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Abstract

We put forward a Dynamic Regularized Parametric (DRP) approach for active

portfolio policies. We build upon the parametric policy framework of Brandt

et al. (2009) that directly links the portfolio weights to a limited set of asset

characteristics. This yields a parsimonious specification that avoids modeling

the joint distribution of returns, and as such remains applicable for large asset

universes. We relax the assumption that policy coefficients are constant over

time, to accommodate that the relevance of specific characteristics for future

asset performance may vary. Dynamic policy coefficients are obtained by max-

imizing the conditional expected utility for each time period, with transaction

costs being limited through a trading regularization. This dual-objective opti-

mization problem results in an elegant filter to update the policy coefficients,

balancing between adapting to valuable new, yet inherently noisy, information

and providing a stable strategy that avoids costly re-balancing. We demonstrate

that for a mean-variance utility investor, our framework yields an intuitive an-

alytical solution. In an empirical application using the full universe of stocks

from the NYSE, AMEX and Nasdaq, we find that the DRP approach produces

substantial gains in out-of-sample portfolio performance, where both incorpo-

rating dynamics and regularization are important to achieve this.

Keywords: Asset allocation; Parametric policies; Trading costs; Regularization

JEL codes: C55 (Large Data Sets), G11 (Portfolio Choice)

∗Vrije Universiteit Amsterdam, b.van.os2@vu.nl
†Erasmus University Rotterdam, lonn@ese.eur.nl
‡Erasmus University Rotterdam, djvandijk@ese.eur.nl



1 Introduction

Mean-variance allocation over large cross-sections of individual stocks often provides poor

out-of-sample performance due to estimation uncertainty in the expected returns and covari-

ance matrix. Brandt, Santa-Clara, and Valkanov (2009) propose an alternative approach

that directly models the portfolio weights as functions of financial characteristics. In this

paper, we generalize these parametric portfolio policies to allow for time-varying policy

coefficients, enabling flexible allocations that accommodate time variation in the relations

between the joint distribution of returns and firm characteristics.

The parametric portfolio framework of Brandt et al. (2009) starts from a benchmark

portfolio allocation, e.g. a value-weighted or equally-weighted allocation, and then uses a

small set of financial characteristics to determine adjustments. Independent of the amount of

assets in the portfolio, this method only requires a number of estimates equal to the number

of characteristics. These parametric portfolio policies are therefore well-suited to address

large cross-sections of assets and remain stable out-of-sample. However, the coefficients of

the policy are typically fixed through time. Brandt et al. (2009) comment that while fixed

coefficients are convenient “. . . there is no obvious economic reason for the relation between

firm characteristics and the joint distribution of returns to be time-invariant . . . ”. Indeed,

they find that adjusting the portfolio policy in accordance with the sign of the slope of the

yield curve provides economic gains.

We propose a new flexible framework that updates the policy coefficients at each point

in time using the conditional expectation of next period’s utility. Specifically, the dynamic

regularized parametric (DRP) portfolio framework recursively maximizes the conditional

expectation of the utility, subject to a weighted ℓ2 penalization on the weights centered

at our current position. Using this dual-objective optimization setup, the DRP framework

directly balances adjusting quickly to new information and keeping the strategy cost effective

by avoiding excessive re-balancing. The form of the penalization provides tractable updates

and connects our framework to the popular class of stochastic proximal-point methods (e.g.

Bianchi, 2016), which have recently been shown to yield attractive time-series models, see

Lange et al. (2022). We use the transaction costs to determine the relative penalization

between assets, this leaves only a single tuning parameter to be estimated.
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For the mean-variance utility, we show – similar to DeMiguel et al. (2020) – that we do

not require the moments of the asset returns to perform the policy optimization. Instead,

our framework only needs the conditional moments of the returns on the portfolios managed

on the characteristics and the covariances with the benchmark. This dimension reduction is

crucial and what makes a dynamic approach feasible. Furthermore, we obtain an intuitive

analytical solution of the DRP policy update for the mean-variance utility. Namely, we find

that the DRP framework produces an exponentially weighted moving average of the mean-

variance portfolios without regularization. The DRP update thus leverages the information

found in the conditional moments, by updating towards the mean-variance portfolio based

on those moments, but simultaneously ensures the new portfolio remains close to the current

one. This yields a simple strategy that is both dynamic and net profitable.

Accommodating time-variation in the optimal policy connects us to the large literature

that document time-varying risk and premia along with disappearing anomalies. Schwert

(2003) argues that the size and value anomalies exhibit time-varying premia and Green,

Hand, and Soliman (2011) find that accrual anomalies have disappeared. In a large study

of many anomalies, McLean and Pontiff (2016) find an average loss of 58% of the long-short

premia following publication. While Jegadeesh and Titman (2001) find that the momentum

premium remains significant, Barroso and Santa-Clara (2015) highlights that momentum

strategies are prone to severe crashes. In addition to these issues Novy-Marx and Velikov

(2016) highlight that many of these trading strategies are associated with high trading costs,

and few of the high-cost anomalies are profitable after accounting for transaction costs.

Our methodology address these concerns for the parametric policies though a number of

important features. First, with the method that we develop portfolio allocations can adapt

fast as the premia associated with financial characteristics weaken or strengthen over time.

Second, our approach enables fast adjustment using a short-time series of observations. This

makes it possible for portfolio policies that include momentum to quickly adapt to market

conditions and limit the exposure to possible momentum-crashes. Third, since our dynamic

adjustments are estimated jointly we can explore time-varying associations between financial

characteristics, in addition to variations in risk premia. Thus, our results include also an

exploration of risk and marginal hedging ability over time and across prominent financial

characteristics.
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We evaluate the performance of the dynamic parametric portfolios using the full cross-

section of stock returns from the NYSE, AMEX and Nasdaq. In an out-of-sample evaluation

starting January 1990 and ending December 2022, we find large economic gains from incor-

porating dynamic adjustments to the standard policy estimation proposed by Brandt et al.

(2009). In the presence of transaction costs, we find that our methodology provides an an-

nual net certainty equivalent rate of 11.33 percent when size, value, operating profitability

and investments are included in the model. The same rate for the portfolio that is opti-

mized without dynamic adjustments and regularization is 5.94 percent. The regularization

becomes especially important when further including the costly momentum and short-term

reversals strategies. In this case, our method delivers a portfolio with a certainty equivalent

rate of 9.48, while the unregularized alternatives have rates below zero.

The additional flexibility in the policies that we gain from the dynamic adjustments

provide clear gains to mean returns. However, the regularization is critical for reducing

the costs of the portfolios. An additional benefit of the regularization is that it especially

affects the short-selling positions, which are significantly reduced. We find that the dynamic

and regularized methods make frequent large short-term adjustments to momentum and

size policies in the 1990’s and early 2000’s. The method also shrinks the absolute policy

coefficients associated with the investment characteristic and short-term reversals, which in

the unregularized framework are very large.

The paper is structured as follows. Section 2 provides an overview of the related litera-

ture. Section 3 develops our framework of dynamic regularized parametric portfolio policies.

Section 4 presents the data and empirical results are presented in Section 5. Section 6 con-

cludes.

