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Abstract

Unlike stocks, options lack a robust mechanism to determine closing prices. Current
practices relying on last-trade prices suffer from stale information, while closing quotes
are unreliable due to consolidated trading and potential manipulation. We propose us-
ing machine learning (ML) to create a counterfactual auction price for the options
market’s close using the underlying stock prices. Our ML approach consistently out-
performs traditional models, and is significantly better when they are considered as
model input. The 4-PM mid-quotes and last-trade prices deviate from the counterfac-
tual benchmark prices by 33% and 43%, respectively, suggesting significant efficiency
gains can be achieved from implementing closing auctions.

Keywords: Options market, Closing auctions, Machine Learning, Big Data

∗Alojandro Lopez-Lira (Alejandro.Lopez-Lira@warrington.ufl.edu) and Mahendrajah Nimalendran (ma-
hen.nimalendran@warrington.ufl.edu) is at the University of Florida. Matthew G. Son (email: gson@usf.edu)
is at the University of South Florida. We thank Narashimhan Jegadeesh and Nikolai Roussanov for their
helpful comments and suggestions. We acknowledge the support of high-performance cluster computing from
UFIT Research Computing Lab.

mailto:Alejandro.Lopez-Lira@warrington.ufl.edu
mailto:mahen.nimalendran@warrington.ufl.edu
mailto:mahen.nimalendran@warrington.ufl.edu
mailto:gson@usf.edu


1 Introduction

The daily closing prices of financial securities are arguably one of the most fundamental

data points for researchers and practitioners. The NYSE and NASDAQ use a closing auc-

tion mechanism to provide reliable pricing and avoid last-minute consolidated trading and

manipulative schemes. Equity options, however, do not have such a robust mechanism.

With equity options available for thousands of underlying stocks with a range of moneyness

and maturities, not all options possess sufficient transactions to guarantee effective price

discovery at the close. However, options exchanges, funds, brokerages, and researchers use

end-of-day mid-quotes or the last trade as a proxy for closing prices. We take advantage of the

well-documented performance of machine-learning methods to construct an easy-to-compute

counterfactual benchmark using the underlying stock closing auction price to determine

reliable closing prices for options.

The Securities and Exchange Commission (SEC) does not have explicit regulations for re-

porting mutual funds’ value of options holdings. Funds typically rely on the last transaction

price for reporting and internal purposes. Brokerage firms report the last mid-quote (e.g.,

Robinhood) or the closing prices generated by the Options Clearing Corporation (OCC; e.g.,

Interactive Brokers).1 Previous studies, such as Coval and Shumway (2001) and Muravyev

and Ni (2020) use end-of-day mid-quote for daily option returns. However, there is lim-

ited discussion on the reliability of closing option prices and current practices, despite their

importance in estimating NAVs for funds and margin requirements by brokerages.

Using the last transaction as a proxy for the closing price can have significant implications for

infrequently traded options. This is because the last transaction for 61% of the options occurs

before 3 PM, while the underlying stocks continue to be actively traded until the closing

auction. This can result in stale information, as the reported option prices may not reflect
1Options Clearing Corporation (OCC) develops a single price as of the close from multiple exchanges

with a proprietary algorithm to ensure no-arbitrage conditions across strikes or time. It does not reflect the
closing price as disseminated by any of its participant exchanges. https://ibkr.info/node/1199
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the latest price discovery. Our analysis reveals a significant trend where most options exhibit

infrequent trading activity as the market approaches its close. Specifically, approximately

80.4% of the options series on S&P 500 stocks have an average daily transaction count of less

than ten. Moreover, only 16% of total transactions occur within the final 10 minutes of the

trading hour. Among these transactions, 11% correspond to at-the-money (ATM) options,

4% to OTM options, and 1% to ITM options. These findings underscore the limited trading

volume and a lack of liquidity observed in these options during the closing period.

Using the end-of-day mid-quote as a benchmark is also problematic for several reasons: (i)

It is common to observe placeholder-like quotes that are unlikely to be traded at market

close.It is unsurprising to see inconsistencies in the quotes because the market makers do

not expect the quote to be fulfilled. (ii) Consolidated trading near the close can lead to

large variability in price and returns. These factors can lead to noisy quotes at the close

(Admati and Pfleiderer (1988) and Wood et al. (1985)). (iii) The widening bid-ask spread

near close poses a challenge to achieve price efficiency through arbitrage. Due to these fac-

tors, most options data vendors avoid using 4 PM quotes for calculating implied volatility

as it produces an unreliable volatility surface.2 Additionally, options generally have larger

spreads, lower transaction frequency, and slower quote updates compared to the underlying

stocks, especially for out-of-the-money (OTM) and in-the-money (ITM) options. The intra-

day transaction patterns and the quote behaviors near close shed light on the limitations

and uncertainties of accurately determining closing prices for options, leaving us without a

robust and reliable benchmark.

To address these issues, we propose a counterfactual benchmark for the closing option price

based on the closing auction price of the underlying stock and a machine-learning (ML)

model. We consider equity options as direct derivatives of the underlying securities (i.e., the

price discovery is from the stock to the option) and assume that the correct spot option

price is determined by the spot stock price at the time of the option transaction price. Our
2Daily implied volatility is calculated based on 3:45 PM or 3:59 PM option prices.
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analysis includes a comprehensive evaluation of both American and European option pricing

models and various machine-learning models.

Our findings reveal substantial deviations in both the mid-quotes and last transaction prices

of the day when compared to our counterfactual ML benchmark, which is based on the stock

close auction price. On average, we find deviations of 35% and 47% for the 4 PM mid-

quote and last trading price, respectively. These deviations are particularly pronounced for

smaller-sized firms and OTM options. Notably, the deviations of the last transaction price

for ITM options are even more severe compared to the 4 PM mid-quote, with a difference

of 11.57% versus 3.88%. This deviation holds economic significance as the current reporting

practice of mutual fund holdings relies on historical prices, and ITM options possess greater

asset value than at-the-money (ATM) and OTM options. We do not find significance in

the impact of contemporary underlying volatility on the deviation. However, the occurrence

of transactions throughout the day and the trade volume exert a significant influence in

reducing the deviation.

In our study of options models for determining efficient closing prices, we consider widely

accepted parametric models from Black and Scholes (1973) (BS or BSM) and Cox et al.

(1979) (CRR).3 For American options models, we also explore alternative estimation meth-

ods, including the finite-difference method with the Crank-Nicolson scheme (CN) and the

Barone-Adesi and Whaley (1987) (BAW) model. Additionally, we explore machine learning

algorithms: Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB), Distri-

butional Random Forest (DRF), Deep Learning (NN), and Elastic Net (EN). For simplicity

and comparability with traditional models, we first restrict the inputs of the machine-learning

models to the same variables utilized in conventional models. We adopt a standard random

train-valid-test scheme. To enhance the predictive accuracy of the ML model, we then further
3Since the seminal work of Black and Scholes (1973) extended the models incorporate stochastic volatility,

e.g., see Scott (1987); Hull and White (1987); Wiggins (1987); Heston (1993). Numerical methods (e.g.,
Broadie and Glasserman (1997); Longstaff and Schwartz (2001)) have been proposed for American options,
which include premature exercise.
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augment the ML model inputs by including additional features, such as the VIX.

Our findings indicate that the input variables used in traditional options pricing models

possess sufficient empirical information to explain the price variations across different options

series. The traditional pricing models demonstrate a moderate level of accuracy, with out-

of-sample 𝑅2 values ranging from 71% to 82%.4 In contrast, machine-learning models using

the same input variables as the traditional models surpass their performance. Notably, the

Gradient Boosting (GBM) model achieves an exceptional out-of-sample 𝑅2 of 98.7%. This

significant performance improvement can be attributed to the inherent flexibility of ML

models, which allow for the incorporation of more complex functional forms and feature

inter-dependencies when pricing options.

To further improve estimation convergence time and accuracy, we introduce additional

features such as the moneyness (𝑆/𝑋) ratio and VIX.5 Unlike traditional option models,

machine-learning models can easily incorporate new variables to improve the forecasts. Over-

all, the superior performance of ML models can be attributed to their ability to handle more

complex relationships and dependencies among the variables. This flexibility enables ML

models to achieve higher pricing accuracy than traditional models.

Often criticized for their ‘black box’ nature, machine-learning methods can offer insights

when appropriately analyzed. Our study uses feature importance and regression analyses

on these predictions to reveal the critical factors in different models. In the Black-Scholes-

Merton model, volatility emerges as a crucial predictor of option prices, aligning with its

foundational assumption of constant volatility. In contrast, the Gradient Boosting Machine

model places greater importance on the time to maturity rather than volatility, indicating

its effectiveness in capturing the temporal aspect of options pricing. By comparing feature
4The CRR and CN algorithms are winsorized by 0.01% due to extreme predictions caused by non-

convergence.
5Cao et al. (2020) find that the VIX index can produce a considerable improvement for ML models in

the context of implied volatility. We use the VXX ETF as a proxy to match the most timely information at
the 1-minute level.
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importance across models, we gain insights into options pricing dynamics and understand

how different models prioritize input variables.

