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Abstract

I introduce transaction-cost-aware (TCA) factors that are optimized to explain the
returns investors can earn in practice, net of transaction costs. My methodology
targets the trade-off between (i) acquiring exposure to risk factors and (ii) saving on
transaction costs incurred in the process. Models that include TCA factors come
closer to spanning investors’ feasible efficient frontier. When trading is costly, TCA
factor models increase net maximum squared Sharpe ratios by up to a factor of 2.5.
TCA construction is most beneficial for high-turnover factors, such as momentum,
that are otherwise unprofitable net of costs. I therefore suggest that asset pricing

tests should focus on TCA factors to draw valid inferences.
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1 Introduction

Investors demand compensation net of transaction costs to take on non-diversifiable
risks. Identifying priced risk exposures has been the largest collective effort in asset
pricing over the last forty years: Harvey, Liu, and Zhu (2016) review more than 300
candidate risk factors. However, these factors are typically designed and evaluated

overlooking transaction costs that investors would incur to trade them.

In practice, asset pricing factors require turnover to preserve the link between ex-
pected returns and conditioning information on firm characteristics. When researchers
identify characteristics that predict future returns, they construct factor portfolios that
exploit this conditioning information. Individual assets receive weights at time ¢ that re-
flect characteristic realizations at t—1. In the next period, new characteristic realizations

require investors to revise weights on factor constituents.

Prior work assumes that investors always trade to perfectly realign factors and con-
ditioning information. The resulting factors are cost-agnostic, because they rebalance
in full irrespective of how expensive this adjustment is. In this paper, I argue that
this approach is only sensible absent transaction costs. Instead, I take the perspective
of investors who evaluate the benefits from realigning with conditioning information
against the ensuing rebalancing costs. I propose transaction-cost-aware (TCA) factors

that address this rebalancing trade-off.

When new characteristic realizations become available, TCA factors target the im-
plied weights (to gain characteristic exposure) but rebalance only partially towards these
weights at a fixed speed 7 (to control transaction costs). Equivalently, a TCA factor
can be seen as a weighted average of its previous period allocation and the target factor.
For instance, at the end of period ¢ — 1 an investor holding TCA momentum shifts a
share 7 of her investment towards the target, that is the cost-agnostic momentum factor
UMD;. She instead leaves the remainder invested at her current allocation. The larger

the optimal trading speed, the faster the investor adjusts towards the target factor.!

'Reducing the frequency at which factors reconstitute offers a heuristic alternative to contain transac-
tion costs. However, this cost-mitigation technique is fundamentally different in nature and outcome
from trading speed optimization. Factors that reconstitute at low frequencies revise portfolio weights
according to a coarser information set that ignores higher frequency changes in characteristics. Con-
versely, TCA factors exploit all available information but control the speed at which portfolio weights
come to reflect new characteristic realizations. The latter approach is preferable for two main reasons.
First, TCA trading directly aligns with Fama’s (1991) efficiency argument, according to which investors
act on new information to the extent to which the marginal benefits outweigh marginal costs. Sec-
ond, rebalancing frequencies are chosen ad hoc while trading speed is the outcome of a maximization
process.



Both TCA and cost-agnostic factors can be evaluated on their net returns (which
investors earn after costs) or their gross returns (which include compensation that ac-
crues to liquidity providers). These two distinctions contextualize four approaches to

asset pricing inference.

The standard protocol in the literature tests gross cost-agnostic factors. Unfortu-
nately, this approach conflates net returns and transaction costs. Gross returns mask
the cost of trading as a positive contributor to factor performance. As a result of this,
an important contribution by Detzel, Novy-Marx, and Velikov (2023) shows that before-
cost inference favors factors with high turnover. Such factors carry a large transaction
cost component that is incorrectly accrued as a gain to the investor. Loosely speaking,
neglecting the cost of trading transforms the rebalancing trade-off into a rebalancing

mcentive.

Detzel et al. (2023) and Li, DeMiguel, and Martin-Utrera (2023) revise model selec-
tion using net cost-agnostic factors. However, resulting inferences are not necessarily
informative on whether the underlying characteristics are priced in the cross-section.
I show that the performance of net cost-agnostic factors is largely reflective of their
construction inefficiencies. When transaction costs are nonzero, these factors rebalance
too aggressively. Suboptimal construction compresses net risk-premia, biasing results

against high-turnover factors.

The main focus of this paper is on net TCA factors. These factors are meaning-
ful for rational investors who also care about dimensions of risk other than variance.
When trading is costly, these investors acquire multi-factor exposure in a cost-efficient
way.? Optimal trading speeds are factor-specific, and driven by three channels. First,
factors that trade on persistent characteristics command lower trading intensities. For
instance, size factors require less aggressive rebalancing than profitability factors: Firms
that are large today tend to stay large in the future, but current profitability does not
guarantee large earnings going forward. Second, characteristics that correlate positively
with transaction costs drive down optimal trading speeds. This is the case of momen-
tum since recent underperformers tend to have larger bid-ask spreads. Lastly, factors
with slow-decaying risk-premia receive higher trading speeds because each dollar spent

in transaction costs buys a longer streak of high returns.

I judge TCA factors on two main criteria. First, models that replace cost-agnostic

factors with their TCA variations should come closer to spanning the feasible efficient

2In this sense, TCA factors extend and generalize the insights of Garleanu and Pedersen (2013). They
solve the optimal trading rule for an investor with mean-variance preferences that faces quadratic
transaction costs.



frontier. To this end, I use the squared Sharpe ratio criterion (Sh?) of Barillas and
Shanken (2017) as a model comparison tool after correcting factor returns for propor-
tional transaction costs.> Their methodology ranks models on the squared Sharpe ratio
achieved by a mean-variance-efficient (MVE) combination of their factors. This metric
quantifies how closely the factors span the efficient frontier.® I focus on the six fac-
tor models studied in Detzel et al. (2023), which provide a representative account of
low-dimensional specifications used in asset pricing research. Second, each TCA factor
should individually explain differences in net average returns equally or better than its
cost-agnostic counterpart. I examine performance at the factor level through spanning

regressions.

TCA factors improve the pricing ability of all models I consider. In terms of net Sh?
ratios, TCA models perform 28% to 150% better than their cost-agnostic counterparts.
Further, all but one of the TCA factor models deliver higher net Sh? than the dominant
cost-agnostic model. Spanning regressions confirm that TCA factors are individually
better suited to explain differences in net asset returns. All eleven TCA versions produce
positive net alphas when regressed on their cost-agnostic counterparts, and six of these
alphas are statistically significant. Conversely, cost-agnostic factors leave negative or

insignificant intercepts on the TCA alternatives.

TCA models’ success in describing net returns comes largely from improvements in
the factors that are most expensive to trade. This is exemplified by the momentum factor
under three scenarios: (i) with cost-agnostic construction and ignoring transaction costs;
(ii) with cost-agnostic construction and after costs; and (iii) with TCA construction
and after costs. In my sample, cost-agnostic momentum earns a gross premium of
0.64% per month, the highest among the factors I consider. This large gross premium
overestimates the performance that investors realize in practice. Momentum also incurs
the most transaction costs. These expenses are particularly severe when trading the cost-
agnostic factor, which requires 63 bps per month in trading costs. On a net basis, the
premium on cost-agnostic momentum drops from 0.64% to a negligible 0.01%. However,

a large share of this performance drop comes from inefficient rebalancing. Instead,

3Proportional costs offer a conservative estimate of overall transaction costs. Investors experience
additional implementation frictions due to fixed costs, short-selling fees, price impact costs, and taxes
on dividends and capital gains. However, a more comprehensive gamut of trading frictions makes
the assumption of cost-agnostic trading relatively more restrictive. Expanding the set of frictions
considered would thus result in larger benefits from TCA factor construction. Li et al. (2023) prove
that the maximum squared Sharpe ratio criterion remains valid as a model comparison tool when
transaction costs have a proportional form.

4This approach provides a general model ranking tool, whose validity is not restricted to a specific
choice of test assets.



TCA momentum only incurs 30 bps in monthly transaction costs, less than half of the
cost-agnostic version. Trading momentum at the optimal speed increases the factor’s
net return 22-fold and its annualized net Sharpe ratio by 0.19. TCA construction also
clarifies momentum’s importance in spanning the feasible efficient frontier. Models I
review imply MVE portfolios that load marginally on net cost-agnostic momentum.

Conversely, the weight on the net TCA version consistently exceeds 10%.

Model comparison in the cost-agnostic case does not reflect the true importance
of high-turnover factors. As a consequence, the Sh? criterion ranks models differently
within the classes of TCA and cost-agnostic factors. To illustrate this, consider first
cost-agnostic factor models. Out of the six I review, the six-factor model of Barillas
and Shanken (2018) (BS6) dominates before costs. It has the highest Sh? (2.25) and
performs 8.4% better than the second-best model. However, this superior performance
is largely illusory. Five out of six of the factors in the model reconstitute at a monthly
frequency, and are therefore expensive to trade. After accounting for transaction costs,
BS6 ranks second-worst and its Sh? drops by 80%. Underperformance on a net basis is
primarily due to construction inefficiencies. Moving from cost-agnostic to TCA factors
almost doubles the model’s net Sh?, positioning it as the third-best performer among

the six considered.