2 Related literature

In this paper we primarily consider the mean-variance investor. The mean-variance case

is central to modern portfolio management following Markowitz (1952). The solution to

the optimization is straightforward but depends on plug-in estimates of the covariance

matrix and expected returns. These plug-in estimates are subject to estimation uncertainty

and there is a vast literature that explores the impact of parameter uncertainty on mean-
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variance portfolios. Merton (1980) shows that the estimates of expected returns require

a very long time series to achieve sufficient precision. In a simulation setting Jobson and

Korkie (1980) demonstrate how financial performance severely deteriorates in the presence

of parameter uncertainty. This is further explored analytically by Kan and Zhou (2007),

who show that the economic losses due to uncertainty are driven by the expected return

vector when the cross-section of assets is small, while for large cross-sections the losses

stem mainly from uncertainty in the covariance matrix. The multiplicative form of the

mean-variance weights further induces an interaction effect between uncertainty in the two

estimates, which further deteriorates the financial performance out-of-sample. As a result,

these allocations often incur extreme and unstable weights in practice, producing strategies

that are both difficult to implement and deliver poor performance (Michaud, 1989). For

large cross-sections of assets the allocation is further complicated by the need to invert a

high-dimensional covariance matrix.

DeMiguel et al. (2009b) show that even with access to a large set of estimators the mean-

variance efficient allocations struggle to consistently outperform a simple equally weighted

allocation. Popular approaches to address the estimation problem includes constraints in

the norms of the portfolio (DeMiguel et al., 2009a), short-selling constraints (Jagannathan

and Ma, 2003) and portfolio constructs that rely on timing (Kirby and Ostdiek, 2012).

Another common approach is to focus on shrinking the plug-in estimates, see for example

DeMiguel et al. (2013), or combining portfolio allocation rules (Kan and Zhou, 2007; Tu and

Zhou, 2011). The portfolio policies proposed by Brandt et al. (2009) that we extend do not

require estimates of the moments of asset returns and thus provide an attractive alterna-

tive approach for mean-variance optimization. Brandt (1999) puts forth a non-parametric

approach that forms portfolios from the first-order conditions of the Euler equations asso-

ciated with the fundamental pricing conditions of the returns, thus also circumventing the

need to specify a model for the portfolio weights. In a related paper, Brandt and Santa-

Clara (2006) address long-term investments by specifying the optimal allocation as a linear

function of a small number of economic state variables. They show that this conveniently

avoids the need to model the conditional moments of returns and can approximately solve

the dynamically optimal weights without the use of numerical methods and simulations.

The parametric policy of Brandt et al. (2009) focuses on the short-term portfolio opti-
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mization problem and models portfolio weights directly as functions of firm characteristics.

Related works that make use of firm characteristics to directly model portfolio weights in-

clude Hjalmarsson and Manchev (2012) and Ammann et al. (2016). Caldeira et al. (2023)

consider the case where returns depend on non-linear functions of characteristics. To ac-

commodate the non-linear relations they introduce splines regularized under a lasso or ridge

penalty in the policy function. Beyond non-linearities omitting relevant characteristics pro-

vides an additional source of model mispecification. DeMiguel, Mart́ın-Utrera, Nogales,

and Uppal (2020) tackle this challenge and introduce a large set of financial characteristics,

which they regularize under a lasso penalty to promote selection in addition to shrinkage

in the policy coefficients. They further explicitly take transaction costs into account in the

optimization. Jensen et al. (2022) consider the case where investors may face both trading

costs and potential pricing impact and form an implementable mean-variance frontier, which

they explore empirically through a similar perspective of directly modelling the weights in

the asset allocation. The focus in our paper is not to explore non-linear relations between

characteristics and returns, or omitted characteristics. We instead focus on identifying the

time-varying relations between a small number of characteristics and asset returns.

The portfolio policies that we consider provide a convenient framework to address wealth

allocation in large cross-sections of assets. This feature of the framework connects to the

fast growing literature on high-dimensional portfolio allocation. The big challenge in this

framework is that the number of unknown parameters to estimate increases quadratically in

the number of assets, and the estimate of the covariance matrix needs to remain robust to

estimation uncertainty and invertible. Among the many prominent papers in this literature

is Ledoit and Wolf (2017), they propose an estimator that achieves this by means of non-

linear shrinkage in the spectrum of the sample covariance matrix. For an overview of

the state-of-the-art methods to address high-dimensional covariance matrix estimation see

Ledoit and Wolf (2022). Related to this literature are estimators that directly target the

inverse covariance matrix including Goto and Xu (2015) and Callot et al. (2019). A common

drawback to these methods is that many require a full balanced panel of returns over the

whole set of assets in the portfolio. The parametric portfolio policy does not share this

requirement, nor does the number of unknown parameters increase with the number of

assets.
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3 Methodology

3.1 Parametric portfolio policies

Parametric portfolio policies address the wealth allocation challenge for an investor without

explicitly modelling the joint distribution of all asset returns. Following Brandt et al. (2009),

we define the parametric portfolio policies such that

wt = wt(θ) = wb,t +
1

Nt
Xtθ, (1)

where wt denotes the Nt × 1 vector of positions in a set of Nt risky assets available at

time t. Specifically, wt is constructed by tilting a benchmark portfolio wb,t using a set

of K < Nt observed asset characteristics, with values contained in the Nt × K matrix

Xt and sensitivities in the K × 1-vector θ. These policy coefficients θ are unknown and

to be estimated. The benchmark portfolio is assumed to be fully invested in the risky

assets (i.e. ι′Nt
wb,t = 1, where ιNt is a Nt × 1 vector of ones). To maintain this property the

characteristics Xt are centered to have cross-sectional mean zero at each date t. The scaling

factor 1/Nt ensures that the portfolio policy does not become more or less aggressive as the

number of assets in the portfolio varies.

Using the weights specification (1), we obtain the following portfolio return from time t

to t+ 1:

rp,t+1 = w′
trt+1 = (wb,t +

1

Nt
Xtθ)

′rt+1 = rb,t+1 + θ′rc,t+1, (2)

where rt+1 is the Nt+1 × 1 vector of returns on the risky assets, rb,t+1 = w′
b,trt+1 the

return on the benchmark portfolio and rc,t+1 = 1
Nt
X ′

trt+1 the K × 1 returns on a set of K

(zero-investment) portfolios managed on the respective characteristics.

The policy specification in (1) importantly assumes that the adjustment intensity θ is

constant across the cross-section of assets and constant over time. Keeping θ constant

across assets ensures that the investor disregards the identity of the included assets, in

particular their historic returns. Instead, the (adjustment in the) portfolio weight (relative

to the benchmark) is exclusively based on the characteristics Xt. Assuming the policy

coefficients θ to be constant over time greatly facilitates their estimation. In general the

portfolio weights wt (and thus θ) are determined by maximizing the conditional utility of
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the portfolio return rp,t+1. Assuming θ to be constant over time implies that we can instead

optimize the unconditional expected utility. This results in a straightforward optimization

problem of maximizing a sample moment estimator

max
θ

1

T

T−1∑
t=0

U
(
(wb,t +

1

Nt
Xtθ)

′rt+1

)
, (3)

where U(·) denotes the investor’s utility function.