The contemporaneous stock price serves as a critical input for our option pricing models,

and we specifically utilize the closing auction prices. Extensive prior literature has examined

the efficiency and benefits of closing auctions in the stock market, particularly during their

initial implementations. For example, Pagano and Schwartz (2003) study the introduction

of electronic call auctions at the market closing from Euronext Paris in 1996 and 1998. Their

research findings indicate reduced execution costs and improved price discovery for the overall

market due to the closing auctions. Barclay et al. (2008) argue that order consolidation

within closing auctions leads to efficient prices based on their analysis of staggered auction

implementations on NYSE and NASDAQ in 2004. Bogousslavsky and Muravyev (2022)

conclude that the closing auction price is generally robust and efficient, with deviations

being non-informational and quickly reverting. Hu and Murphy (2021) as well as Jegadeesh

and Wu (2022) document price resiliency and differences between NYSE and NASDAQ call

auctions at the close. Other researchers have also presented evidence supporting the benefits

of auction markets. Budish et al. (2015) advocate for implementing frequent batch auctions

over continuous trading due to the benefits of the auction mechanism. Similarly, Plante

(2017) argue that order centralization would reduce transaction costs and enhance price

efficiency in the corporate bond market. In summary, the recent studies provide empirical

support for the efficiency, price discovery, and cost reduction benefits of closing auctions and

auction mechanisms in various markets, reinforcing the use of closing auction stock prices as

a critical input in our option pricing models.6

Machine learning models, particularly Neural Networks (NNs), have been used as a nonpara-
6Several studies have examined the mispricing of stocks and options at the market close, Bogousslavsky

(2021) find that the end-of-day mispricing is pronounced for stocks with high overnight risk and unreliable
quotes in the open. Muravyev and Pearson (2020) argue options effective spreads can have an upward
bias because spot options quotes can be stale and asymmetric for fair option value. Barbon et al. (2021)
discuss the intense trading activity at the close of the stock market triggered by options market makers’
delta hedging.
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metric method for option pricing since the early 1990s (Malliaris and Salchenberger (1993),

Hutchinson et al. (1994) are some of the early work). Hutchinson et al. (1994) demonstrate

the use of neural networks in enhancing the accuracy and computational efficiency of options

pricing models. Ferguson and Green (2018) apply deep learning techniques to basket options,

while Cao et al. (2020) find that incorporating the Volatility Index (VIX) improves model

accuracy. Additionally, Andreou et al. (2023) find firm characteristics improve the model has

predictive power. Ruf and Wang (2020) conduct a comprehensive literature survey on using

machine learning, particularly artificial neural networks, in option pricing and hedging. They

highlight the significance of volatility estimation choices in determining model outcomes and

conclusions. We contribute to this literature by applying these existing machine-learning

techniques to a novel area, obtaining reliable reliable option closing prices. Moreover, prior

studies have mainly focused on very liquid index options (S&P500, EU STOXX 50), while

our research is focused on less liquid individual stock options prices at the close of trad-

ing. Finally, we show incorporating well-known models such as Black-Scholes as input for

machine-learning models increases their performance.

Despite the extensive research in pricing options, discourse on price efficiency and the en-

actment of call auctions at the close of the options market is seldom found in the literature

and policy discussions. Our study contributes significantly to the existing literature by ex-

amining the textbook models and evaluating their applicability and relevance in the context

of closing auctions. Additionally, we propose a novel and efficient empirical methodology

that leverages machine learning to create a counterfactual auction price at the close of the

options market. Further, we assess how these indicators deviate from the ML counterfactual

price and observe notable disparities.

To the best of our knowledge, this study represents the first attempt to investigate the

potential implications of closing auctions in equity options. By addressing this gap in the

existing literature, we show auctions have the potential to enhance information efficiency in
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the options market at the close. Our research makes two significant contributions. First,

we address the existing issues associated with the closing of options and highlight the need

for improvement in current practices. To assess deviations accurately, we employ a state-

of-the-art machine learning technique that demonstrates superior performance compared

to traditional option pricing models. To the extent of our understanding, this study also

represents the first attempt to investigate the information content of closing prices in the

options market.

The second contribution is to the option pricing literature by exploring the implications

of machine learning. Machine learning models possess substantial explanatory power, indi-

cating that any discrepancies between theoretical predictions and empirical observations are

primarily a result of the functional form used in traditional models rather than a deficiency in

the information content contained within the input variables. We employ a model-agnostic

interpretable machine learning approach with regression and feature importance analysis

to illustrate the differences between conventional and machine learning models. This final

technique aids us in understanding the underpinnings of these divergences, offering a more

comprehensive perspective on option pricing practices.

The structure of this paper develops as follows: Section 2 presents the data and provides a

descriptive analysis of the options market. Section 3 examines and contrasts standard para-

metric pricing models with machine-learning models, discussing their respective performance

and interpretation. Section 4 presents the primary empirical findings of our study. Finally,

Section 5 summarizes the conclusions drawn from our research.

2 Data and Descriptive Statistics

Our dataset is constructed from multiple sources, including the Chicago Board of Exchange

(CBOE), OptionMetrics (OMetrics), Center for Research in Security Prices (CRSP), New

York Stock Exchange Trades and Quotes (TAQ), and the U.S. Department of Treasury. Our

7



analysis primarily relies on CBOE Trades and Quote data provided by the Options Price

Reporting Authority (OPRA).

The OPRA dataset encompasses comprehensive historical option transactions from all U.S.

exchanges, providing a high-frequency view with millisecond precision. It includes essential

information such as the best quotes for both options and stocks at the time of trading and

volume data. By leveraging this dataset, we gain insights into the dynamics of options

trading.

Our study covers a sample period from October 2019 to March 2021, comprising a substantial

volume of 1.7 billion transactions recorded across 370 business days. To ensure focus and

relevance, we limit our analysis to equity options listed on the S&P 500 throughout the

sample period. Non-standard options, including FLEX options, are excluded from the study.

Additionally, we eliminate records with uninformative or likely erroneous data, such as those

featuring equal or zero best bid-ask quotes and negative trading volume. For quote data,

we utilize information recorded at a frequency of 1 minute, covering the entire year of 2020.

The stock closing auction7 and mid-quote prices at the open and close are obtained from the

New York Stock Exchange Trades and Quotes (TAQ) data.

To calculate implied volatility and base Greeks (Delta, Gamma, Vega, Theta), we employ the

widely used Black-Scholes-Merton (BSM) model. Dividend yields are derived from the CRSP

dataset, while risk-free rates are approximated using month-level interpolated yields from

Treasury data, matched to each option’s expiration. Underlying stock volatility is calculated

using 1-second stock returns over a 10-minute interval before the options transaction time,

and the volatility estimate is then annualized. This provides a timely ex-ante estimate

of volatility that is current in our enhanced ML model. We also include the VIX index

(Cao et al. (2020) have shown that VIX significantly contributes to explaining the volatility

surface).
7Specific trading condition variables denoted by “6” or “M” indicate the close, while “O” and “Q” represent

the open auction price.
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Table 1 provides summary statistics for the key variables from the OPRA data that play a

critical role in analyzing and benchmarking the performance of machine learning algorithms

and traditional option pricing models. These variables include standard inputs used for

the BSM model: strike price (K), trade price, mid-quote prices of the option (P) and the

underlying stock (S), years to maturity (𝜏), underlying volatility (𝜎), dividend yield (𝑞), and

the risk-free rate (𝑟). Additionally, the study considers the base Greeks and implied volatility

derived from the Black-Scholes-Merton (BSM) model.

[Insert Table 1 Here]

The data consists of more than 716 million transactions. The stock price and the strike price

distribution are right-skewed due to the large stock prices for a few stocks during our sample

period. Further, the distribution of options trading volume is right-skewed, with mean and

median contract volumes (trade size) of 6.32 and 1.78, respectively, consistent with relatively

low levels of trading activity for a significant portion of options contracts.

Figure 1 shows the fraction of trading activity by number of stocks. A significant amount

of trading is concentrated around the top 15 stocks (AAPL options alone account for more

than 10% of the volume), while the top 100 stocks account for more than 80% of the volume.

[Insert Figure 1 Here]

The average and the median transactions price per option are $6.65 and $2.35. It is observed

that the first quartile and median values amount to $0.68 and $2.35 with a right-skewed

distribution. These figures highlight the frequent occurrence of retail-sized options trading,

where smaller-sized transactions are prevalent. It is notable that the median and standard

deviation of transaction price slightly above of mid-quote. Furthermore, the average relative

bid-ask spread, amounting to 11% per transaction, aligns with findings from other research

studies. This observation suggests that the bid-ask spreads in the options market exhibit

consistency in magnitude.
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2.1 Options Intraday Trading

Regarding intraday trading, we continue to observe a U-shaped pattern with trading activity

concentrated and more pronounced near the market open and close, similar to Chan et al.

(1995) and Bergsma et al. (2020). This U-shaped pattern indicates higher trading interest,

liquidity, price discovery, and information efficiency during these periods.

[Insert Figure 2 Here]

Figure 2 illustrates the temporal distribution of the last transaction times for each trading

day across various option series, with time intervals of 10 minutes. Notably, over 75% of the

options have their final trade before 3:40 PM. Furthermore, many options show limited or no

trading activity throughout the trading session, with a noticeable surge in trading volume

observed during the market opening. Importantly, this trading pattern remains consistent

across options of varying moneyness levels. These findings indicate that most options trading

occurs earlier in the trading day, contributing to the challenge of obtaining reliable prices at

the trading close.