Related Literature: This paper contributes to an emerging literature on model com-
parison with transaction costs. My methodology directly optimizes factor construction
for the cost of trading. This is in contrast with prior work, which focuses on net cost-
agnostic factors. Detzel et al. (2023) and Li et al. (2023) study how cost-agnostic fac-
tor models behave under different transaction cost functional forms. Novy-Marx and
Velikov (2016) document that most cost-agnostic anomalies do not survive after costs.
DeMiguel, Martin-Utrera, Nogales, and Uppal (2020) find that transaction costs increase

diversification benefits from trading multiple anomalies jointly.

TCA factors advance prior work in this literature in three ways. First, they are
closer to practical implementation, in which investors optimize for frictions. Second, my
methodology resolves distortions in inference and revives high-turnover factors. Third,
TCA construction reinforces the linkage between empirical factor models and theoretical
results that motivate them. According to Arbitrage Pricing Theory (Ross, 1976), invest-
ment opportunities that survive arbitrage activity must reflect compensation for risk.
In practice, rational arbitrageurs only eliminate opportunities that are profitable after
costs. Hedge funds employ sophisticated execution algorithms because cost mitigation

expands the set of profitable trading opportunities. Therefore, the APT logic applies



more closely to strategies that are implemented efficiently in the face of transaction costs,
such as TCA factors. Investment opportunities that deliver positive gross alphas are not
necessarily in violation of the APT. Such trading strategies are unattractive for arbi-
trageurs if alphas turn negative after costs, despite cost-aware execution.” Conversely,
the APT is inconclusive about strategies that earn negative net alphas when traded in-
efficiently. These investment opportunities may still expand the efficient frontier if they

turn profitable when implemented optimally.

I also document that factors that update conditioning characteristics infrequently
face significant turnover in intermediate months. For example, the five factors of Fama
and French (1993, 2015) reconstitute each June but incur between 35.9% and 64% of
their yearly transaction costs in the remaining eleven months. This additional turnover
is not accounted for in prior work and comes from two channels. First, research focuses
on long-short factors that can be conveniently interpreted as traded excess returns.
When factor legs earn uneven returns or corporate events occur, factors pick up a net

6 Therefore, factor

exposure to the risk-free rate and this interpretation breaks down.
investors face transaction costs to maintain dollar neutrality, even absent changes in firm
characteristics. Second, researchers often restrict constituent weights to better identify
the association between firm characteristics and expected returns. For instance, Fama
and French assign equal weights to portfolios of small and large stocks within each leg

of their factors. Maintaining this constraint further increases turnover.

More generally, I connect the factor literature to papers on cost-aware trading that
follow Géarleanu and Pedersen (2013). Gérleanu and Pedersen (2013) solve the dy-
namic optimal portfolio problem for myopic mean-variance investors that face quadratic
transaction costs. Collin-Dufresne, Daniel, and Saglam (2020) extend the framework
to accommodate stochastic transaction costs, and show that investors should rebalance
more heavily when costs are low. Collin-Dufresne, Daniel, and Saglam (2022) character-
ize the optimal trading rule of non-myopic investors in a similar setting. Jensen, Kelly,
Malamud, and Pedersen (2022) propose a machine learning methodology to evaluate

investment strategies against their net returns for each level of risk.

The remainder of the paper is organized as follows. Section 2 documents the pit-

falls of cost-agnostic factor construction. Section 3 illustrates the TCA methodology.

°Detzel et al. (2023) make a similar argument in the cost-agnostic setting. However, once investors are
allowed to optimize trading speed, only those strategies that do not deliver positive net alphas at any
speed remain consistent with the APT.

6Cash dividends decrease the invested amount in the factor leg they originate from. M&A transactions
also break dollar neutrality if the stocks of the target and acquirer are in opposite factor legs.



Sections 4 to 6 contain empirical results on model selection, spanning regressions, and

diversification benefits. Section 7 concludes.

2 Distortions in inference with cost-agnostic factors
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Figure 1: The effects of cost-agnostic construction. The above figure compares the
performance of three asset pricing models. All three models include traditional, cost-agnostic
factors. The vertical axis tracks the ex-post squared Sharpe ratio Sh? achieved by each model
between 1972 and 2022. The first model is the classic CAPM of Sharpe (1964) and Lintner
(1975). FF6c is the Fama and French (2018) six-factor model, where the subscript ¢ denotes
that the profitability factor is constructed on cashflows rather than operating profits. FF6Fc¢
is a variation of FF6Fc that requires larger transaction costs. It reconstitutes the FF6Fc factors
every month and restricts the asset universe to the 50% of constituents with the highest trans-
action costs. The left (blue) bars show squared Sharpe ratios before accounting for transaction
costs. The right (red) bars measure the Sh? using factor returns corrected for transaction costs.

Figure 1 illustrates that the Sh? criterion of Barillas and Shanken (2017) can produce
misleading results, both before and after costs, when applied to cost-agnostic factors.
I compare three models. The first two are the CAPM of Sharpe (1964) and Lintner
(1975), and the six-factor model of Fama and French (2018). The subscript ¢ denotes
that the model uses cashflow profitability in place of operating profitability to construct
the profitability factor. The third model is a variation of the FF6Fc specification that I
design to have a particularly high cost of trading: I term this high-cost model FF6FcH¢ .



FF6FcC exploits the same characteristics as FF6F, but adds three adjustments that
deliberately inflate transaction costs. First, I reconstitute all factors in the model at the
end of each month, rather than each June. This modification amplifies turnover and
makes factors more expensive to trade. Second, I replace the size factor with one that
invests only in small stocks, which have larger bid-ask spreads than large stocks. Put
differently, I replace the FF6 size factor with the excess return on its long leg.” Third, I
restrict the set of constituents to stocks that, conditionally on qualifying for investment
in a particular factor portfolio, are in the upper 50% of the transaction cost distribution.

I apply this last adjustment to all factors except the market.®

Before costs, FF6Fc improves the ex-post squared Sharpe ratio Sh? by roughly 1.7
compared to the CAPM. This superior performance is not surprising. More than fifty
years’ worth of research in empirical asset pricing separates the two models. Further,
the FF6Fc specification nests the CAPM, complementing the market with five additional
factors. The CAPM’s Sh? thus sets a lower bound for the more parameterized model.
Moving from the FF6Fc model to its high-cost version is instead exceedingly hard to
justify from an economic standpoint. Yet, FF6FcH¢ delivers a comparable increase in
Sh? with respect to its FF6Fc baseline. Accounting for transaction costs quickly resolves
this tension: the apparent pricing ability of FF6Fc¢ is entirely fictitious. The net Sh?
the model achieves is 95% lower than its gross-of-cost estimate. In practice, an investor
trading a mean-variance efficient portfolio of the FF6Fc”¢ factors would move farther
away from the achievable efficient frontier if compared to the baseline FF6Fc model and
obtains the same Sh? of the CAPM, 0.18. Put differently, FF6Fc“ only delivers a high
Sharpe ratio before costs because gross returns on its factors include a large transaction
cost component. FF6FcH® factors are thus informative about transaction costs investors
might incur upon trading, but fail to explain the cross-section of returns they can earn
in practice. Nonetheless, a researcher employing the Sh? criterion would conclude that

we should prefer FF6FcH¢ as an asset pricing model.

Detzel et al. (2023) show a similar example, where a single factor based on low-
volatility and industry relative-reversals (LV-IRR) dominates before costs, but delivers
a negative net Sharpe ratio after correcting for transaction costs incurred. The main

difference is that high turnover in LV-IRR comes from the economics of the underlying

"Fama and French (2018) test the pricing ability of a similarly constructed measure of size.

8For instance, the high-cost value factor, HML#C revises its composition at the end of each month,
taking equal long positions in the HS”¢ and HB”¢ portfolios. At the same time, the factor shorts
an equivalent dollar amount in the LSH#¢ and LBH¢ portfolios. The HS#C portfolio is invested in
assets with high book-to-market and small market capitalization. Specifically, it only loads on the 50%
of stocks with the highest transaction costs in the small size and high book-to-market segment (in a
value-weighted fashion). I form the HB#¢, LS#¢  and LB#Y portfolios in a similar way.



signal. Reversal factors are costly to trade because such signals rapidly revert to the
mean. The case at hand shows that distortions in inference can also arise entirely due to
construction choice. Figure 1 confirms that the FF6Fc factors do expand the available
efficient frontier, even after correcting for the cost of trading, when they are constructed
with the original methodology. The underperformance of FF6Fc?¢ is thus not indicative
of scarce promise in the Fama and French (2018) characteristics. Rather, it is an artifact
of the construction methodology.? This fact is made apparent by the lack of substantive
differences between the economic characteristics that drive FF6Fc¢ and FF6Fc. High
pairwise correlations between factors in the two models solidify this point. For instance,
the correlation between the two momentum factors, UMD and UMD is 92% before

costs and 89% after costs.