However, assuming constant policy coefficients over time excludes the ability to adapt

the allocation as performance associated with the respective characteristics changes. Brandt

et al. (2009) comment that there is no economic reason to maintain the constant parameters,

and propose an augmented characteristics set to incorporate time-varying parameters. In

particular, the augmented set includes interactions of business cycle indicators with the

asset characteristics, enabling the policies to vary with economic conditions1. There are

two drawbacks to this approach. First, the number of parameters to be estimated increases

rapidly with the number of predictors. Second, the predictors have to be specified and may

be imperfect proxies for changing conditions that affect the portfolio policies. Our aim is

to circumvent these issues and provide a flexible dynamic framework that can be applied

to directly forecast an investor’s optimal policy for the period to come.

3.2 Dynamic portfolio policies

We relax the constant parameter assumption by formulating the dynamic regularized port-

folio (DRP) policy weights as

wt = wt(θt) = wb,t +
1

Nt
Xtθt. (4)

For the dynamics of θt, we propose a simple filter that recursively updates our belief about

the policy coefficients by moving towards a portfolio that maximizes the conditional expec-

tation of the utility, similar to how the static approach uses the unconditional expectation,

as shown in (3). In order to avoid excessive re-balancing, we constrain our dynamic policy

update to keep us close to our current portfolio. Specifically, for the mean-variance utility,

1In their empirical application they use the yield curve to indicate if the economic state is expansionary
or contractionary at the start of month t.
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which will be the default choice throughout this paper, the DRP update reads:

θt = argmax
θ∈Θ

{
wt(θ)

′µt+1 −
γ

2
wt(θ)

′Σt+1wt(θ)−
1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

}
, (5)

where µt+1 := Et[rt+1] and Σt+1 := Et [(rt+1 − Et[rt+1])(rt+1 − Et[rt+1])
′] denote the con-

ditional mean and covariance matrix of the asset returns rt+1 and γ > 0 is the risk-aversion

parameter. In addition, ⊙ is the Hadamard product and ∥x∥2Pt
:= x′Ptx denotes the

weighted ℓ2-norm of some x ∈ RNt with respect to a positive definite Nt × Nt penalty

matrix Pt ≻ ONt . Section 3.4 presents a parsimonious specification of Pt using transaction

costs. The quadratic form of the penalty specification is particularly attractive as it allows

for tractable updates and connects our framework to the well-established class of stochas-

tic proximal-point algorithms widely employed optimization (e.g. Bianchi, 2016; Ryu and

Boyd, 2016; Toulis et al., 2021). Recently, Lange et al. (2022) show that such proximal-point

methods can be used to construct highly stable time-series models with strong optimality

guarantees. By formulating the policy update as a dual-objective optimization problem, we

are thus able to directly balance adapting to valuable new, yet inherently noisy, information

and providing a stable strategy that avoids costly re-balancing.

As recognized by DeMiguel et al. (2020), the parametric portfolio structure (1) circum-

vents the estimation of the Nt-dimensional quantities µt and Σt. Here it is straightforward

to show that optimization (5) is equivalent to

θt = argmax
θ∈Θ

{
θ′µc,t+1 −

γ

2
θ′Σc,t+1θ − γθ′ρb,c,t+1 −

1

2
∥θ − θt−1∥2Pc,t

− θ′δt

}
, (6)

Pc,t :=
1

N2
t

X ′
tPtXt, δt =

1

Nt
X ′

tPt [wt(θt−1)− (ι+ rt)⊙ wt−1(θt−1)] , (7)

where µc,t+1 := Et[rc,t+1] and Σc,t+1 := Et [(rc,t+1 − Et[rc,t+1])(rc,t+1 − Et[rc,t+1])
′] are the

K-dimensional conditional mean and covariance matrix of the returns on the characteristic

portfolios rc,t+1. Similarly, ρb,c,t+1 := Et [(rb,t+1 − Et[rb,t+1])(rc,t+1 − Et[rc,t+1])] denotes

the K × 1 vector of conditional covariances between the characteristic portfolios and the

return on the benchmark portfolio rb,t+1. Section 3.3 describes how these K-dimensional

conditional moments can be modelled using standard time-series techniques.

Furthermore, we find that the quadratic penalty specification at the weights level can be
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reduced to two terms: 1) a quadratic penalty at the policy level with K×K penalty matrix

Pc,t, and 2) a linear correction term θ′δt that accounts for changes in the characteristics

( 1
Nt
Xt− 1

Nt−1Xt−1), the benchmark (wb,t−wb,t−1) and the returns made at time t. In sum,

Equation (6) shows that the optimization problem of interest only involves K-dimensional

quantities. This dimension reduction is key and is what enables our dynamic approach.

The quadratic nature of optimization (6) allows us to derive an intuitive analytical

solution. In particular, we find that the update can be viewed as a stable exponentially

weighted moving average of the mean-variance portfolios without regularization:

θt = Λtθt−1 + [IK − Λt](θMV,t − δ̃t), (8)

θMV,t =
1

γ
(Σc,t+1)

−1µc,t+1 − (Σc,t+1)
−1ρb,c,t+1, (9)

Λt = [Pc,t + γΣc,t+1]
−1Pc,t, δ̃t =

1

γ
(Σc,t+1)

−1δt, (10)

where Λt is a K ×K autoregressive smoothing matrix with all eigenvalues between 0 and 1

and θMV,t is the mean-variance portfolio on the characteristic portfolios based on our esti-

mates of its moments for the coming period, adjusted for the covariances with the benchmark

portfolio via γρb,c,t+1
2. That is, θMV,t has the same form as the static estimator in DeMiguel

et al. (2020), but replaces the unconditional moment estimators with conditional quantities.

The DRP policy θt can then be viewed as a smoothed version of these conditional mean-

variance policies θMV,t. Furthermore, δ̃t is a correction term that accounts for changes in

the characteristics and the benchmark portfolio, allowing for a proper comparison between

policies at different points in time.

The smoothing matrix Λt takes an intuitive form and is comprised of the covariance

matrix of the characteristic portfolios Σc,t+1, the risk-aversion parameter γ and the penalty

matrix Pc,t, whereby higher values of Pc,t place more weight on the previous policy θt−1.

Vice versa, if the volatility of the portfolios on the characteristics increase the investor

adjusts the policy to increase emphasis on θMV,t, which in this case will provide a less

aggressive investment policy. More risk averse investors will similarly put greater weight on

θMV,t with a greater emphasis on the minimum-variance term.

To summarize, our framework extends the work of Brandt et al. (2009) and DeMiguel

2Appendix A further analyses the form of θMV,t, including an interpretation in terms of hedging relations.
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et al. (2020) in two important ways. First, the utility function is made time-varying which

translates to conditional means and conditional variances in the optimization, as opposed

to static quantities. This acknowledges the time-varying nature of the distribution of asset

returns. Second, our framework estimates a time-varying policy θt which is recursively

updated at each point in time, in contrast to a static policy. This feature allows for a

time-varying (relative) importance of the different characteristics.

