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Abstract

We propose a novel semi-parametric approach to capture price dynamics observed

under drift burst episodes in financial markets. Based on our model, we are able to

provide definitions of economically relevant variables, such as the change in the effi-

cient price, overshooting and duration of these explosive price patterns. We assess the

performance of our approach with Monte Carlo simulations and apply our method-

ology to Foreign eXchange (FX) markets. Finally, we develop an statistical inference

framework to provide a tool that can help to further investigate the economic impact

of drift burst events in financial markets1.
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1 Motivation

Market stability is among the top priorities of central banks and financial regulatory bodies. Ex-

amples of these efforts are the Financial Stability Review 2 of the European Central Bank (ECB)

and the Financial Stability Report 3 of Federal Reserve, which thoroughly assess market stability

across different asset classes to provide guidance and evidence that can support regulators in their

endeavor of ensuring stable prices. During the last decades, however, it has become increasingly

frequent to observe unstable explosive patterns on prices. Introduced by Christensen et al. (2020),

these events are known as drift bursts mainly due to the fact that price innovations are locally

dominated by the drift component of a semimartingale. These episodes have been observed and

studied throughout several aasset classes, including equities (Christensen et al., 2014, 2020; Ay-

manns et al., 2023), fixed income (Flora and Renò, 2022) and foreign exchange (Christensen et al.,

2014) markets.

We contribute to the literature by proposing a novel semi-parametric approach to model price

dynamics observed during drift burst events. Based on our model, we provide direct definitions of

economically appealing components of drift burst episodes, such as the change in the efficient price

(Jep), overshooting (O) and duration (D) of the event. Our approach is able to provide estimates of

these components, supporting researchers, policy makers and practitioners to assess the economic

impact over financial markets and their stability. In addition, we add to the increasing research

efforts focusing on drift bursts (Hoffmann et al., 2018; Flora and Renò, 2022; Bellia et al., 2022), as

it has been shown that this approach can capture price variations better than previous jump-based

approaches that may overestimate the contribution of the jump component to price innovations

(Christensen et al., 2014).

Our approach can be applied at large scale and can handle different features observed in financial

markets, such as high market microstructure noise, low trading activity and different sampling

frequency schemes among others. Figure 1 illustrates the economic profile of drift burst events

under our approach. From a market efficiency perspective, it is an appealing feature that prices

2Financial Stability Review of November 2023
3Financial Stability Report Archive
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Figure 1: Economic profile of drift burst events based on equation (3). We set τdb = 0.5 and [τl, τr] = [0.4, 0.6] for ease of visualization.
Moreover, αl = αr = 0.35, βl = βr = −0.55 and Jl = 2.5%, Jr = −1.25%

are able to quickly internalize new information as it arrives to the market, resulting in changes

in the efficient price (i.e. |Jep| > 0). However, sometimes we observe that such changes are not

free from overreaction as the news arrive (i.e. |O| > 0), resulting in unstable price formation. In

addition, some events may show different lengths (i.e. D > 0), spanning from a few seconds up to

hours. With our approach, we are able not only to estimate the magnitude of these components

for different scenarios, but we also provide a framework to perform statistical inference on these.

The rest of the document is as follows. Section 2 describes the econometric framework, including

the economic profile based on our parametrization, estimation and statistical inference framework

developed for our setup. Section 3 provides the assessment of the performance of our model

in a simulation experiment and a statistical inference analysis. Section 4 includes an empirical

application of our procedure to FX markets. Section 5 concludes on the results and ellaborates on

potential future research based on our methodology.
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2 Econometric framework

2.1 Semi-parametric drift bursts model

In this section, we introduce the econometric assumptions that underpin our model. Let
(
Ω,F , (Ft)t≥0 ,P

)
be a filtered probability space satisfying the usual conditions that support a log-price process

X = (Xt)t≥0 specified by the assumption below

Assumption 1. Let (Xt)t≥0 be a continuous time stochastic process with the following dynamics

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σsdWs + Ft(θ), (1)

where (µt)t≥0 is the locally bounded drift component, (σt)t≥0 is a locally bounded cádlág stochastic

volatility component, Wt is a Brownian motion, and Ft is a parametric drift burst component. In

addition, we assume that exists a vecinity around a fixed point in time τdb such that, as ∆ → 0:

Fτdb+∆(θ)− Fτdb−∆(θ) = Op(∆
γ), (2)

for some 0 < γ < 1/2 and θ ∈ Rd

A corollary from assumption 1 is that the observed log-price Xt = X ′
t + Ft(θ) can be defined as

the sum of two components: an adapted non-parametric stochastic volatility component X ′
t and a

parametric deterministic component Ft(θ). In the abscence of Ft(θ), we are in the standard case

of a price process with drift and volatility components. Under infill asymptotics, we have that, as

∆ → 0, µt = Op(∆) and σt = Op(
√
∆). Because of this result, price innovations are dominated

by the volatility component, as
√
∆ converges faster to zero relative to ∆. Moreover, the drift

component cannot be estimated from high frequency data (Kristensen, 2010; Bandi, 2002) in

standard conditions. However, this standard setup is not capable of capturing local explosive price

patterns observed in financial markets. Given this premise, Christensen et al. (2020) introduce

the concept of drift bursts, defining them as ”short-lived locally explosive trends in the price paths

of financial assets”. We leverage on this result and extend the standard non-parametric price
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process of equation (1) to include a parametric component Ft(θ) that captures such explosive price

patterns. Thus, equation (2) ensures that our parametric component dominates price innovations

around τdb and that Ft(θ) can be estimated from the data.