This example shows that even inference based on net Sh? can produce misleading
results when factor construction is not optimized. Discretionary choices can mask the
pricing ability of the underlying characteristics, which is ultimately what researchers
set out to demonstrate. In particular, the combined effect of net-of-cost inference and
cost-agnostic factors sets an unreasonably high bar to clear for characteristics with little
persistence. Testing new theories in this setting can suffer from low power and lead
to over-rejections. At the same time, discretionary choices of reconstitution frequencies
and other factor attributes can translate into large differences in performance, both
before and after costs, that are uninformative about the pricing ability of the underlying
characteristics. This phenomenon results in a proliferation of factors that exhibit little
variation in terms of economic motivation and contributes to Cochrane’s (2011) “factor

700" problem.

3 TCA Factors

3.1 Trading partially toward the target

I consider an economy with N investable assets. Factors are characteristic-sorted port-
folios that load on the asset universe, following the Fama and French (1993) blueprint.
Each factor k is a fixed dollar portfolio that loads on stock 7 in month ¢ with weight w},,
where the factor subscript is suppressed for legibility. Trading is costly and investors

trade off the benefits of tracking the underlying characteristic closely against transaction

9In this example, the construction of the FF6FcH ¢ is deliberately suboptimal. In practice, academics
can achieve similar results indirectly. Factors that rebalance more frequently and use complex sorting
methodologies that overweight costly-to-trade assets are exposed to similar problems.



costs they incur upon rebalancing. They do so by choosing an unconditional, factor-

specific trading intensity T € (0, 1], so that dollar positions in each security satisfy:

Ti(7) = 7wy + (1= 7) - wig1 (7)(1 + 7ar) (1)

At the end of each month, investors move a share 7 of their holdings toward target
weights w},. They retain the remainder invested at their current allocation, which re-
flects returns excluding dividends on each stock 7;.'° Larger values of 7 imply a more
aggressive rebalancing schedule. Normalizing to keep investment in each portfolio leg
constant yields the weights

Ty (T)
Wi (T) = , 2
(r) = )
where the normalizer n;; is
Nt
nie = ) 252(7) Lsign(esu(m)=sign(ea(r)} - (3)
j=1

Rebalancing is costly and investors incur transaction costs TC;;(7), which reflect their

trading intensity choice:

TCu(7) = |wir(7) — wi -1 (T)(1 + Fir) |Cat

where ¢;; is the proportional (one-way) cost of trading 1$ in stock ¢ in month ¢. T estimate
¢t from daily CRSP data following the guidelines of Abdi and Ranaldo (2017). If quote
data is available, c¢;; is the quoted bid-ask spread scaled by twice the contemporaneous
mid-point and averaged over month ¢. Otherwise, I estimate ¢; with the CHL spread
estimator that Abdi and Ranaldo (2017) propose. I detail the estimation process in
Appendix A.

I compute net-of-cost factor returns f; similar to Detzel et al. (2023)

ft(T) = fi(1) — TCy(7) (4)

10T correct returns for M&A dividends, which are not included in the standard CRSP field. When M&A
transactions are settled in cash, investors receive cash directly in a brokerage account. I assume that
investors incur transaction costs when they re-invest such cash proceeds in the market, but not on the
cash dividend. Sabbatucci (2015) shows that M&A dividends are substantial, and amount to 30% of
total shareholder payout over the last 20 years.




where the gross return f; and transaction costs associated with the factor, TC;, are given

as follows:

N
ft(T) = Z wi,t—l(T) Tit

N
TC, =)  TCyu(r)
=1

When 7 = 1, TCA weights reduce to target weights, and w;(1) = wj,. In other words,
factor portfolios rebalance fully toward target weights in each period. This case recovers
the setting in Detzel et al. (2023), in which investors incur transaction costs but cannot
adjust their trading accordingly. Further restricting c¢; = ¢ = 0 nests the standard
case of frictionless trading, which is the de facto standard in the empirical asset pricing
literature. Conversely, as 7 approaches zero, TCA factors move closer to “buy and hold”

portfolios, where trading only occurs to keep the invested amount constant.

I evaluate competing factor models based on the maximum squared Sharpe ratio cri-
terion of Barillas and Shanken (2017), which has recently gained increasing popularity
in the asset pricing literature. Barillas and Shanken (2017) rank models on the squared
Sharpe ratio achieved by a mean-variance efficient combination of their factors, Sh*(f).
The methodology builds on Gibbons, Ross, and Shanken (1989), who show that aug-
menting a set of factors f with test assets R improves the achievable squared Sharpe

ratio by

ar¥lag = Sh*(R, f) — Sh*(f) (6)

where ag are the pricing errors from regressing R on f. When R includes all possi-
ble factors, Sh*(R, f) = Sh*(R) and minimizing pricing errors becomes equivalent to

maximizing Sh?(f).

Similar to Detzel et al. (2023), I maximize squared Sharpe ratios of the net factors
f. In other words, I select the model that comes closest to spanning the mean-variance
frontier investors can achieve in practice, after accounting for transaction costs. However,
I substantially deviate from Detzel et al. (2023) in terms of the nature of the factors
considered. In this paper, I extend the factor space to all portfolios that can be generated
by trading toward a basis set of K target factors with the K-vector of factor-specific

trading intensities 7. For each model, I choose 7 and factor weights 6 to maximize

10



E[0fi(r) - 1 TC, ()] -
|

Sh? = max

| |0 s~ oy Te )

subject to 1’0 = 1 and 7 € (0, 1]¥.

3.2 Choosing target weights

TCA factors require a choice of target weights w}, to trade toward. In an ideal scenario,
such weights would be informed by a theoretical model that maps economic characteris-
tics into risk-factor premia. In practice, the search for theoretically motivated linkages
between risk-factors and economic characteristics is still an ongoing effort. 1 thus set
target weights w}, so that all basis factors reconstitute at a monthly frequency. To do
so, I run characteristic sorts underlying each factor’s construction at the end of each
month, irrespective of the original reconstitution frequency. I use market information
as of t to construct portfolio weights for the following period. Instead, I update ac-
counting characteristics at a six-month delay, in line with the original Fama and French
(1993) methodology. The motivation for choosing monthly reconstituted target weights
is threefold.

First, absent theoretical guidance, it is often unclear what lags of economic charac-
teristics are relevant for expected returns. Taking the example of the value effect first
illustrated by Basu (1983), what lag of book-to-market is most predictive of returns?
TCA factors allow to sidestep this issue. Equation (1) shows that TCA weights are an
exponentially-smoothed combination of past target weights. For a given level of trans-
action costs, the maximization problem (7) will suggest a lower trading speed 7},
if past values of book-to-market are more predictive of expected returns than recent

realizations.

A second argument in favor of monthly reconstituted factors centers on the informa-
tion set available to investors. The choice of target weights I propose always trades on

the most recent information available on the underlying characteristic.

A third and more important reason to deviate from established conventions in the
literature relates to transaction costs. For the purpose of this discussion, it is useful to
distinguish between factor reconstitution and factor rebalancing. On each reconstitution
date, the econometrician defines the investable asset universe for each factor, she sorts

securities by the chosen characteristic(s) and assigns them to sub-portfolios formed at

11



the intersections of such sorts. I refer to intermediate dates, in which the econometrician

observes factor returns but no reconstitution takes place, as rebalancing dates.

Absent corporate events, portfolio assignments are only revised on reconstitution
dates. Reconstitution is generally the leading source of turnover in factor construction
because investors incur transaction costs to adjust their allocation. However, investors
also need to engage in costly trading on rebalancing dates. Rebalancing needs arise to
ensure that factor portfolios are well-defined excess returns and meet potential equal-

weight, value-weight, or rank-weight constraints imposed for identification.

Table 1: Non-June rebalancing. The table below quantifies turnover and transaction costs
incurred by the Fama-French factors in non-reconstitution months. I first compute transaction
costs (TC) and turnover (TO) at the month and factor level. Transaction costs are TCy; =
SN wike — wi k-1 (1 + Tage) i and turnover is TCry = SonYy Jwise — wigep—1(1 + Fige)|/2-
Columns 3 and 5 respectively show the magnitudes of TC and TO in months other than June,
expressed in %. I first sum TC and TO incurred between July and May of each year and report
yearly averages. Columns 4 and 6 show shares of TC and TO incurred on rebalancing dates as
a % of the yearly total. The sample spans from 1972 to 2022.

