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Abstract

This paper introduces a linear weight estimation (LWE) framework as a novel semi-parametric

method for dynamic global minimum variance portfolio (GVMP) allocation. The LWE method

assumes a dynamic linear model for the ex ante optimal GMVP weights. Based on a time se-

ries of daily realized covariance estimates, the LWE model parameters can easily be estimated in

closed form using the method of moments. Importantly, we prove that the estimated LWE portfo-

lio weights directly and uniquely minimize a finite sample estimate of the unconditional portfolio

variance, which is not achieved by most of the existing methods in the literature. Empirical re-

sults demonstrate that LWE outperforms competing estimators in terms of out-of-sample portfolio

variance measures. LWE can also be extended to incorporate controls for investment constraints,

which further balances its economic performance and transaction costs.
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1 Introduction

Estimating and forecasting the covariance matrix of an N dimensional return process is considered

to be a cornerstone of any portfolio optimization problem. The availability of high-frequency data

led to the development of precise nonparametric realized covariance estimators1, which fundamentally

changed the portfolio allocation problem. More specifically, realized covariances serve as an accurate

proxy for the otherwise latent covariances among the universe of assets, which provide an observable

benchmark for the prediction of future covariance matrices. Exploiting the realized covariances, most of

the existing papers typically solve the portfolio allocation problem by the following two-step approach:

(1) predicting the N -by-N realized covariance matrix using time-series methods; (2) solving for the

optimal portfolio weights based on the predicted covariance matrix, usually referred to as the ‘plug-in’

estimator.

Nevertheless, forecasting a time series of N -by-N positive definite realized covariance matrices

is by itself a Herculean task. One needs to overcome the curse of dimensionality as the number of

time series to be predicted grows quadratically with N . In addition, the positive definiteness of the

predicted realized covariances is required for a unique solution of the portfolio allocation problem.

Several approaches have been proposed to tackle these two issues. One strand of literature suggests

to use a structured and simplified forecasting model designed to reduce the dimensionality while

preserving the positive definiteness. For example, a random walk model used in Fan et al. (2016),

Aı̈t-Sahalia and Xiu (2017), the Wishart-based models of Gourieroux et al. (2009), Noureldin et al.

(2012), Golosnoy et al. (2012), Jin and Maheu (2013), the Cholesky-decomposition method of Chiriac

and Voev (2011), the HAR-DRD model of Oh and Patton (2016) and its extensions in Bollerslev et al.

(2018), and the score-driven model of Opschoor et al. (2018). Shrinkage and factor-based methods are

proposed to smooth the forecasting errors in large dimension, see Ledoit and Wolf (2004), Bauer and

Vorkink (2011), Fan et al. (2016), Hautsch et al. (2015), Aı̈t-Sahalia and Xiu (2017), Ledoit and Wolf

(2017), Engle et al. (2019), Hautsch and Voigt (2019), Ledoit and Wolf (2020), Callot et al. (2021),

Ding et al. (2021) among many others.

To reduce the dimensionality of covariance matrix prediction, an emerging stream of literature

proposes to model and forecast the N -by-1 realized weights of certain ex post optimal weight vectors,

which can be computed given the realized covariance matrices (Golosnoy et al., 2019; Cipollini et al.,

2021). In addition to the much reduced dimensionality, this approach is further motivated by the fact

that portfolio allocation only requires the knowledge of a forward-looking weight vector without fore-

casting the full covariance matrix. Consequently, Cipollini et al. (2021) show significant improvements

in the global minimum variance portfolio (GMVP) performance by forecasting the realized weights

1E.g., Barndorff-Nielsen et al. (2011), Zhang (2011), Bibinger and Mykland (2016), Varneskov (2016), Li et al. (2022),
among others.
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using a simple VARMA(1,1) model over various conventional two-step approaches.

Despite these methodological developments in forecasting realized covariances or weights, there

is still a salient but often ignored flaw in the dynamic portfolio allocation exercise. Specifically,

the existing forecasting models typically minimize certain distance measures between the true and

the predicted values (e.g., matrix or vector norms, the multivariate QLIKE of Patton and Sheppard

(2009), see also Laurent et al. (2013) for further multivariate loss functions), which does not translate

into an ex ante optimal choice of portfolio weights in utility terms. For instance, a mean-squared

optimal forecast of the realized GMVP weights is its conditional mean, which in general does not

minimize the ex ante portfolio variance (see Eq. (2.12) and its implications). As discussed in Section

3.3 of Cipollini et al. (2021), a forecasting model for realized weights that simultaneously minimizes

the ex ante portfolio variance is theoretically possible but empirically infeasible to apply, as one needs

to optimize a highly nonlinear objective function, which is computationally costly especially when N

is large. To our best knowledge, a feasible solution to the dynamic portfolio choice problem which

directly optimizes the portfolio performance metric remains an open question.

Motivated by the above discussions, this paper proposes a novel linear weight estimation (LWE)

framework for dynamic GMVP allocation. In detail, we directly model the ex ante optimal GMVP

weight vector as a linear function of historical realized weight vectors. We show that the model param-

eters can be estimated via a standard method of moments that minimizes the unconditional portfolio

variance, which yields a semi-parametric estimator for the forward-looking GMVP weights. This allows

us to establish asymptotic properties of our estimator using standard econometric tools. Importantly,

the number of parameters scales linearly with N , and the estimator is fully linear, and therefore very

efficient to compute even for large N . By modifying the loss function of our method, one can also im-

pose bounds on the portfolio weights or regularization techniques to tailor the resulting weight vector

according to the investment constraints of the investor, such as those adopted in Jagannathan and Ma

(2003), Brodie et al. (2009), Li (2015), Yen (2016), among others.

Our method is closely related to Brandt et al. (2009) who propose to model the ex ante optimal

portfolio weights as a linear combination of firm characteristics. However, their weight model is

static in nature and homogeneous across all stocks, while our model allows for greater flexibility with

dynamic portfolio weights with stock-specific weights dynamics. Cipollini et al. (2021) consider a

dynamic VARMA-type model for portfolio weights, but the estimated parameters do not guarantee

optimal GMVP portfolio performance, as discussed above. Strikingly, in a dynamic daily GVMP

allocation study, our empirical findings based on 250 most liquid constituents of the S&P 500 index

show that our LWE estimator consistently outperforms the dynamic weight model of Cipollini et al.

(2021), and several widely applied dynamic portfolio choice methods, with a smaller out-of-sample

average realized portfolio variance uniformly over different choices of N . This result is robust to
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various investment constraints such as portfolio exposure and short-selling constraints. Transaction

costs of the LWE method can be effectively controlled by a ridge-type penalized LWE estimator, which

further illustrates the practicality of the proposed method.

The remainder of the paper is organized as follows: Section 2 describes the GMVP allocation

problems. Section 3 introduces the novel LWE approach, investigates its theoretical properties, and

discusses various extensions. Section 4 examines its performance in an empirical study together with

the penalized LWE. Section 5 concludes.

2 The Dynamic GMVP Allocation Problem

We formally state the dynamic GMVP allocation problem in this section and discuss some problems

with the existing approaches. Our setting is similar to those in Aı̈t-Sahalia and Xiu (2017), Cipollini

et al. (2021), and the importance of the GMVP allocation problem is emphasised in DeMiguel et al.

(2009, 2014).

On a filtered probability space (Ω,F , (Ft)t≥0,P), we consider a market with N distinct assets2,

whose N -dimensional price process is denoted as (Pt)t≥0. We denote the t-th trading day as intervals

of the form [t− 1, t], and it is understood that market closure periods are discarded. For each interval

[t − 1, t], we shall assume the following structure for the log-return process rs = ln(Ps/Pt−1) with

s ∈ [t− 1, t]:

Assumption 1. On [t− 1, t], the N -dimensional log-return process takes the following form:

rs =

s∫
t−1

budu+

s∫
t−1

Θ∗udWu, (2.1)

where bu is an Ft−1-adapted locally bounded process representing the spot drift of rs, Θu is an optional

element-wise locally bounded stochastic processes called the spot covolatility processes, and Wu is an

N -dimensional Wiener process. Denote the quadratic variation process of rs on [t − 1, t] as Σ∗t =∫ t
t−1 Θ∗s(Θ

∗
s)
′ds, we assume that for all t ∈ N and ω ∈ RN , it holds almost surely that 0 < ω′Σ∗tω <∞

and that Σ∗t is strictly stationary.