3.3 Conditional moment estimators

The dynamic mean-variance optimization (6) requires the conditional moments of the char-

acteristic portfolios and the conditional covariance with the benchmark portfolio. To this

end, we propose the following simple specifications for ∀t > L:

µcb,t+1 = (1− ϕ)
1

L

t∑
i=t−L+1

rcb,i + ϕ rcb,t, (11)

Σcb,t+1 = (1− ψ)
1

L

t∑
i=t−L+1

(rcb,i r
′
cb,i) + ψQtRCOVtQ

′
t, (12)

where L is a lag length, rcb,t := [r′c,t rb,t]
′ the (K + 1)× 1 vector that stacks the returns on

the characteristics portfolios and the benchmark at time t, and ϕ and ψ ∈ [0, 1] parameters

to be estimated. In addition, RCOVt is the realized monthly covariance matrix at time t

obtained by summing the outer-products of the daily returns in that month and Qt is a

simple bias-correction term constructed as:

Qt =

(
1

L

t∑
i=t−L+1

(rcb,i r
′
cb,i)

)1/2(
1

L

t∑
i=t−L+1

RCOVi

)−1/2

, (13)

where A1/2 denotes that symmetric square root of some positive definite matrix A. This bias

correction adjusts the long-run expectation to the appropriate level without the need for

modelling daily dynamics. The well-known improved precision of realized estimators (e.g.

Noureldin et al., 2012) is an important factor here in the facilitation of dynamic modeling

at the covariance level.

Specifications (11) and (12) nest an important specific case. Namely, if ϕ = ψ = 0, we

simply obtain the static model of DeMiguel et al. (2020) applied with moving window length
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L. Our conditional moment framework is thus chosen to be both simple and interpretable.

Of course, much more complicated models can be entertained if one is purely interested in

out-of-sample performance; we leave this for future research.

3.4 Penalty specification

An important component of the DRP update in (5) is the Nt×Nt penalty matrix Pt, which

controls how much to penalize changes in the weights away from the current portfolio.

To prevent the estimation of a large number of parameters, we propose a parsimonious

specification that uses the transaction costs to regulate the relative penalization between

assets. That is, we set

Pt = pdiag(κt), (14)

where p > 0 a scalar regularization parameter to be estimated and κt the Nt × 1 vector of

transaction costs at time t. As a result, we find that the relative penalization at the policy

level takes the following form:

Pc,t := p
1

Nt
X ′

t diag(κt)
1

Nt
Xt, (15)

yielding aK×K penalty matrix that reflects the costs of trading the different characteristics.

Note that Pc,t is not a diagonal matrix, unlike Pt. This is because different characteristics

share positions in the same assets; Pc,t also accounts for these interactions.

4 Empirical setup

4.1 Data

The characteristics are formed using data from both CRSP and Compustat on assets traded

on the NYSE, AMEX and the Nasdaq. We use log Book-to-market (BM ) defined as the

ratio of annual book equity to market equity, and Size as the log absolute price times

the outstanding shares. Investments (Inv) are the ratios of capital investment to revenue

over mean ratio from the previous 36 months, and Operating profitability (OpProf ) is the

difference between revenues and costs scaled by equity value. Momentum is the 12 minus

1 returns on the stocks, and Short-term reversals (StRev) is the previous month return.
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Following Green et al. (2017) and DeMiguel et al. (2020) we assume that annual accounting

data for month t are available at the end of month t − 1 if the firm’s fiscal year ended at

least six months earlier. In the case of quarterly data we make the same assumption but

with the fiscal year ending at least 4 months earlier.

Similar to Brandt et al. (2009) we remove stocks with negative book-to-market ratios

and those that fall below the 20th percentile in the cross-section of market capitalization.

We also do not consider an asset if the monthly return is less than -100%. In line with

DeMiguel et al. (2020) we winsorize the characteristics by computing a threshold equal

to the third quartile plus three times the interquartile range. Characteristics above the

threshold are set equal to the threshold. Similarly, we compute a lower threshold as the

first quartile minus three times the interquartile range. We then center and standardize each

characteristic monthly so that they all have a cross-sectional mean and standard deviation

of zero and one, respectively.

The approach that we propose requires both daily and monthly returns. We collect

monthly returns on common stocks between January 1965 and January 2022 from CRSP.

Daily returns on the assets that are available after the filters above are also collected from

CRSP. We drop an asset from the cross-section at time t if any of the characteristics or

returns are missing. Ultimately, we have a cross-section of 16410 unique stocks, with an

average number of stocks over time around 2844. At the start of the sample the cross-

section contains around 1020 stocks which grows rapidly to 2195 in January 1975. In 1998

the cross-section reaches 4541 assets from which it falls to around 2500 in December 2022.

4.2 Estimation

We employ a standard tuning scheme to estimate the appropriate values of the parameters in

the conditional mean model (α in (11)), volatility model (β in (11)) and the DPP penalty

parameter (p in (14)). Specifically, we consider a lag length of L = 120 months for the

conditional moment models and tune α and β to minimize the squared loss and Frobenius

loss, respectively, for 120 one-step ahead forecasts from t = L+ 1 = 121 to t = 240. Next,

we determine p by maximizing the net Sharpe ratio accounting for transaction costs when

running the DPP filter (5) from t = 121 to t = 240 using the one-step ahead predictions

provided by the conditional mean and volatility models using risk aversion γ = 5. Finally,
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we use these estimated hyperparameters3 to evaluate the real-time performance of the DPP

strategy starting at t = 241. In terms of dates, this means that the tuning period spans

from January 1970 until December 1990, while the evaluation periods starts in January

1990 and ends in December 2022.

5 Results

In this section we evaluate the out-of-sample performance of the parametric portfolio poli-

cies. The performance is measured on monthly returns starting in January 1990 and ending

December 2022. We assess the performance of five estimation alternatives. The main focus

is the performance of the Dynamic Regularized (i.e. DRP) methodology, which incorporates

both dynamic policy updates and regularization of the transaction costs. To benchmark the

performance gains, we consider a simple value-weighted portfolio (VW ), and a static port-

folio policy (Static) that updates the policy coefficients using a rolling estimation window

of ten years. Furthermore, to disentangle the performance of the DRP method we con-

sider two reduced alternatives. The first makes use of the dynamic policy updates without

any regularization on the portfolio costs, we refer to this policy as Dynamic. The second

regularizes costs without the dynamic updates, denoted Static Regularized. All methods

are nested within the Dynamic Regularized framework. We refer to the different sets of

characteristics in this sections as the different models.

5.1 Out-of-sample gross and net performance

Table 1 presents the gross and net performance of the respective portfolio policies using

different combinations of the financial characteristics. Evaluating the gross Sharpe ratios,

we find that all estimation methods provide clear gains in performance over the simple value-

weighted benchmark, with the Dynamic estimator providing the highest performance. This

method adjusts to portfolio policy dynamically without accounting for transaction costs.

This enables these policies to obtain higher performance by adjusting to changing mean

returns and variance-covariance relations faster than the Static alternative. The Dynamic

Regularized estimation, which also updates dynamically tends to provide the second best

3The exact parameter estimates can be found in Appendix B.
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alternative with respect to gross Sharpe ratios across all combinations of characteristics.

This is striking since the regularization restricts the allocations ability to aggressively re-

balance to obtain higher gross mean-variance performance.

The gross Sharpe ratio performance results are consistent with those reported by Brandt

et al. (2009). However, the magnitude of the gains to gross Sharpe ratios that we find when

deviating from the static rolling window estimation vary greatly across the different policy

specifications. The smallest gains are found in the model that includes Size, Value and

Momentum. This is the model specification used in Brandt et al. (2009), and in this

setting the highest Sharpe ratio we find is only around six percent greater than the Static

estimation alternative. Considering only Size and Value delivers the greatest gains relative

to the Static benchmark. Furthermore, the gross Sharpe ratio is consistently increasing as

we introduce more characteristics. From the perspective of gross performance, the most

effective portfolios comes from allowing Dynamic policies in a set of large characteristics.