Transaction Costs (TC) Turnover (TO)
Characteristic Non-June Level (%) Non-June Share (%) Non-June Level (%) Non-June Share (%)
SMB Size 0.63 64.0 51.1 60.4
HML Value 0.69 46.8 54.1 44.9
RMW  Profitability 0.69 47.7 54.8 45.5
RMWec  Cash Profitability 0.68 39.9 54.4 37.6
CMA  Investment 0.69 35.9 54.8 324

I find that the Fama-French factors, despite reconstituting each June, still experience
significant turnover in other months due to rebalancing activity. While such turnover
is costly, it acts on stale information, since characteristics entering portfolio sorts are
only updated in June. Table 1 shows that non-June turnover and the transaction costs
incurred because of it are substantial for the Fama-French factors. An investor holding a
100$ position in the size factor SMB would have incurred 63 cents worth of rebalancing
costs each year due to turnover in months other than June. Such expenses would have
amounted to 64% of the yearly transaction costs required to hold the size factor, with the
remainder being incurred on reconstitution dates. Point estimates for transaction costs
(TC) and turnover (TO) incurred when trading other factors are similar between July
and May. Factors instead differ more heavily in the portion of turnover and trading costs
originating on rebalancing dates as opposed to reconstitution dates. The investment
factor, CMA, experiences the lowest share of non-June transaction costs (turnover),
which is 35.9% (32.4%) of the yearly total. Such figures are nevertheless substantial,

12



and suggestive that holding the Fama-French factors is not a passive endeavor, even

absent reconstitution concerns.

Non-June rebalancing needs arise to keep the long and short ends of each factor
balanced. If either leg of factor k outperforms the other at month-end ¢, the factor
picks up a net exposure to the risk-free rate and loses its interpretation as a tradable
excess return over the following period. Each factor leg is in turn an equally-weighted
combination of sub-portfolios. For instance, the long leg of the value factor, HML, assigns
equal weights to the portfolios of small- and large-value stocks. Similarly, the growth
portfolio is an equally weighted mix of the small-growth and large-growth portfolios.
Correcting for differences in returns across portfolios in the same factor leg also requires
additional trading. Lastly, each of the constituent portfolios is a value-weighted portfolio.
Therefore corporate events and dividends affecting any of the constituents also induce
a rebalancing need. Taken together, these considerations suggest that reconstituting
target weights w}, at a frequency that matches observed returns may be beneficial, as it

reduces turnover that acts on stale information.

4 Model Comparison

In this section, I run horse races between competing asset pricing models. I focus on the
six factor models covered in Detzel et al. (2023). These specifications have the benefit
of being low-dimensional and have high tenure in the literature. Table 2 summarizes
candidate models and factors. FF5 is the ubiquitous six-factor model of Fama and
French (2015), to which FF6 adds a momentum factor. I denote with a subscript ¢ the
versions of the two models that replace operating profitability with cash profitability.
HXZ4 is the g-theory model of Hou, Xue, and Zhang (2015). Barillas and Shanken
(2018) show that a combination of FF6 and HXZ4 factors, together with the monthly
updated value factor of Asness and Frazzini (2013), achieves the largest Sh? before costs.
I denote their model BS6.

[ investigate the performance of each model (i) gross-of-cost using traditional (cost-
agnostic factors), (ii) net-of-cost, but still assuming cost-agnostic factor construction,
and (iii) net-of-cost with optimized trading speed. I construct factors entering the first
two sets of models following the documentation provided on the authors’ webpages. 1
replicate weights in each factor, stock, and month to obtain factor-level excess returns
before and after the cost of trading. I instead reconstitute all TCA versions of the factors

on a monthly basis, irrespective of the original reconstitution frequency. Appendix

13



B reports the construction methodology of characteristics entering TCA factors and

replication statistics for cost-agnostic factors.

Table 2: Candidate factors. The table below summarises the candidate factors and models
that I evaluate in this section. FF5 and FF6 are the factor models of Fama and French (2015,1).
The subscript ¢ denotes variations of the above models that replace the operating profitability
factor with a cashflow-based one. HXZ4 is the g-theory model of Hou et al. (2015). BS6 is the
empirically motivated model of Barillas and Shanken (2018). BS6 replaces the standard value
factor with a monthly-reconstituted version, which is due to Asness and Frazzini (2013).

Factor  Characteristic Reconstitution FF5 FF5c FF6 FF6c HXZ4 BS6
MKT Market Monthly v v v v v v
SMB Size June v v v v v
HML Value June v v v v

RMW  Profitability June v v

RMWc Cash Profitability June v v

CMA Investment June v v v v

UMD Momentum Monthly v v v
ME Size Monthly v

IA Investment Monthly v v
ROE Profitability Monthly v v
HMLm Value Monthly v

4.1 Maximum Squared Sharpe Ratios

Figure 2 illustrates the benefits of rebalancing factors conservatively in the presence of
transaction costs. I show how models that trade toward TCA target weights fare net
of costs for each possible choice of trading speed. To stack the deck against results,
I restrict factors to rebalance at the same speed within each model. This restriction
sets a conservative benchmark: optimal trading speeds for individual factors are likely
heterogeneous, due to differences in turnover, return persistence, and the average cost

of trading constituents.

The relationship between trading speed and net Sh? is hump-shaped and appears
smooth across all models. Net Sh? initially increases rapidly in 7, because factors gain
exposure to the underlying characteristics. Rebalancing benefits die down when trans-
action costs become more substantial, and net Sh? peaks for values of 7 between 20 and
30%, depending on the model. Net Sh? declines past this level since excessive rebalancing

erodes compensation for increased risk exposure.
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Strikingly, HXZ4 starts delivering higher net Sh? than the baseline when 7 is as low
as 4.6%. Put differently, it is preferable to retain 95.4% of funds invested at the pre-
vious period allocation, rather than fully rebalance the HXZ4 factors when transaction
costs are present. A similar lower bound is consistent across models and all candidates

outperform their cost-agnostic counterparts at a 6.9% speed.

Two main empirical findings emerge from figure 2. First, TCA models outperform
cost-agnostic versions even without increasing model complexity. Since trading speeds
are fixed at this stage, net squared Sharpe ratios only optimize over factor weights
in the ex-post MVE portfolio. Put differently, TCA and traditional models have the
same number of estimated parameters in this setting. Therefore, figure 2 dismisses
potential concerns that TCA factors may overfit in-sample with respect to their cost-
agnostic baselines. Figure 2 also shows that performance gains from using TCA factors
are remarkably robust to trading speed misspecification. Limiting rebalancing activity
delivers benefits over the baseline across all models and for a wide range of trading
speeds. Even for the MVE portfolio implied by the TCA FF5c¢c model, which is the
closest to its baseline, the tangency portfolio lies above its cost-agnostic benchmark for
all trading speeds between 6% and 78.9%.

In the remainder of the paper, TCA factors relax the restriction of a common trading
speed at the model level and evaluate the rebalancing benefits of individual factors
against the resulting cost of trading. Figure 3 quantifies improvements in the ability to
span the achievable efficient frontier when I allow each factor and model pair to rebalance
at the optimal speed. TCA factors deliver net Sh? that are 28% to 84% higher than their
cost-agnostic counterparts. The FF6¢c model dominates both with an optimal choice of
7 and when 7 = 1. However, four out of five of the remaining TCA models have higher
Sh? than the cost-agnostic FF6c. Strikingly, investors would be better off pricing assets
with any of these four suboptimal models, but choosing speed optimally, rather than
rebalancing naively and pricing assets with the best-performing cost-agnostic model.
This point underscores the pitfalls of factors that are constructed without recognizing

that investors alter their trading decisions when trading is costly.

While all TCA models perform better after costs, models where transaction costs are
a larger concern benefit most from an informed choice of trading intensity. HXZ4 is the
worst-performing model under full rebalancing, with a net Sh? of 0.45. The empirical
challenges the model faces after fees are unsurprising since HXZ construct their factors
using a 2x3x3 sorting methodology that magnifies turnover and amplifies the weight of
small stocks. However, a more conservative choice of trading speed improves the model’s

performance by 78%, resulting in a net Sh? of 0.79.
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Figure 2: Benefits of conservative rebalancing. The figure graphs the relationship be-
tween trading speed 7 and net model performance. Each panel represents one of the candidate
models. The continuous lines show the net Sh? each model achieves when trading toward its
TCA target with speed 7. Dashed lines represent instead the baseline net Sh? which can be
achieved through cost-agnostic factors. The shaded region highlights the set of trading speeds
that deliver higher or equal Sh? with respect to the baseline. The sample ranges between 1972
and 2022.