In essence, rt is a section of an N -dimensional continuous semi-martingale on [t − 1, t] with the

conditional moments Et−1[rt] = Et−1[
∫ t
t−1 bsds] := µt and Vt−1[rt] = Et−1[Σ∗t ] by the Ito isometry,

where Et−1[·] = E[·|Ft−1] and Vt−1[·] = V[·|Ft−1] are the Ft−1-conditional expectation and variance

operators, respectively. The assumption on Σ∗t ensures that there are no perfectly colinear assets on

the market, and the variance of any portfolio over [t − 1, t] is finite. The semi-martingale model is

2Throughout this paper, we shall assume that N is a fixed finite natural number, so that we are in the conventional fixed
dimension setting. The high-dimensional case with N → ∞ can have drastically different theoretical properties and is
beyond the scope of this paper, which is left for future research.
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typical in the high-frequency literature (Aı̈t-Sahalia and Jacod, 2014), and the continuous assumption

is only for notational convenience and should not be viewed as a restriction here, as the quadratic

covariation matrix is also well-defined in the presence of jumps (see, for example, Chapter 1 of Äıt-

Sahalia and Jacod (2014)), albeit with more cumbersome expressions. Importantly, the availability

of high-frequency data allows us to construct precise realized covariance estimators for Σ∗t on a daily

basis, which serves as an accurate observable proxy for Σ∗t that depicts the covariance structure among

the N assets. We shall therefore make the following assumption about an observed realized covariance

estimator:

Assumption 2. For each t, the Realized Covariance (RC) estimator Σt of Σ∗t can be constructed from

high-frequency observations of (Pt)t≥0, which has the representation:

Σt = Σ∗t + St, (2.2)

where St satisfies Et−1[St] = 0N×N , for all t.

Effectively, Assumption 2 assumes that the estimation error of RC, namely St = Σt − Σ∗t , is a

matrix-valued martingale difference sequence. This assumption is well-grounded in the literature of

high-frequency realized measures. For example, the state-of-the-art flat-top realized kernel of Var-

neskov (2016) shows that, on the interval [t − 1, t], the estimation error St (after some appropriate

scaling) converges to a zero-mean Gaussian process independent of the filtration F as the number of

high-frequency observation increases. Therefore, Assumption 2 simply reflects the asymptotic proper-

ties of a desirable RC estimator, which should be robust to the presence of measurement errors and

asynchronous trading to eliminate the asymptotic bias.3

Importantly, for any choice of weight vector w ∈ RN , Assumption 2 ensures that:

Et−1[w′Σtw] = Et−1[w′Σ∗tw] + w′ Et−1[St]w = Et−1[w′Σ∗tw] = Vt−1[w′rt|Ft−1], (2.3)

so that minimizing the conditional realized portfolio variance is equivalent to a minimization of the

true conditional portfolio variance. This provides an observable optimization target, from which the

optimal GMVP weights can be obtained. Consequently, for two weight vectors w1 and w2, we always

have:

Et−1[w′1Σtw1] Q Et−1[w′2Σtw2]⇔ Vt−1[w′1rt|Ft−1] Q Vt−1[w′2rt|Ft−1], (2.4)

so that under Assumption 2, the noisy proxy Σt still delivers consistent rankings of portfolio variance

for different portfolio weights in the spirit of Hansen and Lunde (2006).

3Several RC estimators have been proposed to achieve asymptotic unbiasedness, including Barndorff-Nielsen et al. (2011),
Bibinger and Mykland (2016), Lunde et al. (2016), Varneskov (2016), Boudt et al. (2017), Li et al. (2022) among others.
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We now describe the dynamic GMVP optimization problem in detail. At the beginning of day

t − 1, a representative investor invests all her capital into the N assets based on the information set

Ft−1 by choosing an Ft−1-adapted vector of weights wt that sums up to one. She holds the portfolio

till time t (the end of day t) and closes her position, and the procedure iterates indefinitely on day t,

t+1, etc. This daily trading horizon ensures that the investor avoids holding the assets during market

down times, such as overnight and weekends, whose associated risk is challenging to quantify because

the high-frequency data required to construct valid realized risk measures is no longer available.

To choose the weight vector wt, the investor solves the following one-day-ahead variance mini-

mization problem:

min
w∈W

V[w′rt|Ft−1] = min
w∈W

Et−1[w′Σtw], (2.5)

whereW = {w ∈ RN : ι′w = 1}, and ι is an N -by-1 vector of ones. The above formulation is consistent

with a power expected utility framework with an infinite risk aversion coefficient. Viewing w as an

argument rather than a random variable and by the linearity of the expectation operator, we see that:

min
w∈W

Et−1[w′Σtw]⇔ min
w∈W

w′Ωtw, (2.6)

where Ωt := Et−1[Σ∗t ] is the expected variance-covariance matrix of the assets. Given Ωt, the above

problem has a well-known analytical solution:

wF
t =

Ω−1
t ι

ι′Ω−1
t ι

. (2.7)

The weight vector wF
t is only optimal at a single time point t. The optimal dynamic GMVP strategy

is defined by collecting the optimal GMVP weights {wF
t }t=1,2,... over time, which solves the following

unconditional GMVP problem:

min
wt∈Ft−1∩W

E[wtΣtwt] = min
wt∈Ft−1∩W

E[wtΩtwt]. (2.8)

Intuitively, {wF
t }t=1,2,... yields the smallest average Ft−1-conditional variance of the portfolio w′trt

among all dynamic GMVP strategies {wt}t=1,2,..., which is the ideal strategy for the investor. Unfor-

tunately, {wF
t }t=1,2,... is an infeasible optimal strategy as Ωt is in general an unknown function of the

information set Ft−1.

To arrive at a feasible dynamic GMVP strategy, we may impose some structure on Ωt and compute

wF
t accordingly. In general, one can consider a (potentially misspecified) parametric model Ωt(θ0;Ft−1)

for Ωt, where θ0 is some time-invariant parameter vector that best approximates the data generating

process. Under the assumption that the parametric model is correctly specified, one immediately sees
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that:

wF
t = wt(θ0), where wt(θ) =

Ωt(θ;Ft−1)−1ι

ι′Ωt(θ;Ft−1)−1ι
. (2.9)

Under the correct model specification, θ0 is the solution to the following two unconditional minimiza-

tion problems:

min
θ

E[||Σt − Ωt(θ;Ft−1)||2F ] (the forecasting problem) and,

min
θ

E
[
wt(θ)

′Σtwt(θ)
]

(the minimum variance problem),
(2.10)

where || · ||F is the Frobenius norm. Intuitively, if Ωt(θ;Ft−1) correctly specifies the parametric fam-

ily for the conditional mean dynamics of Σ∗t such that Et−1[Σ∗t ] = Et−1[Σt] = Ωt(θ0;Ft−1), then

Ωt(θ0;Ft−1) is the element-wise mean-squared optimal one-step-ahead forecast for Σt, thus θ0 must

solve the forecasting problem above. Simultaneously, the minimum variance problem is solved by

construction. As all the quantities above are observed, one can easily construct finite sample analogs

of the two minimization problems using sample means instead of expectations.

The dual interpretation of θ0 in Eq. (2.10) motivates the so-called ‘plug-in’ approach in the

literature. In essence, this approach first solves the finite sample forecasting problem to obtain the

parameter estimate θ̂plug−in. This estimate is then plugged into the optimal GMVP weight vector

in Eq. (2.9), which gives wt(θ̂
plug−in) as the estimated GMVP weight at time t. As the number of

observations grows, θ̂plug−in becomes closer to θ0 so that the minimum variance problem is also solved

simultaneously.

Nevertheless, there is an inherent problem with the plug-in approach, in addition to the chal-

lenging task of forecasting the N -by-N positive definite matrix time series. Regardless of whether the

parametric model is correctly specified, the solutions to the finite sample versions of the forecasting

problem and the minimum variance problem do not necessarily coincide due to the different objective

functions. This implies that θ̂plug−in does not necessarily minimize the historical averaged portfolio

variance, which is the goal of the GMVP allocation. Moreover, under model misspecification, the two

minimization problems in Eq. (2.10) may not have the same limiting solution, so θ̂plug−in produces a

suboptimal dynamic GMVP strategy within the parametric family, even with an increasing amount of

data. Here, a potentially viable approach to avoid the inconsistencies between the two minimization

problems in Eq. (2.10) is to estimate θ0 directly from the finite sample minimum variance problem.

However, this approach is rarely adopted in the existing literature, which is mainly due to the com-

plex nonlinear functional form of the target function w.r.t. θ that greatly complicates the numerical

optimization procedure, especially for large N .

Instead of attempting to solve the challenging forecasting problem, from the sequence of Σt we
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can construct the sequence of ex post optimal GMVP weights, or the realized weights, denoted by:

w9t =
Σ−1
t ι

ι′Σ−1
t ι

. (2.11)

These weights {w9t }t=1:T are Ft-adaptive and only available at the end of day t. Due to the intimate

connection between Σt and Ωt, one may expect to learn about wF
t from the observed sequence of

weights {w9t }t=1:T , which is an N -dimensional vector. As investors only require an estimate of wF
t at

time t−1 to place orders for the trading activity at time t, this circumvents the problem of forecasting

large positive semi-definite matrices.

Given the sequence {w9t }t=1,2,..., a simple estimator of wF
t would be the Ft−1 optimal conditional

forecast of w9t in the mean-squared sense, namely Et−1[w9t ]. As discussed in Cipollini et al. (2021),

this forecast can be easily computed using an ARMA-type model. Unfortunately, this estimator also

does not solve the unconditional GMVP problem, since:

Et−1[w9t ] = Et−1

[
Σ−1
t ι

ι′Σ−1
t ι

]
6= Ω−1

t ι

ι′Ω−1
t ι

= wF
t , (2.12)

due to the nonlinearity of the matrix inverses, unless some restrictive distributional assumptions are

imposed on Σt. For example, the results in Okhrin and Schmid (2006) imply that Et−1[w9t ] = wF
t

if Σt is conditionally Wishart with the conditional mean Ωt. However, this is unlikely to hold for

the observed realized covariance matrices. Therefore, an MSE-optimal prediction model for realized

weights also does not directly solve the unconditional GMVP problem.

