common evaluation moment for the cross-section of bonds, in our case the 

 
k To tackle concerns raised in Bessembinder et al. (2008)  about the influence of small retail trades on the results, 

we will as a robustness check exclude all transactions below 100.000 USD. 
l See e.g. Chordia et al. (2017) or Bai and al. (2019) 
m Our results are robust to an increase in the search window, which leads to an increase in the number of 

observations especially in December and January months. 
n In Appendix A.2, we provide a discussion on the limitations of the proposed methodology and the associated 

implications. The ambition is both to provide guidance for future work relying on sparse transaction datasets and 

to shed light on potential avenues of research. 
o In the rest of this paper, we will interchangeably use the term trade lag, trade gap or implementation lag to refer 

to the time distance between the last observed transaction at 𝑡𝑒 and 𝑡𝑏. We follow Bai and al. (2019) and search 

for the last/first transactions within a 5 business days window before/after the turn of the month to identify the 

exact day trading dates of 𝑡𝑒 and 𝑡𝑏. This implies the length of the implementation lag differs per bond and 

depends on the availability of transactions in the TRACE sample, ranging between 1 and 9 business days.  
p This is an implicit assumption in the sorting portfolio analysis that has long been standard in the literature to 

evaluate the performance of predictors, as well as their significance and monotonicity.   



 
 

end-of-month, where all information is known. While Dickerson et al. (2023b) enforce an 

implementation lag by measuring the signal at least 1 day before the last trade of the month, the strategy 

does not impose a common evaluation moment. Specifically, an issue arises when the securities’ 

implementation lag don’t overlap, which renders any cross-sectional strategy unimplementable. 

Figure 1 

 

To illustrate this limitation, let’s assume for simplicity the case of two securities for which we can 

observe two prices around the end-of-month, denoted T. Bond A has his last two trades on date T-1 and 

T, the signal can thus be measured on T-1 and the position taken at the price observed on T. Bond B has 

his last two trades on T-3 and T-2, the signal can thus be measured on T-3 and the position taken at the 

price observed on T-2. From this example, we can see that an investor cannot evaluate A against B and 

implement a cross-sectional view, as the bonds’ implementation lags do not overlap. Indeed, on T-2 she 

only has information on B, while on T-1 she has information on A and B but cannot transact in B 

anymore. We solve this issue by separating measurement and implementation around a fixed moment, 

which we conveniently set at the turn of the month to keep return-based signal definitions in-line with 

the standard definition in the literature.q While the proposed methodology provides additional rigor to 

the evaluation framework by implicitly offering a conceptual enhancement over the Dickerson et al. 

(2023b) approach, it is unlikely to significantly affect their results as we reach similar conclusions on 

the impact of controlling for an implementation lag to reversal measured in TRACE. 

 
q See Appendix A.2.1 for an illustration. 



 
 

Another benefit of the proposed methodology is that it guarantees that the returns used in the 

performance evaluation can be chain-linked and capture the full information content of the bond price 

timeseries, thus preserving its distributional properties. Many studies have chosen to compute calendar 

month returns out of the first and last available trade within that month, often to increase coverage. 

Amongst other, Bartram et al. (2023) follows such an approach and Bai and al. (2019) use the first 

available trade of the month when no transaction occurred during the search window of the prior month. 

Such an approach suffers a few limitations. First, by discarding the information between the end of the 

prior month and the beginning of a month, it forgoes information about price developments within that 

window and only capture a fraction of the timeseries of prices. As a result, the chain-linking of returns 

cannot ensure the exact replication of the timeseries of prices.  Second, discarding price information is 

likely to bias the estimation of moments for every individual securities, with a larger impact on the most 

illiquid securities. While the measurement of this bias and its impact on prior studies is beyond the 

scope of this paper, acknowledging this pitfall should help in providing guidance for future research.  

A last benefit of this approach is that there is no need to project clean prices into the future as we are 

not bound to calendar month definitions. Returns are conditioned on the availability of trades and the 

common evaluation moment is guaranteed by the overlapping implementation lags across bonds. E.g., 

this relieves us from having to rely on the Martingale hypothesis, as invoked in Bartram et al. (2023). 

Acknowledging the fact that both the government bond yield curve and the issuer spread curve are on 

average not flat and that bond prices are mechanically pulled to par as time passes, the Martingale 

hypothesis might not hold empirically. Moreover, such adjustment have as side effects for return-based 

signals that it increases the contribution of the accrued interest, which benefits most to the high coupon 

bonds, thus potentially introducing a selection bias. 

To compute returns based on source 𝑆 over window 𝑡∗ ∈ {𝑡𝑒 , 𝑡𝑖 , 𝑡𝑏}, we follow the standard approach 

to calculate the bond 𝑖 total return as the contribution from changes in the clean price 𝑃𝑖,𝑡∗
𝑆  augmented 

by any accrued interest 𝐴𝐼𝑖,𝑡∗
𝑆  and received cashflow 𝐶𝐹𝑖,𝑡∗

𝑆 , over the relevant window 𝑡∗. Returns are 

computed for each pricing source and for consistency are always indexed to the timestamp of the last 

observed price. Note also that as a result of those price series using different windows, the 𝐴𝐼 and 𝐶𝐹 

are indexed respectively to the price series and window definition. 

 
𝑅𝑖,𝑡∗

𝑆 =
𝑃𝑖,𝑡∗

𝑆 + 𝐴𝐼𝑖,𝑡∗
𝑆 + 𝐶𝐹𝑖,𝑡∗

𝑆

𝑃𝑖,𝑡∗−1
𝑆 + 𝐴𝐼𝑖,𝑡∗−1

𝑆 − 1 
(3-1) 

From the above definition, we understand that a strategy using as return-based predictor 𝑅𝑖,𝑡𝑒
𝑆  is using 

information up to 𝑡𝑒 of [T-4, T] in month 𝑡 where T defines the last trading day of month 𝑡. It then invest 

based on that information in month 𝑡 + 1 and executes at the first available price in 𝑡𝑏 of [T+1, T+5] in 

month 𝑡 + 1. The return in between those measurement and trading moments is identified by 𝑅
𝑖,𝑡𝑖+1
𝑆  



 
 

and the return earned by the strategy over the next monthly holding horizon is 𝑅
𝑖,𝑡𝑏+1
𝑆 . This does not 

only captures the return earned over month 𝑡 + 1 but also including the first days of month 𝑡 + 2, up 

until the position can be unwound at the beginning of that month. As we will discuss later, focusing on 

holding horizons has several advantages over the restrictive calendar month definitions.  

 

3.2. Corporate bond data 

In this paper, we study an extensive sample of USD denominated corporate bonds between July 2002 

and December 2022 and analyze the intersection between two widely used datasets, namely the 

Enhanced TRACE database (henceforth 𝑇𝑅𝐴𝐶𝐸) from FINRA and the daily Bloomberg (also BBG) 

database. Specifically, we focus on the constituents of the Bloomberg US Aggregate Corporate 

Investment Grade (IG) index and the Bloomberg US Corporate High Yield (HY) index. These indices 

cover a broad cross-section of publicly issued USD-denominated corporate bonds. By focusing on index 

constituents, we omit small and illiquid corporate bond issues. 

To clean the record of transactions reported in TRACE, we leverage on a large body of literature. More 

specifically, we follow Dick-Nielsen (2009, 2014) to clean the TRACE database and to select the subset 

of relevant transactions. Based on those, we construct volume-weighted average daily corporate bond 

prices in line with Bessembinder et al. (2008). 

The Bloomberg database contains information about index valuations, i.e. index prices, as well as bond 

issue characteristics such as its rating, time-to-maturity, amount outstanding, the bond age, the option-

adjusted spread (OAS) and option-adjusted spread duration (OASD). The rating corresponds to the 

numerical value associated with the middle of the Moody’s, S&P and Fitch ratings when all three are 

available, or the worst rating otherwise, where a rating of 1 corresponds to a AAA middle rating while 

a value of 18 corresponds to a CCC rating. We use the same cleaning procedure for the 𝐵𝐵𝐺 dataset as 

for the 𝑇𝑅𝐴𝐶𝐸 one (e.g., on minimum and maximum price exclusions). It is important to note that our 

sample is bounded by index membership rules, which impose amongst other things a minimum issue 

size and a minimum time-to-maturity. 

To ensure no asynchronicity affects our comparison of returns across datasets, we match the 

measurement/trading dates in both 𝑇𝑅𝐴𝐶𝐸 and Bloomberg. To define our final sample, we thus require 

that an index valuation from Bloomberg and a volume-weighted average price from 𝑇𝑅𝐴𝐶𝐸 are both 

available, together with the bond characteristics mentioned above. Moreover, as the first leg of an end-

of-month return is undefined in July 2002, we lose a month of observations. Likewise, the last leg of a 

beginning-of-month return is undefined in December 2022, and we lose another month of observations. 

As a result, our sample of returns is defined between August 2002 and November 2022. 

  



 
 

Table 1: Descriptive statistics 
This table reports the sample descriptive statistics for the sample period going from August 2002 to November 2022, when the 

sample is restricted to the availability of control variables. Statistics are reported for all returns used for evaluation of the 

model. For each of those, the table shows the number of bond-month observation (N) in the sample, the sample average (Mean) 

and median (Median), the sample standard deviation (SD), as well as various percentile values. The returns are expressed in 

percentage terms (%). Rating (RAT) corresponds to the numerical value associated with the middle of the Moody’s, S&P and 

Fitch ratings when all three are available, or the worst rating otherwise, where a rating of 1 corresponds to a AAA middle 

rating while a value of 18 corresponds to a CCC rating. Maturities (MAT) are reported in years. The bond issue size (AO), the 

trading volumes over the last month (VOL) and the dealer inventory change over the last month (INV) are reported in millions 

USD. The imputed round-trip costs (IRTC) and bid-ask spreads (BAS) are expressed as a percentage of par value. Spreads 

(OAS) and the illiquidity measure (𝛾) are expressed in basis points. 

      Percentiles 

  N Mean Median SD 1st 5th 25th 75th 95th 99th 

𝑅𝑖,𝑡𝑒
𝑇   735,481 0.38 0.31 3.81 -9.63 -3.92 -0.54 1.37 4.65 9.95 

𝑅
𝑖,𝑡𝑖
𝑇   735,481 -0.01 0.02 1.62 -3.74 -1.73 -0.31 0.35 1.46 3.22 

𝑅𝑖,𝑡𝑏
𝑇   735,481 0.39 0.31 3.85 -9.65 -3.85 -0.51 1.35 4.62 10.28 

𝑅𝑖,𝑡𝑒
𝐵   735,481 0.39 0.32 3.76 -9.68 -3.80 -0.45 1.32 4.52 9.88 

𝑅𝑖,𝑡𝑖
𝐵   735,481 0.00 0.02 0.96 -2.77 -1.11 -0.19 0.23 1.04 2.33 

𝑅𝑖,𝑡𝑏
𝐵   735,481 0.40 0.32 3.78 -9.61 -3.78 -0.46 1.32 4.59 10.31 

OAS 735,481 223 138 347 18 37 80 249 641 1,451 

OASD 735,481 6.16 4.87 4.35 0.81 1.38 2.98 7.67 15.53 18.13 

DTS 735,481 1,265 796 1,372 28 74 302 1,823 3,817 6,280 

Rating 735,481 8.74 8.00 3.53 1 4 6 10 16 18 

Maturity 735,481 9.19 6.09 8.70 1.20 1.62 3.59 9.50 28.26 29.96 

Amt. Out. 735,481 846 600 695 199 250 450 1,000 2,250 3,500 

Age 735,481 3.94 3.02 3.55 0.14 0.36 1.44 5.42 10.22 18.08 

IRTC 735,481 0.40 0.29 1.30 0.03 0.05 0.13 0.54 1.08 1.60 

BIAS 735,481 0.50 0.08 12.36 0.00 0.00 0.02 0.28 1.73 5.15 

𝛾  735,481 0.61 0.05 21.37 -0.61 -0.08 0.01 0.22 1.45 6.20 

VOL 735,481 73 36 142 1 4 15 82 244 557 

FREQ 735,481 111 68 153 12 19 38 130 334 682 

INV 735,481 0.01 0.07 53.99 -49.61 -21.61 -4.19 4.54 22.11 49.07 

 

By construction, our sample inherently focuses on the most liquid bonds but this preference does not 

diminishes its relevance. As of November 2022, our sample captures about 64% of the 6.9 trillion USD 

corporate debt outstanding and over 92% of the total traded volume reported in 𝑇𝑅𝐴𝐶𝐸 over that same 

month. To ensure no asynchronicity affects our comparison of returns across datasets, we match the 

measurement/trading dates in both TRACE and Bloomberg. To define our final sample, we thus require 

that an index valuation from Bloomberg and a volume-weighted average price from TRACE are both 

available, together with the bond characteristics mentioned above. Moreover, as the first leg of an end-

of-month return is undefined in July 2002, we lose a month of observations. Likewise, the last leg of a 

beginning-of-month return is undefined in December 2022, and we lose another month of observations. 

As a result, our sample of returns is defined between August 2002 and November 2022. 

Table 1 above summarizes our sample by reporting the panel summary statistics for the various returns 

defined in the previous section. We see from this table that the sample contains 735,481 bond-month 



 
 

observations. The first row reports the key summary statistics for the bond total return over the end-of-

month window 𝑡𝑒 when computed from reported 𝑇𝑅𝐴𝐶𝐸 transactions. On average, bonds have earned 

a total return of 38bps per month over our sample period, with a standard deviation of 3.81%. We 

observe from the percentiles the very large dispersion between the 1st and 99th percentiles of about 20%. 

The second row reports the returns over the implementation lag window. We see that those returns are 

of a much lower magnitude, which can be associated with the shorter measurement window. Note that 

the standard deviation of implementation lag return for TRACE is larger compared to that of 

Bloomberg, which indicates the impact of trading frictions. Note that Bloomberg prices are valued at 

the bid. The third row captures the return measured over the beginning-of-month window 𝑡𝑏. In line 

with expectations, those are very similar to those measured over 𝑡𝑒. The next three rows report the same 

results for returns measured from the Bloomberg index valuations. Overall the returns over both dataset 

are very similar on a monthly frequency. 

 

3.3. Control variables 

In section 4 and 5, we take our model to the data. In order to isolate the effects of pricing distortions 

from other factors known to affect corporate bond returns, we rely on an extensive set of control 

variables derived from both the asset pricing and market microstructure literatures.  

To start with, we control for the risk of bonds. We use standard bond characteristics commonly 

associated with both their exposure to common risk factors and their idiosyncratic risk. We use the 

option-adjusted spread (𝑂𝐴𝑆), the option-adjusted spread duration (𝑂𝐴𝑆𝐷), the duration-times-spread 

(𝐷𝑇𝑆) measure of Ben Dor et al. (2007)r, the bond rating and maturity.  

In our model, price distortions arise from the presence of market microstructure noise and valuations 

errors. It is thus important in our analysis to control for trading frictions. Following the market 

microstructure literature, those frictions present in ‘realized’ transaction prices emanate from the 

presence of a liquidity provider that accommodates the investor’s demand for immediacy and requires 

a compensation for the various risk and costs she faces, namely the search costs, the inventory risk and 

the risk of information asymmetry. 

Following the literature, we assume that search costs are higher when bonds are more illiquid and 

translate into higher transaction costs. We thus control for the illiquidity of corporate bonds, a key 

feature that characterizes the market in our model, with the autocovariance in bond price changes (𝛾) 

from Bao et al. (2011) and also consider standard bond characteristics associated with liquidity such as 

age, as suggested by Sarig and Warga (1989), or log issue size following Garbade and Silber (1976). To 

 
r Ben Dor et al. (2007) show that the interaction between OAS and OASD captures the sensitivity to relative 

changes in spreads and is a better measure of the exposure to systematic changes in spreads. 



 
 

control for transaction costs, we consider the imputed round trip cost (𝐼𝑅𝑇𝐶) of Feldhütter (2012) as 

well as bid-ask bias (𝐵𝐼𝐴𝑆) estimate of Blume and Stambaugh (1983), averaged over the last month.  

While controlling for search costs is standard in the corporate bond asset pricing literature, the inventory 

and information asymmetry risk are often omitted. The first reason is that search frictions are usually 

perceived as the most prominent market microstructure noise affecting the pricing of bondss. The second 

reason is that frictions originating from inventory and information asymmetry risks are difficult to 

measuret. Nevertheless, those frictions, especially those originating from inventory risk have been 

shown to have a large impact on the functioning of markets. Bessembinder et al. (2018) associate the 

capital committed by dealers to the order imbalancesu and stress its relevance for the provision of 

liquidity, in particular in the presence of high search cost and the infrequent arrival of counterparties. 

They investigate the evolution of capital committed by dealers over time and document that for most 

transaction reported in TRACE dealers act as ‘principal’ investors whereby bonds are taken in inventory. 

Goldstein and Hotchkiss (2020) show that dealers’ capital commitment varies with the risk and liquidity 

of securities, a finding that is consistent with a conscious management of inventory risk. Beyond the 

difficulty to measure the different frictions that affect the provision of liquidity, one additional 

complication in their identification is that those various costs are endogenously related. E.g., a lower 

capital commitment by dealer could also be associated with a greater information asymmetry risk. 

Hendershott et al. (2017) find that order imbalances are negatively associated with future bond returns 

and argue this is consistent with order flow causing price pressures that profit informed investors. In 

Ivashchenko (2022) the dealer willingness to commit capital is driven by the information content of 

trades. 

In light of the relevance of inventory and information asymmetry risks, and despite the measurement 

and identification challenges, we attempt at controlling those by leveraging on measures proposed in 

the literature. For inventory risk, we rely on two metrics that aim at capturing the aggregate dealer 

inventory imbalances.v First, in the spirit of Bessembinder et al. (2018), we measure the inventory 

change (𝐼𝑁𝑉) over the last month as the net dealer buys, which are thus indicative of both the magnitude 

 
s Duffie and al. (2005,2007) introduce a search and bargaining model in which transaction costs increase with the 

difficulty in finding a counterparty, i.e. they are inversely related to the search intensities in the model. Friewald 

and Nagler (2020) show that search and bargaining frictions have large explanatory power for the cross section of 

yield spread, in line with the predictions of Randall (2015) and Duffie and al. (2005, 2007). They find that search 

and bargaining frictions better explain the variance in yield spread than those originating from inventory risk. 
t See Friewald and Nagler (2020) for a discussion and recent developments in the measurement of search and 

bargaining frictions. 
u To capture the willingness of dealers to trade on a principal basis by using their own capital to absorb customer 

order imbalance, they define various measures of the changes in inventory, including a cumulative capital 

commitment over the past week with two variants that controls (or not) for the trading activity over that estimation 

window. 
v The FINRA Enhanced TRACE database does not contain individual dealer identifiers. We thus define proxies 

of the aggregate dealer inventory risk per bond, which implicitly cumulates the risk across all dealers. 

 



 
 

and the directionality of the imbalances and the capital commitment by dealers. Second, following 

Hendershott et al. (2017), we use the order imbalance (𝐼𝑀𝐵) measure which essentially scales the 

inventory change by the total traded volume over the measurement period.  

To control for the information asymmetry risk, we follow the literature and assume that trading activity 

is first and foremost information driven. E.g. Stoll (1989) uses past trading volumes as a proxy for the 

amount of informed trading. We use three trade-based measures, namely total traded volume (𝑉𝑂𝐿), the 

volume in proportion of the issue size (𝑉𝑂𝐿𝑆), as well as the total number of trades (𝐹𝑅𝐸𝑄) over the 

past month. 

Given the high correlation between some of those control variables, we select a subset of those variables 

to avoid multicollinearity issues in our analyses. When doing so, we confirm the robustness of our 

results by replacing the chosen correlated variables by its alternative in a second control group and 

report the results in the Internet Appendix in Section 1IA.1.  

Table 1 also reports the summary statistics for all control variables identified above. Looking first at the 

risk controls, we see that the bonds in our sample exhibit an average spread of 223 bps and an average 

spread duration of 6.16, with large panel variations that elude to the large cross-sectional variation in 

bond rating and maturities. The interaction between OAS and OASD, i.e., the DTS, has a median value 

of 1,265 and percentiles range from 28 to 6,280 illustrating the large dispersion in risk in our panel data. 

We find that the median middle rating in our sample is BBB+ (equivalent to a middle rating value of 

8), while the rating distribution goes from AAA to CCC. The median maturity is just above 6 years and 

ranges between 1 and 30 years. 