2.2 Options Quoted Spread near Close

Figure 3 presents boxplots depicting the distribution of bid-ask spreads for options and the

corresponding option-to-stock bid-ask spread ratios across different intraday trading times.

The bid-ask spread is higher closer to the close and exhibits higher variability. Moreover,

the effect is larger for OTM options. We see a similar pattern in the option-to-stock spread

ratio.

[Insert Figure 3 Here]

There is a noticeable widening in the bid-ask spread of options starting from 10 minutes

prior to the market close. This widening spread reflects heightened illiquidity, indicating

an increase in the uncertainty of price determination during this period. We posit that the
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increased spread at the close is more closely linked to options market makers’ inventory risk,

rather than asymmetrical information risk when compared to the higher spread observed

at market open (Bergsma et al. (2020) and Muravyev (2016)). This rise in illiquidity can

reduce incentives for arbitrage and decrease price efficiency near close.

3 Machine Learning Models and Estimation

According to the “No Free Lunch” theorem in machine learning, there is no universally supe-

rior algorithm that outperforms others across all problem domains (Wolpert and Macready

(1997)). The effectiveness of an algorithm is contingent upon the specific problem, the

characteristics of the data, and the underlying context. Consequently, a comprehensive ex-

ploration and comparison of multiple algorithms are required to identify the most suitable

model for a particular task. In our study, we meticulously evaluate the performance of the

five most popular machine learning algorithms, employing robust hyperparameter tuning

techniques. Additionally, we incorporate classical European and American option pricing

models as benchmarks for comparison.

3.1 Structural Models

The Black-Scholes-Merton (BSM) European options model and the Cox-Ross-Rubinstein

(CRR) binomial tree model have gained widespread adoption among researchers and prac-

titioners, and we mainly use them as our benchmark reference point. Both American and

European style option pricing models share common input variables, which can be concisely

summarized by Equation 1:

𝑝𝑦
𝑡 = 𝑓(𝑆𝑡, 𝐾, 𝜏, 𝑟, 𝜎, 𝑞), (1)

where 𝑝𝑡, 𝑆𝑡 are the prices of the option and stock at time 𝑡, 𝜏 = 𝑇 −𝑡 is time until maturity,
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and 𝑦 ∈ {𝑃𝑢𝑡, 𝐶𝑎𝑙𝑙} specifies the type of the option. While most variables used in empirical

estimations are often employed without further specification, the volatility measurement

requires careful consideration. The BSM model assumes constant volatility over the option’s

maturity, and historical stock returns are used to estimate the volatility input for the models.8

We employ realized volatility calculated over the most recent 10-minute period as a proxy for

volatility in all our models to provide timely information. As part of our robustness checks,

we present more specifications for volatility estimates in the Appendix.

3.2 Machine Learning Models

We use the functional form described by Equation 2 to facilitate the formulation of our

machine-learning algorithms.

𝑝 = 𝑓(𝑋; 𝜃) (2)

In the context of our estimation process, the trained model 𝑓 incorporates the feature matrix

𝑋 and a set of estimated parameters 𝜃 determined by the algorithm. The subsequent table

provides a detailed account of our estimation process’s overarching steps and procedures.
8Alternatively, according to the literature survey conducted by Ruf and Wang (2020), researchers have

used a wide range of volatility specifications, including calibrated volatility, GARCH-generated volatility,
historical volatility, contract-specific volatility, historical-implied volatility, historical-at-the-money volatility,
and volatility index among other methodologies.
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Algorithm 1 General description for estimating option price using Machine Learning
Input: A training dataset 𝒟, a validation dataset 𝒯, hyperparameter space ℋ
Output: A trained model 𝑀
Initialize: Randomly initialize hyperparameters ∈ ℋ
Initialize: Set the patience 𝑝
for 𝑒𝑝𝑜𝑐ℎ = 1, … , 𝐸 do

for 𝑖 = 1, … , 𝐼 do
Select a data point 𝑥𝑖 ∼ 𝒟 ∈ {𝑆, 𝐾, 𝜎, 𝜏, 𝑟, 𝑞, 𝑦}
Predict the target ̂𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)
Calculate the loss 𝐿(𝜃) = 1

𝑁 ∑𝑁
𝑖=1 ℓ(𝑦𝑖, ̂𝑦𝑖)

Update the parameters 𝜃 ← 𝜃 − 𝜂∇𝐿(𝜃)
end for
Calculate 𝐿(𝜃) on 𝒯: 𝐿val
if 𝐿val < 𝐿best then

Set the best loss 𝐿best = 𝐿val
Set the best parameters 𝜃best = 𝜃

else if 𝐿val − 𝐿best > 𝑝 then
Stop training
Return the best model 𝑀 = (𝑓, 𝜃best)

end if
end for
Return the trained model 𝑀 = (𝑓, 𝜃best)

Machine-learning algorithms can deal with an arbitrary number and type of input variables.

Expanding the input variables and incorporating additional data can significantly enhance

their performance. However, in the first exercise, we intentionally impose limitations on

the input variables to be identical to the ones used by the classical models. First, this

allows us to investigate scenarios where traditional options pricing models may fail due

to either 1) insufficient information within the model or 2) limitations in the functional

form. Moreover, this approach facilitates the application of interpretable machine learning

techniques, enabling us to gain insights into the importance of individual variables, which

holds significant implications for the options pricing literature.

In the asset pricing literature, employing a rolling or recursive sample-splitting scheme for

forecasting is customary. This scheme involves shifting the training and validation samples

forward to encompass more recent data, as exemplified by Gu et al. (2020). This approach
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is commonly employed to address potential violations of the underlying time series structure

and information leakage. However, it comes at the cost of reduced computational efficiency,

necessitating recursively re-estimating the model.

The fixed scheme is another commonly employed method for sample splitting, whereby the

data is randomly partitioned without replacement according to a predetermined split ratio.

However, caution must be exercised when utilizing this approach, mainly when the features

encompass identifying variables and time-specific information, as it could potentially result

in data leakage. Given the nature of option pricing models, which rely not on time-specific

information but on the remaining lifespan of the options contract (𝜏), the fixed-scheme

approach is suitable for our study. By aligning our input variables with the structural

models, we ensure that the machine-learning models do not incorporate any time-specific

information, thus maintaining the validity of our analysis.

We adopt a two-fold approach to streamline the estimation process considering the multitude

of hyperparameter dimensions and algorithms involved: random grid search method and

train-valid-test split. This approach enables us to efficiently explore the hyperparameter

space and evaluate the performance of various algorithms. In our implementation, we allocate

70% of the data for training purposes, while 15% is dedicated to the validation subset.9 This

validation set serves the crucial function of fine-tuning the hyperparameter search results

within each algorithm. The remaining portion of the data is reserved exclusively for the final

testing phase, ensuring an unbiased and independent assessment of the model’s performance.
9To validate the robustness of our approach, we conducted a comparative analysis between the train-valid-

test split and 5-fold cross-validation methods. Remarkably, both methods exhibited similar performance
outcomes, while the former significantly reduced the overall estimation time.
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3.3 Model Estimates and Performance Evaluation

3.3.1 BSM and CRR Model

In this section, we initiate our discourse by exploring price estimates utilizing conventional

models as benchmarks, namely the Black-Scholes-Merton (BSM) model and the Cox-Ross-

Rubinstein (CRR) model.

[Insert Table 2 Here]

Our empirical analysis uncovers the performance of the BSM model in estimating option

prices, revealing a Mean Absolute Error (MAE) of 2.6 and a Root Mean Squared Error

(RMSE) of 10.871. Notably, the BSM model exhibits an out-of-sample R-squared value of

81%. However, the substantial disparity between the MAE and RMSE values raises concerns

regarding the distribution of prediction errors. The large discrepancy between the MAE and

RMSE values indicates a non-uniform distribution of prediction errors. Specifically, a larger

RMSE relative to the MAE suggests that the model is more sensitive to more extensive

errors.

Interestingly, despite being designed for European-style options, the BSM model displays

lower average bias when compared to American options models10. Alternative American

options models, such as Cox-Ross-Rubinstein (CRR), Barone-Adesi-Whaley (BAW), and

Crank-Nicholson (CN), yield MAE values around 2.7, RMSE values around 12, and R-

squared values ranging from 70% to 77%.

3.3.2 Gradient Boosting Machine

In contrast, our analysis reveals that machine-learning models consistently outperform struc-

tural models. Notably, the gradient boosting machine (GBM) exhibits superior performance
10Nevertheless, it is essential to highlight that the evaluation of the Mean Percentage Absolute Error

(MPAE), defined as 100 ∗
𝑁
∑
𝑖=1

| ln( ̂𝑦𝑖/𝑦𝑖)|/𝑁, favors the performance of American options models over the

BSM model.
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across all evaluation metrics, boasting a remarkably low MAE of 1.2 and RMSE of 2.9, sur-

passing both the BSM and CRR models. Our performance results highlight that structural

models, including the BSM and CRR models, tend to exhibit more extensive estimation

errors than the GBM model. It is worth noting that the overall out-of-sample R-squared

value of 98.7% should be interpreted cautiously, as observations with large nominal prices

can influence R-squared metrics based on a level variable.