Additional performance benefits of TCA models stem from the inclusion of mo-
mentum, which is especially costly to trade due to its fleeting portfolio composition.
Momentum strategies suffer from large turnover because returns are typically less per-
sistent than accounting characteristics: stocks that have done well in recent times may
not continue their good runs in the future. Therefore, the BS6 factors, which include
momentum, benefit even more than HXZ4 factors from transaction-cost-aware trading,
with a performance improvement of approximately 84%. Further, adding momentum
to the FF5 model only increases Sh? by 0.02 under full rebalancing. Performance im-
provements are even more modest when considering cash profitability versions of the
two models. However, TCA models do benefit from momentum exposure. The TCA
versions of FF6 and FF6c outperform their less parametrized counterparts by 0.13 and

0.10 respectively.

Heterogeneous benefits from transaction-cost-aware trading translate in heterogene-
ity in the ranking of the models considered. HXZ4 and BS6 outperform FF5 and FF6
in their TCA versions, while cost-agnostic models would produce the opposite ranking.
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Figure 3: Model comparison after transaction costs — TCA and cost-agnostic fac-
tors. The above figure plots net model Sh2. The left bars (dark blue) show the performance of
each model with TCA factors. TCA factors trade toward monthly reconstituted target weights
with optimized trading speed 7*. The right bars (light blue) measure how close the same mod-
els come to spanning the achievable efficient frontier when factors are cost-agnostic and trade
with 7 = 1. I sort models by the Sh? they achieve in their TCA version. The sample ranges
between 1972 and 2022.

Similar to Detzel et al. (2023), standard statistical tests of Sh? differences cannot be ap-
plied to this setting. Asymptotic results on Sh? comparison rely on the delta method.!!
However, net Sh? ratios are not differentiable in the presence of proportional transaction
costs. Equation 7 shows that the Sh? depends on the absolute value of factor weights in
the MVE portfolio. Nonetheless, factor-level results, which are the object of section 5,
show that the HXZ4 and BS6 factors benefit most from transaction-cost-aware trading
on an individual basis. This finding is suggestive that differences in model rankings
produced by TCA factors are likely robust. Further, FF5 and FFb5c are approximately
nested in their more parametrized FF6 and FF6c counterparts, provided factor speeds
on common factors are close. Investors would thus prefer the larger model in each of the

two pairs, given their higher net Sh?, even absent a rigorous asymptotic theory.

Importantly, the two different rankings in figure 3 suggest that model comparison ef-
forts after fees can be biased by the effects of discretionary construction choice. Inference

on asset pricing models should instead contrast performance after optimizing trading in-

H1See Barillas and Shanken (2018) and Barillas, Kan, Robotti, and Shanken (2020).
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Figure 4: Model comparison — net TCA factors and gross cost-agnostic factors.
The above figure compares model Sh? before costs and net of costs with TCA factors. The left
bars (dark red) show the performance of each model before costs, using the traditional factors.
The right bars (dark blue) show the performance of each model with TCA factors. TCA factors
trade toward monthly reconstituted target weights with optimized trading speed 7*. Models
are sorted by their Sh? with TCA factors. The sample ranges between 1972 and 2022.

tensity for transaction costs incurred in the process. This insight complements findings
in Detzel et al. (2023), who show that net and gross Sh? produce different rankings if
factors are cost-agnostic. Figure 4 highlights that this phenomenon extends to TCA fac-
tors. Both TCA Fama-French models incorporating cash profitability outperform BS6

after fees, while the latter model dominates gross-of-cost.

Figure 4 also shows that before-cost model comparison dwarfs differences between
the models in the more realistic setting where investors experience transaction costs
and construct factors accordingly. Apparent differences in model performance largely

manifest due to arbitrary construction choices and when the cost of trading is overlooked.

4.2 Optimal trading speeds

Figure 5 shows how 7* varies across TCA factors and candidate models. Optimal trading
speeds are far below 100%. Trading factors conservatively thus brings investors closer

to the achievable efficient frontier in the presence of transaction costs.
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It is important to understand through which channels models benefit from optimiz-
ing trading speed. Does the choice of 7" reflect meaningful economic properties of the
underlying characteristics? Or is it an artifact of minor construction details and corre-
lation effects at the model level? Figure 5 can only offer partial insights on this point,
due to the narrow set of factors considered. However, results seem to point toward the
former interpretation. Estimated values of 7* differ substantially between factors, but
competing models assign similar speeds to each individual factor. Optimal speeds are
also consistent within factor themes. The operating profitability factor, RMW, con-
stitutes the only outlier in this respect. Estimated 7" appear instead similar between
size factors (SMB and ME), investment factors (CMA and IA), and profitability factors
(RMWc and ROE).

Factor-level regularities in optimal trading intensities are also desirable from an em-
pirical standpoint. Fixing factor-level trading intensities across models can be appealing,
provided that it carries minor implications in terms of performance. This restriction may
be particularly convenient when comparing a large set of models, especially if one be-

lieves that none of the candidates are correctly specified.

Benefits from reducing trading intensity seem lowest for the operating profitability
factor, RMW, which rebalances roughly 70% of its allocation on a monthly basis. The
high 7* for RMW is in contrast with what I find for its cash-based version. The optimal
trading speed for RMWec is close to 25%, less than half of 73%,. This suggests that
turnover in the operating profitability factor is inflated by mean reversion in accruals.
Sloan (1996) finds that variation in operating profits coming from accruals is less per-
sistent than the cashflow component. The ROE factor of HMZ, which sorts stocks on
quarterly ROE, also trades substantially more slowly. More granular information about
profitability allows for gradual adjustments in factor composition which can be smoothed

over time.

The market and the two size factors, SMB and ME, require the least trading. Since
these factors are value-weighted and sorted on market equity, they are close to self-
rebalancing. Investors only need to adjust the composition of the market factor due
to corporate events and net issuance, which may translate into higher-than-average
transaction costs on the affected securities. In line with this intuition, 7k ranges
between 2.1% (FF6) and 3.3% (FF5c). SMB and ME face additional turnover with
respect to the market due to migration, i.e. the rebalancing need that arises when
securities move between the equally-weighted sub-portfolios that constitute each factor.

The larger turnover aligns with even lower optimal trading speeds, which range between
1.5% and 2%.
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Figure 5: Optimal trading speeds. The above figure shows estimated trading speeds for
each factor and model. The sample ranges between 1972 and 2022. Optimal trading speeds
are undetermined for factors that receive zero weight in a given model. I therefore drop the
corresponding model and factor pairs.

4.3 MVE Weights

In this section, I investigate how TCA models realize improvements over their fully re-
balanced counterparts. It is possible that transaction-cost-aware trading delivers similar
improvements for all factors, leaving their relative importance unchanged. Conversely,
if any of the candidate factors drive larger benefits from more conservative trading their
weights in the MVE portfolios should increase. Table 3 shows that TCA models produce
different ex-post efficient MVE portfolio weights with respect to both gross factors and

fully rebalanced net factors.

Ignoring transaction costs understates the relevance of the market factor with respect
to the TCA case in panel C. Overinvestment in the market results in higher leverage
across all models. TCA models also attach higher weights to the size factor, with the
exception of ME in HXZ4. Figure 5 shows that market and size are the factors with the
slowest optimal trading, which aligns with their gain in relative importance in panel C
of table 3. Changes in weights are most striking for the BS6 model, which includes 5
monthly reconstituted factors out of 6. The weight on the investment factor increases

from 4% to 32% when moving from the optimal factor portfolio before costs to the
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TCA case. This change comes at the expense of the value, profitability, and momentum

factors which are costlier to trade.

Table 3: Ex-post mean-variance efficient weights. The table below reports factor weights
in the ex-post efficient mean-variance portfolio. Panel A shows optimal loadings on the tra-
ditional factors in the standard asset pricing inference setting, in which the cost of trading is
ignored. Panel B reports factor weights in the Detzel et al. (2023) setting, in which traditional
factors are evaluated net of transaction costs. Panel C shows instead ex-post efficient weights
on TCA factors.

Panel A: Ignoring TC

Model MKT SMB HML CMA RMW RMWc UMD ME IA ROE HMLm

FF5 18 9 -3 46 30

FF5c 17 13 -3 29 44

FF6 18 8 4 33 23 14

FF6c 17 11 2 23 37 10

HXZ4 15 15 36 34

BS6 14 10 19 4 27 26

Panel B: With TC and full rebalancing 7 =1

Model MKT SMB HML CMA RMW RMWc UMD ME ITIA ROE HMLm

FF5 26 4 7 34 29

FFb5c 22 10 4 18 46

FF6 25 4 9 29 26 7

FF6c 22 10 5 16 44 3

HXZ4 27 6 38 29

BS6 24 8 0 30 32 6

Panel C: With TC and 7*

Model MKT SMB HML CMA RMW RMWc UMD ME IA ROE HMLm

FF5 22 11 0 42 25

FF5c 19 15 0 26 40

FF6 20 9 11 26 18 16

FF6c 18 13 5 20 34 10

HXZ4 21 13 43 23

BS6 20 11 10 32 17 10

Contrasting panels B and C of table 3 shows how ex-post MVE weights differ be-
tween TCA and fully rebalanced traditional factors after transaction costs. Forcing 7
to one results in an overly conservative allocation. As spread factors are rebalanced
more aggressively than optimal, models reduce loadings on costlier-to-trade factors to
compensate. Weights on the market factor thus increase across all models with respect
to the TCA case. In turn, failing to account for transaction costs in factor design can
dampen the relative importance of costlier-to-trade factors when performing inference

net of transaction costs. This effect is especially apparent with the momentum factor,
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UMD. Models load only marginally on momentum under full rebalancing, to the point
that BS6 places zero weight on the factor, effectively turning into a 5-factor model. This
finding is consistent with the minor differences in Sh? observed in figure 3 between both
versions of the FF5 and FF6 models under full rebalancing. Momentum plays a much
larger role in TCA factor models, in which weights on the factor more than double, and

become sometimes larger than in the before-cost benchmark.