This changes once we introduce transaction costs to the analysis. Panel D of Table 1

presents the transaction costs that the portfolios obtain. We find that introducing more

characteristics increase transaction costs. Using the Dynamic Regularized method, the

costs roughly doubles when using all characteristics compared to just relying on size and

value. This increase is even more pronounced in case we use no regularization. Using

the Dynamic estimation method, introducing all characteristics triples the average monthly

costs compared to using just size and value policies. The forth and sixths rows of Panel D

reveal that it is the Short-term Reversal and Momentum characteristics that greatly increase

the costs of maintaining the portfolios. The high costs associated with Momentum and

Short-term reversal characteristics are well-known (Novy-Marx and Velikov, 2016).

Comparing the transaction costs across the different methods, we find that the costs

associated with the Dynamic estimation method are greater than any of the other alterna-

tives. In the case where the model makes use of all six characteristics the monthly cost is

on average 3.66 percent, which is more than three times larger than the Dynamic Regular-

ized methodology. The Dynamic Regularized method thus enables fast adjusting policies

and uses regularization to reduce costs, only obtaining an average cost of 1.06 percent per

month. This is even lower than the Static policies, and only ten basis points higher than

the Static policies when regularized.
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The net Sharpe ratios provides the first assessment of whether the net effect of allowing

for time-varying polices are effective in the presence of transaction costs. These results are

presented in Panel E. All methods and models produce net improvements over the value-

weighted benchmark allocation. However, the net performance of the regularized allocations

is higher than those found under policies that do not take costs into account. Using the

models of four characteristics, include Momentum and Short-term Reversals, and the model

of six characteristics, we find that the Dynamic Regularized method provides gains that are

statistically significant at the one percent level. This highlights the importance of regulariza-

tion when optimizing the parametric portfolios. The additional importance of allowing for

dynamically varying policies is found in the comparison between the Dynamic Regularized

method and the Static Regularized alternative. Indeed, across all sets of characteristics we

find that the Dynamic Regularized approach provides higher Sharpe ratios than the Static

Regularized method. The greatest improvements are found in the model using solely size

and value, and the model using size, value, operating profitability and investments. Hence,

allowing portfolio policies to vary dynamically with the changing moments of returns facil-

itates higher performance in terms of Sharpe ratios. These gains remain net of costs if the

policy updates take transaction costs into account in the optimization.

To highlight the economic gains from the Dynamic Regularized method we evaluate the

certainty equivalent rates of the respective portfolios. This is the lowest risk-free return that

would make an investor indifferent to the opportunities in the risky portfolio. We set the risk

aversion of the mean-variance investor to five. The gross gains of the Dynamic policies are

not cost effective enough to provide a positive risk-free rate. In the case of the simple Static

policies, we find that the certainty equivalent rate is positive in all cases where Short-term

Reversals are omitted from the model specification. The rates associated with the portfolios

found using regularized Static optimization and those that are formed using the Dynamic

Regularized approach are consistently positive across models. Furthermore, the Dynamic

Regularized approach outperforms all methods with respect to this performance metric.

In the model that makes use size, value, operating profitability and investments, we find

that the policies estimated using the Dynamic Regularized method generates portfolios for

which the certainty equivalent rate is 11.33 percent annually. This is two percentage points

higher than the Static regularized method, and highlights the ultimate economic gains of
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incorporating the full econometric framework that we propose.

The nuances in the portfolio that makes the Dynamic Regularized method effective

are found in Panels A, B and C of Table 1. In Panel A and B we see that while the

gross mean excess returns of the regularized polices are lower than those of the Static and

Dynamic methods, their portfolio volatilities are also lower. This is due to the restrictions

to aggressive trading. Without regularization to trading, it is possible to more effectively

adjust the portfolio to obtain higher risk premia, which is earned by the higher portfolio

volatility. The annual mean excess returns of these two portfolios are very high, especially

when investments are included in the model. The Dynamic method adjusts faster and more

effectively than the Static method in this regard, and obtains a higher premia. However,

the additional benefit of the regularization is that it tilts the net trade-off between volatility

and mean returns in favour of the Dynamic Regularized and Static Regularized methods, as

reported in Panel C. Once this regularization is imposed, the Dynamic Regularized method

generates greater net performance than the Static regularized method, since it is able to

adjust policies faster to obtain a greater premia. The Static regularized method produce

annual mean returns net of costs in the model that includes value, size, profitability and

investments that are comparable to those reported in DeMiguel et al. (2020).

In sum, by dynamically adjusting the parametric portfolio policies the Dynamic Regu-

larized framework is able to provide out-of-sample performance gains for the mean-variance

investor. By the comparison to the Dynamic alternative we see that the regularization used

in the Dynamic Regularized approach is crucial to balance these gains with the increasing

costs. The net gains we find using the methodology that we promote are economically large,

and consistent across the model specifications that we consider. In the coming sections we

dissect the differences between the optimal policies we find using our Dynamic Regularized

framework compared to the reduced forms.

5.2 Policy coefficients

In this section we assess the estimated policy coefficients. To evaluate the time-variation

in the portfolio policies we plot the Static and Dynamic Regularized policies over time in

Figure 1. To focus the discussion we restrict the figure to the policies in the full model

specification, including value, size, profitability, investments, momentum and reversals. We
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VW Static Dynamic DynamicReg StaticReg

Panel A: Annualized mean excess returns (%)
Me/bm 9.12 27.43 31.80 26.28 24.43
Me/bm/mom 9.12 37.89 42.82 34.75 33.38
Me/bm/mom/strev 9.12 45.85 47.50 35.46 33.72
Me/bm/oprof/inv 9.12 50.68 64.66 36.49 33.53
Me/bm/mom/strev/oprof/inv 9.12 57.75 67.52 42.73 39.78

Panel B: Annualized volatility (%)
Me/bm 15.04 26.16 26.55 22.23 23.42
Me/bm/mom 15.04 30.96 33.11 27.63 27.73
Me/bm/mom/strev 15.04 35.36 32.86 26.67 26.53
Me/bm/oprof/inv 15.04 35.60 40.45 25.88 25.84
Me/bm/mom/strev/oprof/inv 15.04 38.90 40.24 28.63 28.12

Panel C: Annualized Sharpe ratios
Me/bm 0.61 1.05 1.20 1.18 1.04
Me/bm/mom 0.61 1.22 1.29 1.26 1.20
Me/bm/mom/strev 0.61 1.30 1.45 1.33 1.27
Me/bm/oprof/inv 0.61 1.42 1.60 1.41 1.30
Me/bm/mom/strev/oprof/inv 0.61 1.48 1.68 1.49 1.41

Panel D: Monthly transaction costs (%)
Me/bm 0.02 0.57 1.22 0.50 0.44
Me/bm/mom 0.02 0.83 1.56 0.72 0.67
Me/bm/mom/strev 0.02 2.39 2.84 0.98 0.88
Me/bm/oprof/inv 0.02 1.09 2.56 0.70 0.64
Me/bm/mom/strev/oprof/inv 0.02 2.52 3.66 1.06 0.96