Based on the parametric specifications of Christensen et al. (2020) in their simulation study, and

in the cumulative distribution function (CDF) of the beta distribution, we propose the following

functional form for Ft(θ):

dFt(θ) =


Jlc

αl
l,t(1− cl,t)

βl if τl ≤ t < τdb

Jrc
αr
r,t(1− cr,t)

βr if τdb < t ≤ τr

(3)

with αl,r ≥ 0 and −1 ≤ βl,r ≤ −0.5. Also:

cl,t = (t− τl)/(τdb − τl) cr,t = (τr − t)/(τr − τdb) (4)

where τdb is a fixed point in time, τl, τr are hyperparameters that capture the beginning and the

end of the episode respectively, and θ = (Jl, αl, βl, Jr, αr, βr) are the unknown parameters. The

fixed point in time τdb determines the peak of the drift burst and it is assumed to be known.

2.2 Drift burst economic profile

Centered on equation (3), we are able to provide definitions for the components of the economic

profile shown in Figure 1, such as the change in the efficient price (Jep), the amount of overshooting

(O), and the duration of the burst episode (D). First, the change in the efficient price is defined

as:

Jep =

∫ τdb

τl

dFts(θ)ds︸ ︷︷ ︸
Explosion from the left

+

∫ τr

τdb

dFts(θ)ds︸ ︷︷ ︸
Explosion from the right

(5)

which is directly derived from our current parametrization as the sum of the integrated prices from

the left and from the right. Furthermore, Jep refers to the change in log-prices before and after

the drift burst episode. Overshooting, or overreaction, can be defined as the difference between
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(i) (ii) (iii)

Figure 2: Parameter intuition for Ft(θ) as defined in equation (3) for the left-hand side of the model (i.e. Jr = 0) conditional on low
(left) to high (right) values of βl. Each line represents the cumulative log-returns from our model for different values of αl. We set
(τl, τdb, Jl) = (0.2, 0.7, 0.04) for ease of visualization.

the peak of the drift burst episode and the new price level afterwards, which in our framework

corresponds to minus the integrated price from the right:

O = −
∫ τr

τdb

dFs(θ)ds (6)

Finally, the duration D is defined by estimating the enclosing interval [τl, τr] of the drit burst

episode, this is:

D = τr − τl (7)

Since the specification from equation (3) is motivated by the cumulative distribution function of

the beta distribution, a similar intuition for our parameters can be applied when modelling drift

burst episodes. First, parameters Jl, Jr work as scaling factors and control the size of the change

in prices on each side. The parameters that define the enclosing interval of the drift burst episode

[τl, τr] allow us to explore short-lived episodes but also events with longer durations4. In relation

to the explosiveness of the event, αl and αr control the speed of explosion from the left near τl

and τdb respectively, where low (high) values produce high (low) increments. Similarly, βl and βr

control the speed of explosion from the right (i.e. near τdb and τr, respectively), where low (high)

values result in high (low) increments around these points.

Figure 2 presents a visual explanation of the flexibility of our model, where different combinations

of αl,r and βl,r deliver different drift burst shapes observed in financial markets. Without loss

of generality, we set t < τdb. Here, low values of αl (e.g. αl = 0.25) result in large increments

around τl. As αl increases (e.g. αl = 3), increments around τl are smaller, resulting in slower

4For example, Flora and Renò (2022) study short lived events that last only a few seconds but also analyze
long-duration events such as bond auctions.
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(iii)

Figure 3: Examples of drift-burst events produced from equation (3). We set τdb = 0.5 and [τl, τr] = [0.45, 0.55] for ease of visualization.
Moreover, αl = αr = 1, βl = βr = −0.55

initial explosion rates. Intuitively, as αl becomes larger, we are decreasing the relevance of the

time-weight since the beginning of the drift burst event. Formally, the factor cαl
l,ti

from equation

(3) becomes smaller since cl,t ≤ 1, resulting in lower increments at the beginning of the episode.

On the other hand, as βl gets closer to -1, the explosive behavior around τdb is amplified. This is

consistent with the intuition behind equation (2), since γµ → 0 as βl → −1, suggesting a stronger

dominance of the drift component over the volatility component of the underlying price process.

These two separate but related mechanisms reinforce the flexibility of our parametrization. The

explanation for t > τdb is analogue.

Figure 3 provides an overview of the major types of events that our model in equation (3) is capable

of capturing. Panel (i) shows a drift burst episode without overshooting, where we can observe a

change in the efficient price without the existence of overreaction, suggesting that market agents

are able to correctly price-in new information as arrives. Panel (ii) shows events that we define

as drift bursts with overshooting, where we can observe a change in the efficient price and an

overreaction (i.e. overshooting) around the peak of the episode with a partial reversal of the price.

Finally, panel (iii) shows pure overreaction drift bursts, widely known as flash-crashes, where there

is no change in the efficient price but only overshooting with a subsequent full reversal of the price.