Turning towards the various measures of illiquidity, we see that the median issue size is 600 million 

USD, and ranges between 200 million USD and 3.5 billion USD. The bond age is on average 3.94 years 

and ranges between 1 month and 18 years. We understand from the last two characteristics that although 

our sample focuses on the most liquid bonds, there is a large cross-sectional variation in the degree of 

liquidity. Next to that, we report two measures of transaction costs, the imputed round-trip transaction 

cost (IRTC) and the bid-ask spread (BAS), expressed in percentages of face value. The average IRTC 

is 40 bps and ranges between 3 bps to 160 bps. The bid-ask bias (BIAS) is a variance term that aims at 

capturing the contribution to return originating from the bid-ask bounce and is expressed in basis points. 

On average the BIAS is 0.50 bps and ranges from 0 bps to 515 bps. Finally, the illiquidity measure (𝛾) 

from Bao et al. (2011), expressed in basis points, shows with a mean of 0.61 bps that on average 

corporate bond returns exhibit negative serial correlation. 

Focusing on the selected controls for the information asymmetry risk, we find that corporate bonds in 

our sample exhibit an average monthly trading volume of 73 million USD, which corresponds to about 



 
 

9% of the average bond issue size. On average, bonds are traded about 111 times over a month and 

display a wide variation with as little as 12 times per month up to 682 times.  

Finally, the inventory risk measures show that on average dealers do not carry inventory, with INV 

displaying a mean of 10.000 USD of net exposure accumulated over the past. We observe substantial 

variations in the exposures of dealers. Indeed, we see that the absolute net exposure can rise up to 49 

million USD. 

 

3.4. Methodology 

The model developed in Section 2 suggests that pricing distortions across pricing sources are a key 

determinant of future corporate bond returns. Specifically, equations (2-12) and (2-14) relate future 

returns to the past level of the distance between the traded price in TRACE and the index valuation in 

Bloomberg, for respectively TRACE and Bloomberg returns. Moreover, equations (2-15) and (2-16) 

propose an alternative specification in which the future returns are explained by a lagged distortion level 

and its last change, for respectively TRACE and Bloomberg returns. 

To investigate the cross-sectional relationship between future corporate bond returns and the 

explanatory variables put forward in our model, we leverage on the Fama-MacBeth (1973) methodology 

and run cross-sectional regressions between the future returns defined in Section 3.1 and the different 

measures of pricing distortions mentioned above. Those regressions are augmented by a number of 

control variables defined in Section 3.3. The regressions takes the following general form: 

 
 𝑅𝑖,𝑡∗+1

𝑆 = 𝛼 + ∑ 𝛽𝑘,𝑡𝑉𝑎𝑟𝑖,𝑡
𝑘

𝐾

𝑘=1

+ ∑ 𝛽𝑙,𝑡𝑋𝑖,𝑡
𝑙−𝐾

𝐾+𝐿

𝑙=𝐾+1

+ 𝜀𝑖,𝑡+1 
(3-2) 

𝑅𝑖,𝑡∗+1
𝑆  is any next-period return, 𝑉𝑎𝑟𝑖,𝑡

𝑘  corresponds to one of the 𝐾 explanatory variable put forward 

by the model, and 𝑋𝑖,𝑡
𝑙−𝐾 is one of the control variable identified in the previous section. We report the 

timeseries average of the slope coefficients from those regressions, the Newey-West adjusted t-statistics 

and the average adjusted R2 for various nested versions of this general specification.  

 

4. Setting the stage 

The presence of  reversals in returns in corporate bond markets is well-established in the corporate bond 

literature. A first stream in this literature focuses directly on the identification and pricing of those 

reversals. Amongst others, Khang and King (2004) document strong short- and intermediate-term return 

reversals that are stronger in the early part of their sample. The authors relate the decrease in the reversal 

premium over time to the rise in liquidity and argue this sensitivity is consistent with the dealer 



 
 

inventory cost models. Chordia et al. (2017) find that past month returns significantly negatively 

explains future month returns and associate those dynamics with bond illiquidity. Bai et al. (2019), in 

their now retracted paperw,  find that one-month lagged bond returns have significant explanatory power 

for the cross-section of corporate bonds returns. While it is by far the strongest variable explaining the 

cross-sectional dispersion, they find that exposure to a reversal factor is not rewarded. Bali et al. (2021) 

identify economically and statistically significant long-term reversal patterns in corporate bonds. They 

find that those reversals are associated with the credit risk of bonds, their illiquidity, as well as to 

investors’ constraints. More recently, Dickerson et al. (2023b) critically evaluate return-based anomalies 

and conclude that most of them do not survive once accounting for an implementation lag. Their results 

suggest that most of the return of those anomalies, including the short-term reversal, are earned over 

the implementation window and thus cannot be earned by investors in practice. 

Another stream of literature relates to or is a derivative of the literature on market microstructure and 

builds on the implicit presence of reversal to address research questions that do not pertain directly to 

reversals. For example, Bao et al. (2011) uses the serial correlation in bond returns to estimate the 

illiquidity of bonds. Ivashchenko (2022) investigate dealers’ response to the risk of information 

asymmetry by focusing on how the magnitude of price reversals changes in high and low volume 

environments. Andreani et al. (2023) rely on the serial correlation in bond returns to estimate the level 

of microstructure noise across different pricing sources. 

Before diving into the core of our empirical investigation, it is important to illustrate some key empirical 

findings documented in the literature on short-term reversals. First, we investigate the robustness of the 

reversal factors across pricing sources and investment universes. Then, we assess the influence of 

imposing and implementation lag, using the enhanced return methodology proposed in Section 3.1, to 

corroborate the disappearance of the reversal factor premium after controlling for an implementation 

lag as documented in Dickerson et al. (2023b). Finally, we revisit the serial dependence structure across 

pricing sources identified by Andreani et al. (2023). 

 

4.1. Reversal’s robustness 

In this section, we review the significance of past returns in explaining the cross-section of future returns 

using Fama-MacBeth regressions. To assess the robustness of the results, we evaluate the significance 

not only on the full sample, i.e. in the all-grade universe (AG), but also in the investment grade (IG) 

and high yield (HY) universes. This analysis is performed both using TRACE and Bloomberg as pricing 

source for both the signal measurement and the return evaluation. 

 
w We find that those conclusions did not suffer from the issues identified by Dickerson et al. (2023b), that led to 

the retraction of their paper.   



 
 

Table 2 reports the results when using TRACE or Bloomberg as the pricing source, without using an 

implementation lag in Panel A, evaluating using returns measured over 𝑡𝑒. The first specification (1) 

shows the main result documented in the literature. In the absence of an implementation lag, we find a 

negative coefficient on past returns. Specifications (2) and (3) perform the same cross-sectional 

regressions within respectively IG and HY. We see that the reversal factor documented in the literature 

is mostly present in IG but not significant in HY. The last three specifications perform the same analyses 

however changing the pricing source to Bloomberg index prices. Here, we find no reversal pattern, 

though a short-term momentum effect that predominantly stems from the HY market.  

Panel B reports the results when imposing an implementation lag, evaluating returns over 𝑡𝑏. The table 

is in line with Dickerson et al. (2023b), which shows an absence of reversal in traded prices once 

accounting for an implementation lag. Consistent for both pricing sources, we find that in AG and HY 

markets past returns predict positively future returns, indicative of the presence of short-term 

momentum rather than reversal. In investment grade, there is no significant relationship between past 

and future returns.  

Overall, we conclude that the reversal factor previously documented in the literature is not robust and 

specific to Investment Grade in transaction prices. Indeed, simply stressing the results on the universe 

definition or the pricing source leads to widely different conclusions. Those inconsistencies have so far 

remained undocumented in the literature and remind us of the influence of market segmentation in 

corporate bond markets and the importance to evaluate potential predictors separately in both IG and 

HY universes. 

 

4.2. Dependence structure 

To investigate the dependence structure across pricing source documented by Andreani et al. (2023), 

we introduce a simple return decomposition that aim at capturing the dynamics identified in our model 

and hopefully at shedding light on new insights with regards to the dependency structure across pricing 

sources. More specifically, for each pricing source 𝑆 we decompose the returns 𝑅𝑖,𝑡∗
𝑆  used for the signal 

measurement into two components being the return from the other pricing source and a differential 

term. This last term, that we denote 𝑅𝑖,𝑡∗
𝐷 , follows from our model and aim at capturing the changes in 

pricing distortions over the measurement window.  

       𝑅𝑖,𝑡∗
𝑇 = 𝑅𝑖,𝑡∗

𝐷 + 𝑅𝑖,𝑡∗
𝐵    (4-1) 

It is important to mention that we are matching measurement/trading dates in both TRACE and 

Bloomberg which ensures no asynchronicity affect our analysis, when contrasting the returns of those 

different pricing sources. 



 
 

Table 2 
This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022. 

The dependent variables are the future corporate bond returns measured both in of TRACE and Bloomberg. Results are 

displayed separately for All Grade (AG), Investment Grade (IG) and High Yield (HY) universes. The explanatory variables 

correspond to the short-term reversal signal. Panel A shows results without incorporating an implementation lag, i.e. future 

returns evaluated over 𝑡𝑒. Panel B includes an implementation lag to the explanatory variables, i.e. returns measured over 𝑡𝑏. 

The numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant 

coefficients are identified in bold. 

 

Panel A: ‘reversal’ without implementation lag 
      

Dependent return:   𝑅𝑖,𝑡𝑒+1
𝑇  𝑅𝑖,𝑡𝑒+1

𝐵  

Universe:   AG IG HY AG IG HY 

Constant   0.50 0.45 0.70 0.45 0.40 0.67 

    3.83 3.89 3.30 3.55 3.57 3.23 

𝑅𝑖,𝑡𝑒
𝑇     -0.04 -0.13 -0.01       

    -1.96 -5.06 -0.68       

𝑅𝑖,𝑡𝑒
𝐵           0.04 0.00 0.05 

          2.31 0.01 2.38 

R2-adj   0.08 0.12 0.07 0.08 0.13 0.07 

Bond-month obs   735,481 572,308 163,173 735,481 572,308 163,173 

Panel B: 'reversal’ with implementation lag 
        

Dependent return:   𝑅𝑖,𝑡𝑏+1
𝑇  𝑅𝑖,𝑡𝑏+1

𝐵  

Universe:   AG IG HY AG IG HY 

constant   0.45 0.36 0.68 0.45 0.38 0.67 

    3.60 3.38 3.28 3.55 3.46 3.27 

𝑅𝑖,𝑡𝑒
𝑇     0.04 0.03 0.04       

    2.25 1.49 2.39       

𝑅𝑖,𝑡𝑒
𝐵           0.04 0.02 0.05 

          2.17 0.85 2.39 

R2-adj   0.07 0.08 0.06 0.08 0.12 0.07 

Bond-month obs   735,481 572,308 163,173 735,481 572,308 163,173 

 

Equipped with those trivial rewriting of returns, we can now investigate how the decomposition of the 

short-term reversal signal, measured either from traded priced explains the cross-section of future 

corporate bond returns. Here, we evaluate future returns based on past month Bloomberg and 

differential returns, both with and without implementation lag. 

In Table 3, the first specification (1) is the usual short-term reversal factor documented in the literature, 

which is based on TRACE transaction prices, uses returns measured over the past 1 month and earns 

the returns over the next 1 month, when no implementation lag is considered. The sole amendment we 

have brought to this standard setup is the decomposition of the past month returns according to equation 

(4-1). Note that this specification corresponds to a nested case of the reaction function of agents 

developed in Section 2 in equation (2-15). Comparing the results with specification (1) in Panel A of 

Table 2, the key insight is that the decomposition of the past month returns, to isolate the return 

associated with the change in pricing distortions across pricing sources, allows to identify that the 

reversal in traded prices exist as a result of differences in past month returns between pricing sources. 

The coefficient is negative at -0.29 and has a significant t-statistic of -16.22. It is interesting to see that 



 
 

the cross-autocorrelation is positive, suggesting short-term momentum, although it is not statistically 

significant. 

Specification (2) regresses the index returns on past Bloomberg returns and changes in pricing 

distortions, according to the equations (2-16). A few interesting insights emerge from this regression. 

The first one is that index prices are influenced by past pricing distortions but have an opposite sign 

compared to the sensitivity of traded returns. This association is highly significant. A positive coefficient 

on 𝑅𝑖,𝑡𝑒
𝐷  suggests Bloomberg prices converge towards TRACE prices and should thus be interpreted as 

a source of reversal. It is interesting to compare the statistical significance of the coefficients associated 

with the pricing distortions in specifications (1) versus (2). The lower significance for index returns, in 

specification (2), suggests that valuators process the distortions with lower intensity than investors. 

Another interpretation is that the valuation errors are of lower magnitude compared to trading frictions 

embedded in traded prices, and that each agent aims at correcting the fraction of the distortions that he 

associates to his own perturbation. While this is not a behavior explicitly modelled in our framework, 

this finding is consistent with the literature and the notion that transaction prices are most affected by 

trading frictions. E.g., Andreani et al. (2023) argue that traded prices are contaminated by microstructure 

effects to a much larger extent than index prices and as such are of lower quality and relevance for 

researchers.  

Table 3: Revisiting short-term reversals in the presence of distortions across pricing sources 
This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the future corporate bond returns from both TRACE and Bloomberg in the absence of an implementation lag, and after 

controlling for an implementation lag using beginning-of-month return series. The explanatory variables corresponds to the 

decomposition of the short-term reversal signal measured from either from traded priced, according to equation (4.2). The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. 

 

 Specification: (1) (2) (3) (4) 

 Dependent return: 𝑅𝑖,𝑡𝑒+1
𝑇  𝑅𝑖,𝑡𝑒+1

𝐵  𝑅𝑖,𝑡𝑏+1
𝑇  𝑅𝑖,𝑡𝑏+1

𝐵  

constant 0.46 0.44 0.44 0.45 

  3.72 3.55 3.60 3.56 

𝑅𝑖,𝑡𝑒
𝐵   0.03 0.06 0.05 0.05 

  1.25 2.96 2.33 2.49 

𝑅𝑖,𝑡𝑒
𝐷  -0.29 0.17 0.01 0.09 

  -16.22 9.59 0.71 6.14 

R2 0.11 0.09 0.08 0.09 

Bond-month obs 735,481 735,481 735,481 735,481 

 

 

The second interesting finding of specification (2) is the statistically significant positive serial 

correlation on past returns.x This result is in line with the findings from Sections 4.1. Moreover, 

 
x We show in Appendix that those results hold irrespective the choice of pricing source as explanatory variable. 

Indeed, the coefficient values are the same in both specifications, when regressing on past TRACE or Bloomberg 

returns, supporting further the idea that both series are cointegrated and contain the same information, after 

controlling for pricing distortions. 



 
 

comparing specifications (1) and (2), the stronger and significant (cross-) serial correlation suggests 

that index prices incorporate least swiftly all relevant market information than transaction prices do. 

This result differs from Andreani et al. (2023) who find that index returns tend to lead transaction-based 

returns. To understand why we reach different conclusions, we need to highlight the differences in setup. 

The first difference is that we match trade dates across pricing sources to remove any noise from 

asynchronicity. Nevertheless, this is unlikely to be the driver behind the difference in conclusions as 

their analysis is robust to various measurement windows for transaction-based returnsy. The second 

difference is that the authors use jointly the past returns from both pricing sources as independent 

variables. In the presence of multicollinearity among pricing source, this affects the sign and 

significance of the coefficientsz. Separating the different components affecting future returns allows to 

remove issues associated with confounding factors and provides a more rigorous framework to 

investigate the lead-lag relationship across pricing sources. This allows us to confirm that traded prices 

are contaminated by microstructure effects to a much larger extent than index prices, but also to shed 

light on the diffusion of information across pricing sources by showing that evaluated prices incorporate 

valuable market information contained in traded prices with a delay. 

Turning now to specifications (3) and (4), which perform the same analyses discussed above but with 

the inclusion of an implementation lag, we find that the significance of the pricing distortions is gone 

for traded prices, and reduces for index prices. Moreover, we see that the (cross-) serial correlation is 

significantly positive for all specifications. Those results are consistent with the previous section and 

corroborate the findings of Dickerson et al. (2023b) who find that reversal disappears after the inclusion 

of an implementation lag, leaving place instead to short-term momentum.  

Overall, this initial incursion into the reversal factor suggests that pricing distortions across sources are 

a indeed key driver of short-term reversals. At the same time, those distortions seem to have limited 

explanatory power beyond the implementation lag window, suggesting they are mostly helpful in 

explaining the instantaneous price adjustment over that time frame, but less so at predicting future 

harvestable returns beyond that short horizon. Consistent with the implications of our model, we find 

first that price distortions have an impact on asset prices and second that the discrepancies across pricing 

sources are also being closed by the independent valuator. Those early results thus provide empirical 

support to the theoretical framework proposed in Section 2. 

As pricing sources converge towards another by incorporating this information with different 

intensities, it is interesting to take a closer look at the empirical estimates of those intensities. Given 

equation (2-15), and assuming ∆𝜔𝑡
𝑇 = 0, specification (1) shows that 𝜔𝑡

𝑇 is on average -0.29, a value 

 
y See Table 4 in Andreani et al. (2023). 
z We confirm this intuition by running the regression with the same specification as Andreani et al. (2023) and 

find similar results as reported in their paper. Results are reported in Appendix. 



 
 

consistent with a well-behaved system according to the boundaries defined in equation (2-17). This 

value has a few important interpretations. First, according to our definition of the valuation function of 

investors in equation (2-9), this value suggests that investors overweight the information content of past 

index valuations, which corroborates their anchoring to this important reference point. Second, this 

value allows to reflect on some of the assumptions made in the literature for return estimation. 

Specifically, as 𝜔𝑡
𝑇 ≠ 1 the Martingale hypothesis in traded prices used in amongst others in Bartram 

et al. (2020) is rejected. Likewise the assumption in Jankowitsch et al. (2011) that the index prices 

captures the fundamental value of securities, while more in line with how investors weigh this 

information empirically, does not hold as 𝜔𝑡
𝑇 ≠ 0. 

Given equation (2-16), specification (2) shows that 𝜔𝑡
𝐼 is on average 0.17, a value consistent with a 

well-behaved system according to the boundaries defined in equation (2-18). This confirms empirically 

that independent valuators also react to pricing distortions and contribute to their resolution. While our 

model does not impose such a behavior, this opportunity is available to them. Also interesting to note 

is that their contribution to the resolution is of lower magnitude than the one of investors. 

Having set the stage, we now turn towards providing further insights on the implementation shortfall of 

reversal strategies and the persistence of those pricing distortions in explaining the cross-section of 

future corporate bond returns. 

 

5. The drivers of reversal 

As presented in Section 2.3, our model has implications for the cross-section of future corporate bonds 

returns. The first implication is that price distortions across pricing sources is a key factor driving the 

reversal in returns, as agents jointly or independently force prices to converge. The second insight is 

that this convergence does not have to occur solely in transaction prices but can also take place within 

index valuations. In this section, we investigate empirically whether agents are concerned by deviation 

between valuation and traded prices. More specifically, we assess the extent to which those deviations 

explain both the implementation shortfall of reversal strategies as well as the cross-section of future 

harvestable corporate bond returns. By evaluating the influence of the pricing distortions independently 

on each pricing source, we are able to analyze whether both investors and valuators care about those 

distortions and whether they aim at correcting those with the same intensity.  

 

5.1. Implementation shortfall 

Dickerson et al. (2023b) associate the disappearance of the reversal’s returns, and other return-based 

strategies, to the presence of high market microstructure noise in corporate bond markets. While the 



 
 

authors suggest this finding might be related to the elevated bid-ask bias, they do not explicitly evaluate 

what effectively drives the implementation shortfall of those strategies.  

Given the implication of our model for reversals, we aim in this section at filling this void. The first 

question we want to address is whether distortions across pricing sources can explain the sharp reversal 

in prices over the implementation lag window. Indeed, the intuitive reason behind the failure of reversals 

is that prices adjust instantaneously at the next trade, such that when the investor enters the position the 

expected return has just vanished. In the presence of distortions across pricing source, it is fair to expect 

that next time demand meets supply, the parties to the trade aim at correcting the mispricing. To illustrate 

this dynamic, let’s assume party 𝑆 is interested in selling a security. She starts searching for a 

counterparty and meets a potential buyer 𝐵. Once they meet, they start negotiating the price at which 

they would be both willing to complete the trade. The last information available to both parties is that 

the last trade occurred at a price 𝑝𝑡−1
𝑇  far above the last index valuation 𝑝𝑡−1

𝐼 . It is likely that 𝐵 is 

interested in buying the security at price 𝑝𝑡−1
𝐼  while the seller would like to get 𝑝𝑡−1

𝑇 . Nevertheless, if 

both parties want to trade, they will agree on a price that aims at correcting the mispricing. In the absence 

of news, whether they trade closer to 𝑝𝑡−1
𝐼  or 𝑝𝑡−1

𝑇  depends on how both party evaluate the share of 

valuation errors relative to the amount of trading frictions that is currently embedded in this price 

discrepancy. The instantaneous price adjustment that takes place upon agreement should thus occur 

irrespective of the illiquidity of the bond or the time elapsed since the last trade. Moreover, distortions 

across pricing sources should be predictive of the instantaneous reversal that occurs over the 

implementation lag window. 