3 A Linear Framework for Optimal GMVP Weight Vector

This paper proposes a linear weight estimation (LWE) framework to solve the unconditional GMVP

problem in Eq. (2.8) by modelling the optimal weight vector wF
t with a linear model. As wF

t must sum

up to one, it suffices to only model the first N − 1 (or any N − 1 weights by permuting wF
t ) weights,

which we denote by w̃F
t . To fix ideas, we introduce the subspace W̃ = {w̃ ∈ RN−1 : w̃ = Zw,w ∈ W},

where Z = [IN−1,0(N−1)×1] is the mapping matrix that removes the last element from w. This induces

the following linear mappings between W and W̃:

∀w ∈ W, w̃ ∈ W̃ : w̃ = Zw,w = Z̃w̃ + eN , (3.1)

where Z̃ = [IN−1,−Zι]′, and eN = (0, . . . , 0, 1)′ is the standard basis for the N -th dimension. Note,

that by reducing one dimension from W, we effectively eliminate the effect of the sum up constraint

such that W̃ = RN−1. However, for every w̃, there exists eN + Z̃w̃ ∈ W such that Z(eN + Z̃w̃) = w̃,
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so W and W̃ are isomorphic. Importantly, W is only closed under affine transformations, i.e., for

w1, w2 ∈ W, λ1w1 +λ2w2 ∈ W iff λ1 +λ2 = 1. However, W̃ is closed under linear transformations such

that for any matrices Λ1,Λ2 ∈ R(N−1)×(N−1), w̃1, w̃2 ∈ W̃ implies Λ1w̃1 + Λ2w̃2 ∈ W̃. This property

allows us to safely ignore the sum up constraint in building our linear model, which significantly

simplifies the model construction.

It is convenient to consider the space generated by the zero-investment portfolio (ZIP) weights,

defined by V = {v ∈ RN : ι′v = 0}. It is clear that for any w1, w2 ∈ W, w1 − w2 ∈ V, so V

naturally contains the modelling errors for weight vectors. We shall also define its N − 1 dimensional

subspace as Ṽ = {ṽ : Zv, v ∈ V}. For every ṽ ∈ Ṽ, there exists Z̃ṽ ∈ V with ZZ̃ṽ = ṽ, so V and Ṽ

are isomorphic. The dimension reduction does not alter the interpretation of the space Ṽ, since for

w̃1, w̃2 ∈ W̃, w̃1 − w̃2 ∈ Ṽ. In essence, W̃ = Ṽ = RN−1 which is closed under addition and linear

transformation.

We begin with a conditional moment condition which characterizes the relationship between the

dimension-reduced weight vectors w̃F
t and w̃9t :

Proposition 1. Denote ε̃t = w̃9t − w̃
F
t and Σ̃t = Z̃ ′ΣtZ̃. The following identity holds for all t:

Et−1[Σ̃tε̃t] = 0(N−1)×1. (3.2)

We can naturally interpret ε̃t as the realization error between the ex post and the ex ante GMVP

weight vectors. Proposition 1 shows that, although Et−1[ε̃t] 6= 0 in general, the transformed realiza-

tion error Σ̃tε̃t is in fact a martingale difference sequence. Therefore, given a parametric model for

the unobserved w̃F
t , Proposition 1 provides us with the required moment conditions for parameter

identification, which will be exploited repeatedly in this paper.

In view of the above discussions, we consider the following linear predictive model for some Ft-

predictable element of W̃:

w̃t(β) = b0 +
K∑
j=1

BjX̃jt = Xtβ, b0, X̃jt ∈ W̃ , Bj ∈ R(N−1)×(N−1), (3.3)

where:

Xt = [IN−1, X̃
′
1t ⊗ IN−1, . . . , X̃ ′Kt ⊗ IN−1](N−1)×b(K), β = [b0; vec(B1); · · · ; vec(BK)]b(K)×1,

in which b(K) = K(N − 1)2 + N − 1 is the total number of active parameters to be estimated, and

vec(A) is the vectorization operator for a matrix A. Notice the requirement that X̃jt ∈ W̃, which

suggests that there exists some Xjt ∈ W such that Xjt = eN + Z̃X̃jt. Intuitively, Xjt is the full

N -by-1 predictive weight vector that enters into the model. The sum-up constraint on Xjt allows us

to reduce the dimension of the predictive vector and include only X̃jt in the model, which simplifies
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the model construction. So if one would like to include a general N -by-1 vector X̆jt ∈ RN , one should

first standardize it and set Xjt = X̆jt/(ι
′X̆jt) which conforms with the structure ofW. The full N -by-1

version of the model is thus understood as:

wt(β) = eN + Z̃b0 +
K∑
j=1

Z̃BjX̃jt = eN + Z̃Xtβ. (3.4)

Intuitively, b0 is a vector of baseline unconditional weights understood as the intercept of the model.

The sequence of vectors {X̃jt}j=1:K are K sets of Ft-predictable explanatory variables, i.e., {X̃jt}j=1:K

are observed at time t−1. These explanatory variables determine the time-varying component of w̃t(β)

through the linear structure Xtβ.

The linear model in Eq. (3.3) is highly flexible as it allows each predictor Xjt to have a different

impact to each component of wt(β). However, in the fully specified model, there are K(N−1)2 +N−1

free parameters to be estimated, so we still suffer from the curse of dimensionality as N increases.

Instead, one can consider the following diagonal-type specification:

w̃t(β) = b0 +

K∑
j=1

(
Bj −

ι̃b′j − bjN ι̃ι̃′

N

)
X̃jt, (3.5)

where Bj are (N − 1)-by-(N − 1) diagonal matrices such that ι̃′Bj = bj , ι̃ = Zι is an (N − 1)-by-

1 vector of ones, and bjN is a scalar parameter capturing the impact of the N -th element of Xjt

through the sum up constraint. In this case, there are b(K) = KN +N − 1 parameters in total, which

considerably reduces the number of parameters to be estimated. The diagonal specification can be

written compactly as w̃t(β) = Xtβ with the following Xt and β:

Xt = [IN−1, X̃
∗
1t, . . . , X̃

∗
Kt], β = [b0; b1; b1N ; . . . ; bK ; bKN ],

where:

X̃∗jt =

[
diag-1(X̃jt)−

ι̃X̃ ′jt
N

,
ι̃ι̃′X̃jt

N

]
(N−1)×N

, (3.6)

and diag-1(a) converts the vector a into a diagonal matrix.

The peculiar O(N−1) terms in Eq. (3.5) requires some discussion. This term ensures that the

resulting model does not depend on the ordering of the assets, i.e., the model is permutation invariant.

Clearly, if one simply specifies Eq. (3.5) without the O(N−1) terms, the resulting model depends on

which asset is left out from the N -variate system. One way to introduce permutation invariance is to

construct the model in a ‘jackknife’ fashion, i.e., averaging all N distinct diagonal models constructed

by leaving out the N assets one at a time. After some simple algebra, one can show that such averaged

model is identical to the one in Eq. (3.5), which justifies its unusual specification.
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To be even more parsimonious, one can consider a scalar specification for Eq. (3.3):

Xt = [IN−1, X1t, . . . , XKt], β = [b0; bK ], (3.7)

where bK is a K-by-1 vector capturing the impact of the K predictor weights, so b(K) = N +K − 1.

Intuitively, in this specification, w̃t(β) can be interpreted as a weighted average of the weights X̃jt and

the baseline weight vector b0, which is clearly permutation invariant.

Given a suitably parametrized linear model, we shall make the following assumption for the data

generating process of wF
t :

Assumption 3. Assume that, for some fixed K > 0, the (N − 1) × b(K) matrix-valued Ft-predictable

process Xt is strictly stationary with full rank, and that the matrix E[X ′tΣ̃tXt] is finite and invertible.

The process Xt satisfies the following equation for all t:

w̃F
t = w̃t(β0) + η̃t = Xtβ0 + η̃t, (3.8)

where β0 ∈ int(B) and int(B) denotes the interior of the parameter space B, a compact subset of Rb(K).

The process η̃t ∈ Ṽ is a strictly stationary and Ft-predictable process satisfying E[η̃t] = 0(N−1)×1,

E[X ′tΣ̃tη̃t] = 0b(K)×1. We further require the following law of large number and central limit results to

hold as T →∞:

T−1
T∑
t=1

X ′tΣ̃tXt
p→ E[X ′tΣ̃tXt], T−1

T∑
t=1

X ′tΣ̃t(η̃t + ε̃t)
p→ 0b(K)×1,

T−1/2
T∑
t=1

X ′tΣ̃t(η̃t + ε̃t)
d→ N (0b(K)×1,C∞),

(3.9)

where C∞ is the long-run variance-covariance matrix of T−1/2
∑T

t=1X
′
tΣ̃t(η̃t + ε̃t), which is assumed

to be finite and almost surely positive definite.