One predominant example of the latter is the Flash Crash Event of 2010, where the Dow Jones

Industrial Average (∧DJI) incurred in roughly 9% losses in an interval of 36 minutes. Kirilenko

et al. (2017) provide an excellent study and thorough analysis of that particular event.
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2.3 Estimation

In this section, we explain the estimation procedure of the semi-parametric drift burst model. Let

Xt be a log-price process as defined in equation (1), which is recorded on a grid of n datapoints

ti covering the interval [0, T ]. Without loss of generality, we assume T = 1 to reflect one trading

session and that 0 = t0 < t1 < t2 < · · · < tn = T . Then, we define the log-increments of Xt

between [ti−1, ti] in such grid as:

∆n
i X = Xti −Xti−1

(8)

Although we may accept non-equidistant price recordings in our setup, we assume an equidistant

grid for simplicity. This is possible since (i) the time increment between [ti−1, ti] → 0 as the number

of datapoints in the grid n increases, and (ii) we can always find some constants λLB, λUB that

ensure that any time increment ∆n
i between [ti−1, ti] is bounded:

λLB∆
n
i < ∆n

i < λUB∆
n
i (9)

where ∆n
i = ti − ti−1 = 1/n. In addition, let θ0 ∈ Θ be the vector of true parameters of dF (θ)

from equation (3), and let Xt be an observed realized price path. Then, we define the Nonlinear

Least Squares (NLS) estimator θ̂ ∈ Θ of θ0 as the vector that solves the following problem:

min
θ∈Θ

Qn(θ)

where the objective function Qn(θ) to be minimized

Qn(θ) = uTu = (dFti(θ)−∆n
i X)T (dFti(θ)−∆n

i X) =
n∑

i=1

(dFti(θ)−∆n
i X)2

is the sum of squared errors. Using the notation from Amemiya (1983), our problem becomes

similar to the classic nonlinear least squares regression of the form:

yt = f(t, θ) + εt

∆n
i X = ∆n

i F (θ) + ∆iX
′ (10)
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where the response variable yt are the observed log-increments of Xti , the error term εt are the

increments of the semi-martingale component from equation (1) and the increments of our para-

metric component corresponds to the nonlinear independent variable f(t, θ), which is a function

of time and of a d-dimensional vector θ ∈ Θ.

Starting on the work from Jennrich (1969); Malinvaud (1970); Gallant (1975), nonlinear least

square regressions and the asymptotic properties of these estimators have been thoroughly studied

in the econometrics and statistics literature. Wu (1981) proposes the necessary and sufficient con-

dition for asymptotic consistency of the nonlinear least squares regression problem. Bierens (1981)

provide a comprehensive and extremely useful study on asymptotic properties of several nonlinear

models and nonlinear structural equations. White and Domowitz (1984) study the asymptotic

properties of nonlinear least squares estimators for dependant data. Kasonga (1988) explores the

asymptotic properties of nonlinear least square estimates for difussion processes. Because of this

extensive academic body around nonlinear least square estimators, we can borrow these results to

be applied to our setup in foreign exchange markets.

The implementation of the procedure described above is done in MATLAB with a gradient-based

approach5. This allows us to obtain θ̂ as our parametric function dF (θ) is differentiable with

respect to θ. However, this is not the case for the duration parameters τl, τr. Therefore, we use a

gradient-free approach such as patternsearch6 to estimate these hyperparameters.

2.4 Statistical Inference

Our setup is not conventional, thus we develop a statistical inference framework to assess the sig-

nificance of the economic components derived from our model. The general form of the hypotheses

of interest in our setup is defined as follows:

H0 : h(θ) = 0 H1 : h(θ) ̸= 0 (11)

5For the more details, see section A.1
6Included in the Global Optimization Toolbox
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where h(θ) is a nonlinear function depending on the d-dimensional vector θ ∈ Θ. Based on the

economic profile from section 2.2, h(θ) can take the following forms depending on the case:

• No Overshooting (O = 0):

h(θ) = −
∫ τr

τdb

dFs(θ) (12)

• No change in the efficient price (Jep = 0):

h(θ) =

∫ τdb

τl

dFs(θ)ds+

∫ τr

τdb

dFs(θ)ds (13)

To study the above hypotheses, we use the widely known Likelihood ratio (LRT) and Lagrange

Multipliers (LM) tests (Rao, 1948; Breusch and Pagan, 1980; Amemiya, 1983). Let θ̂ be the

unrestricted estimate of θ0 (i.e. when H0 is false) and θ̃ the restricted estimate of θ0 (i.e. when H0

is true). In addition, let ut = dFti(θ) − Yti be the unrestricted residuals from equation (10) and

ũt = dFti(θ̃) − Yti . Finally, let G(θ̃) = ∂
∂θ̃
h(θ̃) be the gradient of the nonlinear restriction under

H0 with respect to θ. In the NLS context, the Likelihood ratio test statistic can be written as:

LRT = n

(
log

(
ũt

T ũt

n

)
− log

(
uT
t ut

n

))
(14)

The Langrange Multiplier test can be written as:

LM =
n

ũt
T ũt

((
ũt

TG(θ̃)
)
Σ̃(θ)

−1
(
ũt

TG(θ̃)
)T

)
(15)

where Σ̃(θ) is an estimation of the variance-covariance matrix of θ̃. We use the outer product

of the Jacobian matrices for the nonlinear restriction, i.e. Σ̃(θ) = G(θ̃)TG(θ̃) (Amemiya, 1983).