Crucially, our estimation demonstrates the stability and reliability of our models by examin-

ing the consistency of performance metrics across the training, validation, and test samples.

This outcome underscores the effectiveness of our hyperparameter tuning process in achiev-

ing a suitable balance between underfitting and overfitting. By attaining this balance, our

models exhibit robustness in their predictive capabilities and provide confidence in the gen-

eralizability and validity of our findings.

The substantial explanatory power exhibited by the option price estimation is interesting,

considering the stringent adherence to standard option pricing variables as our input. This

significant outcome suggests that any disparities between theoretical predictions and empir-

ical observations are primarily attributable to the functional form employed rather than a

deficiency in the information content encapsulated within the input variables. Thus, our

findings underscore the notion that the selected input variables possess ample information

to account for the observed variations in equity options, reinforcing the robustness of our

approach.

[Insert Table 3 Here]

Table 3 offers additional insights into the performance of various models based on the money-

ness of options. The evaluation metric used in this analysis is the Mean Percentage Absolute

Error (MPAE), which measures the relative error percentage. It is observed that all machine

learning models exhibit lower errors for at-the-money options, followed by in-the-money and

out-of-the-money options. Structural models outperform machine learning models in explain-
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ing ITM options. For instance, the Black-Scholes-Merton (BSM) and Cox-Ross-Rubinstein

(CRR) models achieve Mean Absolute Error (MAE) values of 2.29 and 2.5, respectively,

while the Gradient Boosting Machine (GBM) model reports a slightly higher MAE of 2.85.

However, this result is reverted once we include additional explanatory variables.

Reducing bias in the model is crucial as it serves as a counterfactual benchmark price. Build-

ing upon these findings and the identified feature importances, which will be discussed in

the following section, we explore adding additional input variables to enhance model per-

formance. The study by Cao et al. (2020) highlights the improved accuracy achieved by

incorporating a volatility index measure. In our first modification (GBM2), we include the

S&P 500 VIX index quote, the absolute and relative moneyness (𝑆 − 𝐾 and 𝑆/𝐾) This

modification aims to reduce the model estimation time while considering the strike price and

stock price, which were identified as unanimously important features. In our second modifi-

cation (GBM3), we introduce BSM model outputs as added input variables for ML model.

We consider three BSM specifications with different backward-looking volatility estimation

timeframes; namely, 10-minute, 1-month and 3-month levels.

Including additional variables results in significant improvements across multiple perfor-

mance metrics, including Mean Absolute Error (MAE), Mean Percentage Absolute Error

(MPAE), Root Mean Squared Error (RMSE), and out-of-sample R-squared. In the first

modification, the MAE on the test set decreased from 1.276 to 0.394 (a reduction of 68%).

A further enhancement is achieved in the second modification, where the MAE reduces to

0.305 (a total reduction of 76%). We continue to observe improvement in performance across

all metrics we considered.

[Insert Table 4 Here]

Table 4 Panel A focuses on the performance evaluation of the Gradient Boosting Machine

(GBM) models, including train, validation, and test outcomes based on different specifi-

cations. Our hyperparameter tuning avoids underfitting or overfitting, resulting in robust
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model performance. Notably, the GBM3 model consistently outperforms the other specifi-

cations across all performance metrics, demonstrating its superiority in predictive accuracy.

Moving to Panel B, we delve into the models’ performance on the test dataset concerning

options moneyness. Remarkably, the GBM3 model exhibits a substantial improvement for

in-the-money options, reducing the average absolute percentage error from 39% to a mere

5%. This notable enhancement underscores the efficacy of the GBM3 model in capturing

and predicting the nuances associated with different option scenarios.

Both traditional and machine learning (ML) models encounter significant challenges when

tasked with the accurate estimation of out-of-the-money (OTM) options or options with

values less than $1. The inherent difficulty in appraising these options stems from their

reliance on factors such as volatility and time remaining until expiration. Furthermore, the

relatively wide bid-ask spread associated with these options introduces additional complexity

by contributing to estimation noise. Despite these hurdles, established models like the Black-

Scholes-Merton (BSM) model continue to serve as valuable benchmarks in the field.

[Insert Figure 6 Here]

Nevertheless, our analysis reveals a pronounced downward bias in BSM estimates, partic-

ularly evident when assessing both OTM and ATM options. This observation is depicted

in Figure 6a, where BSM estimates exhibit a significant leftward skew, indicative of their

propensity for underestimation. In contrast, estimates derived from the GBM model exhibit

a comparatively more balanced distribution, showcasing both unbiasedness and accuracy.

[Insert Figure 7 Here]

Figure 7 depicts the relationship between actual option prices and the corresponding pre-

dictions generated by our four selected models. Distinct patterns emerge concerning the

magnitude of prediction errors and variances exhibited by the Black-Scholes-Merton (BSM)

and Cox-Ross-Rubinstein (CRR) models. Specifically, these structural models demonstrate

18



more considerable prediction errors and larger variability as the price level decreases. How-

ever, it is noteworthy that these models exhibit relatively favorable performance for options

with higher price levels, particularly those categorized as in-the-money. In contrast, the ma-

chine learning models, namely the Gradient Boosting Machine (GBM) and GBM3, display

comparatively more minor variations in prediction accuracy across different price levels.

3.4 Interpreting Machine Learning Model

One of the prominent approaches for assessing interpretability in machine learning models

involves examining feature importance, which remains agnostic to specific model architec-

tures or algorithms.11 Feature importance refers to assessing and quantifying the relative

influence or contribution of input variables (features) in a predictive model’s overall perfor-

mance. It helps identify the most influential factors contributing to accurate predictions,

enabling researchers to validate existing theories or hypotheses. Furthermore, feature impor-

tance analysis aids in feature selection, where less informative or redundant features can be

excluded, improving model efficiency and reducing overfitting.

We present a feature importance heatmap derived from the analysis using five distinct ma-

chine learning algorithms. The heatmap provides valuable insights into the relative signifi-

cance of different variables in our models.

[Insert Figure 4 Here]

Figure 4 shows that all machine-learning algorithms unanimously identify the stock price (𝑆)

and the strike price (𝐾) as the most influential variables for predicting option prices. This

consensus across algorithms highlights the critical role played by these variables in determin-

ing option prices. Interestingly, it is worth noting that the importance of volatility appears

to be relatively lower than conventionally believed. Furthermore, the best-performing algo-

rithm (GBM) exhibits a moderate emphasis on the stock price (𝑆) and strike price (𝐾) in
11The feature importance is typically based on the model’s internal mechanisms, such as permutation

importance, Gini importance, or coefficients derived from regularization such as Lasso or Ridge regression.
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comparison to the other algorithms employed in the study. This observation suggests that

GBM places less importance on these variables, although they remain crucial for accurate

prediction.

As demonstrated by Hull and White (1987), the BSM model exhibits deviations from its

predicted prices in situations involving stochastic volatility, mainly when there is a correlation

between stock price and volatility. Notably, these deviations tend to increase as the option’s

time to maturity lengthens. The relatively diminished significance of volatility in our analysis

can be attributed to adopting historical volatility (𝜎) as a proxy. Instead, we observe that

the time to maturity (𝑇 ) variable encompasses more relevant information about volatility

for each option. This observation implies that the impact of volatility on option pricing may

be better captured by considering the time remaining until the option’s expiration. This

finding highlights the potential for a more accurate representation of volatility’s influence on

option pricing.

To further enhance our understanding, we examine the feature importance of the Black-

Scholes-Merton (BSM) model and its comparison to the Gradient Boosting Machine (GBM).

By exploring the significance of different variables in the BSM model, we aim to elucidate

their role in influencing option pricing. To facilitate a juxtaposition, we trained a separate

GBM model to replicate the BSM model by utilizing the BSM estimated price as the target

variable instead of the mid-quote option price.12

[Insert Figure 5 Here]

Figure 5 showcases the feature importance of the BSM model. Compared to Figure 5, both

models identify the strike price (K), the stock price (S), and the time to maturity as the

most significant variables in determining option pricing accuracy. Conversely, neither model

attributes considerable importance to the dividend yield ratio as it does not contribute sub-

stantially to improving model performance. However, a notable disparity arises in treating
12GBM successfully replicated the BSM model with minimal errors.
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underlying volatility (𝜎) and the risk-free rate (𝑟). The GBM model places less emphasis on

volatility, accounting for less than 10% of the variable importance. In contrast, the BSM

model assigns greater importance to volatility, constituting more than 50% of the variable

importance.

[Insert Table 5 Here]

We performed a regression analysis based on the percentage error of model estimates com-

pared to the mid-quote of option prices. Both models showed more extensive deviations

for out-of-the-money options and less extensive deviations for in-the-money options than

at-the-money options. Put options were generally predicted more accurately. Transaction

size did not show any significant economic relationship with model accuracy. We observed

a non-linear relationship between expiration and model accuracy, with options of moderate

maturity being relatively better predicted than short and very long maturities. However,

there are differences between the models. The Black-Scholes-Merton (BSM) model makes

more accurate predictions for assets with higher volatility, while the GBM model does not

show a significant relationship. Furthermore, the BSM model performs worse for equity op-

tions of large-cap firms, whereas the GBM model performance is consistent regardless of the

size of the firm.