Recall the definition of w̃F
t in Eq. (2.7), Assumption 3 directly specifies the dynamic of w̃F

t

through the predictive linear modelXtβ0 and an additive modelling error term η̃t summarizing possible

misspecification or omitted variables. In view of Proposition 1, the assumption E[X ′tΣ̃tη̃t] = 0b(K)×1

is an identification condition, which states that η̃t should satisfy the same moment condition as the

realization error ε̃t (otherwise β0 cannot be recovered). Note that it does not appear possible to

express Xt and β0 given a model for Ωt, except from some trivial special cases (see Eq. (3.16) for

instance). Therefore, by modelling the ex ante optimal weights directly, we are agnostic about the

dynamic structure of Σt implied by the linear weight model.

The high-level asymptotic results assumed in Eq. (3.9) are quite standard in the literature of

GMM estimation theory, which requires some technical conditions that guarantee the existence of

certain moments and a restriction to the dependence of the associated processes (for example, a
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suitable mixing condition). For brevity, we omit the exact technical conditions here, which can be

found in classic texts such as McLeish (1975), Domowitz and White (1982), Newey and McFadden

(1994), Hall (1996), among many others.

The term η̃t + ε̃t in Eq. (3.9) requires some more discussion. Under Assumption 3, the realized

GMVP weight can be expressed as a linear model:

w̃9t = Xtβ0 + η̃t + ε̃t, (3.10)

where η̃t + ε̃t can be interpreted as the overall residual of fitting w̃9t by Xtβ0. For example, setting

Xjt = w̃9t−j for j ∈ {1, . . . ,K}, we arrive at a VAR(K)-type model for w̃9t , where Xt exploits

the autoregressive structure in the realized GMVP weights, as advocated by Golosnoy et al. (2019),

Cipollini et al. (2021):

w̃9t = b0 +
K∑
j=1

Bjw̃
9
t−j + η̃t + ε̃t. (3.11)

Therefore, the central limit assumption in Eq. (3.9) can be interpreted as a condition on the long-run

behaviour of the overall (weighted) residuals of the linear model. Here, one might attempt to estimate

β0 by fitting the above model using least squares. However, from Eq. (2.12) we know that E[ε̃t] 6= 0

in general, so an ordinary least square estimator is both biased and inconsistent. A more critical

issue is that the OLS estimator of β0 does not directly optimize the unconditional GMVP problem in

Eq. (2.8), thus it is not a viable approach here.

To construct a consistent estimator for β0 which solves Eq. (2.8), we start with the following

characterization of β0 under Assumption 3:

Theorem 1. Under Assumption 3, β0 is the unique minimizer of the following unconditional optimiza-

tion problems:

min
β∈B

E[wt(β)′Σtwt(β)]⇔ min
β∈B

E[ũt(β)′Σ̃tũt(β)], (3.12)

where Σ̃t = Z̃ ′ΣtZ̃ and ũt(β) = w̃9t −Xtβ is the residual of fitting w̃9t by Xtβ. The solution is

characterized by the following b(K) unconditional moment conditions:

E[X ′tΣ̃tũt(β0)] = 0, (3.13)

whose solution has the following explicit form:

β0 = E[X ′tΣ̃tXt]
−1 E[X ′tΣ̃tw̃

9
t ]. (3.14)

Theorem 1 suggests three interpretations of β0. First, one can interpret β0 as the parameter

vector that minimizes the unconditional GMVP problem in Eq. (2.8). Due to the presence of possible
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misspecification given by ηt, it is not possible to exactly solve Eq. (2.5) for each t under the linear

framework. However, unconditionally, ηt no longer contributes to the optimization problem by the

orthogonality condition in Assumption 3. This allows us to express β0 as a function of the uncondi-

tional expectations of the observed time series Σ̃t and Xt without explicitly specifying their dynamic

structures. This indicates that wt(β0) is the solution to the unconditional GMVP problem in Eq. (2.8)

under a possibly misspecified linear model.

The second optimization problem in Eq. (3.12) suggests that β0 can also be interpreted as the

solution of a generalized least square (GLS)-type problem w̃9t = Xtβ + ũt(β) by minimizing the

expectation of the distance measure E[ũt(β)′Σ̃tũt(β)]. However, this is not a conventional GLS problem

because (1) E[ũt(β0)] = E[ε̃t] 6= 0 due to Eq. (2.12); (2) Σ̃t is non-deterministic and depends on ũt(β0).

As a result, standard asymptotic results for GLS regressions do not apply in this context.

The third interpretation is related to the set of moment conditions in Eq. (3.13), which resembles

the moment conditions under the generalized method of moments (GMM) framework. In our case, the

number of moment conditions equal the number of parameters to be estimated, thus one can interpret

Eq. (3.13) as an exactly-identified special case of a GMM estimation problem. In this case, one can

consistently estimate β0 by the standard method-of-moment estimator, which shall be discussed later

on in this section.

It is worth discussing the property of the process that satisfies the moment condition, which we

shall denote by gt = X ′tΣ̃tũt(β0) = X ′tΣ̃t(η̃t + ε̃t). Using Proposition 1, we see that:

Et−1[gt] = X ′tΩ̃tη̃t, E[X ′tΩ̃tη̃t] = 0, (3.15)

where the first relation is due to Σ̃tε̃t being a martingale difference sequence (MDS), and the second

relation follows from Assumption 3. It is worth noting that the process gt is not a martingale difference

sequence in general since η̃t is adapted to Ft−1 and does not vanish after taking conditional expecta-

tions. Therefore, gt is expected to be an autocorrelated zero-mean process unless ηt = 0 for all t, in

which case gt becomes an MDS. This property can be exploited to assess the overall goodness-of-fit of

the linear model to the ex ante optimal GMVP weights.

As a sanity check, we show that when w̃F
t = β0 is time-invariant, β0 reduces to the GMVP weight

vector implied by the unconditional variance-covariance matrix:

Proposition 2. Suppose w̃F
t = β0 with Xt = IN−1, then β0 = Z E[Σt]−1ι

ι′ E[Σt]−1ι
solves Eq. (3.12).

Intuitively, this result suggests that if the true wF
t is a constant plus a random innovation term,

then the optimal GMVP weight vector is simply the plug-in vector computed from the unconditional

12



expectation of Σt. In this simple setting, Σt admits the following representation for all t:

Ωt = Et−1[Σt] = E[Σt]. (3.16)

Importantly, this suggests that Σt − E[Σt] must be independent of Ft−1 (i.e., it is a matrix-valued

MDS), so if Σt presents a persistent autoregressive structure, then a constant model for w̃F
t must be

misspecified. Interestingly, setting w̃F
t = β0 + η̃t does not change the value of β0 as η̃t does not enter

into β0. However, Eq. (3.16) no longer holds due to the time-varying Ωt implied by a time-varying η̃t.

We now discuss how to estimate β0 from the observed sequence {Σt}t=1:T . As all the quantities in

the expectations of Eq. (3.14) are observed, Theorem 1 provides a direct method-of-moment estimator

for β0. Based on {Σt}t=1:T with T > b(K), we propose the following estimator:

β̂T =

(
T∑
t=1

X ′tΣ̃tXt

)−1 T∑
t=1

X ′tΣ̃tw̃
9
t . (3.17)

Note that the condition T > b(K) ensures that the first sum is invertible4. It is easy to show that β̂T

solves the finite-sample version of the optimization problem in Theorem 1:

min
β∈B

1

T

T∑
t=1

ũt(β)′Σ̃tũt(β)⇔ 1

T

T∑
t=1

X ′tΣ̃tũt(β) = 0, (3.18)

which is also the solution to the finite-sample minimum variance problem discussed in Eq. (2.10). Also,

one should realize that the estimator β̂T only requires a linear specification in the weights, but does

not rely on any specific assumption about the distribution of either rt or Σt. Therefore, the LWE

method is semi-parametric in nature.

We now discuss some properties of the estimator β̂T . From Eq. (3.17) and using the decomposition

w̃9t = Xtβ0 + η̃t + ε̃t, we can directly obtain:

E[β̂T ]− β0 = E

( T∑
t=1

X ′tΣ̃tXt

)−1 T∑
t=1

X ′tΣ̃t(η̃t + ε̃t)

 . (3.19)

As ε̃t in general has a non-zero mean and depends on Σ̃t, the above bias term is non-zero and does

not simplify further. Nevertheless, as T →∞, Eq. (3.9) in Assumption 3 implies that:

β̂T − β0 =

(
T∑
t=1

X ′tΣ̃tXt

)−1 T∑
t=1

X ′tΣ̃t(η̃t + ε̃t)
p→ E[X ′tΣ̃tXt]

−10b(K)×1 = 0b(K)×1, (3.20)

where the last equality follows from Proposition 1. This shows that the proposed estimator is consis-

4One should verify that X ′tΣ̃tXt is of rank N −1 by Assumption 3, so we must sum over more than b(K) terms to ensure
that

∑T
t=1 X

′
tΣ̃tXt is of full rank hence invertible.
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tent, which also explains why the same property does not hold for an OLS estimator. The asymptotic

normality of β̂T also holds from Eq. (3.9) and a direct application of the continuous mapping theorem:

√
T (β̂T − β0)

d→ N (0,E[X ′tΣ̃tXt]
−1C∞ E[X ′tΣ̃tXt]

−1), (3.21)

Note that a feasible version of the above CLT is available since both E[X ′tΣ̃tXt]
−1 and C∞ can be

consistently estimated from observed data (under further assumptions about the existence of higher

moments). In principle, this allows us to test whether certain (set of) elements from β0 are zero, which

can be used to select the predictor vectors. It also allows us to construct confidence bounds for the

estimated GMVP weight vector by a straightforward application of the delta method. Nevertheless, it

is worth noting that such asymptotic result is only valid when β̂0 lies in the interior of the parameter

space, which may not be the case when one imposes certain restrictions to the weight vector (see the

discussion in the next section). In practice, one should rely on bootstrap-based methods to compute

standard errors and confidence bounds of parameter estimates under such constraints, which is further

discussed in Brandt and Santa-Clara (2006).