Although these two test are asymptotically equivalent (Neyman and Pearson, 1933; Wilks, 1938;

Rao, 1948; Gallant, 1975) and distribute χ2
q, the asymptotic distribution does not apply to our

setup, resulting in extremely conservative tests with low rejection rates. To overcome this challenge,

we use Stationary Bootstrap from Politis and Romano (1994) to simulate the empirical distribution

10



of the critical values for both tests, and we use Andrew Patton’s MATLAB implementation7 of

automatic block-length selection for dependant bootstrap to determine the block-length (Politis

and White, 2004; Patton et al., 2009).

3 Simulation study

3.1 Setup

In this section, we assess the statistical capabilities of our model through Monte Carlo simulations.

We explore the accuracy of the NLS estimator applied to equation (3) using a standard setup in

high frequency finance as shown in Christensen et al. (2020). Furthermore, we explore the size

and power of both test of hypotheses on Jep and O. The baseline model (in log-increments) used

for simulations is shown below:

∆iX = ∆iX
hsv + dFti(θ) + ∆iX

noise (16)

The first component of equation (16), ∆iX
hsv, is a driftless Heston-type stochastic volatility model

(Heston, 1993), defined as follows:

dXt = σtdWt

dσ2
t = κ(σ0 − σ2

t )dt+ ξdBt, t ∈ [0, 1] (17)

where Wt, Bt are standard Brownian motions with E(dWt, dBt) = ρdt. Moreover, we follow the

guidelines from Aı̈t-Sahalia and Kimmel (2007) and use the following annualized set parameters

(σ0, κ, ξ, ρ) = {0.0225, 5, 0.40,−
√
0.50}. We perform 500 repetitions via an Euler discretization

scheme, using a grid with sample size of n = 72000, to reflect as closely as possible a real second

by second sample of a twenty-four hour active trading session in FX markets minus the first and

last 2 hours of trading. The initial values for σt are drawn randomly from a Gamma distribution,

where σ2
t ∼ Γ(2κσ0ξ

−2, 2κξ−2) (e.g. Christensen et al. (2020)).

7https://public.econ.duke.edu/ ap172/code.html
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The second component dFti(θ) is the parametric drift burst from equation (3), which is centered

at τdb = 0.5 and contained in the enclosing interval (τl, τr) = [0.25, 0.75]. The third component,

∆iX
noise is the market microstructure noise to capture market frictions observed at tick level8

(Stoll, 1999; Black, 1986). Hence, the noisy observed log-price in a n point grid can be defined as

follows:

Yi/n = Xi/n + ϵi/n, i = 0, 1, . . . , n (18)

where ϵi/n ∼ N
(
0, ω2

i/n

)
and ωi/n = ζ

σi/n√
n

such that the simulated noise is conditionally het-

eroscedastic, serially dependent and positively related to the riskiness of the efficient log-price

(Oomen, 2006; Bandi and Russell, 2008; Christensen et al., 2020). Moreover, we set the noise-to-

volatility ratio ζ = 0.5 for medium contamination level as in Christensen et al. (2014). In order to

emulate the application of our estimation procedure in an empirical setup, we apply a five second

sampling scheme and use two hours of trading data around the peak of the drift burst event, one

hour to each side.

3.2 Estimation Results

Based on our simulation setup, we study how our model performs on three types of drift burst

shapes observed in financial markets as described in Figure 3. For simplicity, we assume symmetry9

on the explosion parameters for all cases (i.e. αl = αr and βl = βr). In each case, we compute the

Mean Absolute Relative Bias, defined as:

Relative Abs. Bias =
|θ̂ − θ0|

θ0
(19)

where θ̂ is the estimated parameter and θ0 is the true value. Panel (i) of Table 1 contains estimation

results for the case of drift burst events without overshooting. By definition, these type of event

correctly incoporate new information in prices without overreaction around the peak (i.e. O = 0).

Our results confirm this intuition(O = −0.0007) and show estimates in line with true values for

8The use of less granular sampling schemes helps to mitigate the impact of market microstructure noise
9Resulst do not differ significantly when using asymmetric explosion rates
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(i) (ii)

Figure 4: Effect of market microstructure on estimation for a flash crash type of drift burst. Figures (i) and (ii) show low and high
levels of market microstructure noise. Dashed vertical lines show the true location of τl, τr, the red dashed line shows the estimation
from our model and the blue line is the Heston path. Data is the same on both sides just for illustration purposes.

the left side. The procedure also provides estimates for nuisance parameters in this setup (i.e.

αr, βr, τr). To address this issue, we may estimate one side version of the model from equation (3)

to these type of events. One downside of such approach is that it assumes prior knowledge about

the drift burst episode, which in reality may not be always the case. Nevertheless, results suggest

that our approach is able to capture price dynamics in this scenario.

Panel (ii) of Table 1 shows the estimation results for drift burst events with overshooting, which

are a general version of the event from Panel (i) as |Jep|, |O| > 0. Overall, estimates are in

line with true values for scaling parameters Jl,r and explosion parameters βl,r. We can note the

error propagation effect of Jl and Jr over Jep, given its definition. Nevertheless, relative bias of

parameters is capped at 10.65%, demonstrating the ability of our model to capture price dynamics

in the most general setting.