4 Estimating Counterfactual Closing Option Price

To estimate a counterfactual option price ( ̂𝑃𝑡) consistent with the stock closing auction price,

we utilize the best-performing GBM model described earlier. This is achieved by setting other

variables at their respective values at market close. The estimation equation is given by:

̂𝑝𝑎𝑢𝑐 = 𝑓GBM(𝑆auc, 𝑋; 𝜃). (3)

Where 𝑆auc,𝑡 represents the underlying stock price from the closing call auction. To examine
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the deviations in option prices at market close, we define the deviation as the percentage

change in logarithmic form, following the approach of Bogousslavsky and Muravyev (2022):

Deviation = |𝑙𝑜𝑔(𝑝/ ̂𝑝𝑎𝑢𝑐)|

Here, 𝑝 denotes the current option close price, the last transaction price, or the midquote at

4 PM.

4.1 Price Deviations from ML Benchmark

The distribution of estimated deviations by underlying firm size is presented in Table 6.

[Insert Table 6 Here]

In Panel A, we examine the deviations of options’ mid-quotes at 4 PM from our machine

learning benchmark price. On average, the mid-quotes deviate by 33% from our benchmark,

with a median deviation of 6.3%. Notably, this deviation is particularly pronounced for the

first quintile (Small) size of S&P 500 firms, where the average deviation is 34%, and the 25th

and 75th percentiles of deviations are 2% and 32%, respectively. In comparison, for the fifth

quintile (Large) size of S&P 500 firms, the average deviation is 23%, and the 25th and 75th

percentiles of deviations are 0.86% and 17%, respectively. Furthermore, it is worth noting

that deviations for smaller firms exhibit larger variance.

We investigate the deviations compared to the last traded price in Panel B. The deviations

are even more pronounced in this case, with the average deviation increasing to 43% and

a median deviation of 19%. A similar pattern is observed when considering the deviation

of the last transaction price, where options associated with large firms, which have more

frequently traded options, exhibit less deviation than smaller firms. Specifically, the average

deviation for small firms is 45% while for large firms, it is 30%, and the respective medians

are 22% and 12%. Furthermore, the interquartile range reveals that the options of large

22



firms display less variation, with a range of 28%p compared to 46%p for small firms.

Note that the number of closing transactions is lower due to never-traded equity options.

While our quote data encompasses all series of equity options regardless of trades, trans-

actions may not have occurred or are unavailable for a fraction of the option series. Last

transactions are more likely to be available for options associated with larger firms, which

aligns with our findings above.

[Insert Table 7 Here]

Table 7 provides detailed insights into the estimated deviations based on the moneyness

of options. The analysis reveals distinct patterns in the percentage deviations observed

across different moneyness categories. Out-of-the-money (OTM) options exhibit substan-

tially larger deviations compared to at-the-money (ATM) and in-the-money (ITM) options.

The median deviation for OTM options is 33%, indicating a notable deviation from the

benchmark price. Furthermore, the average deviation for OTM options is even more pro-

nounced at 67%, underscoring the significance of the deviations observed in this category.

In contrast, ATM options demonstrate a relatively lower median deviation of 7.8%, with an

average deviation of 20%. Similarly, ITM options exhibit a median deviation of 1.1% and

an average deviation of 3%.

The deviations observed for OTM options can be attributed to their lower price levels. As

options move further out of the money, their prices decrease, leading to larger percentage

deviations relative to the benchmark price. The substantial variations in deviations within

the OTM category, as indicated by the interquartile range of 72%p, suggest significant dis-

persion in the deviations observed for individual OTM options. In contrast, ATM and ITM

options exhibit relatively lower deviations, with narrower interquartile ranges of 15%p and

2.5%p, respectively.

Shifting the focus to the deviations based on the last transaction price, an intriguing obser-

vation emerges. Compared to the deviations calculated using the 4 pm quote, expected to
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reflect more timely information at the close, the deviations based on the last transaction

price are significantly greater for ATM and ITM options. Specifically, the average deviation

for ATM options increases to 28.8%, representing a notable 8%p increment from the cor-

responding deviation based on the 4 pm quote (20%). Similarly, the average deviation for

ITM options surges to 22.8%, experiencing a substantial 20%p increase from the 4 pm quote

deviation (3%). This finding highlights a noteworthy vulnerability in the current reporting

practices, particularly concerning ITM options, which possess greater value than their OTM

counterparts. The substantial deviations observed for ITM options when relying on the

last transaction price may introduce significant biases in the valuation of asset holdings and

warrant careful consideration.

4.2 Trade Volume, Transaction Frequency and Deviations

We employ regression analysis to investigate the factors associated with deviations from the

benchmark price. The regression model is specified as follows:

|𝑙𝑜𝑔(𝑝/ ̂𝑝𝑎𝑢𝑐)|𝑖,𝑗,𝑡 = 𝛽1 log(Volume)𝑖,𝑗,𝑡 + 𝛽2ZeroTrade𝑖,𝑗,𝑡 + 𝑋′𝛽 + 𝜆𝑗 + 𝛾𝑡 + 𝑒𝑖,𝑗,𝑡, (4)

where 𝑖, 𝑗, and 𝑡 denote the option, underlying equity, and day, respectively. To account

for time-invariant firm-specific characteristics and abnormal day effects, we include two-

way firm and day fixed effects. Standard error clustering is applied to address potential

heteroscedasticity. The control variables incorporated in the regression analysis encompass

days to expiration, option moneyness, absolute delta, and gamma. Notably, the inclusion of

absolute delta helps control for the moneyness of the option.

Price deviations in options can be attributed to various factors, including stale quotes and

noise trades. The stale quote hypothesis suggests that if options are traded less frequently

within a given day, the quotes provided by market makers may be less accurate, leading to

deviations between the midquote value and the fair option price based on the stock closing
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auction price. On the other hand, deviations can also arise from noise trades, especially in

the proximity of the market close.

To investigate these hypotheses, we employ proxies to capture the effects of stale quotes and

noise trades. We use transaction volume and frequency traded during the day as proxies for

stale quotes, as the lower trading activity may indicate a higher likelihood of stale quotes

and subsequent price deviations. Additionally, we employ the accumulated trade volume

and transaction count during the last 10 minutes of trading to capture the impact of noise

trades occurring near the close. By incorporating these variables into our analysis, we aim

to examine the influence of stale quotes and noise trades on the observed price deviations in

options.

We analyze two separate regressions to examine the influence of trading volume and its

relationship with price deviations in options. The first regression focuses on the transaction

volume during the day as a proxy for stale quotes, while the second regression considers the

volume specifically within the last minute of trading to capture the impact of noise trades

near the close.

In the first regression, we include daily transaction volume as an independent variable to

assess its association with price deviations. We aim to determine whether lower daily trad-

ing activity is linked to a higher likelihood of stale quotes and, subsequently, larger price

deviations.

In the second regression, we introduce the volume of trades within the last minute of trading.

This variable allows us to examine the influence of noise trades near the market close on price

deviations. By distinguishing between the trading volume during the day and the volume

at the last minute, we can assess their individual effects on price deviations and explore any

potential correlations between these variables.

[Insert Table 8 Here]
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The estimation results are presented in Table 8. To illustrate the extent of variable correla-

tions, we construct regressions by progressively including additional variables. Remarkably,

throughout the different specifications, we consistently find a positive relationship between

options trading volume and deviation at the close, thus providing compelling evidence sup-

porting the trade noise hypothesis.

Analyzing the deviations based on the 4 pm midquote, we find that put options exhibit lower

deviations than call options. Furthermore, options with a longer time to maturity demon-

strate a slight reduction in bias. Interestingly, we do not observe a statistically significant

relationship between the realized volatility of the underlying asset and option pricing errors

at the close.

Our analysis yields consistent estimates regarding the impact of moneyness on option devia-

tions, as outlined earlier. Specifically, we observe that in-the-money (ITM) options exhibit

lower deviations compared to at-the-money (ATM) and out-of-the-money (OTM) options.

Moreover, when examining the 4 pm quotes, we identify a notable pattern of decreasing de-

viations as the size of the underlying firm increases. This pattern remains consistent across

the top 15 most traded companies, where lower deviations are observed.

5 Conclusion

Our study thoroughly analyzes the challenges in determining closing prices for equity options

and introduces a novel approach to address these issues. The study emphasizes the limita-

tions of relying on proxy measures, such as last transaction prices and end-of-day mid-quotes,

which can lead to stale and noisy information.

To mitigate these challenges, we develop a counterfactual benchmark that combines a ma-

chine learning algorithm with the closing auction price of the underlying stock, which is

known for its reliability in the equity market; the proposed methodology enhances the accu-
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racy and robustness of option pricing.

Our results reveal that our parsimonious machine-learning models surpass the accuracy of

traditional models. This improvement can be attributed to capturing complex functional

forms and feature interdependencies. Furthermore, our analysis demonstrates that tradi-

tional input variables retain significant information content in predicting option prices. Our

feature importance and regression analysis on machine learning predictions reveal where the

traditional model fails to account for. Volatility is deemed important in the BSM model,

while time to maturity gains relative importance in the GBM model, indicating the varying

impact of different features in predicting option prices.