Panel E: Annualized Net Sharpe ratios
Me/bm 0.59 0.80∗∗∗ 0.66∗∗∗ 0.92 0.83∗

Me/bm/mom 0.59 0.92 0.74∗∗ 0.96 0.93
Me/bm/mom/strev 0.59 0.51∗∗∗ 0.44∗∗∗ 0.91 0.89
Me/bm/oprof/inv 0.59 1.08 0.87∗∗ 1.10 1.02
Me/bm/mom/strev/oprof/inv 0.59 0.75∗∗∗ 0.63∗∗∗ 1.07 1.03

Panel F: Annualized net certainty equivalent rates (%)
Me/bm 3.26 3.50 -0.50 7.92 5.38
Me/bm/mom 3.26 3.99 -3.27 7.07 6.18
Me/bm/mom/strev 3.26 -14.12 -13.52 5.89 5.51
Me/bm/oprof/inv 3.26 5.94 -6.95 11.33 9.16
Me/bm/mom/strev/oprof/inv 3.26 -10.34 -16.87 9.48 8.50

The table reports performance of different portfolio allocations using combinations of financial firm charac-
teristics. The out-of-sample period starts in January 1990 and ends in January 2023. We test the differences
in net Sharpe ratio of the Dynamic Regularized method and the Static, Dynamic and Static Regularized
methods using the HAC test proposed by Ledoit and Wolf (2008). We indicate significant differences at
1 percent, 5 percent and 10 percent significance level by ∗∗∗, ∗∗ and ∗ respectively. Annualizations are by
simple scaling of 12 and

√
12. The certainty equivalent rates are computed for mean-variance investors and

risk aversion γ = 5.

Table 1: Gross and net financial performance
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present policies for other specifications in Appendix C. We present the average coefficients

in Table 2.

We find that the signs of the policies are consistent across all methods. The signs also

conform with our expectations. The negative sign on the size policy reflects the inverse

relation between market capitalization and expected returns. Likewise, Fama and French

(1995) explain that high book-to-market ratios tend to be associated with firm distress,

which investors demand a premium for. The momentum policy makes the portfolio tilted

towards firms with high cumulative returns and the reversal policy reduces exposures to

assets with high short-term returns. High (Low) Operating profitability (Investments) are

associated with high expected returns (Fama and French, 2015).

In Table 2, when comparing the regularized method to the Static and Dynamic meth-

ods, we observe that the policies associated with Momentum and Reversal characteristics

are attenuated when we use regularization. This is intuitive since these are known to be

costly strategies. Likewise, we find that cost regularization reduces the policies assigned

to Operating profitability and Investments. In models including these characteristics, the

regularized methods reduce these policies assigning a greater policy to the Book-to-market

characteristic. The smallest differences that we find across methods is with respect to the

size policy. To a greater extent than any other characteristic in our set, this policy appears

robust to cost regularization.

Comparing Panels C and D to the Panels A and B, we can assess the average effect of

allowing for dynamic policy adjustments. Panels A and B reveal that while the performance

gains from fast policy adjustments can be economically very large (see Table 1), we do

not find large differences in the average policy coefficients. This suggests that the joint

performance of these policies is not primarily enhanced through capturing large shifts, but

rather by faster realizing long-term policy drifts and short-term variations around a long-

term policy. Indeed, turning to Figure 1, we see that the Dynamic Regularized policies

exhibit much greater short-term variation than the Static estimator. This is due to the

dynamic adjustments to the policies. These adjustment captures variations in the risk-

return properties of the characteristics that, as seen in Table 1, gives improvements to the

net performance of the portfolio.

Figure 1 also reveals that the policy to Reversals greatly differs in the first 10-years
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θme θbm θmom θstrev θoprof θinv

Panel A: Static
Me/bm -0.95 4.18 − − − −
Me/bm/mom -1.37 4.17 2.19 − − −
Me/bm/mom/strev -0.98 4.12 2.28 -2.74 − −
Me/bm/oprof/inv -1.73 0.36 − − 5.10 -9.21
Me/bm/mom/strev/oprof/inv -1.48 0.78 1.08 -2.64 3.26 -8.02

Panel B: Dynamic
Me/bm -0.90 4.07 − − − −
Me/bm/mom -1.34 4.05 2.23 − − −
Me/bm/mom/strev -0.95 4.01 2.34 -2.66 − −
Me/bm/oprof/inv -1.69 0.17 − − 4.92 -9.23
Me/bm/mom/strev/oprof/inv -1.48 0.63 1.19 -2.51 3.14 -7.91

Panel C: DynamicReg
Me/bm -0.86 3.44 − − − −
Me/bm/mom -1.25 3.30 1.79 − − −
Me/bm/mom/strev -1.06 3.47 1.51 -0.72 − −
Me/bm/oprof/inv -1.26 1.58 − − 2.97 -4.62
Me/bm/mom/strev/oprof/inv -1.39 1.63 0.79 -0.69 2.82 -4.71

Panel D: Static Regularized
Me/bm -0.90 3.53 − − − −
Me/bm/mom -1.29 3.51 1.83 − − −
Me/bm/mom/strev -1.12 3.55 1.48 -0.69 − −
Me/bm/oprof/inv -1.28 1.66 − − 3.01 -4.64
Me/bm/mom/strev/oprof/inv -1.43 1.70 0.75 -0.63 2.88 -4.74

The table reports the portfolio policies for the respective characteristics across different estimation
methods. The averages are computed over the out-of-sample period, January 1990 to January
2023.

Table 2: Policy coefficients

of the out-of-sample data. Whereas the Static estimator assigns a large negative policy

to this strategy, we find that the Dynamic Regularized method recognises that this is a

costly strategy and assigns a small negative policy throughout the whole out-of-sample

period. Around the time of the IT-bubble at the start of the early 2000’s the Static policy

converges to the similar level that the Dynamic Regularized method assigns. This period

is also interesting with respect to the policy in the momentum strategy. There are large

dynamic adjustments to the positive policy coefficient on this strategy by the end of the

1990’s, at the start of the 2000’s there is a large rapid reduction to a negative policy. This

means that the policy adjusts the portfolio holdings to decrease the position in assets with

high cumulative returns over the past 12 months. We likewise find negative momentum

policies before year 2020, however, in this case the Dynamic Regularized method reduces

the policy less than the Static method.
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Figure 1: Policy coefficients over time
Notes: The dashed gray line shows the policy evolution using the Static estimator, and the
solid blue line the policies using the Dynamic Regularized estimator.

The portfolio adjustments from the investments policy using the Static method are very

large in the first half of the sample. The Static policy coefficient is as low as -15, while the

Dynamic Regularized policy never falls below -10. This is likely due to the costs associated

with this strategy, which penalizes the policy estimate in the Dynamic Regularized method.

The investments policies then converge around the financial crisis 2008 and remain similar

until 2015. In the years following, the Static method again assigns a large negative policy

to the investments strategy.

The time-series variation in the size and value policies are interesting cases since these

are typically classified as lower cost strategies (Novy-Marx and Velikov, 2016). We indeed

find that the regularized estimates closely follow the Static policy estimates. The striking
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differences are in the small short-term adjustments that the policy makes. These small rapid

changes would make us suspect over-fitting and that the out-of-sample performance would

decrease relative to the more stable Static policy. However, from Table 1 in the previous

section we see that this is not the case. The small dynamic adjustments actually increase

financial performance of the portfolio.4

5.3 Portfolio weights

To assess the impact of the dynamic adjustments and the regularization on the portfolio

composition we compute the average sum of squared weights in the portfolios over time.