TCA models exhibit sparsity with respect to the gross-of-cost benchmark: HML
washes out of the TCA versions of FF5 and FF5c. The net-of-cost maximum Sharpe
ratio criterion introduces additional sparsity with respect to the traditional case because
transaction costs in equation (7) effectively act as a LASSO penalty. From a finance
standpoint, the exclusion of HML reflects the extended drawdown that value suffers in
the recent sample. On top of its poor recent performance, HML is positively correlated
with the investment and profitability factors and it provides scarce diversification bene-
fits. However, HML resurfaces in models that also include a momentum factor. Asness
and Frazzini (2013) show that trading value and momentum jointly is beneficial in light

of their negative correlation.!?

5 Rebalancing Trade-off

In earlier sections, I relate improvements in pricing ability delivered by TCA factors to
a reduction in transaction costs. The premise is that, if characteristic C' is priced in
the cross-section of expected returns, investors face a trade-off between securing high
exposure to C' and containing transaction costs incurred in the process. However, com-
peting channels may also contribute to pushing optimal trading speeds below 100%. In
this section, I discuss other factors that may result in conservative trading and present

evidence that transaction costs are the main driver of trading speeds.

Target factor weights are often empirically motivated, and likely not efficient even
absent transaction costs. Optimizing trading speed may therefore improve the efficiency
of individual factors, both before and after the cost of trading. This is in stark contrast

with the literature on dynamic price impact, where the aim portfolio is a weighted av-

12Tn Detzel et al. (2023), HML drops out from all models after accounting for transaction costs in
the full rebalancing setting they consider. This is in contrast with my findings. The higher relative
importance of HML in panel B of figure 3 with respect to Detzel et al. (2023) reflects the joint effect
of (i) differences in the stock-level estimator for ¢;;, which has lower bias and higher correlation with
TAQ effective spreads (ii) costs incurred by infrequently reconstituted factors on rebalancing dates,
which Detzel et al. (2023) neglect, and (iii) differences in the sample considered, which includes one
additional year in this paper.
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erage of current and future expected mean-variance efficient portfolios (Collin-Dufresne
et al., 2020; Garleanu and Pedersen, 2013; Jensen et al., 2022). First, recent character-
istic realizations may be noisy measures of their systematic components. Conservative
trading attaches larger weights to lagged characteristic values and may produce more
efficient factors absent transaction cost considerations. In this vein, Novy-Marx (2012)
argues that momentum is largely driven by returns 12 to 7 months before portfolio for-
mation, while more recent performance seems less informative. Further, Daniel, Mota,
Rottke, and Santos (2020) show that characteristic sorts also pick up systematic com-
ponents that contribute to portfolio variance, but do not represent priced variation in
before-cost expected returns. Ehsani and Linnainmaa (2022); Fama and French (2020)
propose related procedures to isolate priced variation and improve factor efficiency. If
lagged characteristic realizations are less correlated with unpriced systematic compo-
nents, reducing trading speed may again prove beneficial irrespective of the cost of
trading. While desirable, the above effects are unrelated to the transaction cost channel

explored in this paper.
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Figure 6: Optimal trading speeds with and without transaction costs. The above
figure shows how transaction costs affect optimal trading speed for each factor and model. I
denote 7°TC the optimal trading speed absent transaction costs, i.e. when ¢ = ¢ =0 (when
trading is costly). The optimal trading speed when trading is costly, which is displayed in
figure 5, is instead 7*. The vertical axis shows the differences between 7°°TC and 7*. The
sample ranges between 1972 and 2022. Optimal trading speeds are undetermined for factors
that receive 0 weight in a given model. I therefore drop the corresponding model and factor
pairs.
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Figure 6 disentangles before-cost efficiency and the effect of transaction costs. I
compute the difference in optimal trading speed with and without transaction costs for
each factor and model. When the cost of trading is set to zero, investors rebalance
factors more aggressively, and optimal speeds approach 100% for the wide majority of
models and factors. These findings substantiate that transaction costs are the leading

driver of conservative trading.

The market and size factors represent the only partial exceptions. Turnover in such
factors is strongly reflective of net issuance, as discussed in section 4.3. Conservative
trading in MKT, SMB, and ME aligns with a large literature on equity issuance and
stock returns. Loughran and Ritter (1995); Ritter (1991); Spiess and Affleck-Graves
(1995); Stigler (1963), among others, show that firms tend to underperform following
both seasoned and initial equity offerings. Under this view, delaying rebalancing can
reduce the net issuance exposure of the market and size factors, and result in higher
excess returns gross and net of the cost of trading. Daniel and Titman (2006,1) show
that net issuance is a strong negative predictor of stock returns, suggesting that priced
systematic variation rather than noise or unpriced variation may contribute to slower

trading in market and size factors.!3

Trading partially toward target weights could also translate into higher pricing abil-
ity because it optimizes before-cost diversification between the factors. I show in table
4 that this does not seem to be the case. I compare the performance of TCA and fully
rebalanced factors on an individual basis to shut down the diversification channel. All
TCA factors have higher or equal premia with respect to the net fully rebalanced case.
Only three of the eleven factors are 5% significant when 7 = 1. After optimizing trad-
ing speeds, t-statistics on the monthly premia generally increase, and both investment
factors become significant at the 5% level. TCA factors are also substantially cheaper
to trade, except the profitability factors.!? Lastly, net (annualized) Sh are also larger
or equal for all TCA factors. Taken together, these findings suggest that TCA factors

deliver improvements over cost-agnostic factors through cost reduction.

13Baker and Wurgler (2000) demonstrate that the equity share in new issues negatively predicts market
returns more specifically.

4 Figure 5 shows that the optimal trading speed for the TCA RMW is close to 70%. Additional turnover
due to monthly reconstitution of the target weights thus overstates the reduction in transaction costs
from less aggressive trading.
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Table 4: Individual factor premia. The table below zeroes in on individual factors. I
report average monthly premia, u, in % points, the associated t-statistics ¢, and the average
transaction costs incurred per month, TC. I compare how factors perform under three scenarios.
Columns 2 and 5 refer to traditional factors evaluated before accounting for the cost of trading.
Columns 3 and 6 relate to the same set of factors, after netting out the respective cost of
trading, which I report in column 8. Columns 4, 6, and 8 pertain to TCA factors. Lastly,
column 9 shows the difference in annualized net Sh between TCA factors and fully rebalanced
traditional factors.

w (%) t TC (%) Sh
Factor  Gross 7=1 T* Gross 7=1 71 7=1 71 71fvs7t=1
MKT  0.58** 0.56"** 0.60"* 3.09 3.01 346 0.02 0.01 0.07
SMB 0.14 0.05 0.14 1.12 043 1.44 0.09 0.03 0.14
HML 0.37**  0.24* 0.24* 2.96 1.90 1.91 0.13 0.06 0.00
RMW  0.32"*  0.18* 0.19* 3.29 1.88 1.88 0.13 0.16 0.00
RMWc 0.41** 0.25"* 0.25*** 499 3.01 299 0.16 0.16 0.00
CMA 0.30*** 0.13 0.20** 3.72 1.59 241 0.17 0.14 0.12
UMD  0.64*  0.01 0.23 3.66 0.07 1.40 0.63 0.30 0.19
ME 0.2* 0.08 0.16 1.94 0.60 1.32 0.17 0.05 0.11
1A 0.36***  0.14  0.27** 414 158 3.12 0.22 0.14 0.22
ROE 0.56***  0.21**  0.24** 5.24 1.97 219 035 0.25 0.03
HMLm 0.38*** 0.10 0.24* 2.43 0.64 191 0.28 0.06 0.18