3.1 Out-of-Sample Evaluation of GMVP Strategies

Instead of statistical inference, practitioners are more interested in evaluating the out-of-sample perfor-

mance of a given GMVP strategy. To this end, one can estimate β̂T based on a sample of {Σt,Xt}t=1:T .

Since XT+1 is FT -adapted, the predicted GMVP weight vector for time T + 1 is simply given by:

wT+1(β̂T ) = eN + Z̃XT+1β̂T . (3.22)

Using a standard rolling window or extending window design, one can obtain predicted GMVP weight

vectors {wt(β̂t−1)}t∈[T+1:T ′] for the (pseudo) out-of-sample period [T + 1 : T ′]. The out-of-sample

performance of a GMVP strategy {wt}t∈[T+1:T ′] can be evaluated by the average realized portfolio

variance (ARPV) or the sample portfolio variance (SPV) over the out-of-sample period, defined as:

ARPV =
1

T ′ − T

T ′∑
t=T+1

w′tΣtwt, SPV =
1

T ′ − T − 1

T ′∑
t=T+1

w′t(rtr
′
t − r̄r̄′)wt, (3.23)

where r̄ = (T ′−T )−1
∑T ′

t=T+1 rt is the out-of-sample sample mean of the return. These statistics serve

as point estimates for the comparison of different GMVP strategies.

To formally test whether one strategy outperforms another, we consider a modified Diebold-

Mariano (DM) test (Diebold and Mariano, 1995; Harvey et al., 1997) tailored to the context of out-

of-sample GMVP realized variance comparison. Let {w(1)
t }t∈[T+1:T ′] and {w(2)

t }t∈[T+1:T ′] denote two

GMVP strategies, where {w(1)
t }t∈[T+1:T ′] is the benchmark model that is believed to have a superior
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performance. We construct the portfolio loss at time t as:

Lt(w) = w′Σtw − (w9t )′Σtw
9
t = w′Σtw −

1

ι′Σtι
≥ 0. (3.24)

Intuitively, Lt(w) measures the distance between the realized portfolio variance with weight w to the

ex post GMVP variance, which is strictly non-negative. For a given GMVP strategy {wt}t∈[T+1:T ′], its

out-of-sample performance can be summarized by the mean loss E[Lt(wt)], and it is easily seen that

E[Lt(w
F
t )] minimizes this mean loss by construction. As a pairwise prediction accuracy comparison

test, the null hypothesis of the DM test is E[Lt(w
(1)
t )] = E[Lt(w

(2)
t )] against the alternative hypothesis

E[Lt(w
(1)
t )] < E[Lt(w

(2)
t )]. The test can be performed by computing the loss differentials for the

out-of-sample period:

dt = Lt(w
(1)
t )− Lt(w(2)

t ), t ∈ [T + 1 : T ′], (3.25)

which should satisfy E[dt] = 0 under the null hypothesis. With the time series {dt}t∈[T+1:T ′], the DM

test can be performed by closely following the steps in Harvey et al. (1997), which is essentially a

heteroscedasticity and autocorrelation-robust t-test for the out-of-sample mean of dt.

3.2 Generalizations

3.2.1 Investment Constraints

Eq. (3.22) provides an unrestricted weight forecast based on the proposed linear model, whereXT+1β̂T

can in principle take any value in W̃, including those that are practically infeasible. In practice, one

might want to restrict the weight vector to satisfy certain investment constraints. We discuss two

generalizations to the LWE method which aim to ensure that the weights are empirically investable.

We first consider a penalized version of the LWE method by augmenting the minimization problem

in Eq. (3.18) with a ridge-type penalty function, i.e.:

min
β∈B

1

T

T∑
t=1

ũt(β)′Σ̃tũt(β) + λf(wT+1(β)), (3.26)

where λ > 0 is a tuning parameter, and f :W 7→ R is a general quadratic function of some w ∈ W:

f(w) := w′Aw + 2a′w + C (3.27)

for some positive definite N -by-N matrix A, some vector a ∈ RN , and some arbitrary constant C

that does not depend on w. Intuitively, f(w) should be chosen as an ‘un-investability’ measure of the

weight vector w, so that Eq. (3.26) is jointly minimising a weighted average of both portfolio realized

variance and the un-investability measure. The quadratic form of f(w) is important, as it ensures that
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Eq. (3.26) can still be solved in closed form with a unique minimum. This rules out other popular

penalty functions, such as the LASSO of Tibshirani (1994), the SCAD of Fan and Li (2001), etc.,

which requires numerical algorithms to compute a solution and is thus not pursued here.

We now characterize the closed-form solution to Eq. (3.26) and its behaviour as λ→∞:

Proposition 3. For any λ ≥ 0 and T > b(K), the unique minimizer of problem Eq. (3.26) is:

β̂T,λ =

(
1

T

T∑
t=1

X ′tΣ̃tXt + λX ′T+1ÃXT+1

)−1(
1

T

T∑
t=1

XtΣ̃tw̃
9
t − λX ′T+1Z̃

′(AeN + a)

)
, (3.28)

where Ã = Z̃ ′AZ̃. It holds that limλ→0 β̂T,λ ≡ β̂T . As λ → ∞, the solution β̂T,∞ is not necessarily

unique, but all solutions must satisfy:

w∗ = wT+1(β̂T,∞), (3.29)

where w∗ ∈ W is the unique minimizer of f(w):

w∗ :=
A−1ι

ι′A−1ι
+
ι′A−1a

ι′A−1ι
A−1ι−A−1a. (3.30)

Proposition 3 presents the closed-form solution of the penalized LWE estimator for a general f(w)

with some λ ≥ 0, as well as the limiting characterization of the solution when λ → ∞. Importantly,

when λ→∞, the weight estimator w∗ minimizes the given un-investability criteria, so the choice of λ

here strikes a balance between minimizing the portfolio variance and the improving the investability

of the portfolio weights.

We now give two concrete examples of f(w). First, one can interpret the investability of the

portfolio weights as the associated transaction cost, which is proportional to the total holdings in each

asset in our day trading setup without overnight holdings. This is measured by the portfolio exposure,

i.e., ||w||1, where || · ||p is the `p norm of a vector. Clearly, one cannot directly set f(w) = ||w||1 or

||w||21, as the `1-norm is not quadratic in w. Nevertheless, by the well-known norm inequalities:

||w||22 ≤ ||w||21 ≤ N ||w||22. (3.31)

As a result, by setting f(w) = N ||w||22 with A = NIN , a = 0N×1 and C = 0, the penalized LWE

method shrinks the upper bound of ||w||21, which in turn mitigates the portfolio exposure, hence the

transaction cost. It is worth noting that, as w∗ = ι/N ∈ W minimizes f(w) in this case, the solution

β̂T,∞ is any β that produces the equal weight vector.

As another example, a portfolio manager may want to minimize the portfolio variance while

tracking some target weight vector, say τT ∈ W. For instance, one can set τT to be the portfolio
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weight of the previous period to reduce portfolio turnover, or set τT to be the portfolio holdings within

(resp. without) a sector to increase (resp. decrease) the holdings in that sector. In this case, one can

set f(w) = ||w − τT ||22, with A = IN , a = −τT and C = ||τT ||22. Then as λ → ∞, any solution β̂T,∞

of Eq. (3.26) should produce the target weight vector τT = wT+1(β̂T,∞) by construction.

Second, we shall show that the LWE method can be augmented with linear inequality constraints

in weights, i.e., a constrained LWE method. Unlike the penalized LWE method which provides a

smooth transition from the unconstrained weight wT+1(β̂T ) to a target weight vector wT+1(β̂T,∞),

the constrained LWE method ensures that the portfolio weights must satisfy constraints of the form:

BwT+1(β̂T ) ≤ b, (3.32)

where Bk×N and bk×1 specifies k ≤ N linear inequalities that the weights must satisfy. For example,

the choices B = −IN and b = 0N×1 correspond to a no-short-selling restriction, and a portfolio expo-

sure constraint in the spirit of Jagannathan and Ma (2003) can also be implemented using this device.