We also compute the average minimum and maximum weights. The summary is presented

in Table 3.

The lowest sum of squared weights that we could obtain would assign an equal weight to

all assets in the cross-section at a given time period. Intuitively, policy estimates that regu-

larize costs provide portfolios with lowered average sum of squared weights, thus producing

more equal distributions of wealth across the assets than the unregularized alternatives.

However, the average maximum weights that we obtain is not greatly affected. Since costs

in our framework are modelled as a deceasing function in market capitalization, we thus

learn that the joint effect of the portfolio policies is to allocate a greater fraction of wealth

to large stocks. The portfolios tend to short-sell the costly assets, which is why Panel C of

Table 3 reveals that the average minimum weight is greatly affected by the regularization.

Allowing policies to dynamically adjust increases the sum of squared and average max

weights in the portfolios, and lowers the average minimum weights. This effect is most

clear when using the methods that use no additional regularization. In the model using

all characteristics the average sum of squared weights increase by 0.66 percentage points in

the Dynamic portfolio compared to the Static. The differences are much smaller once costs

are accounted for in the estimation. The greatest difference between the Static Regularized

and the Dynamic Regularized methods is 0.06 percentage point, found in the model that

makes use of the size, value and momentum characteristics.

We find that including operating profitability and investments to the model has a large

4In Figure 2 in Appendix C we present the analogous policies in the model using only Size and Value.
We find a similar pattern in this figure.
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VW Static Dynamic DynamicReg StaticReg

Panel A: Average sum of squared weights (%)
Me/bm 0.65 1.74 1.83 1.34 1.37
Me/bm/mom 0.65 1.91 2.09 1.44 1.51
Me/bm/mom/strev 0.65 2.30 2.44 1.48 1.48
Me/bm/oprof/inv 0.65 4.86 5.53 2.03 2.05
Me/bm/mom/strev/oprof/inv 0.65 4.51 5.17 2.21 2.21

Panel B: Average maximum weights (%)
Me/bm 3.25 3.10 3.11 3.12 3.11
Me/bm/mom 3.25 3.08 3.09 3.10 3.09
Me/bm/mom/strev 3.25 3.11 3.12 3.11 3.10
Me/bm/oprof/inv 3.25 3.18 3.21 3.15 3.15
Me/bm/mom/strev/oprof/inv 3.25 3.18 3.19 3.14 3.14

Panel C: Average minimum weights (%)
Me/bm <0.01 -0.33 -0.36 -0.26 -0.27
Me/bm/mom <0.01 -0.41 -0.46 -0.34 -0.35
Me/bm/mom/strev <0.01 -0.65 -0.70 -0.38 -0.38
Me/bm/oprof/inv <0.01 -1.41 -1.46 -0.82 -0.83
Me/bm/mom/strev/oprof/inv <0.01 -1.41 -1.50 -0.87 -0.87

The table reports summary statistics for the portfolio weights across different characteristics and
methods. The minimum, maximum and sum of squared weights are computed over the cross-
section of assets at each time period, the time-series average is presented in the table.

Table 3: Portfolio weights

impact on the sum of squared weights. Across the different methods, the average increases

by between 0.68 and 3.70 percentage points when adding profitability and investments to

the model that includes size and value. The addition of these characteristics results in much

greater short-selling positions. Considering the policy coefficients reported in Table 2, it

seems likely that this effect is driven by the policy to the investment characteristic. Further

adding momentum and reversal only increase the sum of squared weights in the polices that

account for costs, not in the unregularized policies.

5.4 CAPM regressions

In Table 4, we observe for the regressions of the excess returns of the portfolio policies

on the market factor that the unexplained mean excess returns increase when allowing for

dynamic adjustments, but decrease when accounting for costs. The monthly unexplained

returns using the Dynamic regularized method is 3.3 percent when using the full model

specification. This estimate is significantly different from zero at all conventional signifi-

cance levels. Without regularization the unexplained mean returns increase to 5.4 percent,

however, this increase is likely not realizeable in practise due to the higher transaction costs
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(see Table 1). Comparing to the Static regularized estimate we find that allowing for dy-

namic adjustments increase the monthly unexplained mean excess returns by 0.3 percentage

points. Across all models and methods we have large, significant, alphas and low exposures

to the market factor ranging from 0.255 to 0.664. These values are comparable to the results

found by Brandt et al. (2009).

α se(α) β se(β) R2

Panel A: Static
Me/bm 0.019 0.005 0.510 0.158 0.090
Me/bm/mom 0.028 0.006 0.453 0.174 0.051
Me/bm/mom/strev 0.034 0.007 0.664 0.187 0.084
Me/bm/oprof/inv 0.041 0.007 0.225 0.205 0.010
Me/bm/mom/strev/oprof/inv 0.045 0.007 0.422 0.190 0.028

Panel B: Dynamic
Me/bm 0.023 0.005 0.454 0.147 0.070
Me/bm/mom 0.033 0.006 0.395 0.147 0.034
Me/bm/mom/strev 0.036 0.006 0.527 0.138 0.062
Me/bm/oprof/inv 0.053 0.008 0.188 0.209 0.005
Me/bm/mom/strev/oprof/inv 0.054 0.008 0.300 0.176 0.013

Panel C: Dynamic Regularized
Me/bm 0.018 0.004 0.568 0.117 0.155
Me/bm/mom 0.025 0.005 0.522 0.123 0.085
Me/bm/mom/strev 0.026 0.005 0.504 0.131 0.085
Me/bm/oprof/inv 0.027 0.005 0.433 0.123 0.067
Me/bm/mom/strev/oprof/inv 0.033 0.005 0.412 0.124 0.050

Panel D: Static Regularized
Me/bm 0.016 0.005 0.605 0.128 0.159
Me/bm/mom 0.024 0.005 0.556 0.154 0.096
Me/bm/mom/strev 0.024 0.005 0.602 0.156 0.123
Me/bm/oprof/inv 0.025 0.005 0.477 0.135 0.081
Me/bm/mom/strev/oprof/inv 0.030 0.006 0.511 0.138 0.079

The table reports the coefficients of a time-series regression of the excess portfolio
returns on the market factor from Kenneth French’s data library. The α denotes
the intercept of the regression and β the expose to the factor. Standard errors are
estimated using the Newey-West estimator. The linear fit is measured by the coeficient
of determination (R2).

Table 4: CAPM regression

The fit of the CAPM model is greater using the static methods compared to the dynamic

methods. The CAPM model explains at most 15.9 percent of the variance in portfolio

excess returns, this is found using the model with value and size in the Static Regularized

method. The fit is also greater using methods that regularize the updates to the portfolio

policies. Without any regularization to the policy updates the fit never exceeds 9 percent.

With unregularized dynamic adjustments, the CAPM model only explain 0.5 percent of
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the variations in returns in the model using profitability and investments in addition to the

value and size characteristics.