Note: * p < 10%, ** p < 5%, *** p < 1%

Table 4 allows for qualitative comparisons, but offers limited insights in terms of
inference. Differences in net Sh are not differentiable due to transaction costs, and
cannot be tested directly. To address this problem, I run spanning regressions of TCA
factors against their fully rebalanced counterparts. Table 5 shows that TCA factors
deliver positive alphas over traditional factors with full rebalancing. These alphas are
statistically significant at the 1% level for six out of the eleven factors, and particularly
large for those that reconstitute at a monthly frequency in their original formulation.
Conversely, fully rebalanced UMD, ME, TA, and HMLm factors do not span their TCA
counterparts, and deliver significant negative alpha at the 5% or 1% level. This reinforces
that optimizing trading speed delivers significant benefits when transaction costs are
present, over and above the effects of diversification. All betas are large and statistically
significant, suggesting that the risk exposures of the two sets of factors are similar in

nature.
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Table 5: Spannning regressions. The table below reports coefficient estimates and associ-
ated t-statistics for spanning regressions. For each factor candidate, I regress the net returns
on TCA factors on the net returns earned by traditional factors, and vice versa. Columns 3
and 4 investigate whether traditional factors span TCA factors. Columns 5 and 6 perform the
opposite exercise. Pricing errors « are in basis points per month.

f(r7) on f(1) f(1) on f(7%)

Factor  Characteristic a (bps) Ié] a (bps) 6]
MKT Market 0.09** 0.91%** -0.07 1.06™**
(2.58)  (124.06) (-1.94) (124.06)
SMB Size 0.11% 0.6 -0.08 0.96***
(1.71)  (28.67)  (-1.02)  (28.67)
HML Value 0.01 0.93*** 0.01 0.96***
(0.33)  (71.68)  (0.31)  (71.68)
RMW  Profitability 0.00 1.00*** 0.00 0.95***
(0.21)  (112.36)  (0.19)  (112.36)
RMWc Cash Profitability 0.01 0.97*** 0.01 0.95%**
(0.37)  (81.32)  (0.51)  (81.32)
CMA  Investment 0.08*  0.92*  -0.05*  0.95"**
(2.6)  (64.96) (-1.86)  (64.96)
UMD  Momentum 0.22***  0.88***  -0.23™*  1.05™**
(4.86)  (85.74)  (-4.65)  (85.74)
ME Size (monthly) 0.09**  0.98*  -0.09"**  0.98***
(3.53)  (116.93) (-3.33) (116.93)
IA Investment (monthly) — 0.14™*  0.92*** -0.12"** 0.96 ***

(4.73)  (66.62) (-3.87) (66.62)
ROE Profitability (monthly)  0.03 1.00%** -0.01 0.92%**
(1.04)  (80.00) (-0.42)  (80.00)
HMLm Value (monthly) 0.17* 0.72**  -0.17*  1.12*
(3.02)  (50.07) (-2.43) (50.07)

Note: * p < 10%, ** p < 5%, *** p < 1%

6 Trading diversification

TCA factors introduced in section 3 are appropriate to represent the opportunity set of
investors that trade factors individually. For instance, small investors may be unable to
trade factor constituents directly but can gain exposure to individual factors through

a combination of ETFs and active factor funds. TCA factors capture the returns such
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investors can achieve if funds optimize execution and fully pass down the cost of trading,

either in the form of investment fees or tracking error.

Sophisticated investors can instead trade constituents directly and net out offset-
ting positions across long and short legs of different factors. DeMiguel et al. (2020)
term “trading diversification” the reduction in transaction costs that arises when net-
ting offsetting positions. In this section, I investigate the combined effects of trading

diversification and transaction-cost-aware trading on model comparison.

Detzel et al. (2023) characterize transaction costs incurred when trading K factors
jointly when investors can benefit from trading diversification. If investors can also

choose trading speed optimally, transaction costs at the model level are:

K N

TCEP(7,0) = 30 | e lwia(m) = wige1(7) (14 i = di)] | e (8)

k=1 i=1

By Jensen’s inequality, TC] ”(7,6) sets a lower bound to the cost of trading TCA

factors individually.
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N
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I solve again for optimal trading speeds and weights in the ex-post mean-variance
efficient portfolio under the assumption that investors can benefit from trading diversi-

fication.

2
E|0f(7) = TC[P(7.0)]
Sh?., = max

(10)
| Vo) - TC P (. 0)]

Figure 7 compares the net Sh? candidate models achieve in four scenarios: (i) with
full rebalancing and without trading diversification, (ii) with full rebalancing and trading
diversification, (ii) with optimal trading speed, but without trading diversification, and
(iii) with both trading diversification and optimal trading speed. In the HXZ4 and
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BS6 models, which include factors that are more expensive to trade, the benefits of
transaction-cost-aware trading overstate the effects of trading diversification. Other
models including TCA factors traded individually deliver comparable performance to
the case with full rebalancing and trading diversification. In particular, the FF6¢c model,
which remains the best performing in all four cases, has a virtually equivalent Sh?
for investors that are restricted from either transaction-cost-aware trading or trading
diversification. This observation helps put into perspective the advantages that asset
managers can deliver to less sophisticated investors, who may be unable to trade the
entire set of factor constituents on the margin. Such advantages come in the form of cost
reduction, rather than through risk-adjusted gross returns - the channel that is typically

the object of interest in the mutual fund literature.

[] Net Sh2 (r = 1)
1.5 L] Net Sh3., (r = 1)
B Net Sh2 (7)

B Net ShZ., ()

1.0+

0.0

FF5 FF6 HXZ4 BS6 FF5c FF6c

Figure 7: The figure compares annualized net Sh? that candidate models achieve under four
different scenarios. Starting from the left, the first set of bars (light blue) shows the pricing
ability of models including traditional factors, which rebalance fully in each period. The second
set of bars (orange) adds trading diversification. The remaining sets of bars show the net Sh?
of TCA factor models, respectively without and with trading diversification (dark blue and
purple). The sample ranges between 1972 and 2022.

The joint effect of trading diversification and transaction-cost-aware trading further
improves the efficient frontier investors can achieve after costs. The dominant model,
FF6c, undergoes a 101% Sh? with respect to the baseline without transaction-cost-aware
trading and trading diversification and performs 42.6% better than the TCA version

without TD. The ranking between models also varies from the TCA case without trad-
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ing diversification. Netting out rebalancing trades across factors naturally favors more
parametrized models, since the additional factors introduce additional and potentially
offsetting trading motives in the set of constituents. While the FF6c model still dom-
inates the other five candidates, the relative performance of factor models depends on
the cost mitigation solutions available to investors. When considering a broader set of
models, the tangency portfolio more sophisticated investors can achieve may not only
lie higher in the mean-variance plane but may also comprise of a different set of risk-
factors. In a similar vein, Li et al. (2023) show that investors with different levels of
risk-aversion should benchmark against different factor models when price impact is a
concern. Recognizing the effects of transaction costs questions the adequacy of “one-

size-fits-all” approaches to factor models.

To qualify asymmetries in relative performance, the FF6 model now outperforms the
HX7Z4 specification and has a Sh? of 1.16, which is equivalent to the Sh? of the BS6
model. The FFb5c model still outperforms FF6, but only marginally: the distance in
Sh? between the two shrinks from 0.15 to a mere 0.01. The three models that include
the momentum factor - FF6, FF6¢, and BS6 - benefit most from trading diversification,
as UMD is negatively correlated with the value factor. In my sample, the correlation
between momentum and the monthly reconstituted value factor of Asness and Frazzini
(2013) is -63%. Overall, the BS6 model is again the one that sees the largest overall
performance gains. Its Sh? increases by a factor of 2.5 when investors optimize trading

speed and can net out offsetting trades.

7 Conclusion

I show that traditional asset pricing factors are suboptimal if investors incur proportional
transaction costs. The cost of trading alters the opportunity set in a fundamental fashion,
because it introduces a trade-off between securing risk-factor exposures and controlling
rebalancing costs. Factors that are designed while overlooking transaction costs fail
to recognize this trade-off, and are unlikely to span the achievable efficient frontier. I
instead propose that factors should be constructed in a transaction-cost-aware fashion,
evaluating their risk-premia against the necessary cost of trading. I term TCA factors
the class of factors incorporating these insights and show that TCA factor models can
better characterize the achievable tangency portfolio. Given target weights that provide
exposure to a particular characteristic, TCA factors rebalance at the optimal speed to

capture its potential premium, while containing the cost of trading.
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TCA factors showcase that factor design is a first-order concern when trading is
costly, and meaningful construction can trump the benefits of adopting potentially more
parametrized asset pricing models. Out of the set of factor models considered, TCA
versions deliver up to 150% larger net squared Sharpe ratios compared to the cost-

agnosic benchmark.

More importantly, I suggest that discretionary construction choices can bias asset
pricing inference. After recognizing the cost of trading, models differ in their relative
performance depending on whether trading speed is optimized or not. This is because,
in turn, factors differ in turnover, return persistence, and average cost of constituents.
When rebalancing is too aggressive, transaction costs can mask factor premia and dilute
the efficiency gains such factors deliver when they are included in asset pricing models.
The effect is particularly apparent with the momentum factor. Due to its high cost of
trading, momentum plays a marginal role in the ex-post efficient mean-variance portfolio
when it is constructed in a cost-agnostic way. I find instead that a more conservative

rebalancing schedule attributes far greater importance to the momentum factor.