Panel (iii) of Table 1 contains the estimation results for flash crash episodes, which are pure

overreaction events (Jep = 0) with a full recovery of prices after the event. In line with the

definition, estimates on Jep are close to zero. Similarly to the previous two cases, magnitude

parameters Jl,r along with explosion parameters αl,r, βl,r are correctly captured by our model,

with lower RMSE relative to cases (i) and (ii). Parameters αl,r and τl,r show higher relative bias

error compared to the rest of the parameters, which suggest potential identification issues.
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(i) Drift burst without overshooting

Left side Right Side Economic Estimates

Jl αl βl τl Jr αr βr τr Jep O D
True Params 0.0425 0.3500 0.5500 0.2500 0.0000 0.3500 0.5500 0.7500 0.0425 0.0000 0.5000
Estimates (Mean) 0.0406 0.3546 0.5580 0.2300 0.0007 0.3361 0.5001 0.6477 0.0399 0.0007 0.4177
Estimates (Median) 0.0408 0.2394 0.5551 0.2486 0.0007 0.0000 0.5000 0.5646 0.0407 0.0007 0.3740
Absolute Bias 0.0019 0.0046 0.0080 0.0200 0.0007 0.0139 0.0499 0.1023 0.0026 0.0007 0.0823
Relative Bias 0.0437 0.0133 0.0146 0.0800 - 0.0398 0.0907 0.1363 0.0613 - 0.1645
Std.Dev. 0.0069 0.4365 0.0332 0.0782 0.0223 5.4505 0.0009 0.1548 0.0231 0.0223 0.1727
RMSE 0.0072 0.4365 0.0341 0.0807 0.0223 5.4505 0.0499 0.1855 0.0232 0.0223 0.1912

(ii) Drift burst with overshooting

True Params 0.0425 0.3500 0.5500 0.2500 0.0213 0.3500 0.5500 0.7500 0.0213 0.0213 0.5000
Estimates (Mean) 0.0410 0.3854 0.5546 0.2268 0.0220 0.3331 0.5577 0.7661 0.0190 0.0220 0.5393
Estimates (Median) 0.0410 0.2470 0.5535 0.2521 0.0203 0.0000 0.5538 0.7521 0.0207 0.0203 0.5132
Absolute Bias 0.0015 0.0354 0.0046 0.0232 0.0008 0.0169 0.0077 0.0161 0.0023 0.0008 0.0393
Relative Bias 0.0354 0.1011 0.0084 0.0926 0.0357 0.0483 0.0141 0.0215 0.1065 0.0357 0.0785
Std.Dev. 0.0074 0.5029 0.0339 0.0804 0.0098 1.0563 0.0470 0.1003 0.0125 0.0098 0.1247
RMSE 0.0075 0.5042 0.0342 0.0837 0.0099 1.0564 0.0476 0.1015 0.0127 0.0099 0.1308

(iii) Flash crash

True Params 0.0425 0.3500 0.5500 0.2500 0.0425 0.3500 0.5500 0.7500 0.0000 0.0425 0.5000
Estimates (Mean) 0.0410 0.3854 0.5546 0.2268 0.0411 0.4066 0.5546 0.7735 0.0001 0.0411 0.5466
Estimates (Median) 0.0410 0.2470 0.5535 0.2521 0.0403 0.2582 0.5551 0.7528 0.0002 0.0403 0.5146
Absolute Bias 0.0015 0.0354 0.0046 0.0232 0.0014 0.0566 0.0046 0.0235 0.0001 0.0014 0.0466
Relative Bias 0.0354 0.1011 0.0084 0.0926 0.0326 0.1619 0.0083 0.0313 - 0.0326 0.0933
Std.Dev. 0.0074 0.5029 0.0339 0.0804 0.0079 0.5714 0.0332 0.0820 0.0111 0.0079 0.1089
RMSE 0.0075 0.5042 0.0342 0.0837 0.0080 0.5742 0.0335 0.0853 0.0111 0.0080 0.1185

Table 1: Simulation results for different drift burst shapes. Log-returns are generated as described in equation (16)

Across all three cases, our model is able to captures price dynamics observed during different drift

burst episodes. Estimation bias for the overshooting component is lower relative to the change in

the efficient price, mostly because of the definition of these two parameters under our framework:

the former depends only on estimates of the right-side (O) whereas the latter depends on both

sides, resulting in more potential sources of error (Jep).

Furthermore, results indicate a potential identification issue on the hyperparameters τl,r given the

market microstructure noise around the edges as shown in Figure 4. To illustrate this behavior,

panels (i) and (ii) show that our model is able to capture observed price dynamics. However,

when market microstructure noise is high enough, it is somewhat challenging to distinguish the

true beginning and end of a drift burst episode (Panel 4-(ii)). On the contrary, when market mi-

crostructure noise is lower (Panel 4-(i)), the drift burst behavior is more pronounced, facilitating

the identification of the true beginning and end of the drift burst event, resulting in more accu-

rate estimates with lower relative bias. This task becomes particularly challenging when using a

gradient-free approach. Despite these difficulties, our model is able to capture the true drift burst

shape in all scenarios for different confidence interval levels as shown in Figure 5.
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(i): Drift burst without overshooting (ii): Drift burst with overshooting (iii): Flash crash

Figure 5: Confidence Interval bounds for three different types of drift burst. Bounds are computed at percentiles {90%,95%,99%} based
on simulation results shown in Table 1. Blue line represents the true drift burst shape for each case.