As Eq. (3.32) is just a linear inequality in terms of β, in practice one can impose Eq. (3.32) when

solving Eq. (3.18), and the resulting optimization problem is still strictly convex (hence a unique solu-

tion exists), but the solution can only be computed numerically, albeit very efficiently using standard

quadratic programming algorithms.

3.2.2 A Nonlinear Weight Model for GMVP Weights

As a nonlinear generalization of the LWE method, one can consider the following non-linear model for

the ex ante GMVP weight vector:

w̃F
t = f(β0;Xt) + η̃t, (3.33)

where f(β;Xt) is a twice-differentiable function of β given the Ft-predictable explanatory variables

Xt, and η̃t satisfies the following identification assumption:

E[∇βf(β0;Xt)
′Σ̃tη̃t] = 0, (3.34)

where ∇βf(β0;Xt) is the (N − 1)-by-b(K) Jacobian matrix of f(β;Xt) evaluated at β0.

The non-linear framework incorporates most of the existing approaches for the GMVP weight

selection problem, and our linear model is obviously a special case. For example, f(β0;Xt) can be a

VARMA-type model for the observed GMVP weights similar to those used in Palandri (2022), where

Xt are the past ex post and ex ante GMVP weight vectors and β0 summarizes their contributions to

the model. One can also consider f(β0;Xt) as the plug-in weight computed from a predictive model

of Ωt, in which case Xt is a collection of past RC matrices and β0 becomes the model parameter for
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Ωt. Importantly, we emphasis that Eq. (3.34) is the correct moment condition for the estimation of

these model parameters that solves the unconditional minimum variance problem in Eq. (2.10), i.e.,

it ensures that the parameter estimates minimize the unconditional portfolio variance, which is not

achieved by other heuristic approaches such as least-square or likelihood-based inference attempting

to predict the weight vector or the realized covariance matrix.

Under the non-linear framework, a result similar to Theorem 1 holds, which gives the following

minimization problem and moment condition for the estimation of β0:

min
β∈B

E[ũt(β)′Σ̃tũt(β)]⇒ E[∇βf(β0;Xt)
′Σ̃tũ(β0)] = 0. (3.35)

As this falls into the GMM framework with a non-linear moment condition, the asymptotic results

for the parameter estimates can be established following e.g., Hall (1996). However, the non-linear

optimization problem is in general not convex, thus a β0 that satisfies the moment condition above is

not necessarily the global minimizer of the above optimization problem. This also creates problems

for the parameter estimation in finite sample, as the parameters need to be estimated numerically, and

convergence to the global minima is not guaranteed, especially when N or the number of parameters

are large. Therefore, despite the additional flexibility enjoyed by the non-linear framework, we focus

on the linear framework in this paper due to these theoretical and computational drawbacks.

3.2.3 Linear Weight Estimation for The Mean-Variance Portfolio

Finally, our approach can be generalized to model the efficient portfolio (mean-variance portfolio of N

risky assets) or the mean-variance portfolio (maximum Sharpe ratio portfolio of N risky assets and a

risk-free asset). For example, given the mean-variance conditional utility function:

Ut(w) = Et−1[w′rt]−
γ

2
Vt−1[w′rt] = w′µt −

γ

2
w′Ωtw, (3.36)

where γ is the Arrow-Pratt risk-aversion coefficient. For the mean-variance portfolio allocation prob-

lem, the investor maximizes Ut(w) for w ∈ RN at time t − 1. Notice that w does not have to sum

up to 1 here when a risk-free asset is available. The ex ante and the realized portfolio optimal weight

vectors are, respectively:

w•t =
1

γ
Ω−1
t µt, w◦t =

1

γ
Σ−1
t rt. (3.37)

Write εt = w•t −w◦t and notice that a dimension reduction is not required in this case, one immediately

sees that:

Et−1[Σtεt] = 0N×1, (3.38)
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which is the moment condition similar to Proposition 1 for the GMVP problem. In the spirit of the

LWE estimator for GMVP, we parametrize w•t using a linear model:

w•t = Y tβ0 + εt, (3.39)

for some N -by-b(K) matrices of explanatory weight vectors {Y t}t=1,2,... which satisfy E[Y tΣtεt] =

0b(K)×1. Similar to the proof of Theorem 1, one can show that β0 = E[Y ′tΣtY t]
−1 E[Y ′tΣtw

◦
t ] solves

the following unconditional utility maximization problem, independent of the choice of γ:

max
β∈B

E[Ut(Y tβ + εt)]⇔ min
β∈B

E[ε′tΣtεt]. (3.40)

An estimator of β0 can therefore be constructed as:

β̂T =
1

γ

( T∑
t=1

Y ′tΣtY t

)−1
T∑
t=1

Σ−1
t rt. (3.41)

Interestingly, this also allows us to construct the one-step-ahead tangency portfolio weight that does

not depend on γ:

wtanT =
Y T+1β̂T

ι′Y T+1β̂T
∈ W. (3.42)

The main complication here is the choice of Y t to explain the ex ante portfolio weights. Intuitively,

w•t ∝ Ω−1
t µt is proportional to the variance-normalized conditional mean of each asset, whose dynamic

properties are fundamentally different from the GMVP weights wF
t that only depend on Ωt. Variations

in the conditional mean of a cross-section of assets are typically explained by various asset pricing

factors, or firm-level characteristics following Brandt et al. (2009). As the potential choice of Y t is

non-trivial and deserves individual investigation, we shall discuss the dynamic mean-variance portfolio

allocation problem in a subsequent paper.

4 Empirical Evidence

In this section we evaluate the performance of our LWE approach and compare it with other well-

known competitors using daily financial data. To conduct our analysis, we select the most liquid

250 stocks from the S&P 500 index in terms of the average number of transactions per day. We

gather daily data covering the period from January 2015 to December 2022. To construct the realized

covariance matrices, we apply the flat-top realized kernel of Varneskov (2016) to estimate the daily RC

matrices using the tick-by-tick data of the 250 stocks.5 This results in a time series comprising 1756

5See Section 5.1 and the Online Appendix A of Li et al. (2022) for the data cleaning procedures and the implementation
details of the flat-top realized kernel.
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observations. Descriptive statistics for all the stocks used can be found in Table A.1 in the Appendix.

Notably, daily returns exhibit the expected characteristics of left skewness and leptokurticity. We aim

at constructing daily forecasts of the GMVP weights and compare our proposed estimator with the

competing approaches in terms of both economic and statistical performances.

As unrestricted portfolio weight estimates might result in practically infeasible positions such as

large short-selling or excessive holdings of certain assets, we impose an exposure constraint on the

absolute value of portfolio weights to ensure that the weight estimates are empirically investable. We

consider three progressively more restrictive investment constraints to mimic realistic portfolio weights.

Specifically, let w(n) denote the weight applied to the n-th asset, we shall assume for all 1 ≤ n ≤ N :

(1) |w(n)| ≤ max(5%, 5/N); (2) |w(n)| ≤ max(3%, 3/N); (3) w(n) ∈ [0,max(3%, 3/N)]. In detail,

constraints (1) and (2) restrict the total exposure to one asset to be 5% or 3% with short-selling, while

constraint (3) further prohibits short-selling on top of the 3% exposure constraint.

We now discuss how to impose these constraints to an estimated weight vector ŵ of some GMVP

strategy. To this end, let us denote Wr as the collection of all weights that satisfy a particular

constraint, and we impose the exposure constraint to ŵ by finding some ŵr ∈ Wr that solves the

following problem:

ŵr = arg min
w∈Wr

(w − ŵ)′(w − ŵ). (4.1)

Intuitively, ŵr is the closest element of Wr to ŵ in the Euclidean distance that satisfies the exposure

constraint. As the problem is quadratic and Wr is convex for our three constraints, the solution ŵr is

unique and can be solved by standard quadratic programming algorithms very efficiently. It is worth

noting that, for the LWE method, we can directly incorporate these exposure constraint by utilising

Eq. (3.32). However, as this is in general not applicable to the competing methods considered here, we

shall apply Eq. (4.1) to all the weight estimates to eliminate the potential impact of different exposure

constraints.

We proceed to discuss the candidate GMVP strategies in our empirical study. For our LWE

estimator, we consider the diagonal specification of Eq. (3.5) and the scalar specification of Eq. (3.7).

The predictor weights in the linear model consist of a history of realized GMVP portfolio weights at

daily, weekly and monthly horizon, which is inspired by the classic HAR model of Corsi (2009) and

the persistent realized portfolio weights documented in Cipollini et al. (2021):

X̃
(j)
t+1 =

1

j

j−1∑
i=0

w̃9t−i, j ∈ {1, 5, 22}.

Intuitively, X̃
(1)
t+1, X̃

(5)
t+1 and X̃

(22)
t+1 are the corresponding dimension-reduced averaged realized GMVP

weights available on time t at the daily, weekly and monthly horizon. Consequently, we have K = 3

explanatory variables in the LWE model, which implies 4N − 1 and N + 2 numbers of parameters for

20



the diagonal and the scalar specifications, respectively.