In addition to its contributions to option pricing methodology, this study sheds light on

implementing call auctions at the close in the options market. We found significant deviations

in both the mid-quotes and last transaction prices of equity options when compared to our

counterfactual machine learning benchmark based on the stock close auction price. These

deviations are particularly pronounced for smaller-sized firms and out-of-the-money (OTM)

options. Furthermore, the deviations of the last transaction price for in-the-money (ITM)

options are even more substantial compared to the 4 PM mid-quote. Notably, the deviations

in the last transaction price for in-the-money (ITM) options are even more substantial. These

findings carry economic significance as they affect the accurate reporting of mutual fund

holdings, given the reliance on historical prices, and the higher asset value associated with

ITM options.

By highlighting the potential benefits of introducing call auctions for options, the research

provides insights and analysis that can enhance the understanding of closing prices in the

equity options market.

Overall, this research addresses the challenges associated with determining closing prices for

equity options and presents a practical and effective solution using machine learning and

the closing auction price of the underlying stock. The findings demonstrate the superiority
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of machine learning models over traditional models in terms of accuracy and provide inter-

pretability analysis. By contributing to the literature on option pricing methodology and

emphasizing the potential benefits of call auctions for options, this research offers valuable

implications for both academia and industry practitioners.
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6 Figures

(a) Top 15 Firms by Options Trading Volume

(b) Cumulative Volume S&P 500 Firms

Figure 1: Trading volume by Underlying Firms
Note: Figure (a) presents a visual representation of the top 15 most traded equity options
in the United States during the sample period spanning from October 2019 to March 2021.
Each column in the figure corresponds to the proportion of options trading volume for each
firm. Figure (b) depicts the cumulative distribution of the proportional transaction volume
encompassing all underlying firms.



Figure 2: Options Transactions Distribution by Last Trading Time
Note: The depicted figure demonstrates the stacked distribution of the final transaction time
for each option series across trading days and moneyness. The horizontal axis represents
transaction time categorized into intervals of 10 minutes, while the vertical axis denotes the
summation of distinct options series. The classification of options’ moneyness is established
through a 10% threshold applied to the ratio between the stock price and strike price.



(a) Bid-ask spread (b) Bid-ask spread, by moneyness

(c) Option to stock spread ratio (d) Option to stock spread ratio, by moneyness

Figure 3: Intraday Quote Behavior near Close
Note: Above presents boxplots depicting the distribution of relative bid-ask spreads for op-
tions and the corresponding options-to-stocks bid-ask spread ratios across different intraday
trading times. Options-to-stocks bid-ask ratio are calculated by dividing relative spread
of options by that of underlying stocks. The boxplots represent the data’s minimum, maxi-
mum, median, and interquartile range. The classification of options’ moneyness is established
through a 10% threshold applied to the ratio between the stock price and strike price. To
optimize computational efficiency, a random sample of one million observations was drawn
from the comprehensive dataset comprising all S&P 500 equity options in 2020. We exclude
records with zero bid quotes due to the mechanical result of a 200% spread.



Figure 4: Feature Importance Heatmap with BSM Input Variables
Note: The above figure provides a visual representation of the relative significance of input
variables (features) in various machine learning algorithms. The vertical axis displays the
input variables, while the horizontal axis represents each algorithm. Feature importance
metrics quantify the relative influence or contribution of these input variables to the overall
predictive performance of the models. Note that all algorithms receive identical input vari-
ables, which are also utilized in the computation of classical BSM and CRR models. The
degree of importance is assessed within each individual algorithm.



(a) GBM, with BSM input (b) GBM, with weighted Volatility

(c) GBM, with moneyness and VIX (d) GBM, Black-Scholes Counterfeit

Figure 5: Feature Importance Plots
Note: The above figures depict the relative significance of input variables in each specifi-
cations for Boosted-Tree algorithm (GBM). The vertical axis displays the input variables,
and the horizontal axis represents relative importance, scaling to 1 for the most important
feature. Feature importance metrics quantify the contribution of these input variables to
the overall predictive performance. Weighted volatility is calculated by multiplying annu-
alized realized volatility (𝜎) and time to maturity (in years, 𝜏). Figure (d) display feature
importance when the target variable is Black-Scholes estimated price.



(a) BSM Model (b) GBM3 Model

Figure 6: Model Estimate Deviation Distributions
Note: Figure illustrates the spline-smoothed histogram of estimation errors represented by log
deviation. The x-axis is truncated between the value of -2 and 2. The maximum observation
count is scaled to be 1 for each moneyness group. Figure (a),(b) each represents error
distributions by the moneyness of the options for the underlying model.



(a) BSM prediction (b) CRR prediction

(c) GBM prediction (d) GBM3 prediction

Figure 7: Accuracy Plots
Note: The plotted figures illustrate target (mid-quote price at the transaction) and the
estimated option prices generated by each model. The data used in the above plot comprises
transactions of S&P 500 equity options from October 2019 to March 2021. For efficiency,
a random sample of 100,000 observations was drawn from the dataset for plotting. Any
extreme values or zero predictions produced by the Black-Scholes-Merton (BSM) and Cox-
Ross-Rubinstein (CRR) models, which signify divergence, were excluded from the plots.
GBM3 model includes absolute (𝑆 − 𝐾) and relative (𝑆/𝐾) moneyness, VIX and standard
option pricing variables.



7 Tables
Table 1: Descriptive Statistics

Variable N Mean SD p1 p25 p50 p75 p99
Strike ($) 716,822,161 345.81 666.77 9.75 62.54 144.34 280.23 3,294.43
Trade size (contract) 716,822,161 6.32 81.85 1.00 1.00 2.16 4.46 64.06
Trade price ($) 716,822,161 6.65 25.82 0.02 0.68 1.99 4.49 75.63
Mid-quote price (Option, $) 716,822,161 6.65 25.27 0.03 0.70 1.92 5.06 80.47
Mid-quote price (Stock, $) 716,822,161 343.23 657.34 8.86 64.87 151.23 271.09 3,202.82
Expiration (days) 716,822,161 41.28 93.69 0.00 3.46 11.47 35.36 477.97
Dividend yield (%) 716,730,281 1.66 1.96 0.00 0.22 1.45 2.58 7.64
Risk-free rate (%) 710,020,847 0.76 0.93 0.01 0.09 0.32 1.29 2.48
VXX quote ($) 666,952,310 24.91 9.45 12.15 17.79 23.34 30.13 54.30
Bid-ask spread ($) 716,784,655 0.11 0.26 0.00 0.02 0.04 0.09 1.73
Annualized Volatility (10-minute, %) 707,469,043 40.35 46.50 9.49 22.24 31.58 43.40 181.48
Annualized Volatility (1-month, %) 707,558,401 33.14 26.86 12.26 22.83 27.94 37.16 120.44
Annualized Volatility (3-month, %) 707,181,574 34.99 27.77 13.40 22.61 29.05 39.74 136.54
Implied Volatility (%) 702,950,708 49.08 33.44 15.88 30.34 40.56 55.31 188.95
Delta 700,154,923 0.13 0.41 −0.93 −0.06 0.13 0.41 1.00

Note:
Each column represents nonmissing observations (N), mean, standard deviation (S.D.), and percentiles. The
sample is constructed from OPRA options transactions data from October 2019 to March 2021 and consists
of all listed S&P 500 equity options during the sample period. VXX (short-term VIX) quotes are only paired
when the most recent quote data is accessible within a 500-second timeframe before the option transaction. The
underlying 10-minute (1,3-month) realized volatility is computed by utilizing the 1-second (1-day) return and
subsequently annualizing it. Implied volatility and base Greeks are derived from the Black-Scholes model.



Table 2: Estimation Accuracy by Algorithm

Variable GBM RF NN XGB EN BSM CRR BAW CN
Mean Absolute Error

Train 1.268 2.363 2.557 2.464 6.178 - - - -
Valid 1.273 2.339 2.655 2.471 6.178 - - - -
Test 1.269 2.335 2.653 2.465 6.177 2.622 2.789 2.759 2.784

Root Mean Squared Error
Train 2.891 5.988 6.453 10.339 22.729 - - - -
Valid 2.940 5.795 7.619 10.404 22.747 - - - -
Test 2.904 5.749 7.592 10.339 22.726 10.871 12.718 12.153 12.732

Out of Sample R-squared
Train 0.987 0.944 0.901 0.833 0.193 - - - -
Valid 0.987 0.948 0.909 0.831 0.193 - - - -
Test 0.987 0.948 0.910 0.833 0.193 0.817 0.709 0.772 0.708

Mean Absoulte Percentage Error
Test 56.030 80.713 79.110 59.387 103.939 196.830 95.496 183.854 127.738

Note:
The training, validation, and test datasets encompass all equity options listed in the S&P
500 index from October 2019 to March 2021. The examined algorithms include Gradi-
ent Boosted Machine (GBM), Random Forest (RF), Neural Network (feed-forward, NN),
Extreme Gradient Boosting (XGB), Elastic Net (EN), Black-Scholes-Merton (BSM), Cox-
Ross-Rubinstein (CRR), Barone-Adesi and Whaley (BAW), and Crank-Nicolson (CN). The
mean percentage absolute error (MPAE) is computed by

1
𝑁

𝑁
∑
𝑖=1

100 ∗ |𝑙𝑜𝑔( ̂𝑦𝑖
𝑦𝑖

)|

To mitigate extreme values resulting from divergence, the CRR and CN estimates are
winsorized at the 0.01% level.