3.3 Statistical inference: Power and size

Now that we have stablished the ability of our model to capture price dynamics during different

types of drift burst events, we are interested in doing inference on the components of the drift

burst economic profile proposed in section 2.2. Based on the definitions describe in section 2.4, we

proceed to estimate the model under the null and the alternative hypotheses for two cases: (i) no

overshooting (H0 : O = 0), and (ii) no change in the efficient price (H0 : Jep = 0).

Following the guidelines from Davison and Hinkley (1997), we generate B = 999 bootstrap samples

for each i−th path, i = 1, 2, . . . , 500 and we center residuals as u∗
t = ut−E[ut] to obtain the empir-

ical distribution of critical values for LRT and LM statistics. Finally, we use α = {0.1, 0.05, 0.01}

to compute the α-percentile critical values.

Table 2 shows rejection rates for test of no overshooting. In our simulation experiment, the size

of the test is aligned with the theoretical α-percentiles in both LRT and LM tests, even when

increasing the number of simulations from 500 to 1000. Moreover, our test is able to quickly

capture overshootings equal to or larger than 40 basis points (bps). Even though it is somewhat

challenging to distinguish noise from an actual overreaction for |O| ≤ 30bps, the power of the test

evolves as expected.

Table 3 shows rejection rates for test of no change in the efficient price. Rejection rates for the size

are aligned with the theoretical α-percentiles, although with slightly higher errors relative to the

overshooting case. This behavior is expected, as the definition of change in the efficient price from
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H0 : O = 0 H1 : O ≠ 0

Size (H0: True) Power (H0: False)

True O(%) = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Likelihood Ratio

α= 10.0 10.6 10 91.4 98.2 99.6 99.8 99.8 100 99.8 100 100 100
5.0 6.4 4.5 85.9 96.6 97.6 99.0 99.2 99.6 99.8 99.8 99.8 100
1.0 1.6 1.0 76.7 89.0 90.4 89.6 91.2 94.4 96.6 99.0 99.0 99.6

Lagrange Multipliers

α= 10.0 10.4 9.3 90.7 98.4 99.6 99.8 99.8 100 99.8 100 100 100
5.0 6.2 4.6 85.3 96.6 97.8 99.0 99.2 99.8 99.8 99.8 99.8 100
1.0 1.4 0.9 76.7 89.0 90.4 89.6 90.6 93.8 95.8 99.0 98.6 99.6

Nsim 500 1000 500 500 500 500 500 500 500 500 500 500

Table 2: Rejection rates to study the size and power of test for no overshooting. First column shows the true values of alpha significance.
Second column shows the Size of the test using 500 and 1000 simulations for fine tuning. Columns (4)-(13) show rejection rates for
different levels of of Overshooting. All numbers are in percentage points (i.e. 1.0 = 1%) except for Nsim values.

H0 : Jep = 0 H1 : Jep ̸= 0

Size (H0: True) Power (H0: False)

True Jep(%) = 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Likelihood Ratio

α= 10.0 8.4 10.3 56.0 86.8 96.8 99.4 99.8 100 100 100 100 100
5.0 4.4 6.3 47.2 82.4 95.6 99.2 99.8 100 100 100 100 100
1.0 1.6 1.4 37.6 73.2 88.4 97.2 99.4 100 100 100 100 100

Lagrange Multipliers

10.0 7.6 9.0 53.2 82.0 95.0 98.6 99.8 100 100 100 100 100
5.0 4.2 5.7 45.4 78.4 91.4 97.6 99.6 100 100 100 100 100
1.0 1.8 1.5 36.4 68.6 84.4 94.8 98.4 99.8 99.8 100 100 100

Nsim 500 1000 500 500 500 500 500 500 500 500 500 500

Table 3: Rejection rates to study the size and power of test for no change in the efficient price. First column shows the true values of
alpha significance. Second column shows the Size of the test using 500 and 1000 simulations for fine tuning. Columns (4)-(13) show
rejection rates for different changes in the efficient price after the drift burst episode. All numbers are in percentage points (i.e. 1.0 =
1%) except for Nsim values.
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(i) (ii)

Figure 6: Drift burst episode from 01 March, 2019 on USDJPY. (i) Estimated peak location using the drift burst test. Dashed red
line shows the location of τ̂db. (ii) Zoom-in of Figure (i), where we can note that the estimated location of τ̂db is subject to error. The
shaded area represents the vecinity for peaksearch approach.

our model contains two sources of error (i.e. change in price from th left and right sides), whereas

the overshooting case contains only one (i.e. only the left side). Although this feature also affects

the power of the test for values of |Jep| ≤ 30 bps, results show that the test is able to correctly

reject the null for bursts with a magnitude equal or larger than 40 bps.

Overall, results suggest that the proposed statistical inference framework behaves as expected, and

we are able to successfully distinguish statistically significant changes in the efficient price and/or

overshooting for drift burst events with magnitudes equal to or larger than 40 bps. However,

it becomes increasingly challenging to do so as those magnitudes approach to zero, due to the

presence of market microstructure noise.

4 Empirical Application

So far, we assessed the performance and statistical power of our procedure in a simulation environ-

ment. We are also interested to study how our model performs in an empirical setup, particularly,

in Foreign eXchange (FX) markets. We use a market data level II provided by Electronic Broking

Services (EBS), part of CME Group. The dataset contains tick-by-tick trade and quote informa-

tion on several currency pairs traded in the platform with a 100 milisecond precision. We focus
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(i): EURUSD (ii): EURGBP (iii): USDJPY

(iv): USDCNH (v): NZDUSD (vi): EURCHF

Figure 7: NLS estimation for 6 different FX pairs

on 6 traded FX pairs involving 7 different currencies such as US dollars (USD), New Zealand dol-

lars (NZD), Swiss francs (CHF), Chinese renmibi (offshore) (CNH), Japanese yen (JPY), British

pound (GBP) and Euro (EUR)10. We employ a 5-second sampling scheme from bid-ask prices

with last-tick interpolation to deal with 5-second intervals without any quote activity.