We compare our estimator to several popular estimators in the literature: (1) The static model

denoted as ‘sample’, where the sample covariance estimator obtained from T = 1000 in-sample daily

return observations is plugged into Eq. (2.7); (2) The random walk (denoted as RW) model with Ωt ≡

Σt is assumed for the dynamics of realized covariances and therefore the Σt−1 is used in Eq. (2.7) to

construct the forecast of the portfolio weights. (3) and (4): We consider the dynamic RC forecast model

by Bollerslev et al. (2018) with both constant and dynamic conditional correlation structures, denoted

as HAR CCC and HAR DCC, respectively. The model is estimated on the history of RC matrices,

where a one-step ahead forecast of the covariance matrix is defined as Ω̂t+1|t = D̂t+1|tR̂t+1|tD̂t+1|t. The

matrix of conditional volatilities, D̂t+1|t, is forecasted with univariate HAR models and the conditional

correlations R̂t+1|t are either modelled as sample covariances (CCC) or as a vector HAR (DCC). (5)

Following Golosnoy et al. (2019) we implement the exponential smoothing of realized portfolio weights

with the smoothing parameter λ = 0.94. This estimator is denoted as ES and resembles the Risk

Metrics estimator, which is applied to realized portfolio weights instead of conditional volatility. (6)

We consider the dynamic conditional weights (DCW) estimator by Cipollini et al. (2021). Similar

to our approach, the DCW estimator uses the history of realized portfolio weights to build a linear

VARMA model. We implemented the scalar and the diagonal VARMA(1,1) models6 as suggested by

the authors. It is worth noting that among all the methods, the LWE method is computationally

much faster than the dynamic forecasting models such as HAR CCC/DCC and the DCW methods

due to its closed-form solution.

To evaluate and interpret the performance of the GMVP strategies, in Table 4.1 we present the

annualized average realized portfolio volatility in percentage, defined as
√

ARPV · 252 · 100% with

ARPV defined in Eq. (3.23), for all GMVP strategies under various investment constraints. The table

clearly shows that, regardless of the choice of investment constraints, the scalar or diagonal LWE

methods always have the smallest realized portfolio volatilities among all the competing strategies.

The realized portfolio volatilities of the LWE strategies in general decrease as N becomes larger and

as the investment constraint becomes less stringent, which are consistent with our expectation. The

performances of the scalar and the diagonal LWE are largely similar, and the simple scalar specification

appears to be more favourable under more stringent investment restrictions.

For the competing strategies, the sample covariance, the random walk and the HAR CCC strate-

gies have overall the worst performance. Interestingly, the performances of these estimators deteriorate

as N increases, suggesting instability in the estimated weights at large dimension, which can be im-

proved by imposing investment constraints. For the remaining competing strategies, the DCW scalar

and the exponential smoothing weight methods have comparably better performance, which is consis-

6Note that for the DCW method, the estimated weights need to be normalized to sum up to one.
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Table 4.1: Annualized out-of-sample average realized portfolio volatility

N LWE LWE sample RW ES HAR HAR DCW DCW
scalar diagonal CCC DCC scalar diagonal

Panel 1: Unrestricted portfolio weights

10 14.38 14.37 16.09*** 14.63*** 14.72** 15.07*** 14.92** 14.40 14.41
20 13.47 13.45 15.83*** 13.97*** 13.86*** 14.56*** 14.08*** 13.51** 13.52**
30 12.88 12.85 15.07*** 13.77*** 13.22*** 14.41*** 13.59*** 12.95* 12.94*
40 12.64 12.64 14.99*** 13.69*** 13.07*** 14.31*** 13.44*** 12.78** 12.74*
50 12.57 12.54 15.02*** 13.89*** 13.01*** 14.50*** 13.38*** 12.74** 12.68**
60 12.57 12.50 14.99*** 14.25*** 12.98*** 14.86*** 13.44*** 12.76*** 12.69**
70 12.59 12.54 15.12*** 14.77*** 12.98*** 15.39*** 13.66*** 12.79*** 12.8***
80 12.38 12.32 15.17*** 14.99*** 12.88*** 15.58*** 13.46*** 12.67*** 12.71***
90 12.28 12.23 15.26*** 15.50*** 12.76*** 15.97*** 13.20*** 12.58*** 12.62***
100 12.30* 12.21 15.24*** 16.10*** 12.81*** 16.56*** 13.15*** 12.64*** 12.69***
150 12.37 12.28 15.57*** 22.86*** 13.32*** 21.68*** 13.08*** 13.12*** 13.43***
200 12.23 12.33 15.91*** 25.92*** 13.38** 25.37*** 14.70* 13.22*** 13.53***
250 11.58 11.72 15.90*** 18.92*** 12.74** 20.45*** 14.60* 12.84*** 13.25***

Panel 2: ∀n ≤ N, |w(n)| ≤ max(5%, 5/N)

10 14.39 14.37 16.09*** 14.63*** 14.72** 14.86*** 14.70** 14.41* 14.41*
20 13.61 13.61 15.78*** 14.06*** 13.89*** 14.37*** 13.93*** 13.65* 13.67**
30 13.06 13.05 15.03*** 13.72*** 13.29*** 14.02*** 13.39*** 13.13** 13.15**
40 12.88 12.91 14.91*** 13.58*** 13.18*** 13.94*** 13.32*** 13.00** 13.02**
50 12.85 12.85 14.85*** 13.67*** 13.16*** 14.03*** 13.3*** 12.99*** 13.01**
60 12.9 12.90 14.80*** 13.87*** 13.16*** 14.22*** 13.37*** 13.04*** 13.05***
70 12.93 12.94 14.81*** 14.11*** 13.17*** 14.37*** 13.43*** 13.08*** 13.15***
80 12.75 12.75 14.77*** 14.05*** 13.07*** 14.36*** 13.26*** 12.96*** 13.04***
90 12.61 12.65 14.7*** 14.12*** 12.93*** 14.38*** 13.12*** 12.85*** 12.94***
100 12.65 12.66 14.62*** 14.28*** 12.95*** 14.59*** 13.13*** 12.90*** 13.00***
150 12.5 12.60 15.28*** 15.91*** 13.25*** 16.02*** 13.01*** 13.18*** 13.56***
200 12.26 12.34 15.49*** 17.08*** 13.29*** 17.27*** 13.05*** 13.22*** 13.51***
250 11.59 11.77 15.53*** 16.30*** 12.69*** 16.61*** 12.90*** 12.85*** 13.25***

Panel 3: ∀n ≤ N, |w(n)| ≤ max(3%, 3/N)

10 14.52 14.53 16.03*** 14.73*** 14.76*** 14.84*** 14.70*** 14.55 14.57*
20 13.88 13.88 15.69*** 14.24*** 14.06*** 14.47*** 14.10*** 13.92** 13.92*
30 13.37 13.34 14.88*** 13.83*** 13.53*** 14.06*** 13.59*** 13.43*** 13.44***
40 13.20 13.22 14.75*** 13.74*** 13.41*** 14.01*** 13.54*** 13.30** 13.31**
50 13.20 13.21 14.70*** 13.82*** 13.40*** 14.09*** 13.57*** 13.30** 13.31**
60 13.28 13.30 14.70*** 14.00*** 13.44*** 14.23*** 13.67*** 13.38** 13.36**
70 13.35 13.37 14.71*** 14.21*** 13.48*** 14.40*** 13.78*** 13.44** 13.46***
80 13.20 13.23 14.61*** 14.12*** 13.42*** 14.34*** 13.65*** 13.36*** 13.38***
90 13.06 13.12 14.54*** 14.11*** 13.27*** 14.29*** 13.53*** 13.23*** 13.26***
100 13.11 13.16 14.46*** 14.23*** 13.31*** 14.44*** 13.57*** 13.29*** 13.33***
150 12.81 13.00 15.21*** 15.05*** 13.33*** 15.21*** 13.39*** 13.35*** 13.73***
200 12.45 12.61 15.13*** 15.55*** 13.21*** 15.9*** 13.37*** 13.27*** 13.55***
250 11.78 12.03 15.33*** 15.09*** 12.72*** 15.55*** 13.23*** 12.88*** 13.33***

Panel 4: ∀n ≤ N,w(n) ∈ [0,max(3%, 3/N)]

10 14.72 14.72 15.88*** 14.89*** 14.90** 14.96*** 14.88** 14.74* 14.71
20 14.04 14.04 15.28*** 14.26*** 14.16*** 14.43*** 14.22*** 14.05 14.05
30 13.63 13.61 14.52*** 13.89*** 13.71*** 14.05*** 13.74*** 13.66** 13.65**
40 13.51 13.52 14.32*** 13.79*** 13.63*** 13.97*** 13.69*** 13.56** 13.55*
50 13.58 13.60 14.32*** 13.89*** 13.68*** 14.05*** 13.74*** 13.64** 13.62
60 13.65 13.67 14.35*** 14.00*** 13.74*** 14.19*** 13.83*** 13.71* 13.68
70 13.76 13.78 14.46*** 14.16*** 13.84*** 14.30*** 13.97*** 13.84** 13.82**
80 13.68 13.67 14.45*** 14.13*** 13.75*** 14.31*** 13.89*** 13.75*** 13.74***
90 13.62 13.59 14.39*** 14.10*** 13.67*** 14.28*** 13.78*** 13.69*** 13.70***
100 13.67** 13.63 14.39*** 14.21*** 13.69*** 14.36*** 13.8*** 13.73*** 13.75***
150 13.62 13.59 14.52*** 14.65*** 13.89*** 14.86*** 13.76*** 13.90*** 14.05***
200 13.75** 13.63 14.71*** 15.11*** 14.16** 15.37*** 13.87** 14.18*** 14.26***
250 13.64* 13.59 14.83*** 15.36*** 14.04*** 15.66*** 13.92*** 14.12*** 14.27***