Table 3: Estimation Accuracy by Moneyness

Variable GBM RF NN XGB EN BSM CRR BAW CN
OTM Options

MAE 1.025 1.909 2.037 1.834 4.836 2.061 2.064 2.060 2.058
RMSE 2.064 3.319 6.025 5.923 10.890 8.505 8.257 8.507 8.276
R2 0.949 0.867 0.562 0.576 −0.432 0.259 0.270 0.260 0.258
MAPE 78.448 114.122 91.816 77.871 130.348 327.639 148.204 300.991 202.924

ATM Options
MAE 1.187 2.041 3.102 2.549 5.914 3.625 4.041 4.037 4.036
RMSE 2.800 5.727 8.047 8.860 20.426 12.865 15.843 15.866 15.817
R2 0.987 0.948 0.897 0.875 0.333 0.702 0.547 0.549 0.547
MAPE 25.059 34.887 61.757 33.553 65.718 43.103 44.148 44.240 44.327

ITM Options
MAE 2.859 5.512 4.403 5.543 14.040 2.291 2.500 2.251 2.502
RMSE 5.918 12.356 12.082 24.479 54.724 14.247 18.927 14.223 19.043
R2 0.990 0.956 0.958 0.827 0.134 0.942 0.868 0.943 0.866
MAPE 39.822 55.495 69.277 46.984 90.438 15.541 15.346 15.345 15.334

Note:
All evaluation metrics are based on the test sample. Options with |Δ| < 0.375 are classified as
out-of-the-money (OTM), those with |Δ| >= 0.625 are classified as in-the-money (ITM), and
the rest are considered at-the-money (ATM). The algorithms encompass Gradient Boosted
Machine (GBM), Random Forest (RF), Neural Network (feed-forward, NN), Extreme Gradi-
ent Boosting (XGB), Elastic Net (EN), Black-Scholes-Merton (BSM), Cox-Ross-Rubinstein
(CRR), Barone-Adesi and Whaley (BAW), and Crank-Nicolson (CN). The mean percentage
absolute error (MPAE) is calculated using the following formula:
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𝑁
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)|

To mitigate extreme values resulting from divergence, the CRR and CN estimates are win-
sorized at the 0.01% level.



Table 4: GBM Estimation Accuracy Improvements

Panel A: Performance Improvements

Variable GBM GBM2 GBM3
Mean Absolute Error

Train 1.2679 0.3937 0.3001
Valid 1.2732 0.3984 0.3046
Test 1.2680 0.3947 0.3047

Root Mean Squared Error
Train 2.8911 0.8373 0.5751
Valid 2.9396 0.8687 0.6110
Test 2.9014 0.8460 0.6129

Out of Sample R-squared
Train 0.9869 0.9989 0.9995
Valid 0.9865 0.9988 0.9994
Test 0.9868 0.9989 0.9994

Mean Absolute Percentage Error
Test 55.9788 21.2535 18.8144

Panel B: Test Sample Performance, by Moneyness

Variable GBM GBM2 GBM3
OTM Options

MAE 1.0207 0.3167 0.2526
RMSE 2.0328 0.6606 0.4899
R2 0.9492 0.9946 0.9971
MAPE 78.3519 29.5115 26.7212

ATM Options
MAE 1.1783 0.5279 0.3848
RMSE 2.7552 1.0881 0.7518
R2 0.9875 0.9981 0.9991
MAPE 25.0475 12.8867 10.3693

ITM Options
MAE 2.8397 0.3696 0.3167
RMSE 5.7716 0.8084 0.6840
R2 0.9902 0.9998 0.9999
MAPE 39.7720 5.4289 5.0640

Note:
Panel A and B show performance metrics by sample and moneyness of the option. The
monyenss result is based on test sample. The results are based on a testing sample of S&P
500 equity options from October 2019 to March 2021. In our first modification (GBM2),
we include the S&P 500 VIX index quote and time-weighted volatility (𝜎√𝜏) following the
Black-Scholes-Merton (BSM) model. The underlying volatility (𝜎) is weighted by the square
root of the time-to-maturity (

√𝜏), as illustrated in the BSM model equation. In our second
modification (GBM3), we introduce the absolute difference (𝑆 − 𝐾) and relative moneyness
(𝑆/𝐾) of the option instead of the weighted time-to-maturity.



Table 5: Determinants of Prediction Errors

Dependent Variable: Deviation (%)
Black-Scholes Gradient-Boosted

Model: (1) (2) (3) (4)
Variables
ITM 54.61∗∗∗ 54.87∗∗∗ -6.68∗∗∗ -6.67∗∗∗

(2.92) (2.93) (-11.02) (-11.01)
OTM 441.72∗∗∗ 441.99∗∗∗ 19.22∗∗∗ 19.23∗∗∗

(10.25) (10.24) (43.12) (43.10)
PutOption -50.30∗∗∗ -50.28∗∗∗ -0.43∗∗ -0.43∗∗

(-3.40) (-3.40) (-2.03) (-2.03)
ln(Trade Size) 10.79∗∗∗ 10.90∗∗∗ 1.02∗∗∗ 1.02∗∗∗

(3.56) (3.59) (14.67) (14.69)
Transaction Price -1.65∗∗∗ -1.65∗∗∗ -0.03 -0.03

(-8.40) (-8.40) (-1.39) (-1.39)
Underlying Mid-quote -0.01 -0.01 0.00 0.00

(-0.22) (-0.23) (-1.17) (-1.29)
Volatility (10m, %) -0.67∗∗ -0.66∗∗ 0.00 0.00

(-2.31) (-2.31) (-1.48) (-1.43)
Risk-free (%) -78.95∗∗∗ -77.27∗∗∗ 1.92∗∗ 1.87∗

(-9.66) (-9.48) (1.99) (1.93)
Dividend yield (%) 0.62 0.78 -0.12 -0.12

(0.64) (0.89) (-1.45) (-1.39)
Expiration (Year) -858.77∗∗∗ -859.02∗∗∗ -70.60∗∗∗ -70.62∗∗∗

(-12.48) (-12.48) (-36.46) (-36.45)
Expiration (Year) square 446.64∗∗∗ 446.82∗∗∗ 36.31∗∗∗ 36.33∗∗∗

(12.20) (12.19) (35.11) (35.09)
Large (Mkt. Cap) 42.91∗∗∗ 1.03

(3.00) (0.97)
Med-Large (Mkt. Cap) 14.17∗∗ -1.62∗∗∗

(2.51) (-4.06)
Medium (Mkt. Cap) 3.19 -0.14

(1.01) (-0.37)
Med-Small (Mkt. Cap) 3.94 0.25

(1.53) (0.61)
Fixed-effects
Stock Yes Yes Yes Yes
Day Yes Yes Yes Yes
Fit statistics
Observations 48,530,785 48,528,073 48,460,198 48,457,489
Adjusted R2 0.03899 0.03902 0.13237 0.13244

Clustered (Stock) co-variance matrix, t-stats in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The regression analysis is conducted using a randomly selected sample of
50 million observations from a larger dataset consisting of 716 million trans-
actions. The primary dependent variable is the percentage log deviation of
the estimate from the midpoint of the option quote. Both the risk-free rate
and dividend yield are expressed as percentages. Expiration represents the
expiration period measured in years, with a value of 0.5 indicating half a
year. The classification of options based on moneyness is determined using
the absolute Black-Scholes delta. Options with |Δ| < 0.375 are classified as
out-of-the-money (OTM), those with |Δ| >= 0.625 are classified as in-the-
money (ITM), and the rest are considered at-the-money (ATM).



Table 6: Price Deviations from Machine-Learning Benchmark by the Size of Firm

Panel A: Deviations from ML Benchmark, 4 PM Mid-quote

Variable All Small Mid-Small Mid Mid-Large Large
Quantiles

1% 0.04 0.06 0.05 0.04 0.03 0.02
5% 0.19 0.30 0.24 0.20 0.17 0.12
25% 1.44 2.01 1.69 1.51 1.23 0.86
50% 6.31 7.84 7.24 6.64 5.33 3.73
75% 28.45 32.48 30.12 28.11 23.23 17.20
95% 172.42 169.23 153.67 152.57 141.65 115.97
99% 360.28 348.42 319.27 314.89 306.50 285.23

Statistics
Mean 33.24 34.45 31.65 30.70 27.71 22.91
SD 69.74 68.29 62.91 62.34 59.90 55.15
Nobs 73,671,414 14,402,092 14,516,905 14,468,584 14,440,190 14,381,903

Panel B: Deviations from ML Benchmark, Last Transaction Price

Variable All Small Mid-Small Mid Mid-Large Large
Quantiles

1% 0.23 0.29 0.31 0.30 0.22 0.14
5% 1.15 1.45 1.55 1.52 1.10 0.73
25% 6.96 8.43 8.91 8.71 6.52 4.35
50% 19.56 22.76 23.69 23.10 18.02 12.21
75% 50.68 55.27 56.67 55.67 46.19 32.02
95% 175.49 169.10 170.12 168.77 155.44 123.49
99% 328.16 312.51 310.97 307.64 299.82 274.57

Statistics
Mean 43.77 45.38 46.14 45.47 39.67 30.38
SD 66.03 63.34 63.14 62.54 59.94 53.54
Nobs 47,159,470 8,623,463 8,436,981 8,576,130 9,272,463 11,296,649

Note:
The table presented above provides a summary of deviation estimates categorized by the size
of the underlying firm. The relative size of firms within the S&P 500 index is classified into
quintiles based on their daily market capitalization. Panel A displays the deviation statistics
for the 4 PM mid-quote value, using end-of-day quotes sourced from CBOE options quote
data covering the year 2020. Panel B shows the deviations for the most recent transaction
price matched at the close of each trading day. The deviations are presented in logarithmic
percentage values as 100 × log ( 𝑦

𝑦𝑀𝐿
).