As a side step, it is interesting to discuss who earns the return over the implementation lag window. 

Indeed, if the expected return of the reversal strategy has just vanished, some party must have earned 

that return. Assuming in our example that prices do correct, i.e. if 𝑝𝑡−1
𝐼 < 𝑝𝑡

𝑇 < 𝑝𝑡−1
𝑇 , then 𝑆 makes a 

loss. In an economy with two agents, an investor that demands immediacy and a dealer providing 

liquidity, 𝑆 can only trade with 𝐵. We then have to assume that 𝐵 was also the counterparty to the trade 

at time 𝑡 − 1. Let’s further assume that 𝑆 is initiating all trades, thus demanding liquidity, and 𝐵 acts as 

the dealer by providing liquidity. Assuming the fundamental value has not changed over the 

implementation window then the loss 𝑝𝑡
𝑇 − 𝑝𝑡−1

𝑇  corresponds to the cost for demanding immediacy. 

Although the dealer did not hold the security over that period, he earns the opposite return which can 

thus be interpreted as the return for providing liquidity. Having acknowledged the nature of the returns 

over the implementation window, it is only a short step to make the parallel with the investor aiming at 

harvesting the returns of a reversal strategy. The implementation shortfall of the strategy is associated 

with his demand for immediacy. 

Although we can characterize this return, we still do not know what drives the cost of immediacy. Our 

model suggests that pricing distortions should be a driver of the implementation shortfall. At the same 



 
 

time, the market microstructure literature identifies that liquidity providers require a compensation for 

facing search costs, inventory and information asymmetry risks. Thus, the second question we aim at 

addressing in this section is whether the potential explanatory power of pricing distortions is sensitive 

to the inclusion of controls that capture those required compensations. Given that in our model the price 

discrepancies originate in part from trading frictions, we would expect that upon controlling for those 

the potential significance of pricing distortions would decrease or disappear. One difference though is 

that the pricing distortions essentially contains the cumulative sum of valuation errors and trading 

frictions, as opposed to estimates of single period trading frictions for most of the control variables that 

we consider and introduced in Section 3.3.  

To assess whether the implementation shortfall of the short-term reversal strategy is indeed driven by 

those distortions we regress the implementation lag return 𝑅
𝑖,𝑡𝑖+1
𝑇  on the drivers of the transaction-based 

returns identified in our model, according to equation (2-15). More specifically, in this setup the terms 

∆𝑝𝑡
𝐼, ∆𝐷𝑡𝑒  and 𝐷𝑡𝑒 in equation (2-15) correspond respectively to the index price return 𝑅𝑖,𝑡𝑒

 𝐵 , to the 

return contribution from the change in distortions across pricing sources 𝑅𝑖,𝑡𝑒
 𝐷  over that same window, 

and to the level of the distortions at the beginning of the 𝐸𝑂𝑀 window, denoted 𝐷𝑖,𝑡𝑒−1 going forward. 

To evaluate whether traditional microstructure compensation measures can also explain the 

implementation shortfall, we add as controls the set of variables defined in Section 3.3. Table 4 shows 

the results of the Fama-MacBeth regressions.  

Specification (1) corroborates further the implications brought forward by our model that price 

distortions matter for explaining the cross-section of future corporate bond returns. We see that the 

reversal driven by past index returns is statistically significant, but to a much lower extent than the 

negative coefficients associated with both the past level and change in price distortions. Following 

equation (2-15), our results suggest that on average investors aim at correcting the past change in pricing 

distortions with an average intensity 𝜔𝑡
𝑇 of -0.52. This means that half of the past month distortion 

change instantaneously corrects at the next trade. This value is consistent with a well-behaved system 

according to the boundaries defined in equation (2-17).  

In specification (2), we consider the control variables that capture the risk of the underlying securities 

and see that only the bond spread duration is statistically significant. Specifications (3) to (5) capture 

the different categories of microstructure compensations that dealers are expected to require in exchange 

for providing liquidity.  

We see in specification (3) that within the search costs’ proxies related to illiquidity only the Bao et al. 

(2011) 𝛾 measure is insignificant. Amongst the significant drivers of the implementation lag returns, we 

find that bond characteristics traditionally associated with illiquidity, namely the bond issue size and 

age, lead to an instantaneous reversal, while measures of the bid-ask bounce such as the imputed round 



 
 

trip costs or the bid-ask bias push prices upward. This captures the markup in price that dealers request 

as compensation for providing liquidity to investor. Note that the positive coefficient for the BIAS 

suggests that it does not contribute to the explaining the implementation shortfall of the reversal factor, 

contrary to what is suggested by Dickerson et al. (2023b). 

Table 4: Explaining the implementation shortfall of reversals 
This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables is the 

TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall of 

strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-15), together with the set of controls defined in Section 3.3. The numbers in 

parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients are identified 

in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅𝑖,𝑡𝑖+1
𝑇   

 constant 13.50 0.47 75.07 20.17 13.53 85.73 

  6.74 0.15 4.12 2.53 6.74 4.66 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 -0.04 -0.01 -0.01 -0.01 -0.04 

  -2.35 -7.34 -2.87 -2.42 -2.39 -7.86 

 𝑅𝑖,𝑡𝑒
𝐷  -0.52 -0.55 -0.54 -0.52 -0.52 -0.56 

  -28.07 -32.70 -30.02 -28.16 -28.08 -32.99 

 𝐷𝑖,𝑡−1 -0.42 -0.45 -0.44 -0.42 -0.42 -0.47 

  -20.79 -24.20 -21.93 -20.80 -20.79 -23.92 

 OAS   0.02       0.02 
    1.86       1.79 

 OASD   1.73       1.48 

    1.85       1.70 

 DTS   0.00       0.00 

    0.66       0.40 

 Amt. Out.     -3.17     -3.59 

      -3.63     -4.55 

 Age     -1.16     -1.21 

      -6.53     -7.02 

 IRT     13.28     8.90 

      6.16     4.49 

 BIAS     3.71     1.57 

      4.20     2.77 

 𝛾     0.73     0.44 

      0.82     0.64 

 VOL       -0.43   -0.60 

        -0.99   -1.72 

 FREQ       0.01   0.01 

        3.44   4.19 

 INV         -0.07 -0.07 

          -9.88 -11.12 

R2 0.22 0.29 0.24 0.22 0.22 0.31 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 

 

 

Specification (4) reports the results for the control variables capturing the risk of information 

asymmetry. We find that past trade counts are significantly associated with a positive return over the 

implementation lag window. Although the economic significance of this relationship is limited, it 

suggests that informed trading can exercise upward pressure on bond prices, in line with Stoll (1989) 

assumption. Specification (5) considers the influence of dealers’ inventory changes, and we find that 

this variable is also highly significant. The finding that dealers’ stock accumulation has a negative 



 
 

impact on the implementation lag returns is consistent with the work of Khang and King (2004). The 

authors evaluate various competing explanations for the existence of a reversal factor and conclude that 

dealer inventory imbalances are the most likely candidate. In their paper, though, the evidence relies 

mostly on the rejection of competing hypothesis and the observation that the reversal’s returns 

diminished over the sample period. This dynamic is in turn coincident with an increase in liquidity and 

lower bid-ask spread, which in the Stoll (1989) model should be associated with amongst other lower 

inventory risks.  Our analysis provides additional support for this conclusion by introducing a direct 

measure of dealer inventory imbalances as control variable, which allows to isolate that effect from 

other potential drivers of reversals.  

Comparing the R2 of the various specifications discussed above we see that pricing distortions from 

specification (1) have by far the largest explanatory power for the cross-sectional variation of future 

implementation lag returns, with a R2 of 22%, The addition of the bond risk variables increases the R2 

by 7% and then the search cost group adds 2%. 

Finally specification (6) combines the price distortions measures with all control variables. This 

specification is able to explain on average 31% of the cross-sectional variations in the implementation 

lag returns. We see that the significance of the divergence in prices across pricing sources is robust to 

the inclusion of all controls of market microstructure noise. Combining all variables leaves the 

significance of  microstructure control variables unchanged compared to the previous specifications.  

Overall, this analysis extend the work of Dickerson et al. (2023b) by providing new insights on the 

determinants of the reversal strategy’s implementation shortfall. First and foremost, it shows that the 

implementation shortfall is significantly affected by past deviations across pricing sources. This is by 

far the most dominant factor driving the returns over the implementation lag. We argue that this 

phenomenon is consistent with the lack of transparency in corporate bond markets, i.e., the opacity of 

what the true fundamental value of a security is, which leads prices from different pricing source to 

converge towards another. Those sharp price adjustments occur instantaneously, i.e., at the next 

transaction post signal measurement, and lead to a significant erosion in the expected returns of the 

reversal strategy.  Our findings can neither be explained by bond risk characteristics nor by various 

control variables that aim at capturing the search cost, the inventory risk and the information asymmetry 

risk. Taken together, those controls have relatively limited additional explanatory power.  

Our results are robust to various degrees of freedom and the inclusion of control variables. More 

specifically, our findings are invariant in the definition of the divergence across pricing sources.aa 

Moreover, the results cannot be explained by the subset on bid transactions, the presence of small (retail) 

trades, different search windows in the construction of returns, the separation of credit returns from 

 
aa We consider as an alternative proxy for the price distortion the EOM price difference across pricing source, 

according to equation (2-12) and (2-14). 



 
 

interest rate returns, the length of the implementation lag, the investment universe, the choice of 

controls, as well as the sample period. Some of these results are reported in the Internet Appendix 

IA.1.1. 

5.2. Implementable reversal 

Having shown that price discrepancies across pricing sources are a key driver of the returns over the 

implementation lag window, it is natural to wonder whether those fully disappear over this window or 

whether they have explanatory power beyond that narrow horizon. In our model, agents can vary the 

intensity at which they aim to correct the distortions and there is no requirement for the price 

discrepancies to fully correct from one trade to another. The results in section 4.2 suggested that 

controlling for an implementation lag diminished their significance. In Table 5 below, we reevaluate 

those findings by including now the same controls considered in section 4.2, together with the drivers 

of the return over the implementation lag window. 

In specification (1), we find back the result we had in Table 3 for the specification (3) where we 

evaluated the sensitivity of future corporate bond returns measured out of TRACE, after controlling for 

an implementation lag, on the past return decomposition. We find that this decomposition explains about 

9% of the cross-sectional variation and that the coefficient on past index returns is statistically positively 

significant, suggesting the presence of short-term momentum once prices have adjusted over the 

implementation lag window. This finding is consistent with those of Dickerson et al. (2023b). We also 

see that the price distortions are not leading to reversals and are not significant anymore, suggesting 

that distortions have corrected sufficiently over the implementation window, to a level at which they 

don’t influence anymore future corporate bond returns. It is important to note though that this 

specification, by omitting information on the dynamics of the pricing distortions over the 

implementation lag window, does not correspond anymore to return decomposition put forward by our 

model in equation (2-15). We address this in specification (7) by including the return drivers when 

measured not only over the end-of-month window but also over the implementation lag window. 

In specifications (2) to (5), we evaluate the additional explanatory power of the various control groups. 

The results for specification (2) are mostly consistent with what we found in the previous section as risk 

characteristics are not significant. What is worth noting is the very high explanatory power reached 

when adding the risk control variables with a R2 of 30%, which is much larger than when our model 

return predictors from the end-of-month window are used as base case in specification (1). This would 

be consistent with a larger contribution to returns from exposures to systematic credit risk exposures 

over longer holding horizonsbb. We also note that controlling for risk allows to reveal the role of past 

 
bb van Binsbergen et al. (2023) show that the CAPM prices corporate bonds once the contribution from interest 

rate exposures is stripped out of corporate bonds total return. Dickerson et al. (2023a) find strong empirical support 

for a bond and equity CAPM model. Those findings suggest the systematic exposure to credit risk is priced and 

is a key determinant of the cross-sectional variance in returns. 



 
 

distortion changes and levels as reversal drivers. Also, we find that the short-term momentum is not 

robust to the inclusion of risk controls. 

Table 5: Evaluating the persistence of price distortions in explaining reversals 
This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-15), when measured over both the EOM and the IL windows, together 

with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the coefficient value, 

reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) (7) 

Dependent return:  𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant 42.88 19.65 37.50 -25.89 42.91 2.97 70.44 

  (3.71) (3.05) (0.54) (-0.93) (3.71) (0.05) (1.21) 

 𝑅𝑖,𝑡𝑒
𝐵  0.05 -0.01 0.03 0.05 0.05 -0.01 -0.03 

  (2.26) (-0.48) (1.78) (2.53) (2.23) (-0.50) (-2.36) 

 𝑅𝑖,𝑡𝑒
𝐷  0.02 -0.03 0.01 0.02 0.02 -0.03 0.36 

  (1.08) (-2.21) (0.41) (1.03) (1.02) (-2.98) (1.39) 

 𝐷𝑖,𝑡−1 0.01 -0.03 0.00 0.01 0.01 -0.03 0.42 

  (0.50) (-2.39) (-0.02) (0.50) (0.48) (-2.81) (1.63) 

 OAS  0.01    0.00 0.01 

   (0.32)    (0.28) (0.74) 

 OASD 
 0.00    0.34 1.20 

  
 (0.00)    (0.15) (0.52) 

 DTS 
 0.01    0.01 0.02 

  
 (1.73)    (1.81) (1.81) 

 Amt. Out. 
  0.02   -1.25 -4.02 

  
  (0.01)   (-0.39) (-1.25) 

 Age 
  0.36   0.71 -0.14 

  
  (1.08)   (2.01) (-0.39) 

 IRT 
  11.28   1.45 6.19 

  
  (1.74)   (0.46) (2.00) 

 BIAS 
  -4.75   -5.27 -3.85 

  
  (-0.68)   (-2.80) (-2.18) 

 𝛾   -1.12   -0.08 1.17 

  
  (-0.48)   (-0.06) (0.87) 

 VOL 
   3.86  2.20 1.66 

  
   (1.77)  (2.38) (1.80) 

 FREQ 
   0.01  0.01 0.02 

  
   (0.79)  (1.13) (2.08) 

 INV 
    -0.12 -0.15 -0.18 

  
    (-4.94) (-7.72) (-8.78) 

 𝑅𝑖,𝑡𝑖
𝐵        -0.18 

  
      (-8.98) 

 𝑅𝑖,𝑡𝑖
𝐷        -0.59 

  
      (-29.43) 

 𝐷𝑖,𝑡       -0.77 

  
      (-3.04) 

R2 0.09 0.31 0.13 0.10 0.09 0.34 0.40 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 

 

Specification (3) shows that none of the search costs’ proxies are significant beyond the implementation 

lag window. Similarly, in specification (4) we find that the control variables capturing the risk of 

information asymmetry have no explanatory power for the returns over 𝑡𝑏.  Specification (5) considers 

the influence of dealers’ inventory changes, and we find that this variable remains highly significant 

after controlling for an implementation lag. 



 
 

In specification (6), we pull together all control variables to revisit the conclusions reached in 

specification (2). Dealer inventory imbalances remain significant and by far the most significant driver 

of reversal after controlling for an implementation lag. The observation that this measure is significant 

both over the implementation window and afterwards suggests that the results are robust and it is an 

important explanatory variables for the cross-section of future corporate bond returns over multiple 

horizons. 

Specification (7) further controls for the drivers of returns in our model over the implementation lag 

window. These additions affect the conclusion reached in specification (6), i.e. the coefficient for the 

level of the pricing distortions at the start of the end-of-month window which loses its negative sign 

and becomes insignificant.  

The high significance of the pricing distortions over 𝑡𝑖 is consistent with the results obtained in Section 

5.1 and illustrates for the beginning-of-month returns as well that those discrepancies across pricing 

sources are the main driver of reversals in ‘contiguous’ returns. As for our analysis of the 

implementation shortfall, we find the results to be robust to various degrees of freedom and the inclusion 

of control variables. More specifically, our findings are invariant in the definition of the divergence 

across pricing sources. Moreover, the results cannot be explained by the subsetting on bid transactions, 

the presence of small (retail) trades, different search windows in the construction of returns, the 

separation of credit returns from interest rate returns, the investment universe, the choice of controls, as 

well as the sample period. 

The ‘contiguous’ qualification used above is an important detail as it effectively implies that this 

information is not available to investors at the time of making their investment decisions. So while the 

distortions over 𝑡𝑖 are key explanatory variables for the reversal present in the cross-section of future 

corporate bond returns, they cannot be used to harvest the reversal premium associated with those 

distortions. Cognizant of the importance of imposing an implementation lag when investigating the 

performance of portfolio strategies in illiquid markets, we have to rely on the information available over 

𝑡𝑒. We find that the predictive power of those distortions beyond the implementation lag is greatly 

diminished. Over the full sample, end-of-month pricing distortions still predict significantly reversals, 

but we find that those results are not robust. The results reported in the Internet Appendix 1IA.1.2 show 

that the predictive power of the end-of-month information is insignificant in the recent sample period 

and in HY. We thus conclude that while price distortions are helpful in understanding the dynamics of 

corporate bond returns, the expected return associated with those cannot be harvested in practice. This 

is consistent with the findings of Dickerson et al. (2023b). 

 



 
 

5.3. Subsetting on bids only 

From Table 5 we have noted the highly significant negative coefficient on the implementation lag return  

contribution from price distortions 𝑅
𝑖,𝑡𝑖+1
𝐷 , which suggests that following the steep correction of prices 

over the implementation window, prices adjust back in the other direction. This finding is consistent 

with an AR(1) process that would characterize the bid-ask bounce. Still, we control for proxies of the 

bid-ask bounce, such as the imputed round-trip costs or the bid-ask bias, and find that those do not 

explain the significance of the implementation shortfall return.  

This finding could be interpreted in various ways. First, it could suggest that this distortion-driven price 

adjustment and the following reversal is a distinct phenomenon. Second, an alternative explanation 

could be that the dispersion across pricing sources is essentially a better measure of the bid-ask bounce 

in corporate bonds, such that it would span all other proxies and render them insignificant in the analysis 

conducted above. Finally, a third explanation could be that the measures we use to proxy bid-ask bounce 

fail to accurately capture those dynamics. Having considered a variety of widely accepted proxies from 

the literature, it seems unlikely that adding alternative metrics is going to be change the picture. The 

numerous robustness checks conducted in the Internet Appendix IA.1 support this hypothesis.  

 

Ultimately, the question thus remains whether the dispersion across pricing sources contains unique 

information beyond the one contained in the various proxies of the bid-ask bounce we control for, or, 

whether it is just a better measure of the bid-ask bounce. This question is highly relevant given the 

difference between the pricing sources. Indeed, index prices are quoted at the bid while we aggregate 

buy and sell transactions on a volume-weighted average basis to define the traded prices in TRACE. 

There is thus by definition a pricing gap that on average should equal the bid-mid spread, i.e., half the 

bid-ask spread, under the assumption of equal traded buy and sell volumes, as well as equal bid-mid 

and mid-ask spreads. Intuitively, if the index price doesn’t change over the estimation window then the 

returns of the price distortions is solely driven by the bid-ask bounce, even in the case of a structural 

level difference in bids between index and traded prices. 

To answer this question, we subset the record of TRACE transactions to contain solely sell transaction 

executed at the bids and compute the volume-weighted average “bids only” traded price. This allows to 

remove any bid-ask noise from the return estimated out of transaction data, and thus to focus on the 

information content of distortions across pricing sources beyond the bid-ask bounce. We then rerun the 

same analysis as in Table 5 but when returns are estimated from “bids only” for transaction prices. The 

results are reported in Table 6. Overall, we observe a marginal drop in the significance of most 

coefficient but the conclusions are unchanged. We can thus confidently conclude that dispersions across 

pricing sources are unrelated to the bid-ask bounce and contain unique information that drives the 

‘contiguous’ reversal effect in corporate bond markets. 