Detection of drift burst episodes is carried out with the drift burst test from Christensen et al.

(2020),which monitors the local relation between the drift and the volatility component of a log-

price process with high statistical accuracy. Despite its high statistical accuracy in detecting drift

burst events, the exact location of the peak may not coincide with the location of the explosion

of the ratio µt/σt of the drift burst test, which can potentially impact our estimation procedure.

This can be illustrated on Panel (ii) of Figure 6. Even though the episode is correctly detected,

the exact location of τ̂db is estimated to be just before the actual peak, resulting in sub-optimal

estimations of the economic profile.

10Following the definition from EBS, currency pairs are read as 〈foreign currency〉/〈local currency〉. For example,
EURUSD reflects the prices of Euros (foreign currency) in US dollars (local currency)
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Left side Right Side Economic Estimates

Jl αl βl τl Jr αr βr τr Jep O D

EURUSD 0.0036 1.35e-5 0.5063 0.0176 0.0039 3.98e-6 0.5000 0.5478 0.31∗∗∗ 0.03 00:47:45
(31.83) (0.71)

EURGBP 0.1663 1.92e-8 0.5000 0.4861 0.0059 3.69e-6 0.5000 0.7093 0.09∗∗ 0.23∗∗ 00:20:05
(51.39) (81.29)

USDJPY 0.0010 1.05e-5 1.0000 0.3500 0.0011 0.00 0.5002 0.7868 0.01 0.06 00:38:35
(5.02) (2.95)

USDCNH 0.0027 0.00 0.5000 0.1328 0.0012 6.75e-6 0.5000 0.8648 0.11∗ 0.08 01:05:55
(14.30) (3.43)

NZDUSD 0.1065 4.49e-8 0.5000 0.4681 0.0037 1.45e-5 0.5000 0.9782 0.28 0.34 00:45:55
(5.41) (4.72)

EURCHF 0.0053 2.12e-6 0.7410 0.4657 0.0201 3.07e-6 0.5000 0.5014 0.05∗∗∗ 0.01 00:03:10
(111.39) (2.96)

Table 4: Empirical application estimates of parametric drift burst model from equationn (3) of events shown in Figure 7. Columns
(2)-(9) show the estimates for each parameter for the left and right side. Last three columns show the estimates of the economic profile.
Values in columns Jep and O are in percentage points (i.e. 0.31 = 0.31%). Values in parentheses are the Lagrange Multiplier test
statistics for the null hypotheses described in section 2.4. In reach corresponding case, the null hypothesis is rejected at ***p < 0.01,
**p < 0.05 and *p < 0.1. Duration estimates in the last column are in format HH:MM:SS.

To overcome this difficulty, we implement a procedure that we call peaksearch approach in order

to fine-tune our initial estimation of τ̂db. Intuitively, we estimate our model several times for

different values of τdb around the peak and assess the existence of any improvements in the fitting.

Specifically, we define a vecinity in our grid of size ntaugrid around the initial estimation of τ̂db.

Then, we fix the location of τ̂db at each point ti available in this vecinity and estimate our model,

resulting in ntaugrid different estimations. Finally, we choose the value of τ̂db that provides the

model fit with the lowest Root Mean Squared Error among all estimations, and define τ̂ ′db as the

improved estimation of the peak of the drift burst event.

We apply our procedure to the currencies present in our empirical study and corresponding dates

where a drift burst is detected. Figure 7 shows a visual representation of NLS estimations based on

equation (3). Results suggest that our model is able to capture price dynamics observed during drift

burst events in different empirical setups, even in the presence of high market microstructure noise

(Panel 7-(v)) and low trading activity (Panel 7-(vi)). Table 4 contains the estimation summary,

including statistical inference results, behind each panel of Figure 7.

5 Conclusion

We propose a semi-parametric model for drift burst episodes to quantify the economic impact of

events with explosive price movements in Foreign eXchange markets. Our model is able to capture
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the underlying price dynamics of different shapes of drift burst episodes observed in financial

markets. Moreover, we assess the performance of our procedure with Monte Carlo simulations and

apply different parameter configurations to generate different types of events. Our parametrization

allows us to provide direct definitions of economically relevant components, such as change in the

efficient price Jep, overshooting O and duration D of such events.

On simulations, our model is able to successfully estimate such components across settings, in-

cluding overshooting as well as for pure overreaction events known as flash crashes. Also, we apply

our estimation procedure in a empirical setup to understand the economic impact over prices

observed during drift burst events. Results show that our procedure is able to capture observed

price behavior, even in the presence of market microstructure noise and/or low trading activity.

Furthermore, we provide a statistical inference framework to assess the statistical significance of

the economic profile of drift bursts. Using a Stationary bootstrap approach to obtain critical values

for our test of hypotheses, results show that type I and type II errors are aligned with theoretical

values. This resulst in our test being able to identify overreactions and changes in the efficient

price that are equal to or larger than 40 bps.