6 Conclusion

In this paper we propose the Dynamic Regularized Parametric (DRP) framework that ex-

tends the methodology of Brandt et al. (2009) to the dynamic setting. Specifically, the

DRP update recursively solves, at each point in time, a dual-objective optimization prob-

lem that consists of i) the expected utility of next period and, ii) a penalization centered

around the portfolio before rebalancing. This yields a flexible dynamic policy that simulta-

neously prevents excessive transaction costs. For the mean-variance utility, the DRP update

yields an intuitive analytical solution as a smoother of the mean-variance portfolios without

regularization.

Our work contributes to the literature on portfolio optimization in large cross-sections

of assets. The framework that Brandt et al. (2009) propose is particularly interesting for

this high-dimensional challenge in a Markowitz framework since it circumvents the need

to estimate the expected return vector and inverse covariance matrix of individual stocks.

The optimal dynamic adjustments that we find instead face the less daunting challenge of

estimating the expected return vector and inverse covariance matrix of a small number of

managed portfolios. Further introducing regularization to trading only adds one additional

parameter to the estimation challenge since we use the trading costs to control the relative

degree of regularization between assets.

In a large empirical application containing all assets from the NYSE, AMEX and Nas-

daq, we find that dynamic models yield substantial gains in mean returns. Using the size,

value, momentum, short-term reversal, operating profitability and investment characteris-

tics, we find economic gains from allowing portfolio policies to vary dynamically. However,

incorporating regularization on the amount of trading is crucial for the net-of-cost perfor-

mance. Our method is therefore well-equipped to deliver effective portfolio policies and

provide gains in the certainty equivalent rate of a mean-variance investor.

Several interesting extensions remain to our econometric framework. In this paper we

only consider a small number of financial characteristics. This enables us to circumvent

24



the need to estimate a large covariance matrix and mean return vector. The case of many

characteristics is addressed by DeMiguel et al. (2020) in a non-dynamic setting, but the

extension of dynamic policy coefficients to this application remains as future research. We

also restrict our analysis to the mean-variance investor. This provides the basis for the in-

tuitive analytical solutions to the optimization problem. Considering other utility functions

that account for higher-order moments is an interesting topic for further work.
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Appendix A: Interpreting the time-varying policies

The optimal policy coefficient given the information available at time t given by (8) depends

on two critical terms, the regularization Pt and the mean-variance optimal policy θMV,t. In

this section we analyse these terms in greater detail.

The first term of the mean-variance optimal policy in Equation (10) corresponds to

the mean-variance allocation of the K portfolios managed on the firm characteristics. The

intuition behind the second term is made clear by re-writing,

(Σc,t)
−1ρb,c,t =

(
Σ−1
t,c σb,c,t

)
diag(Σt,c)

−1/2 1

σb,t
. (16)

The term Σ−1
c σb,c is the solution to the minimum-variance allocation with respect to the pol-

icy coefficients in Equation (2). The latter terms regulate the size of the minimum-variance

adjustments to the coefficients in Equation (10) by volatility timing on the respective man-

aged portfolios and the benchmark.

Intuitively, if the benchmark portfolio becomes very volatile the mean-variance policy

reduces to a simple mean-variance allocation over the portfolios that managed on the char-

acteristics. Similarly, the minimum-variance adjustment to the policy with respect to any

characteristic is reduced if its corresponding managed portfolio becomes more volatile.

Equation (10) highlight the different roles of the respective characteristics. Suppose that

the premia on a portfolio managed on a particular characteristic (µc,t) tends to zero. This

characteristic no longer offer appealing investment opportunities in isolation to the mean-

variance investor, but it may still serve as an important hedging device within a portfolio

of managed allocations and the benchmark. In Appendix C we elaborate interpretation of

the adjustment term in term of hedging relations.

The minimum-variance adjustment can be equivalently interpreted in terms of the avail-

able hedging relations. To formulate the solution in terms of hedging relations it is helpful

to consider the K linear hedge regressions of the managed portfolios,

ri,t = ϕ0,i +
K∑
j ̸=i

ϕi,jrj,t + ui,t (17)
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and the K simple hedging regressions with respect to the benchmark portfolio,

rb,t = ϕ0,i + ϕb,iri,t + νi,t. (18)

Using the K hedging regressions from (17) we can express the inverse covariance matrix

in terms of hedging portfolios,

Σ−1
c,t =



σ−2
u1,t

−ϕ1,2σ
−2
u1,t

. . . −ϕ1,Kσ
−2
u1,t

−ϕ2,1σ
−2
u2,t

σ−2
u2,t

...

...
. . .

...

−ϕK,1σ
−2
uK ,t . . . . . . σ−2

uK ,t


= Σ−1

u,t(IN − Φ). (19)

Where Φ = [(0, ϕ1,2, . . . , ϕ1,K)′, (ϕ2,1, 0, . . . , ϕ2,K)′, . . . , (ϕK,1, . . . , ϕK,K−10)
′] and Σu,t is

a diagonal covariance matrix of the error terms in the hedge regressions. The regression

parameters summarize the respective portfolios hedging ability, i.e. ϕi,j gives the marginal

hedging ability of asset j with respect to asset i. Scaling by the error variance adjusts for

the degree of non-hedgeable risk in the respective assets (Stevens, 1998).

The simple hedging regressions for the benchmark portfolio in (18) summarize the ability

of each individual managed portfolio to hedge risk in the benchmark allocation. From these

regressions we have the K-vector ϕ̃t = diag(Σc,t)
−1σb,c,t. Using all the hedging regressions

we can re-write the second term of Equation (10) as

(Σc,t)
−1ρb,c,t =

(
Σ−1
t,c σb,c,t

)
diag(Σt,c)

−1/2 1

σb,t
, (20)

=
(
Σ−1
u,t(I − Φ)

)
(ϕ̃t)

diag(Σt,c)
1/2

σb,t
. (21)

Here the adjustment to the mean-variance allocation in Equation (10) is expressed in term

of hedging relations leveraged by the volatility ratios of the managed portfolios to the

benchmark. The first parenthesis accounts for the hedging portfolios the the respective

managed portfolios. The ϕ̃t summarize the hedging ability against the benchmark. If the

idiosyncratic variance of the assets remains constant the minimum variance adjustment in

Equation (10) increases if a characteristic becomes more effective as a hedge against the

other managed portfolios or the benchmark. The volatility ratio between the portfolios
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and the benchmark controls the size of the minimum variance adjustment. If the portfolios

managed on characteristics become more volatile than the benchmark we increase the size

of the minimum variance component of the mean-variance policy θMV,t.

Appendix B: Estimates

ϕ ψ p, DRP p, StaticReg
Me/bm 0.079 0.069 1340.3 1310.0
Me/bm/mom 0.081 0.072 1230.2 974.4
Me/bm/mom/strev 0.084 0.100 1018.5 1009.0
Me/bm/oprof/inv 0.082 0.070 1489.7 1494.8
Me/bm/mom/strev/oprof/inv 0.086 0.103 1129.4 1152.5

The table reports the estimated parameters of the conditional moment models (ϕ and
ψ) and the estimated penalty parameter p for the DRP and StaticReg approaches.

Table 5: Hyperparameter estimates

Appendix C: Additional figures

Figure 2: Policy coefficients over time
Notes: The dashed gray line shows the policy evolution using the Static estimator, and the
solid blue line the policies using the Dynamic Regularized estimator.
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Figure 3: Policy coefficients over time
Notes: The dashed gray line shows the policy evolution using the Static estimator, and the
solid blue line the policies using the Dynamic Regularized estimator.
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