 
 

Table 6: Evaluating the persistence of price distortions in explaining reversals – bid price only 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the 𝑡𝑏 returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-15), when measured over both 𝑡𝑒 and 𝑡𝑖, together with the set of controls defined 

in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the 

significant coefficients are identified in bold. Returns are expressed in basis points.  

Specification (1) (2) (3) (4) (5) (6) (7) 

Dependent return:  𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant 43.12 16.29 27.02 -8.40 43.17 -34.55 -66.30 

  3.46 2.35 0.33 -0.31 3.46 -0.53 -1.02 

 𝑅𝑖,𝑡𝑒
𝐵  0.04 -0.01 0.02 0.04 0.04 -0.01 -0.03 

  1.80 -0.77 1.23 2.06 1.77 -0.87 -2.13 

 𝑅𝑖,𝑡𝑒
𝐷  -0.02 -0.03 -0.02 -0.03 -0.02 -0.03 0.36 

  -1.24 -2.73 -1.02 -1.33 -1.27 -3.16 1.17 

 𝐷𝑖,𝑡−1 -0.06 -0.05 -0.04 -0.07 -0.06 -0.05 0.41 

  -2.38 -2.92 -1.80 -2.59 -2.37 -3.31 1.32 

 OAS  0.01    0.01 0.02 

   0.69    0.60 0.78 

 OASD 
 0.20    0.36 0.57 

  
 0.10    0.16 0.24 

 DTS 
 0.01    0.01 0.01 

  
 1.57    1.68 1.65 

 Amt. Out. 
  0.46   1.59 2.42 

      0.12     0.44 0.69 

 Age     0.00     0.32 -0.93 

      0.00     0.93 -2.42 

 IRT     13.89     2.63 1.87 

      2.03     0.63 0.43 

 BIAS     -4.54     -6.73 -8.15 

      -0.42     -1.90 -2.42 

 𝛾     0.26     2.03 2.21 

      0.07     0.85 0.91 

 VOL       2.76   0.89 1.80 

        1.28   0.87 1.87 

 FREQ       0.02   0.01 0.00 

        1.26   1.08 0.61 

 INV         -0.14 -0.16 -0.19 

          -3.97 -6.01 -7.10 

 𝑅𝑖,𝑡𝑖
𝐵              -0.15 

              -6.90 

 𝑅𝑖,𝑡𝑖
𝐷              -0.57 

              -19.45 

 𝐷𝑖,𝑡             -0.80 

              -2.53 

R2 0.09 0.31 0.15 0.11 0.09 0.35 0.40 

Bond-month obs 551,538 551,538 551,538 551,538 551,538 551,538 551,538 

 

5.4. Index prices’ dynamics 

Although index prices are not actual tradeable prices, they are highly relevant for investors for two 

reasons. First, as most fixed income investors track an index, their prices are determining the relative 

performance and tracking error that result from the trading decisions of both active and passive 

investors. Second, in opaque and illiquid markets, index prices provide on a daily basis a reference 

valuation for tradeable securities. They thus contribute indirectly to the price discovery when market 

transparency is limited. This is the case in corporate bond markets where pre-trade transparency is 



 
 

essentially non-existent. Indeed, although investors have access to quote information, those are usually 

non-firm, are updated infrequently and are not distributed homogeneously to market participants. 

Moreover, contrary to equity markets, the best bids and asks, as well as the order book depth, are not 

available to investors. 

Nevertheless, independent valuators face similar challenges as investors when it comes to determining 

the fair-value of securities in such illiquid and opaque markets. Namely, in the presence of very limited 

pre-trade transparency, they need to rely on post-trade record of transactions, when available, and on 

valuation models to determine the index prices. Given the illiquidity of corporate bond markets, 

valuators have to deal with the infrequent arrival of transaction information and potentially outdated 

traded prices when the market has moved. E.g., Bloomberg, which is our data source for index prices, 

values most fixed-income securities using their proprietary valuation algorithm BVALcc. For corporate 

bonds, BVAL relies on information from both TRACE and their own relative valuation modelsdd. The 

contribution of traded prices to the index valuation depends amongst others on the recency of the 

transactions, whereby more weight is being given to recently observed transactions compared to 

alternative valuation mechanisms. 

Such methodological choices from index providers, consistent with the model we introduced in Section 

2, are likely to introduce cross-serial dependence across pricing sources. Table 3 already provided early 

empirical support for this intuition. In this section, we further explore the dynamics of index prices over 

the implementation lag window as well as over the subsequent month, after controlling for the 

implementation lag. Although the latter is less relevant for index prices, as they are non-tradeable prices, 

this alignment with the previous analyses allows to compare directly the results obtained from index 

prices with those from TRACE prices. 

In Table 7 below we report the results of the Fama-MacBeth regressions of the Bloomberg returns over 

the implementation lag window 𝑅
𝑖,𝑡𝑖+1
𝐵  on the same set of explanatory variables as for the TRACE 

returns in Table 4. Overall, we find mostly the same results as for transaction prices and the key finding 

is that distortions across pricing sources not only affect traded prices but also index valuations, in line 

with our expectation. 

A few noteworthy differences should be discussed though. First, as mentioned earlier, the sign of the 

coefficient on the contribution to returns from price distortions 𝑅𝑖,𝑡𝑒
𝐷  is of opposite sign when we 

consider index returns. This results from the fact that this contribution is expressed as the difference 

between TRACE returns and index returns, such that a positive coefficient indicates that index prices 

converge toward traded prices and identifies reversals in index prices. The finding is consistent with the 

 
cc See Bloomberg (2023) index methodology for fixed-income indices. 
dd See Bloomberg (2018a, 2018b) for more information on the BVAL index methodology. 



 
 

index valuation methodologies, whereby the evaluated prices dynamically incorporate traded prices as 

new information becomes available, putting more weight on recent transaction and thus inducing cross-

serial correlation. 

Table 7: Explaining the implementation shortfall of reversal – index prices 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BBG returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall of 

strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-16), together with the set of controls defined in Section 3.3. The numbers in 

parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients are identified 

in bold. Returns are expressed in basis points. 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅𝑖,𝑡𝑖+1
𝐵   

 constant -5.02 -1.14 -20.89 -16.10 -5.02 -28.99 

  -3.28 -0.72 -1.06 -2.58 -3.27 -1.91 

 𝑅𝑖,𝑡𝑒
𝐵  0.01 -0.01 0.01 0.01 0.01 -0.01 

  1.21 -3.09 1.17 1.14 1.18 -3.25 

 𝑅𝑖,𝑡𝑒
𝐷  0.14 0.13 0.15 0.15 0.14 0.14 

  16.69 16.81 17.47 16.60 16.65 17.02 

 𝐷𝑖,𝑡−1 0.13 0.12 0.14 0.13 0.13 0.13 

  14.95 15.63 15.53 14.74 14.95 15.74 

 OAS   0.00       0.00 
    -0.66       -0.75 

 OASD   -0.82       -0.80 

    -1.11       -1.07 

 DTS   0.00       0.00 

    0.93       1.14 

 Amt. Out.     0.78     0.94 

      0.81     1.52 

 Age     0.22     0.16 

      2.70     1.71 

 IRT     -2.24     -1.67 

      -1.74     -2.24 

 BIAS     -0.90     -1.13 

      -1.05     -1.97 

 𝛾     -1.64     -1.15 

      -1.85     -2.06 

 VOL       0.64   0.54 

        1.75   1.85 

 FREQ       0.00   0.00 

        0.80   -1.79 

 INV         -0.03 -0.04 

          -5.04 -7.57 

R2 0.08 0.20 0.11 0.09 0.08 0.22 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 

 

Second, the significance of those distortions, although they remain by far the most significant 

explanatory variable over the implementation lag window, is only a fraction of what we found for 

transaction prices. While this could be interpreted as index prices being less sensitive to trading 

frictions, we have shown in the previous section that distortions across pricing sources are unrelated to 

trading frictions. A more likely explanation is the larger reliance of index providers on valuation models 

such that post-trade information is of lower relevance for valuators than for investors.  



 
 

This smaller importance is also reflected in the much smaller R2 obtained for specification (1) compared 

to Table 4. On the opposite, we observe in specification (2) a much larger contribution from risk 

measures, although none of the variables are statistically significant, with the R2 more than doubling 

relative to specification (1). Assuming valuators’ models focus mostly on the pricing of the key bond 

characteristics, their high contribution further supports the hypothesis that index providers put more 

emphasis on valuation models than in the sparse information coming from the record of transactions. 

Third, we find that none of the trading friction proxies are significant except for the dealers inventory 

imbalances which remain a key driver of future corporate bond returns. This result comes as no surprise 

as non-traded index valuations should not be affected by market microstructure noise. At the same time, 

the strong significance of the dealers’ inventory imbalances suggests this affects all pricing sources. Our 

model offers a potential explanation on the transmission channel through which those imbalances feed 

into index valuations. Indeed, as dealers unwinds their positions traded prices adjust, which in turn feeds 

into the valuators’ expectations. 

In Table 8, we further explore the persistence of pricing distortions on index valuations. The results are 

very much in line with those for transaction-based returns in Table 5, as we find that dispersions across 

pricing sources are also a key determinant of reversals in the cross-section of contiguous future 

corporate bond index returns. This result is in line with the predictions of our model in which valuators 

also aim at closing the price distortion by adjusting their valuation towards past traded prices. One key 

difference though is that the forecasting power of past price distortions measured over the end-of-month 

window extends beyond the implementation lag in 𝑡𝑏. This is of course of limited relevance for 

investors who cannot transact at those prices, but is highly informative about the valuation process of 

index providers as this suggests independent valuators incorporate slowly those distortions into index 

prices. This is consistent with a valuation function that combines to proprietary models not only the last 

pricing distortions but also multiple lags of those dispersions. 

Table 8 also confirms that dealer inventory imbalances have predictive power for index returns beyond 

the implementation lag window, which testifies of the pervasive influence the unwinding of dealers 

positions have in illiquid markets. It is interesting to note that the coefficient sign is similar for both 

Bloomberg and TRACE returns which shows it is not a source of convergence across pricing source but 

rather a common driver of reversal. This confirms that the unwinding by dealers of their large 

accumulated net positions leads to selling pressures that drive price reversals in both pricing sources, a 

phenomenon unrelated to the dynamics of reversals between pricing sources.  

 

 

 



 
 

Table 8: Evaluating the persistence of price distortions in explaining reversals – index prices 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of BBG. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-16), when measured over both the EOM and the IL windows, together with the 

set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the coefficient value, reported 

above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) (7) 

Dependent return:  𝑅𝑖,𝑡𝑏+1
𝐵   

 constant 42.88 19.65 37.50 -25.89 42.91 2.97 70.44 

  (3.71) (3.05) (0.54) (-0.93) (3.71) (0.05) (1.21) 

 𝑅𝑖,𝑡𝑒
𝐵  0.05 -0.01 0.03 0.05 0.05 -0.01 -0.03 

  (2.26) (-0.48) (1.78) (2.53) (2.23) (-0.50) (-2.36) 

 𝑅𝑖,𝑡𝑒
𝐷  0.02 -0.03 0.01 0.02 0.02 -0.03 0.36 

  (1.08) (-2.21) (0.41) (1.03) (1.02) (-2.98) (1.39) 

 𝐷𝑖,𝑡−1 0.01 -0.03 0.00 0.01 0.01 -0.03 0.42 

  (0.50) (-2.39) (-0.02) (0.50) (0.48) (-2.81) (1.63) 

 OAS  0.01    0.00 0.01 

   (0.32)    (0.28) (0.74) 

 OASD 
 0.00    0.34 1.20 

  
 (0.00)    (0.15) (0.52) 

 DTS 
 0.01    0.01 0.02 

  
 (1.73)    (1.81) (1.81) 

 Amt. Out. 
  0.02   -1.25 -4.02 

  
  (0.01)   (-0.39) (-1.25) 

 Age 
  0.36   0.71 -0.14 

  
  (1.08)   (2.01) (-0.39) 

 IRT 
  11.28   1.45 6.19 

  
  (1.74)   (0.46) (2.00) 

 BIAS 
  -4.75   -5.27 -3.85 

  
  (-0.68)   (-2.80) (-2.18) 

 𝛾   -1.12   -0.08 1.17 

  
  (-0.48)   (-0.06) (0.87) 

 VOL 
   3.86  2.20 1.66 

  
   (1.77)  (2.38) (1.80) 

 FREQ 
   0.01  0.01 0.02 

  
   (0.79)  (1.13) (2.08) 

 INV 
    -0.12 -0.15 -0.18 

  
    (-4.94) (-7.72) (-8.78) 

 𝑅𝑖,𝑡𝑖
𝐵        -0.18 

  
      (-8.98) 

 𝑅𝑖,𝑡𝑖
𝐷        -0.59 

  
      (-29.43) 

 𝐷𝑖,𝑡       -0.77 

  
      (-3.04) 

R2 0.09 0.31 0.13 0.10 0.09 0.34 0.40 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 

 

6. Conclusion 

This paper proposes a model that expands on the traditional market microstructure model, in which an 

investor engages with a dealer, by introducing a third agent, being the independent valuator, whose aim 

is solely to provide accurate estimates of the fundamental value of securities. We focus specifically on 

the interaction between the investor and the valuator and its influence on prices. As we let the agents 

evolve in an opaque market, they have limited access to information and are forced to share noisy 



 
 

estimates of their past valuations. We show that this sharing of information has important implications 

for asset prices.  

More specifically, we show that the pricing distortions between traded prices and index valuations are 

a key factor in explaining the cross-section of contiguous future corporate bond returns. While the 

information contained in those deviations has been studied in the context of the measurement of 

illiquidity by Jankowitsch et al. (2011), their impact of asset prices has remained largely undocumented 

in the literature. We find that this factor can neither be explained by the risk of individual bond issues 

nor by widely accepted proxies for the microstructural noise embedded in traded prices. We show that 

these pricing distortions are a distinct phenomenon from the well documented bid-ask bounce effect, 

described in amongst others Roll (1984). 

This paper also extends the work of Dickerson et al. (2023b), who document large implementation 

shortfalls for return-based predictors, by providing insights into the drivers of this implementation 

shortfall. Consistent with the implication of our model, we show that the convergence across pricing 

sources drives to a large extent the instantaneous price adjustments that are behind the large drop in 

significance of reversal, once properly accounting for an implementation lag. We confirm the results of 

Dickerson et al. (2023b) and show that the documented short-term reversal effect is explained by 

distortions across pricing sources and cannot be harvested in practice. Indeed, while pricing distortions 

have large explanatory power for contiguous returns, their predictive power beyond the implementation 

lag window is not robust and varies over universes, time periods the choice of control variables. 

Beyond documenting the substantial influence independent valuators have on corporate bond returns, 

our paper shed additional light on the pervasive influence of dealer inventory imbalances on future 

corporate bond returns, which is found to be the sole market microstructure proxy to be significant after 

controlling for an implementation lag. This finding is consistent with those of Khang and King (2004) 

and a broader literature concerned with the capital commitment of dealers. We show that accumulated 

net positions by dealers lead to reversals in both pricing sources, a phenomenon distinct from the 

reversal driven by the convergence across pricing sources.  

Finally, we show that both pricing sources carry relevant information for price discovery. While we 

confirm that traded prices are contaminated by microstructure effects to a much larger extent than index 

prices, we also shed light on the diffusion of information across pricing sources by showing that 

evaluated prices incorporate valuable market information contained in traded prices with a delay. 

Specifically, distortions across pricing sources are found to have predictive power for the cross-section 

of valuation-based returns beyond the implementation lag window. 
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Appendix 

A.1. Additional model insights 

Having characterized in Section 2.1 the returns of both transaction prices and index valuations as a 

function of past index returns and changes in price distortions, it is important to highlight that our model 

does not strictly impose this (cross-) serial correlation with index prices. Rather, it enforces a 

dependence structure on past returns independent of the pricing source. Indeed, the fundamental value 

estimation functions for both agents can be expressed as a function of past traded prices. This allows to 

rewrite the returns of both pricing sources as a function of past returns in traded prices. What changes 

between those formulations is essentially the processing of the distortions. To provide intuition for this 

equivalence, it is useful to think about the limiting case where traded prices and index valuations are 

perfectly cointegrated in the absence of trading frictions and valuation errors. Then, pricing sources are 

perfect substitutes and the dependence structure on past returns is independent of the choice of pricing 

source. 

 𝐸𝑡
𝑇[𝑓𝑡 ] = 𝑝𝑡−1

𝑇 − (1 − 𝜔𝑡
𝑇) 𝐷𝑡−1 + 𝜀𝑡

𝑇  (A-1) 
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A.2. Enhanced return methodology 

A.2.1. Common evaluation moment illustration 

Figure 2 and Figure 3 below illustrate respectively the issue present in the Dickerson et al. (2023b)  

return calculation methodology that prevents the implementation of cross-sectional strategy and how 

our enhanced return methodology allows to address this issue. 

Figure 2 

 

Figure 3 

 



 
 

A.2.2. Discussion on the improvements 

Having presented in Section 3.1 our methodology and the enhancements it brings over other approaches 

used in the literature, we want to raise awareness on the influence of the single degree of freedom 

available in this approach, the length of the search window, once having cleaned the transaction dataset 

and having computed returns. While this might be obvious for most of the interested reader versed to 

conducting research on the TRACE transaction dataset, it is important to highlight that this limited 

search window introduces a selection bias towards the most liquid bondsee and decrease coverage. While 

we conveniently borrow the 5 business days limit from the literature, the fact is that researchers are left 

with an important degree of freedom when it comes to fixing the maximum look-back or look-forward 

window, for respectively the EOM and BOM prices.  

In one of the most extreme case, being an unbounded search window within a month, researchers can 

essentially get coverage for the whole universe, including the most illiquid bonds, as long as any bond 

is traded at least one a month. E.g., this allows Bartram et al. (2023) to benefit from a large increase in 

coverage, with about 30% more bond-month observations than other studies relying on the same sample 

data. This is achieved by allowing to measure returns out of a single transaction within a month. It goes 

without saying that such returns could never be earned and only contains accrued interest and paid 

cashflows. One could argue that this could be the return earned from holding a bond purchased prior 

and sold after the performance evaluation window. As accounting standards usually require the mark-

to-market of assets, i.e. are not grounded in the Martingale hypothesis, independent valuators are  

required to estimate the fair-value of untraded assets, such that the contribution to portfolio returns of 

holding this bond is unlikely to solely contain accrued interest and coupons payments. Also, note that 

including such bond-month return observation in any sorting portfolio analysis, aimed at creating long-

short factor portfolio, would violate the implicit assumption that the asset can be traded at the chosen 

rebalancing frequency. This matters only when the asset migrates across quantile-based portfolios and 

will have larger influence on factors associated with high transition probabilities.  

Moreover, would this return be used as predictor, it would most likely be driven by the coupon rate for 

the most illiquid bonds and induce time-varying selection biases, whereby liquid bonds are essentially 

preferred (or disliked) over illiquid ones solely because no transaction occurred and past prices would 

not capture actual market conditions. It is worth mentioning that this issue is exacerbated for the 

approaches that uses both beginning-of-month and end-of-month prices, as is described in the case 

above.  

On the back of the large influence such a degree of freedom potentially introduces, we suggest following 

the standard convention within the literature of using as default a 5 business days search window, which 

 
ee Bessembinder et al. (2020) highlight the risk that estimates weighing infrequent reported transactions will 

essentially only capture information about the most liquid segment of the market.  



 
 

seems qualitatively reasonable, but do recommend to stress the results on wider/narrower search 

windows as a way to evaluate the sensitivity to the implicit liquidity sampling. 

 

A.2.3. Discussion on the limitations 

While our methodology provides both improvements over other approaches documented in the 

literature and hopefully guidance for future research, it is important to fully disclose and acknowledge 

its limitations and the associated potential implications.  

The main limitation of the approach is that it introduces a hindsight bias in any sorting portfolio analysis. 

Being the asset pricing literature’s  workhorse, it is needless to say that this has broad-based impact. 

The hindsight bias originates from missing observations induced by an absence of trading activity. This 

leads portfolios to drop bonds without any trading activity over the evaluation window and to potentially 

buy them back upon the recording of future transactions in TRACE. This is likely to induce noise in 

portfolio return estimates and introduce an upward bias in turnover. To tackle this issue, one would need 

a methodology that retains illiquid bonds within portfolios until the arrival of a new transaction. The 

implication of such an adjustment would be that the portfolios would start losing exposure to the 

targeted factor as a result of liquidity constraints. This also suggests that the top factor portfolios are 

unachievable ideals that suffers hindsight bias in illiquid markets, and, that the resulting estimated factor 

premia should be interpreted as an upper bound for the ‘harvestable’ premium, even after accounting 

for an implementation lag. 