Our model provides an econometric and statistical inference framework to help researchers to

understand drift burst events throughout different asset classes, and to understand the economic

impact of these increasingly frequent episodes in financial markets. Future research efforts should

focus on the application of this procedure at large scale, to study the link between the economic

profile and macroeconomic events, and the potential implications of these on market stability.
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A Mathematical Appendix

A.1 Nonlinear Least Squares (NLS) Problem

As we detailed in the Econometric Theory section, we solve the Nonlinear Least Squares (NLS)

problem by minimizing the sum of squared residuals εti = (dFti(θ)−∆n
i X) as shown below:

min
θ
(dFti(θ)−∆n

i X)T (dFti(θ)−∆n
i X) (20)

where ∆n
i X = Xti −Xti−1

are the observed log-returns for time i in an Euler discretization scheme

with n points and dFti(θ) =
∫ ti
ti−1

Fs(θ)ds are the log-returns from our model, both with dimension

n × 1 To solve equation (20), we can write the Gradient and the Hessian of the minimization

problem. Let h : Rn → Rn a continous first differentiable function defined as h(ti, θ) = dFti(θ) −

∆n
i X. Also, let g : Rn → R be a continuous function defined as g(x) = xTAx, where A is an n×n

constant matrix w.r.t. x. The first derivative of g(x) can be defined as ∂g(x)/∂θ = 2xT . Finally,

let f : Rn → R be defined as f(ti, θ) = g ◦ h = g(h(ti, θ)). Applying the chain rule, we can define

the first derivative of f(ti, θ) w.r.t. θ as follows:

f(ti, θ) = g(h(ti, θ)) = (dFti(θ)−∆n
i X)T (dFti(θ)−∆n

i X)

=⇒ ∂f(ti, θ)

∂θ
=

∂g(h(ti, θ))

∂θ

∂h(ti, θ)

∂θ
= 2h(ti, θ)

T ∂h(ti, θ)

∂θ

∂f(ti, θ)

∂θ
= (dFti(θ)−∆n

i X)T
∂h(ti, θ)

∂θ
(21)

Given the convention for the gradient to be defined as ∇f = ∂f(ti,θ)
∂θ

T
, then we can write the

gradient of equation (20) as:

∇f(ti, θ) =

[
(dFti(θ)−∆n

i X)T
∂h(ti, θ)

∂θ

]T
=

∂h(ti, θ)

∂θ

T

︸ ︷︷ ︸
d×n

(dFti(θ)−∆n
i X)︸ ︷︷ ︸

n×1

(22)
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where the Jacobian of h(ti, θ) is a n× d matrix that can be written as:

Jh =
∂h(ti, θ)

∂θ
=

[
∂h(ti, θ)

∂θ1
· · · ∂h(ti, θ)

∂θd

]
(23)

In our setup we are able to provide closed-form expressions for ∇f(ti, θ) based on equation (3).

Recall the definition of cl,ti , cr,ti from equation (4).

∂h(ti, θ)

∂θ1
=

∫ ti

ti−1

(1− cl,s)
βlcαl

l,sds
∂h(ti, θ)

∂θ4
=

∫ ti

ti−1

(1− cr,s)
βrcαr

r,sds (24)

∂h(ti, θ)

∂θ2
=

∫ ti

ti−1

Jl log(cl,s)(1− cl,s)
βlcαl

l,sds
∂h(ti, θ)

∂θ5
=

∫ ti

ti−1

Jr log(cr,s)(1− cr,s)
βrcαr

r,sds

(25)

∂h(ti, θ)

∂θ3
=

∫ ti

ti−1

Jl log(1− cl,s)(1− cl,s)
βlcαl

l,sds
∂h(ti, θ)

∂θ6
=

∫ ti

ti−1

Jr log(1− cr,s)(1− cr,s)
βrcαr

r,sds

(26)

Similarly to the Jacobian, we are also able to provide analytical expressions for the Hessian H of

problem (20). In our case, H will be a 6× 6 matrix of the form:

H =


∂2f(ti, θ)

∂θ21
· · · ∂2f(ti, θ)

∂θ1∂θ2d
...

. . .
...

∂2f(ti, θ)

∂θd∂θ1
· · · ∂2f(ti, θ)

∂θ2d


We start from equation (21) and we compute the derivative w.r.t. θ to obtain an expression for H

H(ti, θ) =
∂2f(ti, θ)

∂θ2
=

∂

∂θ

(
2h(ti, θ)

T ∂h(ti, θ)

∂θ

)
(27)
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Now, we apply matrix differentiation rules with the definition of the Jacobian J = ∂h(ti, θ)/∂θ to

obtain:

H(ti, θ) =
∂

∂θ

(
2h(ti, θ)

TJ(ti, θ)
)

(28)

= 2

[
∂

∂θ

(
h(ti, θ)

T
)
J(ti, θ) + h(ti, θ)

T ∂

∂θ
J(ti, θ)

]
(29)

= 2

[(
∂

∂θ
h(ti, θ)

)T

J(ti, θ) + Ω(ti, θ)

]
(30)

= 2
[
J(ti, θ)TJ(ti, θ) + Ω(ti, θ)

]
(31)

where

Ω(ti, θ) =


h(ti, θ)

T ∂

∂θ1
J(ti, θ)

...

h(ti, θ)
T ∂

∂θd
J(ti, θ)


d×d

(32)
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