This paper offers a general cautionary note against neglecting frictions in empirical
asset pricing research. Investment decisions that are optimal absent frictions may signifi-
cantly underperform after considering implementation concerns. Consequently, investors
modify their optimal allocations to account for friction-induced distortions. Efforts to
characterize the opportunity set that either ignore frictions entirely, or restrict investors

from optimizing accordingly, may produce misleading results.
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Online Appendix for “Transaction-cost-aware Factors”

A Stock level transaction costs

Measuring the cost of trading factors requires proportional cost estimates at the stock
and month level. Chung and Zhang (2014) suggest that daily quoted spreads provide re-
liable estimates of high-frequency effective spreads. Abdi and Ranaldo (2017) show that
CRSP quoted spreads outperform other more sophisticated estimators and recommend

adopting the Chung and Zhang (2014) estimator when quote data is available.!

I estimate ¢;; from CRSP, using daily quoted bid-ask spreads, if available. In the
absence of valid quotes, I employ the CHL estimator of Abdi and Ranaldo (2017). 1
then fill ¢;; for stock and months that still have missing values based on the methodology
proposed in Novy-Marx and Velikov (2016).

A.1 Quoted Spreads

I construct quoted spread estimates following Chung and Zhang (2014). I discard days
with non-positive close, bid, or ask prices. 1 further ensure that bid-ask spreads are

non-negative for each observation. The relative bid-ask half-spreads c;;q4 are:

Aita — B;

Q itd itd

v = 11
Citd 2Mitd ( )

where A;;y and B4 are the closing ask and bid prices quoted on day d of month ¢ for
stock . I denote Mg = (Ajuq + Bia)/2 the prevailing end-of-day mid-quote. Following
Chung and Zhang (2014), I then take cg as the average of cgd estimates over month ¢,
after discarding days with half-spreads exceeding 25% of the mid-quote.

LAbdi and Ranaldo (2017) find that the monthly CRSP quoted spread estimator achieves a 96% corre-
lation with TAQ effective spreads and the same mean (0.82%) between October 2003 and December
2015. For comparison, the Gibbs estimator of Hasbrouck (2009), which has seen frequent application
in the literature, delivers a correlation of only 40% with the TAQ effective spread, and overestimates
its mean by 1.31%.



A.2 CHL Estimator

I compute a second set of effective spread estimates, ¢G#%, using the methodology pro-

posed by Abdi and Ranaldo (2017). I use the 2-day corrected version of the estimator, as
per the authors’ recommendations. I discard observations with non-positive close, high,
or low prices, and stock-months with less than 12 valid observations. The proportional

cost estimator is then

Dy
1
chL = _2Dt E \/max{(pitd - Uitd)(pz‘td - 77i,t,d+1)7 0} (12)
d=1

where p;;q and 7,4 are respectively the log closing price and the log mid-range 7;;q =
(log(Hita) + log(Lita))/2 on day d. If the leading midrange 7,411 is missing, I use the
prevailing log midpoint instead, as proposed by Abdi and Ranaldo (2017).

A.3 Imputation

I set ¢ to ¢, if available, and use the CHL estimator ¢$7” otherwise. This procedure

still leaves missing observations for 2.9% of stock months.? I fill these observations with
the non-parametric methodology proposed in Novy-Marx and Velikov (2016). I impute

missing ¢; with the cg of stock j that minimizes the distance

\/(rankMEit —rankMEj;)? + (rankFF3IVOL;; — rankFF3IVOL;,)? (13)

where ME is market equity and FF3IVOL is the idiosyncratic volatility from FF3

time-series regressions estimated over three months of daily data.?

2In my main sample, which runs from June 1972 to December 2022, 84.6% of observations have valid
cg. Further, an additional 12.4% of observations have a missing quoted spread estimate, but a valid
CHL estimate is instead available.

3Stock j must be a common stock and must be trading regularly on NYSE, NASDAQ or AMEX.



B Factor construction and replication

B.1 Cost-Agnostic factors

I replicate before-cost returns on cost-agnostic factors according to the instructions avail-
able on the authors’ webpages. Price and market equity data are from CRSP, while

accounting signals are available on the annual and quarterly Compustat releases.

Table A.1: Replication Quality. The table below reports replication statistics. The sample
ranges from July 1972 to December 2022. Columns 2 and 3 show the average monthly premium
1 on the original factor and the replicated estimate u”, in percentage points. Column 4 reports
the correlation between the two time-series. Column 5 shows the R? from time-series regressions
of the original factors on the replicated ones. I report t-statistics in brackets.

p (%) p (%) p R?
MKT 057 057 1 1
(3.06) (3.07) (4281.1)
SMB  0.16  0.14 1 0.99

(1.33)  (1.12) (261.69)
HML 033 037 099  0.99
(2.62) (2.94) (220.4)
RMW 03 0.32 0.99  0.98
(3.23) (3.31)  (180.9)

CMA 033 03 098  0.96
(4.04) (3.71) (125.92)

UMD 063  0.65 1 0.99
(3.53) (3.68) (317.82)

ME 024 024 098  0.96
(1.91)  (1.9) (122.48)

IA 039 037 097  0.93

(4.68) (4.18)  (91.48)
ROE 053  0.56 0.98  0.95

(4.99) (5.28) (111.55)
HMLm 035  0.38 096  0.93

(2.3)  (242)  (89.07)

The replication methodology for the Fama-French factors follows Fama and French
(2018) for RMWc and the documentation on Kenneth French’s website (https://


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) for the
remaining factors. I instead follow the notes on Lu Zhang’s web page (http://global
-q.org/) for the HXZ4 factors and Asness and Frazzini (2013) for HMLm.? Table A.1

reports replication statistics.

B.2 Characteristic signals in cost-aware factors

TCA factors target characteristic-sorted portfolios that reconstitute every month. Re-
strictions on the available asset universe, the sorting methodology, and the characteristics
entering each sort match the original cost-agnostic factors. However, I revise the com-
putation of characteristics that do not update at a monthly frequency in the original
papers. Sorts in month ¢ use contemporaneous market data. I instead update annual
accounting characteristics at a six-month lag. Stocks with valid characteristics and fiscal
year end at t — 6 enter the asset universe at the end of month ¢, and stocks without
valid data for months between ¢t — 18 and ¢ — 6 drop out. For characteristics based
on quarterly accounting data, I use information as of the most recent public quarterly

earnings announcement date, as in Hou et al. (2015).

e Market equity (ME) - Price times share outstanding, summed across all firm se-
curities. Market equity must be positive to be considered nonmissing. In the sort
for month ¢, size is the contemporaneous ME.

e Book equity (BE) - 1 compute book equity following Fama and French. Book equity
is stockholder equity, minus the book value of preferred stock, plus balance sheet
deferred taxes (if available), minus investment tax credit (if available). Stockholder
equity is the first available value out of (i) shareholder equity, (ii) common equity
plus the book value of preferred stocks, and (iii) total assets minus total liabilities.
The book value of preferred stock is the redemption, liquidation, or par value, in
this order of preference. Investment tax credit is deferred taxes and investment
tax credit, or deferred taxes plus investment tax credit, in this order of preference.
Investment tax credit only enters the book value computation up to the 1992 fiscal
year. Book equity must be positive to be considered nonmissing.

e Book-to-market (BM) - In the sort for month ¢, book-to-market is the ratio of BE
at the last available fiscal year end between ¢ — 18 and t — 6 and ME at ¢.

e Operating profitability (OP) - Operating profitability is operating profits divided
by BE plus minority interest (if available). Operating profits are the difference

between total revenue and the sum of cost of goods sold, interest expenses, and

4Before-cost HMLm returns are available at https://www.aqr.com/Insights/Datasets.


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://global-q.org/
http://global-q.org/
https://www.aqr.com/Insights/Datasets

selling, general, and administrative expenses. In the sort for month ¢, I take OP
at the latest available fiscal year end between ¢t — 18 and ¢ — 6. I annualize OP in
cases where firms alter their fiscal year ends, and discard firm-years in which the
gap between a fiscal year end and the following exceeds 24 months.

Investment (INV and 1/A) - Investment is the growth rate of total assets. In the
sort for month ¢, I take INV at the latest available fiscal year end between ¢t — 18
and t — 6. I annualize INV in cases where firms alter their fiscal year ends and
discard firm-years if the gap between a fiscal year end and the following exceeds
24 months. I/A is the negative of INV.

Return on equity (ROE) - Return on equity is quarterly income before extraordi-
nary items over BE lagged one quarter. In the sort for month ¢, quarterly income

is considered nonmissing if the relative fiscal quarter end is within six months of ¢.
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