The second limitation comes from the assumptions that liquidity is infinite. While the daily price 

estimates account for relative trade sizes over the day, any analysis that focuses solely on returns 

assumes that they are scalable (i.e., independent of the traded volume). The reality is that there is a finite 

market depth associated with each transaction in TRACE. This implies that returns do not scale with 

portfolio size. For large portfolios targeting factor exposures, this involves trading-off an increase in 

the number of holdings, in the case of a pure liquidity taker that simply engages in all transactions 

related to bonds belonging to the target portfolio, against higher liquidity search costs, in case of 

constraints on the minimum position size or weight. For small portfolios, assuming traded quantities 

are non-negotiable, this leads to an opportunity cost as the investor needs to forgo potentially attractive 

exposure when the traded notional is too high. In all case, accounting for finite liquidity is likely to 

result in a factor exposure dilution, which in turn will affect the ‘harvestable’ factor premium.  

Another related assumption is the absence of competition for liquidity. Indeed, by considering all 

transaction records one essentially assumes a market in which a single risk taker faces a single liquidity 

provider. Relaxing this assumption, whereby multiple risk takers compete for liquidity, implies any 

single market participant can only consume a fraction of the aggregate liquidity. Akin to the impact of 



 
 

relaxing the previous assumption for small portfolios, this will lead to missed trades. This opportunity 

cost will affect the targeting of exposures and reduce the ‘harvestable’ premium. 

As counterargument to the previous limitations, one might argue that the record of transactions in 

TRACE does not capture the full liquidity available to market participants. Indeed, as any transaction 

requires the matching of interests and an agreement on the price, we only observe instances where 

supply met demand, at the right moment. While it is fair to assume that liquidity might be continuously 

available, i.e. trading is not restricted to the arrival and size of trades in TRACE, it is also reasonable to 

assume that in such case the search for liquidity will lead to higher transaction costsff. Notwithstanding 

the challenge of evaluating the equilibrium price at which supply and demand would meetgg, for 

strategies assuming trading moments outside the set of transaction records, the additional search cost 

are likely to also impair the ‘harvestable’ net factor premium. 

Finally, another limitation of such methodology is that while it guarantees a common evaluation 

moment, the trading possibilities are conditioned on the arrival and directionality of trades within the 

search window. This poses practical challenges for any investor with leverage, cash or funding 

constraints. Assuming portfolio rebalancing needs to be fully funded, meaning that a sell needs to 

happen prior to a buy, such that cash is raised before being reinvested, the random arrival of transaction 

acts as a constraints on the implementation. Traditional sorting portfolio analysis disregard the ordering 

of transaction, a complexity which in practice leads to a similar drop in factor exposure as the above 

limitations.  

 
ff Market microstructure theory relates transaction costs to the various risks born by dealers, namely the inventory 

risk, the risk of information asymmetry, but also the search risk. As argued in Bessembinder et al. (2020), the latter 

is likely higher in decentralized and opaque markets such as the over-the-counter market for corporate bonds. 

Understanding the impact of search costs on bid-ask spread and asset prices has received considerable attention 

in the literature. Duffie and al. (2005,2007) introduce a search and bargaining model in which transaction costs 

increase with the difficulty in finding a counterparty, i.e. they are inversely related to the search intensities in the 

model. Jankowitsch et al. (2011) document sizeable deviations between TRACE prices and Markit composite 

quotations, that are substantially larger than the bid-ask spread. They motivates the existence of large transaction 

price deviations from fundamental values by the presence of inventory and search costs. They introduce a price 

dispersion measure that captures jointly the impact of inventory and search costs which impact the liquidity of 

corporate bonds. They show that this metric is highly related to common proxies of liquidity. Feldhutter (2012) 

extend the search model of Duffie et al. (2005) to show that large investors characterized by a high search intensity 

manage to negotiate larger price discounts relative to small investors, a difference that is exacerbated when buying 

in the presence selling pressure, thanks to their ability to easily identify new alternative counterparties. Friewald 

and Nagler (2020) provide empirical evidence that when search frictions relax the intermediation premium 

required by dealers diminishes. They introduce three measures capturing the intensity of the search frictions and 

estimate that those explain about 4% of the systematic variation in yield spread changes, which is slightly below 

the contribution from dealer inventory imbalances at 5% and similar to frictions originating from bargaining 

power. 
gg We document in this paper large pricing differences between the TRACE transaction prices and BBG index 

prices and show that index prices do not incorporate all information available in markets. While in the absence of 

transactions only index composite pricing can provide information about the expected equilibrium price, those are 

likely noisy estimates. 



 
 

The discussed challenges are not particular to our proposed methodology and more generally extends 

to the literature that has been using TRACE to compute returns and form portfolios. Addressing them 

is beyond the scope of this paper. This discussion mostly aimed at raising awareness and at suggesting 

future avenues of research to take into account important dimensions affecting the expected 

‘harvestable’ net factor premium.  

  



 
 

A.3. Sample and variable definitions 

A.3.1. Sample definition 

In the below table we report in Panel A the impact of the key cleaning steps on the final sample of 

transaction in TRACE. To clean the record of transactions reported in TRACE, we leverage on a large 

body of literature. More specifically, we follow Dick-Nielsen (2009, 2014) to clean the TRACE 

database and to continue selecting the subset of relevant transactions. Panel B reports the influence of 

the sample definition on the final sample size in terms of the number of bond-month observations and 

the number of unique bonds in our sample, where we require that all the past month EOM returns are 

available as well as the EOM, IS and BOM returns for both return sources. Our sample is restricted to 

USD denominated corporate bonds between July 2002 and December 2022 that are constituents of the 

Bloomberg US Aggregate Corporate Investment Grade (IG) index and the Bloomberg US Corporate 

High Yield (HY) index. Finally, we impose that all control variables are available. 

Table A-1 

This table reports in Panel A the impact of the key cleaning steps on the final sample of transaction in TRACE. To clean the 

record of transactions reported in TRACE, we leverage on a large body of literature. More specifically, we follow Dick-Nielsen 

(2009, 2014) to clean the TRACE database and to select the subset of relevant transactions. Panel B reports the influence of 

the sample definition on the final sample size in terms of the number of bond-month observations and the number of unique 

bonds in our sample. Our sample is restricted to USD denominated corporate bonds between July 2002 and December 2022 

that are constituents of the Bloomberg US Aggregate Corporate Investment Grade (IG) index and the Bloomberg US Corporate 

High Yield (HY) index. Moreover, we require that all the past month EOM returns are available as well as the EOM, IS and 

BOM returns for both return sources. Finally, we impose that all control variables are available. 

 

Panel A: Cleaning TRACE       

Description Transactions Bond-Month Bonds 

All transactions with a CUSIP in TRACE (after Dick-Nielsen filters) 321,574,937 4,403,400 323,683 

Matched trades to Bloomberg database 251,504,369 2,104,754 39,522 

Country is US, Currency is USD and Flag144A is False 224,410,540 1,779,229 32,100 

Remove Structured Notes, MBS, ABS, Agency-backed, Equity-Linked and Convertibles 219,264,409 1,707,663 30,825 

Remove prices below 5 USD and above 1.000 USD 219,091,028 1,700,285 30,706 

Remove floaters 211,025,271 1,601,212 28,015 

Remove below 1 year maturity 193,674,851 1,486,392 27,232 

Remove special transactions 190,610,520 1,486,049 27,230 

Remove days to settlement above 3 business days 190,393,444 1,485,505 27,223 

Remove transactions below 10.000 USD 141,444,710 1,463,645 27,182 

Remove agency and double dealer trades 96,785,357 1,462,946 27,178 

Panel B: Sample definition 

 

    

Description   Bond-Month Bonds 

Returns available over required windows   877,887 21,696 

Bloomberg index constituents 

 

809,914 19,906 

Sample restricted to the availability of all control variables 

 

735,481 19,409 

 



 
 

A.3.2. Variable definitions 

In this section, we provide the exact definitions used for the control variables that are not readily 

available and require to be calculated. Starting with the bond illiquidity measure (𝛾) from Bao et al. 

(2011), it is defined as the negative of the autocovariance in daily log returns over a 22 business days 

window, where prices are the daily volume-weighted average price �̅� computed from our final sample 

of TRACE transactions.  We follow the authors and compute the autocovariance under the conditions 

that there are at least 10 return observations, that the maximum distance between returns is a week and 

that the bond is trading on at least 16 of the 22 business days.  

 𝛾𝑖,𝑡 = −𝐶𝑜𝑣𝑖,𝑠:𝑠−21(∆�̅�𝑖,𝑠, ∆�̅�𝑖,𝑠−1) (A-5) 

The imputed round trip cost (𝐼𝑅𝑇𝐶) of Feldhütter (2012) is defined as the maximum minus the minimum 

price 𝑝 for transactions with similar traded amount and executed within a 15 minutes window during 

the same day. For each set 𝑗 of matched transactions, with similar traded amounts within a 15 minutes 

window, we refer to 𝑝𝑖,𝑠,𝑗
𝑚𝑎𝑥 and 𝑝𝑖,𝑠,𝑗

𝑚𝑖𝑛 as respectively the maximum and minimum price within that set, 

where the subscripts 𝑖, 𝑠 and 𝑗 refer respectively to the bond 𝑖, the day 𝑠, and to the set 𝑗 of matched 

transactions. We further take the average of the computed autocovariance over the past month in order 

to limit the shrinkage of our sample size when constraining our sample on the availability of all control 

variables.hh 

 

𝐼𝑅𝑇𝐶𝑖,𝑡 =
1

22
∑

1

𝐽
∑ 𝑝𝑖,𝑠,𝑗

𝑚𝑎𝑥 − 𝑝𝑖,𝑠,𝑗
𝑚𝑖𝑛 

𝐽

𝑗=1

𝑡

𝑠=𝑡−21

 

(A-6) 

The bid-ask spread (𝐵𝐴𝑆) is defined as the difference between the daily volume-weighted average of 

ask and bid prices, denoted respectively as �̅�𝑖,𝑠
𝑎𝑠𝑘 and �̅�𝑖,𝑠

𝑏𝑖𝑑, computed from our final sample of TRACE 

transactions. Similar to the imputed round trip cost (𝐼𝑅𝑇𝐶), we take the average over the past month. 

 
𝐵𝐴𝑆𝑖,𝑡 =

1

22
∑ �̅�𝑖,𝑠

𝑎𝑠𝑘 − �̅�𝑖,𝑠
𝑏𝑖𝑑

𝑡

𝑠=𝑡−21

 

(A-7) 

The bid-ask bias (𝐵𝐼𝐴𝑆) estimate of Blume and Stambaugh (1983), is defined as the square of the bid-

ask spread divided by the sum of the bid and ask prices. Similar to the imputed round trip cost (𝐼𝑅𝑇𝐶), 

we take the average over the past month. 

 
𝐵𝐼𝐴𝑆𝑖,𝑡 =

1

22
∑ (

�̅�𝑖,𝑠
𝑎𝑠𝑘 − �̅�𝑖,𝑠

𝑏𝑖𝑑

�̅�𝑖,𝑠
𝑎𝑠𝑘 + �̅�𝑖,𝑠

𝑏𝑖𝑑
)

2𝑡

𝑠=𝑡−21

 

(A-8) 

 
hh This adjustment assumes implicitly that the illiquidity of bonds is a stable property over the past month. This 

allows to keep more bonds within our sample. 



 
 

In the spirit of Bessembinder et al. (2018), the inventory change (𝐼𝑁𝑉) over the last month is measured 

as the cumulative net dealer buys over the last month, where 𝑞𝑖,𝑠
𝑏𝑖𝑑 and 𝑞𝑖,𝑠

𝑎𝑠𝑘 refer respectively to the 

total quantities bought and sold by dealers in security 𝑖 over day 𝑠.  

 
𝐼𝑁𝑉𝑖,𝑡 = ∑ 𝑞𝑖,𝑠

𝑏𝑖𝑑 − 𝑞𝑖,𝑠
𝑎𝑠𝑘

𝑡

𝑠=𝑡−21

 

(A-9) 

Following Hendershott et al. (2017), the order imbalance (𝐼𝑀𝐵) scales the inventory change by the total 

traded volume over the measurement period.  

 
𝐼𝑀𝐵𝑖,𝑡 =

∑ 𝑞𝑖,𝑠
𝑏𝑖𝑑 − 𝑞𝑖,𝑠

𝑎𝑠𝑘𝑡
𝑠=𝑡−21

∑ 𝑞𝑖,𝑠
𝑏𝑖𝑑 + 𝑞𝑖,𝑠

𝑎𝑠𝑘𝑡
𝑠=𝑡−21

 
(A-10) 

We use three trade-based  measures, namely total traded volume (𝑉𝑂𝐿), the volume in proportion of the 

issue size (𝑉𝑂𝐿𝑆), where 𝑎𝑜𝑖,𝑠 denotes the bond amount outstanding, as well as the total number of 

trades (𝐹𝑅𝐸𝑄) over the past month, where 𝑛𝑖,𝑠 corresponds to the number of reported trades in TRACE 

for bond 𝑖 over day 𝑠. 

 
𝑉𝑂𝐿𝑖,𝑡 = ∑ 𝑞𝑖,𝑠

𝑏𝑖𝑑 + 𝑞𝑖,𝑠
𝑎𝑠𝑘

𝑡

𝑠=𝑡−21

 

(A-11) 

 
𝑉𝑂𝐿𝑆𝑖,𝑡 =

∑ 𝑞𝑖,𝑠
𝑏𝑖𝑑 + 𝑞𝑖,𝑠

𝑎𝑠𝑘𝑡
𝑠=𝑡−21

𝑎𝑜𝑖,𝑡
 

(A-12) 

 
𝐹𝑅𝐸𝑄𝑖,𝑡 = ∑ 𝑛𝑖,𝑠

𝑡

𝑠=𝑡−21

  
 (A-13) 

  



 
 

A.4. Dependence structure across pricing sources 

We replicate in Table A-2 below the analysis conducted in Table 4 of Andreani et al. (2023) where they 

investigate the lead-lag relationship across pricing sources. Specifically, they regress next month returns 

for both pricing sources independently on the past month returns of both pricing sources jointly. While 

in their study they use ICE/BAML as index valuations source, we can replicate their main finding using 

Bloomberg data. That is, we find back the predictive power of one source for another, as well as the 

stronger predictability from index valuations than traded prices. Likewise, our data also displays 

stronger negative serial correlation in traded prices. 

 

Table A-2: Replication of table 4 in Andreani et al. (2023) 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the future corporate bond returns measured both out of TRACE and Bloomberg in the absence of an implementation lag, and 

after controlling for an implementation lag using our BOM return series. The explanatory variables corresponds to the EOM 

return series of both sources. The numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, 

where the significant coefficients are identified in bold. 

 Specification: (1) (2) (3) (4) 

 Dependent return: 𝑅𝑖,𝑡𝑒+1
𝑇  𝑅𝑖,𝑡𝑒+1

𝐵  𝑅𝑖,𝑡𝑏+1
𝑇  𝑅𝑖,𝑡𝑏+1

𝐵  

constant 0.46 0.44 0.44 0.45 

  3.72 3.55 3.60 3.56 

𝑅𝑖,𝑡𝑒
𝐵   0.32 -0.11 0.04 -0.04 

  16.39 -6.44 2.16 -2.42 

𝑅𝑖,𝑡𝑒
𝑇  -0.29 0.17 0.01 0.09 

  -16.22 9.59 0.71 6.14 

R2 0.11 0.10 0.08 0.09 

Bond-month obs 735,481 735,481 735,481 735,481 

 

Following Section 4.2, we revisit those findings while addressing the multicollinearity concern in the 

above specifications when pricing sources are cointegrated. Once appropriately tackling this issue 

using the proposed trivial decomposition, we show in Table A-3 that no pricing source is more 

informative than another as the coefficients for the serial correlation (i.e., the betas to the past returns 

from the same pricing source) and for the cross-autocorrelation (i.e., the betas to the past returns from 

the other pricing source) are equal. 

We see in the below table that across specifications we alternate between 𝑅𝑖,𝑡𝑒
𝐵  and 𝑅𝑖,𝑡𝑒

𝑇  for each 

dependent return variable. The key insight is that the coefficients measuring these (cross-) serial 

dependences are equal when we change the pricing source of the past return (e.g., in specification 1 vs 

2). This suggests that both return sources are cointegrated and carry the same information content, as 

long as pricing distortions are adequately controlled for. The key implication, is that no single pricing 

source is more informative than another for predicting the cross-section of future returns.  

 

 



 
 

Table A-3: revisiting short-term reversals in the presence of distortions across pricing sources 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the future corporate bond returns measured both out of TRACE and BBG in the absence of an implementation lag, and after 

controlling for an implementation lag using our BOM return series. The explanatory variables corresponds to the 

decomposition of the short-term reversal signal measured from either from traded priced, according to equation (4.2), or from 

index prices, according to equation (4.3). The numbers in parenthesis correspond to the t-statistic of the coefficient value, 

reported above, where the significant coefficients are identified in bold. 

 

 Specification: (1) (2) (3) (4) (5) (6) (7) (8) 

 Dependent return: 𝑅𝑖,𝑡𝑒+1
𝑇  𝑅𝑖,𝑡𝑒+1

𝐵  𝑅
𝑖,𝑡𝑏+1
𝑇  𝑅

𝑖,𝑡𝑏+1
𝐵  

constant 0.46 0.46 0.44 0.44 0.44 0.44 0.45 0.45 

  3.72 3.72 3.55 3.55 3.60 3.60 3.56 3.56 

𝑅𝑖,𝑡𝑒
𝐵   0.03   0.06   0.05   0.05   

 1.25   2.96   2.33   2.49   

𝑅𝑖,𝑡𝑒
𝑇     0.03   0.06   0.05   0.05 

    1.25   2.96   2.33   2.49 

𝑅𝑖,𝑡𝑒
𝐷  -0.29 -0.32 0.17 0.11 0.01 -0.04 0.09 0.04 

  -16.22 -16.39 9.59 6.44 0.71 -2.16 6.14 2.42 

R2 0.11 0.11 0.10 0.10 0.08 0.08 0.09 0.09 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 735,481 

 

This result differs from Andreani et al. (2023) who find that index returns tend to lead transaction-based 

returns, when using jointly the past returns from both pricing sources as independent variables. In the 

presence of multicollinearity amongst pricing source, this affects the sign and significance of the 

coefficients. Separating the different components affecting future returns allows to remove issues 

associated with confounding factors and provides a more rigorous framework to investigate the lead-

lag relationship across pricing sources.  
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IA.1. Robustness Checks 

In this section, we report a number of additional analyses we have conducted to ensure our results are 

robust to various degrees of freedom. Below, we show that our findings are invariant in the definition 

of the divergence across pricing sources and cannot be explained by the subsetting on bid transactions, 

the presence of small (retail) trades, the separation of credit returns from interest rate returns, as well as 

the sample period. Section IA.1.1 investigates the robustness of the results over the implementation lag 

window while Sections IA.1.2 and IA.1.3 report similar robustness checks for the BOM window, for 

respectively the TRACE and BBG returns. 

IA.1.1. Implementation shortfall 

In Table IA- 1, specification (1) corresponds to specification (6) in Table 4 and is the base case. In 

specification (2) we test whether the results are robust to changing the set of control variables, while 

specification (3) adds as control variable the length of the implementation lag as additional control 

variable. Specifications (4) to (6) perform the same analyses when we consider alternative return drivers 

suggested by our model being the level of pricing distortions at the end of the EOM window, which 

follows from equation (2-12), instead of the return drivers identified in equation (2-15) and used in the 

specification (1) to (3).  

Table IA- 2 stresses the results of Table IA- 1 by investigating the robustness of the results over sub-

sample periods when the sample period is split in halves. Table IA- 3 conducts the standard robustness 

checks of Table IA- 1 on TRACE returns computed out of bids-only. Table IA- 4 and Table IA- 5 

reiterate the analyses conducted in Table IA- 1 for respectively the IG and HY universes, while Table 

IA- 6 analyses the results on the AG universe when considering credit returns.  