Table 7: Price Deviations from Machine-Learning Benchmark by Moneyness of Options

Panel A: Deviations from ML Benchmark, 4 PM Mid-quote

Variable All OTM ATM ITM
Quantiles

1% 0.04 0.41 0.11 0.02
5% 0.19 2.07 0.55 0.08
25% 1.44 12.25 3.07 0.44
50% 6.31 33.54 7.86 1.19
75% 28.45 84.91 18.93 2.94
95% 172.42 252.21 80.34 10.04
99% 360.28 408.87 209.52 30.69

Statistics
Mean 33.24 66.92 19.98 2.93
SD 69.74 87.86 39.69 6.76
Nobs 73,671,414 24,413,773 21,000,010 26,872,505

Panel B: Deviations from ML Benchmark, Last Transaction Price

Variable All OTM ATM ITM
Quantiles

1% 0.23 0.47 0.21 0.13
5% 1.15 2.36 1.06 0.67
25% 6.96 13.33 5.86 4.01
50% 19.56 35.14 14.91 11.24
75% 50.68 83.37 34.15 28.22
95% 175.49 225.82 102.58 84.95
99% 328.16 372.89 218.66 152.40

Statistics
Mean 43.77 64.01 28.83 22.80
SD 66.03 79.53 42.17 31.85
Nobs 47,159,470 17,789,608 15,972,908 12,487,066

Note:
The table presented above provides a summary of deviation estimates categorized by mon-
eyness of options. The option’s moneyness is defined based on +/- 10% of stock-to-strike
ratio (S/K). Panel A (B) displays the deviation statistics for the 4 PM mid-quote (most
recent traded price). The deviations are presented in logarithmic percentage values as
100 × log ( 𝑦

𝑦𝑀𝐿
).



Table 8: Determinants of Benchmark Deviations

Dependent Variable: Deviation (%)
4PM Quote Latest Trade Price

Model: (1) (2) (3) (4)
Variables
PutOption -5.04∗∗∗ -5.84∗∗∗ -0.07 -3.02∗∗∗

(-17.64) (-22.09) (-0.25) (-12.96)
Deviation (%, Underlying) 0.06 0.06 0.04 0.03

(0.96) (1.07) (1.17) (0.94)
Volatility (last 10 min) 0.00 0.00 0.00 0.00

(0.60) (0.59) (-0.10) (-0.31)
ITM -12.79∗∗∗ -17.29∗∗∗ 3.54∗∗∗ -13.52∗∗∗

(-39.54) (-56.69) (7.76) (-50.10)
OTM 53.75∗∗∗ 51.36∗∗∗ 43.90∗∗∗ 37.08∗∗∗

(54.19) (51.43) (65.76) (66.60)
Expiration (< 30 days) -35.90∗∗∗ -36.59∗∗∗ -33.35∗∗∗ -34.42∗∗∗

(-50.82) (-50.16) (-64.79) (-60.08)
Expiration (< 90 days) -48.93∗∗∗ -50.08∗∗∗ -48.12∗∗∗ -50.15∗∗∗

(-76.93) (-74.68) (-105.61) (-92.63)
Expiration (90 days+) -61.83∗∗∗ -62.95∗∗∗ -60.91∗∗∗ -66.33∗∗∗

(-104.79) (-105.11) (-110.26) (-105.52)
No Trade 10.55∗∗∗ 17.09∗∗∗

(32.95) (32.77)
Volume (ln) -0.54∗∗∗ -0.79∗∗∗

(-3.91) (-7.15)
Days since the last trade 0.30∗∗∗

(38.38)
Fixed-effects
Stock Yes Yes Yes Yes
Day Yes Yes Yes Yes
Fit statistics
Observations 71,992,325 71,992,325 46,084,628 46,084,628
Adjusted R2 0.30342 0.30854 0.22410 0.28170

Clustered (Stock) co-variance matrix, t-stats in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The panel regression is specified with underlying stock and day fixed effects
paired with standard error clustering. The sample is based on S&P 500 quote
data for the year 2020. The option’s moneyness is defined based on +/- 10%
of intrinsic value (S/K). The main dependent variables are the percentage
deviation of the estimate from the ML benchmark option price. The base is
call option and ATM.
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Figure 8: OTM Sample ML Variable importance
Note: The above figure depict the relative significance of input variables in extended GBM
specification, including absolute (S-K) and relative (S/K) intrinsic values and VIX quote.
We limit our train, valid and test sample to be OTM options. The vertical axis displays
the input variables, and the horizontal axis represents relative importance, scaling to 1 for
the most important feature. Feature importance metrics quantify the contribution of these
input variables to the overall predictive performance.



Table A1: Estimation Accuracy Results by Option Price

Variable GBM GBM2 GBM3 BSM CRR BAW CN
Options Price below $1

MAE 0.665 0.146 0.121 0.416 0.422 0.419 0.419
RMSE 1.245 0.230 0.207 1.798 1.727 1.800 1.786
R2 −17.561 0.369 0.487 −37.677 −34.718 −37.790 −37.161
MAPE 106.408 38.368 35.319 391.527 141.992 353.380 214.059

Options Price below $3
MAE 0.727 0.276 0.229 1.180 1.203 1.196 1.195
RMSE 1.236 0.406 0.338 3.392 3.221 3.400 3.193
R2 −3.743 0.488 0.645 −34.703 −31.197 −34.866 −30.644
MAPE 34.278 15.770 13.450 112.648 89.256 112.850 102.628

Options Price below $10
MAE 1.286 0.507 0.396 2.700 2.762 2.753 2.753
RMSE 1.941 0.760 0.592 6.027 6.046 6.061 6.025
R2 −0.039 0.841 0.904 −9.005 −9.070 −9.120 −9.001
MAPE 25.354 10.238 7.997 76.532 65.951 77.007 71.966

Options Price above $10
MAE 4.102 1.149 0.822 11.702 12.802 12.611 12.802
RMSE 7.128 2.003 1.386 27.991 33.521 31.739 33.510
R2 0.987 0.999 1.000 0.798 0.710 0.740 0.710
MAPE 16.839 4.934 3.587 54.207 50.208 54.955 53.531

Note:
All evaluation metrics are based on the test sample. The training, validation,
and test datasets encompass all equity options listed in the S&P 500 index from
October 2019 to March 2021. The algorithms encompass various specifications
of Gradient Boosted Machine (GBM, GBM2, GBM3), Black-Scholes-Merton
(BSM), Cox-Ross-Rubinstein (CRR), Barone-Adesi and Whaley (BAW), and
Crank-Nicolson (CN). The mean percentage absolute error (MPAE) is calcu-
lated using the following formula:
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To mitigate extreme values resulting from divergence, the CRR and CN esti-
mates are winsorized at the 0.01% level.



Table A2: Alternative Volatility Estimates and BSM Performance

Variable BSM_10min_vol BSM_1mo_vol BSM_3mo_vol GBM3
Entire sample

MAE 2.631 1.928 1.931 0.394
RMSE 10.802 7.221 7.374 0.883
R2 81.334 91.657 91.300 99.875
MPAE 202.124 188.682 181.107 21.620

Out-of-the-money Options
MAE 2.911 1.902 1.933 0.298
RMSE 13.881 7.414 7.863 0.635
R2 -60.260 54.276 48.581 99.665
MPAE 470.153 463.245 457.521 31.790

At-the-money Options
MAE 2.557 1.928 1.928 0.414
RMSE 9.865 7.140 7.269 0.922
R2 69.217 83.871 83.283 99.731
MPAE 152.217 136.852 128.619 20.205

In-the-money Options
MAE 3.029 2.100 2.000 0.416
RMSE 14.170 8.225 7.249 1.041
R2 98.190 99.390 99.526 99.990
MPAE 9.869 7.530 7.556 2.488

Note:
The results show performance metrics by moneyness and different his-
torical volatility estimates. A 10 million random draw from the original
S&P 500 equity options is used. We remove zero price predictions from
the Black-Scholes estimate for proper MPAE calculations. Moneyness is
defined by +/- 10% of moneyness ratio (S/X).
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