Overall, our key results are robust. In all tables, the sign and significance of 𝑅𝑖,𝑡𝑒
𝐷 , 𝐷𝑖,𝑡−1 and 𝐷𝑖,𝑡 remains 

unchanged, indicating that distortions across pricing sources are key explanatory factors of the cross-

section of future contiguous corporate bond returns, leading to reversals over the implementation lag 

window. Likewise 𝐼𝑁𝑉𝑖,𝑡  and 𝐼𝑀𝐵𝑖,𝑡, the two proxies for inventory risk, are both significant drivers of 

reversal over the implementation lag window. As we are using information from the end of the EOM 

window, this return drivers cannot be harvested.  
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Table IA- 1 – Alternative measures 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑖+1
𝑇   

 constant 85.73 96.40 104.34 87.77 113.24 107.24 

  4.66 5.04 5.32 4.66 6.28 5.21 

 𝑅𝑖,𝑡𝑒
𝐵  -0.04 -0.03 -0.04       

  -7.86 -5.61 -7.72       

 𝑅𝑖,𝑡𝑒
𝐷  -0.56 -0.55 -0.56       

  -32.99 -30.29 -33.06       

 𝐷𝑖,𝑡−1 -0.47 -0.46 -0.47       

  -23.92 -22.48 -23.97       

 𝐷𝑖,𝑡       -0.53 -0.52 -0.53 

        -29.84 -27.75 -29.90 

 OAS 0.02   0.02 0.02   0.02 

  1.79   1.82 2.03   2.07 

 OASD 1.48   1.55 1.38   1.44 

  1.70   1.76 1.70   1.76 

 DTS 0.00   0.00 0.00   0.00 

  0.40   0.40 0.69   0.67 

 Rating   0.48     0.46   

    0.97     1.07   

 Maturity   0.44     0.42   

    2.69     2.41   

 Amt. Out. -3.59 -4.58 -4.18 -3.20 -5.38 -3.82 

  -4.55 -5.73 -4.92 -4.18 -6.90 -4.50 

 Age -1.21 -1.07 -1.22 -1.48 -1.30 -1.48 

  -7.02 -5.06 -7.07 -7.00 -5.70 -7.02 

 IRT 8.90 9.34 8.83 9.88 9.89 9.80 

  4.49 4.08 4.45 5.16 4.48 5.10 

 BAS   3.44     4.37   

    4.23     5.06   

 BIAS 1.57   1.36 1.83   1.63 

  2.77   2.47 3.35   3.03 

 𝛾 0.44 1.02 0.50 0.47 1.09 0.52 

  0.64 1.56 0.74 0.68 1.69 0.78 

 VOL -0.60   -0.82 -1.21   -1.44 

  -1.72   -2.74 -2.99   -3.95 

VOLS   0.03     0.03   

    0.84     0.90   

 FREQ 0.01 0.01 0.01 0.01 0.02 0.01 

  4.19 4.71 3.97 5.47 5.29 5.31 

 INV -0.07   -0.07 -0.05   -0.05 

  -11.12   -11.13 -7.84   -8.02 

 IMB   -0.04     -0.02   

    -2.97     -1.60   

 DAYS     -1.14     -1.15 

      -2.06     -1.99 

R2 0.31 0.28 0.32 0.29 0.27 0.30 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 
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Table IA- 2 – Subsample period analysis 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅𝑖,𝑡𝑖+1
𝑇   

 constant 85.73 72.62 99.38 113.24 119.68 106.52 

  4.66 2.17 7.42 6.28 3.74 7.02 

 𝑅𝑖,𝑡𝑒
𝐵  -0.04 -0.06 -0.02       

  -7.86 -7.99 -4.54       

 𝑅𝑖,𝑡𝑒
𝐷  -0.56 -0.52 -0.60       

  -32.99 -24.35 -25.62       

 𝐷𝑖,𝑡−1 -0.47 -0.40 -0.54       

  -23.92 -20.27 -20.01       

 𝐷𝑖,𝑡       -0.52 -0.47 -0.58 

        -27.75 -18.95 -24.31 

 OAS 0.02 0.03 0.00       
  1.79 2.05 -0.11       

 OASD 1.48 2.95 -0.04       

  1.70 1.88 -0.08       

 DTS 0.00 0.00 0.00       

  0.40 -0.19 2.07       

 Rating       0.46 0.83 0.09 

        1.07 1.07 0.24 

 Maturity       0.42 0.56 0.26 

        2.41 1.99 1.39 

 Amt. Out. -3.59 -3.52 -3.67 -5.38 -5.79 -4.95 

  -4.55 -2.42 -6.75 -6.90 -4.25 -7.14 

 Age -1.21 -2.01 -0.38 -1.30 -2.19 -0.37 

  -7.02 -8.54 -4.92 -5.70 -6.21 -3.97 

 IRT 8.90 10.20 7.54 9.89 12.16 7.52 

  4.49 2.73 7.34 4.48 2.95 6.35 

 BAS       4.37 3.20 5.60 

        5.06 2.11 7.86 

 BIAS 1.57 1.53 1.61       

  2.77 2.32 1.74       

 𝛾 0.44 0.60 0.29 1.09 1.10 1.08 

  0.64 0.93 0.23 1.69 1.75 0.94 

 VOL -0.60 -0.17 -1.04       

  -1.72 -0.32 -2.60       

VOLS       0.03 0.06 0.00 

        0.90 1.51 0.03 

 FREQ 0.01 0.01 0.01 0.02 0.02 0.01 

  4.19 2.84 3.62 5.29 4.38 3.73 

 INV -0.07 -0.06 -0.07       

  -11.12 -6.01 -12.51       

 IMB       -0.02 -0.01 -0.03 

        -1.60 -0.37 -6.46 

Start Aug’02 Aug’02 Jan’13 Aug’02 Aug’02 Jan’13 

End Nov’22 Dec’12 Nov’22 Nov’22 Dec’12 Nov’22 

R2 0.31 0.29 0.32 0.27 0.24 0.29 

Bond-month obs 735,481 246,255 489,226 735,481 246,255 489,226 
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Table IA- 3 – Bids only 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑖+1
𝑇   

 constant -31.06 -41.70 -91.60 -46.56 -39.67 -113.35 

  -1.90 -1.91 -5.79 -2.63 -1.90 -6.39 

 𝑅𝑖,𝑡𝑒
𝐵  -0.03 -0.02 -0.03       

  -6.21 -4.53 -5.88       

 𝑅𝑖,𝑡𝑒
𝐷  -0.54 -0.54 -0.54       

  -28.64 -27.32 -28.78       

 𝐷𝑖,𝑡−1 -0.46 -0.46 -0.47       

  -20.09 -20.09 -20.22       

 𝐷𝑖,𝑡       -0.52 -0.52 -0.52 

        -26.82 -25.80 -27.02 

 OAS 0.01   0.01 0.01   0.01 

  1.58   1.58 1.72   1.72 

 OASD 0.37   0.28 0.23   0.14 

  0.39   0.30 0.27   0.17 

 DTS 0.00   0.00 0.00   0.00 

  0.88   0.86 1.16   1.13 

 Rating   0.88     0.88   

    1.49     1.51   

 Maturity   0.12     0.08   

    0.68     0.44   

 Amt. Out. 1.31 2.05 3.42 2.37 1.97 4.66 

  1.90 2.16 4.97 3.44 2.12 5.97 

 Age -2.13 -2.05 -2.04 -2.50 -2.35 -2.39 

  -8.75 -8.30 -8.84 -8.37 -7.96 -8.46 

 IRT 0.64 1.69 1.18 0.52 1.79 1.09 

  0.43 1.15 0.82 0.36 1.21 0.77 

 BAS   1.40     0.87   

    1.43     0.89   

 BIAS -1.90   -1.73 -2.39   -2.16 

  -2.04   -1.86 -2.60   -2.34 

 𝛾 -1.26 -1.12 -1.38 -1.78 -1.58 -1.92 

  -1.46 -1.29 -1.60 -2.08 -1.78 -2.25 

 VOL 0.47   0.84 0.08   0.55 

  0.89   1.74 0.15   1.09 

VOLS   0.13     0.13   

    2.68     2.61   

 FREQ -0.01 -0.01 0.00 -0.01 -0.01 0.00 

  -2.40 -2.13 -1.03 -2.07 -1.86 -0.65 

 INV -0.10   -0.10 -0.09   -0.09 

  -9.47   -9.60 -9.49   -9.65 

 IMB   -0.15     -0.13   

    -12.33     -11.97   

 DAYS     2.26     2.54 

      3.15     3.43 

R2 0.28 0.25 0.30 0.27 0.23 0.28 

Bond-month obs 551,538 551,538 551,538 551,538 551,538 551,538 
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Table IA- 4 – Investment Grade 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

 
Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑖+1
𝑇   

 constant 104.54 109.03 120.06 120.73 128.51 136.13 

  5.55 5.59 5.93 6.06 6.94 6.31 

 𝑅𝑖,𝑡𝑒
𝐵  -0.12 -0.09 -0.11       

  -13.88 -12.03 -13.65       

 𝑅𝑖,𝑡𝑒
𝐷  -0.59 -0.57 -0.59       

  -33.40 -30.69 -33.48       

 𝐷𝑖,𝑡−1 -0.45 -0.44 -0.45       

  -21.60 -19.98 -21.69       

 𝐷𝑖,𝑡       -0.54 -0.52 -0.54 

        -27.64 -25.81 -27.72 

 OAS 0.05   0.05 0.06   0.07 

  5.42   5.69 6.92   7.21 

 OASD 0.32   0.36 -0.41   -0.36 

  0.37   0.43 -0.61   -0.53 

 DTS 0.01   0.01 0.01   0.01 

  1.85   1.87 3.20   3.18 

 Rating   0.48     0.43   

    1.51     1.39   

 Maturity   0.56     0.49   

    3.13     2.75   

 Amt. Out. -4.05 -5.05 -4.58 -4.60 -6.04 -5.14 

  -4.77 -5.71 -5.28 -5.21 -7.11 -5.66 

 Age -1.53 -1.46 -1.53 -1.92 -1.75 -1.91 

  -6.60 -6.50 -6.62 -6.80 -6.81 -6.82 

 IRT 2.81 6.06 2.73 2.53 6.68 2.48 

  3.07 5.54 3.07 2.75 6.42 2.77 

 BAS   4.75     5.80   

    9.06     10.62   

 BIAS 3.80   3.63 4.13   3.97 

  6.32   6.30 6.75   6.77 

 𝛾 1.21 1.96 1.24 1.15 2.29 1.18 

  1.78 2.80 1.93 1.67 3.21 1.77 

 VOL -0.89   -1.05 -1.24   -1.39 

  -3.29   -4.02 -4.06   -4.63 

VOLS   -0.08     -0.05   

    -2.18     -1.65   

 FREQ 0.01 0.02 0.01 0.01 0.02 0.01 

  3.07 5.11 3.23 3.43 5.79 3.57 

 INV -0.07   -0.07 -0.03   -0.03 

  -11.48   -11.04 -7.77   -7.67 

 IMB   -0.02     -0.01   

    -2.82     -0.76   

 DAYS     -0.93     -0.89 

      -1.50     -1.33 

R2 0.32 0.30 0.33 0.29 0.27 0.31 

Bond-month obs 572,308 572,308 572,308 572,308 572,308 572,308 
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Table IA- 5 – High Yield 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑖+1
𝑇   

 constant -6.27 40.91 7.36 3.25 59.57 18.13 

  -0.12 0.95 0.11 0.06 1.54 0.28 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 -0.01 -0.01       

  -2.86 -1.89 -2.72       

 𝑅𝑖,𝑡𝑒
𝐷  -0.58 -0.57 -0.58       

  -31.85 -28.81 -31.79       

 𝐷𝑖,𝑡−1 -0.52 -0.52 -0.53       

  -27.71 -24.05 -27.66       

 𝐷𝑖,𝑡       -0.57 -0.55 -0.57 

        -31.10 -27.61 -31.06 

 OAS 0.03   0.03 0.03   0.03 

  2.84   2.85 2.94   2.94 

 OASD 4.41   4.51 4.26   4.34 

  2.07   2.07 2.08   2.09 

 DTS 0.00   0.00 0.00   0.00 

  -0.71   -0.69 -0.54   -0.53 

 Rating   1.19     1.22   

    1.43     1.57   

 Maturity   0.41     0.31   

    2.27     1.57   

 Amt. Out. -1.21 -2.63 -1.62 -1.14 -3.56 -1.62 

  -0.52 -1.25 -0.61 -0.49 -1.81 -0.61 

 Age -0.09 0.57 0.02 -0.19 0.43 -0.08 

  -0.25 0.67 0.06 -0.58 0.48 -0.22 

 IRT 13.98 16.24 13.20 14.71 16.92 13.90 

  2.20 2.18 2.04 2.32 2.28 2.16 

 BAS   -1.66     -1.06   

    -0.52     -0.32   

 BIAS -0.24   -0.55 -0.16   -0.46 

  -0.22   -0.51 -0.15   -0.44 

 𝛾 0.33 1.33 0.46 0.38 1.46 0.52 

  0.36 1.53 0.50 0.41 1.69 0.55 

 VOL 0.87   0.55 0.15   -0.15 

  0.79   0.53 0.16   -0.19 

VOLS   0.13     0.13   

    1.97     2.15   

 FREQ -0.01 0.00 -0.01 -0.01 0.00 -0.01 

  -0.94 0.13 -0.88 -0.85 0.17 -0.76 

 INV -0.14   -0.14 -0.11   -0.11 

  -6.64   -6.57 -4.51   -4.36 

 IMB   -0.09     -0.08   

    -1.71     -1.45   

 DAYS     -0.94     -1.01 

      -0.99     -1.02 

R2 0.34 0.30 0.34 0.32 0.28 0.33 

Bond-month obs 163,173 163,173 163,173 163,173 163,173 163,173 
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Table IA- 6 – Credit returns 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the TRACE returns over the implementation lag window as defined in equation (3-2). It captures the implementation shortfall 

of strategies relying on predictors known in the EOM window. The explanatory variables correspond to the drivers of future 

returns in our model according to equation (2-12) or (2-15), together with the set of controls defined in Section 3.3. The 

numbers in parenthesis correspond to the t-statistic of the coefficient value, reported above, where the significant coefficients 

are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑖+1
𝑇   

 constant 104.54 109.03 120.06 120.73 128.51 136.13 

  5.55 5.59 5.93 6.06 6.94 6.31 

 𝑅𝑖,𝑡𝑒
𝐵  -0.03 -0.02 -0.03       

  -6.28 -4.29 -6.31       

 𝑅𝑖,𝑡𝑒
𝐷  -0.56 -0.56 -0.57       

  -32.78 -30.22 -32.84       

 𝐷𝑖,𝑡−1 -0.47 -0.47 -0.47       

  -23.63 -22.29 -23.77       

 𝐷𝑖,𝑡       -0.54 -0.53 -0.54 

        -29.66 -27.63 -29.73 

 OAS 0.02   0.02 0.02   0.02 

  1.87   1.97 2.10   2.18 

 OASD 1.82   1.98 1.72   1.87 

  3.53   3.74 3.60   3.80 

 DTS 0.00   0.00 0.00   0.00 

  0.38   0.35 0.63   0.59 

 Rating   0.37     0.41   

    0.79     0.96   

 Maturity   0.61     0.57   

    5.26     4.91   

 Amt. Out. -2.07 -2.97 -3.97 -1.80 -3.69 -3.73 

  -2.46 -3.56 -4.74 -2.07 -4.45 -4.45 

 Age -1.19 -1.11 -1.22 -1.45 -1.34 -1.47 

  -6.94 -5.25 -6.99 -6.97 -5.88 -6.99 

 IRT 9.08 9.19 8.58 10.17 9.83 9.62 

  4.67 4.07 4.38 5.40 4.51 5.05 

 BAS   4.08     5.00   

    4.94     5.67   

 BIAS 1.89   1.48 2.15   1.73 

  3.41   2.76 3.94   3.28 

 𝛾 0.44 1.00 0.57 0.45 1.07 0.58 

  0.68 1.61 0.90 0.69 1.74 0.89 

 VOL -0.40   -0.90 -0.94   -1.45 

  -1.15   -2.98 -2.30   -4.02 

VOLS   0.04     0.05   

    1.28     1.34   

 FREQ 0.01 0.02 0.01 0.02 0.02 0.01 

  5.10 6.34 4.37 6.27 7.21 5.74 

 INV -0.06   -0.06 -0.05   -0.05 

  -10.76   -10.82 -7.99   -8.18 

 IMB   -0.03     -0.02   

    -2.66     -1.52   

 DAYS     -3.06     -3.10 

      -5.80     -5.74 

R2 0.30 0.27 0.30 0.29 0.26 0.29 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 
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IA.1.2. Implementable reversal 

Table IA- 7 specifications (1) and (3) correspond to respectively specification (6) and (7) in Table 5 and 

constitute the base cases. The first one investigates the predictive power of pricing distortions measured 

over the EOM window on the BOM window TRACE returns while the second one also includes 

contiguous information about those distortions from the implementation lag window. In specification 

(2) and (4) we test whether the results are robust to changing the set of control variables. Specifications 

(5) to (6) perform the same analyses when we consider alternative return drivers suggested by our model 

being the level of pricing distortions at the end of the EOM window, which follows from equation 

(2-12), instead of the return drivers identified in equation (2-15) and used in the specification (1) to (3). 

Specification (7) to (8) add as controls the distortion information from the implementation lag window. 

Table IA- 8 stresses the results of Table IA- 7 by investigating the robustness of the results over sub-

sample periods when the sample period is split in halves. Table IA- 9 conducts the standard robustness 

checks of Table IA- 7 on TRACE returns computed out of bids-only Table IA- 10 and Table IA- 11 

reiterate the analyses conducted in Table IA- 7 for respectively the IG and HY universes, while Table 

IA- 12 analyzes the results on the AG universe when considering credit returns. 

Overall, our key results are robust. In all tables, the sign and significance of 𝑅
𝑖,𝑡𝑖
𝐷 , 𝐷𝑖,𝑡−1 and 𝐷𝑖,𝑡 (bottom 

part of the table) remains unchanged, indicating that distortions across pricing sources are key 

explanatory factors of the cross-section of future contiguous corporate bond returns, leading to reversals 

over the implementation lag window. But while contiguous information has consistently large 

explanatory power, the predictive power of those distortions beyond the implementation lag window 

varies across universes, time periods and the choice of control variables. E.g. looking at the sign and 

significance of 𝑅𝑖,𝑡𝑒
𝐷 , 𝐷𝑖,𝑡−1 and 𝐷𝑖,𝑡  (upper part of the table), we find that past distortions predicts 

reversals in both IG and HY, but it is only significant in the high-grade universe. 

Finally, we find that 𝐼𝑁𝑉𝑖,𝑡  and 𝐼𝑀𝐵𝑖,𝑡, the two proxies for inventory risk, are both significant drivers 

of reversal over the BOM window. As we are using information from the end of the EOM window, this 

return drivers can be harvested.  
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Table IA- 7 – Alternative measures 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant 2.97 -78.63 70.44 -8.68 5.44 -63.17 69.09 7.01 

  0.05 -1.12 1.21 -0.12 0.09 -0.88 1.12 0.09 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.02 -0.03 0.00         

  -0.50 1.18 -2.36 0.07         

 𝑅𝑖,𝑡𝑒
𝐷  -0.03 -0.01 0.36 0.41         

  -2.98 -0.90 1.39 1.38         

 𝐷𝑖,𝑡𝑒−1 -0.03 -0.02 0.42 0.46         

  -2.81 -1.21 1.63 1.56         

 𝐷𝑖,𝑡𝑒          -0.03 -0.02 0.13 0.14 

          -3.31 -1.25 10.61 8.38 

 OAS 0.00   0.01   0.01   0.02   
  0.28   0.74   0.32   0.85   

 OASD 0.34   1.20   0.43   1.46   

  0.15   0.52   0.20   0.66   

 DTS 0.01   0.02   0.01   0.01   

  1.81   1.81   1.71   1.76   

 Rating   4.11   4.09   4.47   4.53 

    1.83   1.77   1.86   1.86 

 Maturity   1.22   1.64   1.11   1.47 

    2.10   2.79   1.90   2.53 

 Amt. Out. -1.25 3.29 -4.02 0.09 -0.97 2.54 -3.47 -0.67 

  -0.39 1.05 -1.25 0.03 -0.28 0.81 -1.00 -0.21 

 Age 0.71 0.82 -0.14 -0.01 0.62 0.80 -0.30 -0.13 

  2.01 2.16 -0.39 -0.02 1.80 2.15 -0.86 -0.32 

 IRT 1.45 6.39 6.19 10.61 2.04 8.06 7.37 12.70 

  0.46 1.86 2.00 3.05 0.70 2.43 2.54 3.71 

 BAS   -0.80   1.41   -0.90   1.83 

    -0.32   0.56   -0.31   0.64 

 BIAS -5.27   -3.85   -4.94   -3.59   

  -2.80   -2.18   -2.73   -2.00   

 𝛾 -0.08 0.37 1.17 2.22 0.44 0.66 1.32 1.77 

  -0.06 0.20 0.87 1.22 0.31 0.32 0.94 0.83 

 VOL 2.20   1.66   1.78   1.15   

  2.38   1.80   1.81   1.16   

VOLS   0.33   0.31   0.31   0.31 

    1.50   1.45   1.17   1.15 

 FREQ 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 

  1.13 1.41 2.08 2.15 1.07 1.26 2.19 2.06 

 INV -0.15   -0.18   -0.15   -0.16   

  -7.72   -8.78   -6.61   -6.92   

 DAYS   -0.15   -0.16   -0.15   -0.15 

    -8.55   -8.95   -7.78   -7.75 

 𝑅𝑖,𝑡𝑖
𝐵      -0.18 -0.10         

      -8.98 -4.33         

 𝑅𝑖,𝑡𝑖
𝐷      -0.59 -0.55         

      -29.43 -24.64         

 𝐷𝑖,𝑡𝑒      -0.77 -0.79         

      -3.04 -2.67         

 𝐷𝑖,𝑡𝑖              -0.54 -0.52 

              -27.01 -23.67 

R2 0.34 0.26 0.40 0.33 0.32 0.23 0.37 0.27 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 735,481 
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Table IA- 8 – subsample analysis 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 

 
Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant 70.44 75.96 64.69 69.32 144.88 17.73 

  1.21 1.04 0.70 0.68 2.33 0.14 

 𝑅𝑖,𝑡𝑒
𝐵  -0.03 -0.02 -0.05       

  -2.36 -0.91 -2.49       

 𝑅𝑖,𝑡𝑒
𝐷  0.36 0.10 0.63       

  1.39 0.45 1.36       

 𝐷𝑖,𝑡𝑒−1 0.42 0.20 0.65       

  1.63 0.86 1.41       

 𝐷𝑖,𝑡𝑒        0.14 0.18 0.10 

        8.38 8.87 4.11 

 OAS 0.01 0.02 0.00       

  0.74 0.95 0.07       

 OASD 1.20 2.37 -0.01       

  0.52 0.65 0.00       

 DTS 0.02 0.02 0.01       

  1.81 1.51 1.01       

 Rating       4.53 6.76 2.20 

        1.86 1.65 0.91 

 Maturity       1.47 2.02 0.90 

        2.53 3.05 0.95 

 Amt. Out. -4.02 -4.68 -3.34 -0.67 2.70 -4.19 

  -1.25 -1.19 -0.65 -0.21 0.48 -1.46 

 Age -0.14 -0.41 0.14 -0.13 -0.68 0.44 

  -0.39 -0.65 0.44 -0.32 -0.95 1.41 

 IRT 6.19 4.30 8.16 12.70 9.50 16.03 

  2.00 1.03 1.78 3.71 2.60 2.77 

 BAS       1.83 1.78 1.89 

        0.64 0.45 0.45 

 BIAS -3.85 -1.97 -5.81       

  -2.18 -1.51 -1.76       

 𝛾 1.17 -0.51 2.93 1.77 -0.61 4.25 

  0.87 -0.47 1.22 0.83 -0.28 1.21 

 VOL 1.66 2.32 0.97       

  1.80 1.60 0.87       

VOLS       0.31 0.23 0.39 

        1.15 0.69 0.93 

 FREQ 0.02 0.01 0.02 0.02 0.03 0.02 

  2.08 1.14 1.81 2.06 1.82 1.12 

 INV -0.18 -0.15 -0.20       

  -8.78 -4.58 -9.70       

 IMB       -0.15 -0.17 -0.13 

        -7.75 -5.43 -5.90 

 𝑅𝑖,𝑡𝑖
𝐵  -0.18 -0.17 -0.19       

  -8.98 -6.56 -6.24       

 𝑅𝑖,𝑡𝑖
𝐷  -0.59 -0.61 -0.57       

  -29.43 -19.51 -23.96       

 𝐷𝑖,𝑡𝑒  -0.77 -0.53 -1.02       

  -3.04 -2.34 -2.24       

 𝐷𝑖,𝑡𝑖        -0.52 -0.53 -0.51 

        -23.67 -15.53 -19.00 

Start Aug’02 Aug’02 Jan’13 Aug’02 Aug’02 Jan’13 

End Nov’22 Dec’12 Nov’22 Nov’22 Dec’12 Nov’22 

R2 0.40 0.38 0.41 0.27 0.26 0.29 

Bond-month obs 735,481 246,255 489,226 735,481 246,255 489,226 
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Table IA- 9 – Bids only 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant -34.55 -88.17 -66.30 -116.95 -36.09 -86.07 -75.79 -110.11 

  -0.53 -1.21 -1.02 -1.58 -0.53 -1.12 -1.11 -1.43 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.01 -0.03 0.00         

  -0.87 0.80 -2.13 0.13         

 𝑅𝑖,𝑡𝑒
𝐷  -0.03 -0.02 0.36 0.20         

  -3.16 -1.72 1.17 0.63         

 𝐷𝑖,𝑡𝑒−1 -0.05 -0.04 0.41 0.24         

  -3.31 -2.33 1.32 0.76         

 𝐷𝑖,𝑡𝑒          -0.04 -0.03 0.11 0.12 

          -3.23 -1.92 7.86 6.13 

 OAS 0.01   0.02   0.01   0.02   

  0.60   0.78   0.62   0.95   

 OASD 0.36   0.57   0.28   0.69   

  0.16   0.24   0.13   0.32   

 DTS 0.01   0.01   0.01   0.01   

  1.68   1.65   1.66   1.59   

 Rating   4.14   4.17   4.76   4.78 

    1.93   1.89   2.04   2.03 

 Maturity   1.15   1.33   1.02   1.16 

    1.92   2.17   1.69   1.92 

 Amt. Out. 1.59 3.67 2.42 5.22 2.04 3.43 3.62 4.78 

  0.44 1.11 0.69 1.56 0.54 1.00 0.96 1.39 

 Age 0.32 0.47 -0.93 -0.70 0.28 0.52 -1.13 -0.81 

  0.93 1.18 -2.42 -1.64 0.83 1.31 -2.96 -1.80 

 IRT 2.63 9.95 1.87 9.30 3.48 11.94 2.33 11.70 

  0.63 2.36 0.43 2.30 0.91 2.97 0.60 2.91 

 BAS   0.09   -1.02   0.34   -2.01 

    0.02   -0.26   0.08   -0.45 

 BIAS -6.73   -8.15   -6.34   -8.45   

  -1.90   -2.42   -1.84   -2.46   

 𝛾 2.03 3.37 2.21 3.58 2.57 4.33 1.59 3.01 

  0.85 1.04 0.91 1.07 1.07 1.12 0.67 0.78 

 VOL 0.89   1.80   0.48   0.97   

  0.87   1.87   0.43   0.91   

VOLS   0.19   0.20   0.20   0.22 

    0.82   0.87   0.67   0.74 

 FREQ 0.01 0.02 0.00 0.01 0.01 0.02 0.01 0.01 

  1.08 1.73 0.61 1.49 1.00 1.44 0.68 1.32 

 INV -0.16   -0.19   -0.15   -0.17   

  -6.01   -7.10   -5.59   -6.05   

 DAYS   -0.18   -0.22   -0.17   -0.20 

    -8.63   -10.89   -7.46   -8.47 

 𝑅𝑖,𝑡𝑖
𝐵      -0.15 -0.07         

      -6.90 -3.12         

 𝑅𝑖,𝑡𝑖
𝐷      -0.57 -0.53         

      -19.45 -18.05         

 𝐷𝑖,𝑡𝑒      -0.80 -0.61         

      -2.53 -1.89         

 𝐷𝑖,𝑡𝑖              -0.53 -0.51 

              -18.23 -17.32 

R2 0.35 0.27 0.40 0.33 0.33 0.24 0.37 0.27 

Bond-month obs 551,538 551,538 551,538 551,538 551,538 551,538 551,538 551,538 
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Table IA- 10 – Investment Grade 
This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant 6.00 -34.40 86.66 45.92 26.91 -19.47 109.36 66.32 

  0.16 -0.60 1.99 0.75 0.65 -0.33 2.33 1.06 

 𝑅𝑖,𝑡𝑒
𝐵  -0.02 0.00 -0.08 -0.04         

  -2.10 0.15 -7.12 -2.22         

 𝑅𝑖,𝑡𝑒
𝐷  -0.04 -0.02 0.02 0.16         

  -5.26 -1.53 0.15 0.71         

 𝐷𝑖,𝑡𝑒−1 -0.03 -0.01 0.13 0.25         

  -3.58 -1.22 0.77 1.14         

 𝐷𝑖,𝑡𝑒          -0.04 -0.02 0.18 0.20 

          -4.68 -1.70 15.71 13.89 

 OAS 0.01   0.05   0.01   0.05   
  0.25   0.89   0.16   0.90   

 OASD 0.55   0.96   0.78   1.15   

  0.28   0.45   0.40   0.58   

 DTS 0.01   0.02   0.01   0.01   

  1.52   1.86   1.37   1.81   

 Rating   2.07   2.07   2.50   2.46 

    1.59   1.49   1.76   1.66 

 Maturity   1.05   1.60   1.02   1.46 

    1.73   2.60   1.71   2.48 

 Amt. Out. -0.05 1.87 -3.32 -1.82 -0.87 1.09 -4.15 -2.83 

  -0.02 0.67 -1.39 -0.62 -0.38 0.39 -1.63 -0.95 

 Age 0.13 0.48 -0.92 -0.51 0.09 0.35 -1.13 -0.80 

  0.63 1.48 -3.23 -1.37 0.40 1.01 -3.92 -2.07 

 IRT 1.64 7.63 3.94 11.73 1.63 7.94 4.43 12.37 

  0.91 2.17 1.98 3.20 0.91 2.17 2.57 3.39 

 BAS   0.27   3.67   0.86   4.55 

    0.12   1.66   0.38   2.00 

 BIAS -2.56   0.28   -2.37   0.55   

  -1.97   0.22   -1.88   0.45   

 𝛾 1.89 1.15 2.65 2.55 2.13 2.99 3.15 4.59 

  1.02 0.69 1.48 1.61 0.91 0.83 1.35 1.27 

 VOL 0.46   -0.15   0.29   -0.46   

  0.82   -0.27   0.47   -0.74   

VOLS   0.28   0.20   0.30   0.25 

    2.63   1.86   2.34   1.93 

 FREQ 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.03 

  2.25 1.98 3.34 3.25 2.21 1.49 3.35 2.82 

 INV -0.15   -0.18   -0.14   -0.15   

  -6.38   -7.00   -5.59   -5.60   

 DAYS   -0.10   -0.11   -0.10   -0.10 

    -6.62   -7.20   -5.95   -6.03 

 𝑅𝑖,𝑡𝑖
𝐵      -0.28 -0.22         

      -17.49 -11.39         

 𝑅𝑖,𝑡𝑖
𝐷      -0.68 -0.65         

      -39.46 -34.37         

 𝐷𝑖,𝑡𝑒      -0.52 -0.60         

      -3.11 -2.78         

 𝐷𝑖,𝑡𝑖              -0.62 -0.59 

              -33.03 -30.84 

R2 0.37 0.30 0.48 0.41 0.35 0.27 0.45 0.36 

Bond-month obs 572,308 572,308 572,308 572,308 572,308 572,308 572,308 572,308 
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Table IA- 11 – High Yield 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant -96.93 -230.32 -49.74 -161.50 -95.04 -201.36 -54.70 -145.31 

  -0.65 -1.45 -0.34 -1.09 -0.65 -1.23 -0.37 -0.90 

 𝑅𝑖,𝑡𝑒
𝐵  0.00 0.02 -0.02 0.01         

  -0.27 1.20 -1.26 0.64         

 𝑅𝑖,𝑡𝑒
𝐷  -0.03 -0.02 0.45 0.54         

  -1.44 -0.72 1.37 1.44         

 𝐷𝑖,𝑡𝑒−1 -0.04 -0.04 0.48 0.56         

  -1.51 -0.96 1.47 1.50         

 𝐷𝑖,𝑡𝑒          -0.04 -0.03 0.07 0.07 

          -1.87 -0.91 3.24 2.50 

 OAS -0.02   0.00   -0.02   0.00   

  -0.78   -0.17   -0.65   -0.20   

 OASD -3.41   -2.59   -3.19   -2.72   

  -0.77   -0.58   -0.68   -0.58   

 DTS 0.02   0.02   0.02   0.02   

  1.56   1.54   1.45   1.50   

 Rating   6.18   6.80   6.51   7.04 

    1.29   1.44   1.22   1.33 

 Maturity   1.80   2.04   1.70   1.83 

    1.88   2.08   1.80   1.85 

 Amt. Out. -3.31 9.01 -4.96 5.41 -2.50 7.53 -4.50 4.62 

  -0.45 1.34 -0.70 0.87 -0.33 1.12 -0.61 0.70 

 Age 3.66 2.06 2.80 1.34 3.25 1.94 2.62 1.45 

  2.56 1.93 2.07 1.19 2.66 1.95 2.12 1.30 

 IRT 9.22 15.13 13.22 17.49 8.02 19.22 13.72 24.78 

  1.51 2.23 2.29 2.70 1.30 2.26 2.30 2.89 

 BAS   -6.18   -4.50   -9.18   -7.94 

    -1.10   -0.82   -1.22   -1.08 

 BIAS -8.93   -6.93   -8.39   -6.89   

  -2.47   -2.06   -2.44   -2.07   

 𝛾 1.85 4.01 4.13 6.34 2.36 4.09 2.74 5.11 

  0.71 1.20 1.54 1.85 0.88 1.22 1.07 1.55 

 VOL 10.85   10.09   9.86   9.93   

  3.76   3.94   3.67   3.74   

VOLS   0.84   0.76   0.85   0.84 

    2.11   2.09   1.68   1.75 

 FREQ -0.04 -0.05 -0.03 -0.03 -0.04 -0.06 -0.04 -0.04 

  -1.83 -1.13 -1.50 -0.80 -1.93 -1.20 -1.79 -0.96 

 INV -0.14   -0.17   -0.06   -0.06   

  -1.44   -1.71   -0.53   -0.57   

 DAYS   -0.32   -0.34   -0.27   -0.28 

    -5.44   -5.06   -4.20   -3.76 

 𝑅𝑖,𝑡𝑖
𝐵      -0.06 0.00         

      -2.06 0.08         

 𝑅𝑖,𝑡𝑖
𝐷      -0.48 -0.44         

      -18.76 -13.12         

 𝐷𝑖,𝑡𝑒      -0.83 -0.87         

      -2.55 -2.31         

 𝐷𝑖,𝑡𝑖              -0.45 -0.42 

              -17.55 -12.28 

R2 0.31 0.22 0.36 0.28 0.28 0.17 0.31 0.20 

Bond-month obs 163,173 163,173 163,173 163,173 163,173 163,173 163,173 163,173 
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Table IA- 12 – Credit returns 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of TRACE. The explanatory variables correspond to the drivers of 

future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝑇   

 constant -12.12 -88.34 58.13 -13.13 -9.96 -76.63 55.80 -3.98 

  -0.21 -1.30 1.00 -0.18 -0.16 -1.09 0.91 -0.05 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.02 -0.03 0.00         

  -0.44 1.03 -2.26 -0.07         

 𝑅𝑖,𝑡𝑒
𝐷  -0.03 -0.02 0.34 0.35         

  -2.99 -1.22 1.35 1.19         

 𝐷𝑖,𝑡𝑒−1 -0.03 -0.02 0.40 0.40         

  -2.92 -1.38 1.59 1.36         

 𝐷𝑖,𝑡𝑒          -0.03 -0.02 0.14 0.14 

          -3.33 -1.45 10.64 8.46 

 OAS 0.01   0.02   0.01   0.02   

  0.45   0.91   0.46   0.98   

 OASD -2.04   -1.12   -1.90   -0.87   

  -1.53   -0.86   -1.49   -0.68   

 DTS 0.01   0.01   0.01   0.01   

  1.75   1.73   1.63   1.68   

 Rating   4.28   4.19   4.62   4.68 

    1.96   1.86   1.97   1.97 

 Maturity   0.37   0.81   0.30   0.66 

    0.87   1.84   0.77   1.70 

 Amt. Out. -1.21 2.79 -4.05 -0.63 -0.94 2.25 -3.51 -1.08 

  -0.38 0.94 -1.28 -0.20 -0.27 0.75 -1.02 -0.35 

 Age 0.83 1.19 -0.02 0.34 0.74 1.17 -0.19 0.23 

  2.33 3.16 -0.05 0.86 2.13 3.25 -0.54 0.60 

 IRT 0.78 3.76 5.50 8.01 1.42 5.34 6.86 10.10 

  0.25 1.06 1.81 2.24 0.50 1.61 2.47 2.97 

 BAS   -1.33   0.99   -1.46   1.37 

    -0.50   0.37   -0.48   0.45 

 BIAS -5.52   -3.82   -5.29   -3.88   

  -3.04   -2.30   -3.04   -2.28   

 𝛾 -0.31 0.07 1.04 2.06 0.27 0.51 1.17 1.66 

  -0.23 0.04 0.78 1.10 0.19 0.24 0.84 0.78 

 VOL 2.28   1.65   1.88   1.22   

  2.46   1.79   1.91   1.23   

VOLS   0.32   0.30   0.31   0.31 

    1.47   1.39   1.16   1.14 

 FREQ 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 

  1.10 1.79 2.09 2.65 1.03 1.48 2.19 2.41 

 INV -0.15   -0.17   -0.15   -0.16   

  -7.79   -8.71   -6.75   -7.07   

 DAYS   -0.15   -0.16   -0.15   -0.15 

    -8.97   -9.19   -8.26   -8.26 

 𝑅𝑖,𝑡𝑖
𝐵      -0.09 -0.02         

      -5.20 -1.14         

 𝑅𝑖,𝑡𝑖
𝐷      -0.59 -0.56         

      -29.60 -24.84         

 𝐷𝑖,𝑡𝑒      -0.77 -0.74         

      -3.05 -2.54         

 𝐷𝑖,𝑡𝑖              -0.55 -0.54 

              -27.87 -24.08 

R2 0.29 0.22 0.36 0.29 0.28 0.18 0.33 0.23 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 735,481 
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IA.1.3. Index prices’ dynamics 

Table IA- 13 specifications (1) and (3) correspond to respectively specification (6) and (7) in Table 8 

and constitute the base cases. The first one investigates the predictive power of pricing distortions 

measured over the EOM window on the BOM window Bloomberg returns while the second one also 

includes contiguous information about those distortions from the implementation lag window. In 

specification (2) and (4) we test whether the results are robust to changing the set of control variables. 

Specifications (5) to (6) perform the same analyses when we consider alternative return drivers 

suggested by our model being the level of pricing distortions at the end of the EOM window, which 

follows from equation (2-12), instead of the return drivers identified in equation (2-15) and used in the 

specification (1) to (3). Specification (7) to (8) add as controls the distortion information from the 

implementation lag window.Table IA- 14 stresses the results of Table IA- 13 by investigating the 

robustness of the results over sub-sample periods when the sample period is split in halves. Table IA- 

15 and Table IA- 16 reiterate the analyses conducted in Table IA- 13 for respectively the IG and HY 

universes, while Table IA- 17 

 analyzes the results on the AG universe when considering credit returns. 

Overall, our key results are robust. Contrary to what we find for transaction prices, we find that 

distortions have predictive power beyond the implementation lag window, indicating that this 

information is only progressively incorporated into valuations. In all tables, the sign and significance 

of 𝑅𝑖,𝑡𝑒
𝐷 , 𝐷𝑖,𝑡−1 and 𝐷𝑖,𝑡  (upper part of the table) remains unchanged, indicating that distortions across 

pricing sources are key explanatory factors of the cross-section of future valuation-based returns, 

leading to reversals not only over the implementation lag window, but also over the BOM window. 

Finally, as for TRACE returns, we find that 𝐼𝑁𝑉𝑖,𝑡  and 𝐼𝑀𝐵𝑖,𝑡, the two proxies for inventory risk, are 

both significant drivers of reversal over the BOM window.  
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Table IA- 13 – alternative measures 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅𝑖,𝑡𝑏+1
𝐵   

 constant -31.97 -107.60 -69.48 -154.82 -33.44 -94.94 -82.81 -153.01 

  -0.53 -1.56 -1.13 -2.16 -0.53 -1.33 -1.25 -2.04 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.02 -0.01 0.02         

  -0.81 1.10 -0.84 1.31         

 𝑅𝑖,𝑡𝑒
𝐷  0.13 0.15 0.45 0.52         

  11.67 9.72 1.68 1.64         

 𝐷𝑖,𝑡𝑒−1 0.13 0.14 0.43 0.49         

  8.99 6.83 1.58 1.53         

 𝐷𝑖,𝑡𝑒          0.13 0.15 0.03 0.04 

          11.36 7.59 3.32 2.41 

 OAS 0.00   0.00   0.00   0.00   

  0.08   -0.23   0.06   -0.16   

 OASD -0.05   -0.89   -0.13   -0.79   

  -0.02   -0.39   -0.06   -0.37   

 DTS 0.01   0.02   0.01   0.01   

  1.88   1.89   1.82   1.77   

 Rating   3.95   3.84   4.23   4.18 

    1.78   1.77   1.78   1.78 

 Maturity   1.06   0.88   0.92   0.68 

    1.82   1.49   1.57   1.16 

 Amt. Out. 0.78 4.51 2.03 6.63 1.18 3.91 2.95 6.56 

  0.24 1.48 0.64 2.09 0.34 1.27 0.84 2.02 

 Age 0.76 0.99 1.17 1.47 0.73 1.00 1.22 1.55 

  2.23 2.77 3.07 3.85 2.06 2.81 3.06 3.91 

 IRT 1.82 6.79 -1.40 3.57 2.48 8.45 -1.03 5.14 

  0.58 2.02 -0.44 1.05 0.85 2.56 -0.33 1.54 

 BAS   -1.02   -3.37   -1.16   -3.63 

    -0.42   -1.40   -0.41   -1.31 

 BIAS -5.19   -6.07   -4.85   -5.74   

  -2.90   -3.45   -2.79   -3.21   

 𝛾 0.11 0.45 0.10 0.78 0.76 0.74 0.30 0.32 

  0.08 0.23 0.07 0.43 0.55 0.35 0.22 0.15 

 VOL 1.59   2.15   1.26   1.90   

  1.58   2.03   1.16   1.68   

VOLS   0.31   0.32   0.29   0.28 

    1.36   1.49   1.04   1.05 

 FREQ 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 

  1.17 1.41 0.44 0.94 1.04 1.15 0.28 0.66 

 INV -0.17   -0.17   -0.17   -0.16   

  -8.20   -8.52   -7.18   -7.15   

 DAYS   -0.16   -0.15   -0.15   -0.15 

    -10.10   -10.03   -9.42   -8.70 

 𝑅𝑖,𝑡𝑖
𝐵      -0.15 -0.08         

      -7.49 -3.30         

 𝑅𝑖,𝑡𝑖
𝐷      0.30 0.33         

      17.08 15.58         

 𝐷𝑖,𝑡𝑒      -0.09 -0.13         

      -0.34 -0.41         

 𝐷𝑖,𝑡𝑖              0.32 0.34 

              19.16 16.92 

R2 0.37 0.29 0.40 0.33 0.35 0.25 0.37 0.27 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 735,481 
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Table IA- 14 – subsample analysis 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 

 

Specification (1) (2) (3) (4) (5) (6) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝐵   

 constant -94.94 -82.81 -153.01 -49.51 62.19 -81.40 

  -1.33 -1.25 -2.04 -0.44 0.98 -0.69 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.01 -0.04       

  -0.84 0.66 -1.84       

 𝑅𝑖,𝑡𝑒
𝐷  0.45 0.23 0.69       

  1.68 0.98 1.41       

 𝐷𝑖,𝑡𝑒−1 0.43 0.21 0.65       

  1.58 0.90 1.33       

 𝐷𝑖,𝑡𝑒        0.04 0.04 0.03 

        2.41 2.90 1.13 

 OAS 0.00 0.00 -0.01       

  -0.23 0.00 -0.35       

 OASD -0.89 -0.23 -1.57       

  -0.39 -0.06 -0.58       

 DTS 0.02 0.02 0.01       

  1.89 1.57 1.07       

 Rating       4.18 6.16 2.12 

        1.78 1.56 0.89 

 Maturity       0.68 1.15 0.19 

        1.16 1.65 0.20 

 Amt. Out. 2.03 1.87 2.19 6.56 10.16 2.80 

  0.64 0.47 0.44 2.02 1.80 0.96 

 Age 1.17 1.74 0.57 1.55 2.07 1.01 

  3.07 2.68 1.67 3.91 2.95 3.20 

 IRT -1.40 -2.64 -0.11 5.14 2.67 7.71 

  -0.44 -0.61 -0.02 1.54 0.70 1.40 

 BAS       -3.63 -3.28 -3.99 

        -1.31 -0.91 -0.94 

 BIAS -6.07 -3.71 -8.54       

  -3.45 -2.72 -2.64       

 𝛾 0.10 -0.21 0.42 0.32 -0.47 1.15 

  0.07 -0.19 0.17 0.15 -0.21 0.32 

 VOL 2.15 1.93 2.38       

  2.03 1.11 2.02       

VOLS       0.28 0.15 0.42 

        1.05 0.45 0.99 

 FREQ 0.00 -0.01 0.01 0.01 0.00 0.01 

  0.44 -0.66 1.28 0.66 0.17 0.74 

 INV -0.17 -0.15 -0.19       

  -8.52 -4.40 -9.72       

 IMB       -0.15 -0.18 -0.12 

        -8.70 -6.61 -6.13 

 𝑅𝑖,𝑡𝑖
𝐵  -0.15 -0.12 -0.18       

  -7.49 -5.54 -5.44       

 𝑅𝑖,𝑡𝑖
𝐷  0.30 0.25 0.34       

  17.08 10.70 15.51       

 𝐷𝑖,𝑡𝑒  -0.09 0.07 -0.26       

  -0.34 0.32 -0.54       

 𝐷𝑖,𝑡𝑖        0.34 0.30 0.38 

        16.92 10.33 15.17 

Start Aug’02 Aug’02 Jan’13 Aug’02 Aug’02 Jan’13 

End Nov’22 Dec’12 Nov’22 Nov’22 Dec’12 Nov’22 

R2 0.40 0.39 0.42 0.27 0.26 0.29 

Bond-month obs 735,481 246,255 489,226 735,481 246,255 489,226 
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Table IA- 15 – Bids only 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅𝑖,𝑡𝑏+1
𝐵   

 constant -4.78 -70.85 9.62 -68.84 -8.54 -66.81 5.81 -60.20 

  -0.08 -0.97 0.16 -0.93 -0.13 -0.87 0.09 -0.77 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.01 -0.02 0.01         

  -0.95 0.74 -1.26 0.76         

 𝑅𝑖,𝑡𝑒
𝐷  0.12 0.14 0.44 0.33         

  10.54 9.17 1.52 1.10         

 𝐷𝑖,𝑡𝑒−1 0.12 0.12 0.41 0.30         

  6.92 5.88 1.39 0.97         

 𝐷𝑖,𝑡𝑒          0.13 0.14 0.02 0.02 

          9.71 7.69 1.74 1.38 

 OAS 0.01   0.01   0.01   0.01   

  0.60   0.28   0.57   0.40   

 OASD 0.26   -0.44   0.12   -0.38   

  0.12   -0.19   0.06   -0.18   

 DTS 0.01   0.02   0.01   0.01   

  1.75   1.95   1.70   1.85   

 Rating   4.20   4.20   4.71   4.78 

    1.98   2.02   2.06   2.11 

 Maturity   1.10   1.01   0.94   0.83 

    1.84   1.65   1.55   1.37 

 Amt. Out. 0.23 2.70 -0.67 2.41 0.84 2.42 0.21 1.90 

  0.07 0.82 -0.20 0.73 0.23 0.72 0.06 0.56 

 Age 0.70 0.78 1.36 1.54 0.67 0.83 1.45 1.67 

  2.07 2.05 3.43 3.69 1.92 2.17 3.69 3.92 

 IRT 4.10 10.09 4.59 9.94 5.24 12.38 5.81 12.69 

  1.05 2.65 1.13 2.64 1.50 3.33 1.63 3.44 

 BAS   3.03   4.30   3.12   4.27 

    0.80   1.18   0.72   1.01 

 BIAS -4.78   -3.35   -4.45   -2.73   

  -1.28   -0.98   -1.21   -0.78   

 𝛾 3.21 4.82 4.71 6.91 3.78 5.59 4.33 6.53 

  1.35 1.52 1.90 2.06 1.60 1.45 1.82 1.68 

 VOL 0.70   0.84   0.22   0.07   

  0.71   0.86   0.20   0.06   

VOLS   0.20   0.19   0.19   0.18 

    0.81   0.79   0.62   0.60 

 FREQ 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 

  1.50 1.85 1.46 1.81 1.37 1.54 1.45 1.55 

 INV -0.17   -0.17   -0.16   -0.15   

  -6.21   -6.36   -5.83   -5.73   

 DAYS   -0.20   -0.17   -0.19   -0.17 

    -9.36   -9.09   -7.95   -7.22 

 𝑅𝑖,𝑡𝑖
𝐵      -0.14 -0.07         

      -6.73 -3.07         

 𝑅𝑖,𝑡𝑖
𝐷      0.31 0.34         

      14.28 14.80         

 𝐷𝑖,𝑡𝑒      -0.08 0.05         

      -0.27 0.17         

 𝐷𝑖,𝑡𝑖              0.35 0.36 

              16.08 15.93 

R2 0.37 0.29 0.41 0.33 0.35 0.26 0.37 0.27 

Bond-month obs 551,538 551,538 551,538 551,538 551,538 551,538 551,538 551,538 
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Table IA- 16 – Investment Grade 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅𝑖,𝑡𝑏+1
𝐵   

 constant -52.62 -76.50 -73.89 -108.14 -34.98 -61.31 -68.77 -101.84 

  -1.43 -1.42 -1.98 -2.05 -0.94 -1.12 -1.81 -1.87 

 𝑅𝑖,𝑡𝑒
𝐵  -0.04 -0.01 -0.04 -0.01         

  -3.80 -0.55 -3.77 -0.35         

 𝑅𝑖,𝑡𝑒
𝐷  0.13 0.16 0.04 0.17         

  13.02 11.59 0.22 0.70         

 𝐷𝑖,𝑡𝑒−1 0.14 0.16 0.04 0.15         

  12.22 9.90 0.22 0.65         

 𝐷𝑖,𝑡𝑒          0.14 0.16 0.05 0.07 

          14.13 11.24 8.75 7.26 

 OAS 0.02   0.01   0.02   0.00   

  0.45   0.20   0.35   0.05   

 OASD 0.44   -0.23   0.61   0.32   

  0.22   -0.11   0.31   0.16   

 DTS 0.01   0.01   0.01   0.01   

  1.49   1.59   1.30   1.24   

 Rating   2.04   2.08   2.41   2.33 

    1.58   1.63   1.71   1.70 

 Maturity   0.94   0.82   0.84   0.66 

    1.54   1.32   1.40   1.09 

 Amt. Out. 3.21 3.71 3.94 5.07 2.42 2.91 3.76 4.78 

  1.68 1.41 2.10 1.97 1.23 1.12 1.96 1.84 

 Age 0.41 0.83 0.68 1.20 0.36 0.72 0.69 1.10 

  1.69 2.43 2.42 3.18 1.43 1.99 2.56 2.91 

 IRT -0.11 5.80 -1.57 3.79 -0.28 6.07 -1.38 3.94 

  -0.05 1.49 -0.60 0.96 -0.12 1.52 -0.55 0.99 

 BAS   -0.18   -1.50   0.26   -1.34 

    -0.08   -0.69   0.12   -0.60 

 BIAS -2.24   -3.39   -2.14   -3.36   

  -1.75   -2.56   -1.73   -2.57   

 𝛾 1.74 1.21 1.12 0.50 2.12 3.11 1.60 2.30 

  0.98 0.79 0.67 0.36 0.92 0.88 0.70 0.66 

 VOL -0.35   0.01   -0.39   -0.07   

  -0.57   0.01   -0.61   -0.11   

VOLS   0.20   0.21   0.24   0.27 

    1.81   1.94   1.84   2.07 

 FREQ 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

  2.16 2.18 1.74 1.80 2.06 1.56 1.61 1.05 

 INV -0.16   -0.17   -0.15   -0.15   

  -6.78   -6.88   -5.96   -6.04   

 DAYS   -0.10   -0.10   -0.10   -0.10 

    -9.01   -9.81   -7.50   -7.49 

 𝑅𝑖,𝑡𝑖
𝐵      -0.24 -0.18         

      -15.32 -9.82         

 𝑅𝑖,𝑡𝑖
𝐷      0.20 0.23         

      16.17 15.28         

 𝐷𝑖,𝑡𝑒      0.23 0.15         

      1.20 0.65         

 𝐷𝑖,𝑡𝑖              0.24 0.26 

              16.83 16.73 

R2 0.46 0.38 0.49 0.41 0.44 0.34 0.46 0.36 

Bond-month obs 572,308 572,308 572,308 572,308 572,308 572,308 572,308 572,308 
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Table IA- 17 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅
𝑖,𝑡𝑏+1
𝐵   

 constant -129.97 -248.92 -153.74 -263.39 -115.58 -217.12 -177.10 -267.37 

  -0.89 -1.55 -1.11 -1.89 -0.81 -1.34 -1.26 -1.72 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.02 -0.01 0.03         

  -0.40 1.22 -0.45 1.46         

 𝑅𝑖,𝑡𝑒
𝐷  0.11 0.13 0.65 0.75         

  5.67 4.30 1.91 1.86         

 𝐷𝑖,𝑡𝑒−1 0.09 0.10 0.61 0.70         

  3.18 2.40 1.82 1.75         

 𝐷𝑖,𝑡𝑒          0.11 0.12 0.01 0.00 

          5.18 3.63 0.39 0.08 

 OAS -0.02   -0.03   -0.02   -0.03   
  -0.93   -1.18   -0.91   -1.24   

 OASD -3.95   -4.76   -3.99   -4.76   

  -0.88   -1.04   -0.84   -1.01   

 DTS 0.02   0.02   0.02   0.02   

  1.56   1.45   1.54   1.46   

 Rating   5.38   4.71   5.40   4.62 

    1.12   1.05   1.03   0.90 

 Maturity   1.66   1.69   1.52   1.56 

    1.73   1.68   1.62   1.57 

 Amt. Out. -1.25 10.22 0.66 10.99 -1.24 8.77 2.41 11.36 

  -0.18 1.54 0.10 1.88 -0.17 1.35 0.33 1.82 

 Age 3.12 1.70 3.08 1.61 2.93 1.71 3.25 2.01 

  2.47 1.75 2.73 2.03 2.61 1.84 3.00 2.39 

 IRT 11.88 17.59 7.27 11.35 11.07 21.83 7.51 18.06 

  2.15 2.72 1.39 1.92 1.93 2.42 1.35 2.14 

 BAS   -5.49   -7.00   -8.61   -10.76 

    -1.00   -1.36   -1.13   -1.50 

 BIAS -8.74   -8.38   -8.15   -8.04   

  -2.23   -2.23   -2.26   -2.25   

 𝛾 2.58 4.73 3.77 5.40 3.31 5.02 2.76 4.47 

  1.03 1.40 1.35 1.54 1.29 1.46 1.05 1.31 

 VOL 10.33   9.36   9.46   8.72   

  3.09   2.99   2.98   3.00   

VOLS   0.89   0.72   0.88   0.71 

    2.14   2.05   1.71   1.53 

 FREQ -0.05 -0.06 -0.04 -0.04 -0.05 -0.07 -0.04 -0.06 

  -2.12 -1.28 -1.72 -1.24 -2.08 -1.37 -1.95 -1.43 

 INV -0.15   -0.17   -0.06   -0.07   

  -1.42   -1.63   -0.55   -0.68   

 DAYS   -0.38   -0.36   -0.33   -0.31 

    -6.10   -6.28   -5.51   -5.21 

 𝑅𝑖,𝑡𝑖
𝐵      -0.03 0.02         

      -1.22 0.66         

 𝑅𝑖,𝑡𝑖
𝐷      0.42 0.46         

      15.15 12.68         

 𝐷𝑖,𝑡𝑒      -0.19 -0.25         

      -0.57 -0.62         

 𝐷𝑖,𝑡𝑖              0.44 0.46 

              15.44 12.01 

R2 0.32 0.22 0.36 0.28 0.29 0.18 0.31 0.20 

Bond-month obs 163,173 163,173 163,173 163,173 163,173 163,173 163,173 163,173 
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Table IA- 18 – Credit returns 

This table reports the Fama-MacBeth regression results for the sample period going from August 2002 to November 2022 

when the universe is restricted on the availability of all control variables defined in Section 3.3. The dependent variables are 

the BOM returns defined in equation (3-3) measured out of Bloomberg. The explanatory variables correspond to the drivers 

of future returns in our model according to equation (2-12) or (2-15), when measured over both the EOM and the IL windows, 

together with the set of controls defined in Section 3.3. The numbers in parenthesis correspond to the t-statistic of the 

coefficient value, reported above, where the significant coefficients are identified in bold. Returns are expressed in basis points. 
 

Specification (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent return: 𝑅𝑖,𝑡𝑏+1
𝐵   

 constant -47.05 -117.32 -81.79 -159.27 -48.84 -108.40 -96.10 -163.99 

  -0.79 -1.76 -1.34 -2.29 -0.77 -1.56 -1.46 -2.23 

 𝑅𝑖,𝑡𝑒
𝐵  -0.01 0.02 -0.01 0.02         

  -0.75 0.95 -0.71 1.19         

 𝑅𝑖,𝑡𝑒
𝐷  0.13 0.15 0.44 0.46         

  11.56 9.53 1.64 1.46         

 𝐷𝑖,𝑡𝑒−1 0.13 0.14 0.41 0.42         

  9.01 6.82 1.55 1.35         

 𝐷𝑖,𝑡𝑒          0.13 0.15 0.04 0.04 

          11.14 7.45 3.58 2.50 

 OAS 0.00   0.00   0.00   0.00   

  0.25   -0.04   0.20   -0.02   

 OASD -2.43   -3.21   -2.47   -3.11   

  -1.89   -2.67   -2.05   -2.64   

 DTS 0.01   0.01   0.01   0.01   

  1.81   1.80   1.73   1.69   

 Rating   4.12   3.95   4.38   4.34 

    1.91   1.87   1.89   1.89 

 Maturity   0.22   0.04   0.11   -0.13 

    0.49   0.10   0.27   -0.32 

 Amt. Out. 0.82 4.01 2.00 5.90 1.21 3.62 2.91 6.15 

  0.26 1.39 0.64 1.96 0.35 1.23 0.84 1.97 

 Age 0.88 1.35 1.29 1.82 0.86 1.38 1.33 1.91 

  2.56 3.93 3.33 4.78 2.39 3.94 3.27 4.78 

 IRT 1.15 4.16 -2.09 0.96 1.86 5.73 -1.53 2.54 

  0.37 1.18 -0.65 0.27 0.65 1.72 -0.50 0.75 

 BAS   -1.55   -3.79   -1.72   -4.09 

    -0.60   -1.50   -0.58   -1.40 

 BIAS -5.44   -6.04   -5.20   -6.03   

  -3.15   -3.64   -3.12   -3.53   

 𝛾 -0.11 0.15 -0.03 0.61 0.59 0.60 0.15 0.22 

  -0.08 0.08 -0.03 0.33 0.43 0.28 0.11 0.10 

 VOL 1.66   2.14   1.36   1.97   

  1.64   2.01   1.24   1.73   

VOLS   0.30   0.31   0.29   0.28 

    1.34   1.43   1.04   1.04 

 FREQ 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.01 

  1.14 1.80 0.43 1.25 1.00 1.37 0.26 0.82 

 INV -0.17   -0.17   -0.17   -0.16   

  -8.23   -8.39   -7.30   -7.27   

 DAYS   -0.16   -0.15   -0.15   -0.15 

    -10.60   -10.36   -10.05   -9.27 

 𝑅𝑖,𝑡𝑖
𝐵      -0.06 0.00         

      -3.56 0.21         

 𝑅𝑖,𝑡𝑖
𝐷      0.30 0.32         

      17.19 15.56         

 𝐷𝑖,𝑡𝑒      -0.09 -0.08         

      -0.33 -0.26         

 𝐷𝑖,𝑡𝑖              0.31 0.32 

              18.75 16.11 

R2 0.32 0.24 0.35 0.28 0.30 0.21 0.32 0.22 

Bond-month obs 735,481 735,481 735,481 735,481 735,481 735,481 735,481 735,481 

 