Numbers in the table correspond to the annualized average realized GMVP portfolio volatility in percentage. For
each GMVP strategy and portfolio size N , the portfolio standard deviations are computed over an evaluation horizon
H = 756 observations and an in-sample estimation window length T = 1000. Numbers in bold (italic) correspond
to the smallest (second smallest) value for a given portfolio size N . The stars next to numbers correspond to
the p-values of the Diebold-Mariano test discussed in Section 3.1, where rejection of the test indicates that the
corresponding GMVP strategy produces larger realized portfolio variance that that of the benchmark LWE diagonal
model. *** - p < 0.01, ** - p < 0.05 and * - p < 0.1.
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tent with the findings in Golosnoy et al. (2019), Cipollini et al. (2021). Nevertheless, they still produce

significantly larger realized portfolio volatilities than our LWE methods, regardless of the choice of

N and investment constraints. Also, all competing strategies have somewhat inflated portfolio vari-

ances for N > 100 compared to N ≤ 100, suggesting that these methods may not fully exploit the

diversification effect when the dimension is large, which is clearly not the case for the LWE method.

Table 4.2 presents a commonly used but less precise measure for comparing the performance of

different GMVP strategies: the standard deviation of the out-of-sample portfolio returns computed

as
√
SPV · 252 · 100%, where SPV is defined in equation Eq. (3.23). The results are less clear cut

than those in Table 4.1 and depend on the choice of investment constraint, but the LWE estimators

still deliver consistently small portfolio standard deviations, especially when N is large and when the

investment constraint is imposed. Here we do not expect the LWE method to consistently beat all

the competitors, because the LWE method does not minimize the SPV of the portfolio by design. As

the realized portfolio standard deviation based-on high-frequency prices is a more accurate measure

of portfolio variance than the sample standard deviation using daily returns, we argue that Table 4.1

shows a more accurate description of the relative performances of all GMVP strategies.

To understand when the LWE method outperforms the competing strategies, in Fig. 1 we plot

a weekly moving average of out-of-sample realized GMVP standard deviation differences obtained

from two relatively good competing strategies (DCW diagonal and HAR DCC) to that from the

LWE diagonal method. The figure clearly shows that, for different choices of N and years in the

out-of-sample period, the LWE method consistently produces smaller realized portfolio volatilities on

average. More importantly, a substantial reduction of realized portfolio volatility is achieved by the

LWE method in the first half of 2020, when the US market crashed due to the covid outbreak. In detail,

during the market turbulence period, the LWE method can reduce the annualized portfolio standard

deviation by as much as 1% for N = 100 and 2% for N = 200. This evidence clearly demonstrates the

empirical importance of the LWE method, which provides a highly effective portfolio risk reduction

during periods with large market fluctuations.

We proceed to analyse the transaction costs associated with the various GMVP strategies, which

sheds light on the empirical feasibility of these methods. For our day-trading GMVP strategy, we do

not hold assets overnight, thus the transaction cost at day t is proportional to the portfolio exposure,

defined as ||wt||1 for some portfolio weights wt. Intuitively, as the GMVP weights sum up to 1, the

portfolio exposure is 1 if short-selling is not allowed, thus the excess exposure over 1 captures the

degree of short-selling required to achieve the GMVP allocation at time t. We report the average

portfolio exposures for all the GMVP strategies in Table 4.3. The table shows that, apart from Panel

4 where all strategies have unit exposure due to the no short-selling constraint, the DCW and the

ES strategies have overall the smallest portfolio exposure, followed by the LWE strategies, the HAR
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Table 4.2: Annualized out-of-sample standard deviation of portfolio returns

N LWE LWE sample RW ES HAR HAR DCW DCW
scalar diagonal CCC DCC scalar diagonal

Panel 1: Unrestricted portfolio weights

10 12.74 12.95 13.53 12.93 12.93 13.09 12.92 12.80 12.62
20 12.32 12.42 13.35 13.14 12.31 13.28 12.84 12.24 12.07
30 11.62 11.88 12.35 12.89 11.49 13.24 12.20 11.52 11.40
40 11.20 11.57 12.58 12.36 11.27 12.47 11.79 11.24 11.16
50 11.26 11.63 12.56 12.80 11.35 12.88 11.73 11.29 11.26
60 11.46 12.00 12.65 13.17 11.63 13.72 12.11 11.50 11.47
70 11.69 12.27 12.94 13.75 11.86 13.94 12.32 11.71 11.65
80 11.75 12.28 13.20 14.25 11.78 14.66 12.56 11.63 11.62
90 12.05 12.68 13.42 14.91 12.22 15.11 12.91 12.01 11.99
100 11.81 12.42 13.47 15.26 12.10 15.79 12.79 11.89 12.02
150 12.16 12.48 14.11 22.18 12.87 22.48 12.73 12.58 12.96
200 12.11 12.35 14.56 22.36 13.06 22.48 14.29 12.66 13.02
250 11.66 12.33 13.70 18.42 12.32 19.30 14.39 12.27 12.68

Panel 2: ∀n ≤ N, |w(n)| ≤ max(5%, 5/N)

10 12.69 12.83 13.53 12.80 12.92 12.95 12.85 12.74 12.59
20 12.31 12.37 13.27 13.04 12.32 12.97 12.78 12.25 12.10
30 11.68 11.85 12.30 12.43 11.59 12.58 12.18 11.64 11.55
40 11.24 11.48 12.48 11.68 11.42 11.92 11.85 11.35 11.32
50 11.38 11.63 12.39 11.89 11.54 12.15 11.78 11.47 11.50
60 11.61 12.09 12.47 12.30 11.90 12.55 12.16 11.78 11.79
70 11.84 12.24 12.54 12.54 12.14 12.74 12.48 11.97 11.98
80 11.80 12.11 12.65 12.70 12.02 13.04 12.54 11.89 11.95
90 12.13 12.35 12.68 13.14 12.41 13.14 12.86 12.24 12.32
100 11.89 12.20 12.60 13.14 12.24 13.35 12.74 12.11 12.34
150 12.01 12.14 13.59 14.33 12.74 14.68 12.58 12.59 13.12
200 12.03 12.15 13.96 15.23 12.98 14.89 12.72 12.66 12.98
250 11.62 12.08 13.28 15.31 12.36 15.49 12.72 12.27 12.69

Panel 3: ∀n ≤ N, |w(n)| ≤ max(3%, 3/N)

10 12.80 12.87 13.52 13.02 12.95 12.90 12.92 12.82 12.69
20 12.49 12.55 13.14 12.91 12.50 13.02 12.83 12.45 12.28
30 11.96 12.05 12.30 12.36 11.98 12.60 12.21 11.96 11.82
40 11.54 11.73 12.38 11.81 11.77 12.08 11.94 11.68 11.62
50 11.62 11.90 12.31 12.05 11.90 12.22 11.98 11.77 11.76
60 11.81 12.20 12.44 12.44 12.20 12.61 12.38 12.03 11.97
70 12.03 12.32 12.48 12.71 12.39 12.76 12.69 12.22 12.21
80 11.96 12.27 12.52 12.78 12.26 12.91 12.79 12.12 12.18
90 12.15 12.44 12.68 12.94 12.54 12.91 13.02 12.40 12.45
100 12.05 12.35 12.71 12.97 12.46 13.20 13.04 12.33 12.45
150 12.04 12.32 13.62 13.54 12.75 13.77 12.81 12.71 13.11
200 11.75 12.17 13.56 13.82 12.49 13.92 12.87 12.49 12.80
250 11.60 12.07 13.22 13.85 12.42 14.34 12.81 12.31 12.73

Panel 4: ∀n ≤ N,w(n) ∈ [0,max(3%, 3/N)]

10 12.89 12.91 13.55 13.01 12.95 13.13 13.06 13.00 12.90
20 12.46 12.46 13.26 12.83 12.40 12.99 12.81 12.48 12.44
30 11.98 11.99 12.36 12.20 11.92 12.33 12.27 12.00 11.98
40 11.69 11.69 12.46 11.86 11.82 12.08 12.00 11.77 11.79
50 11.93 11.95 12.48 12.16 11.96 12.35 12.06 11.95 11.97
60 12.12 12.23 12.75 12.49 12.23 12.65 12.30 12.19 12.22
70 12.35 12.40 12.91 12.70 12.38 12.84 12.48 12.39 12.42
80 12.35 12.34 13.02 12.71 12.39 12.93 12.51 12.43 12.43
90 12.50 12.50 13.04 12.96 12.54 13.10 12.61 12.59 12.64
100 12.42 12.47 13.01 13.02 12.52 13.08 12.57 12.58 12.70
150 12.25 12.39 13.13 13.29 12.77 13.45 12.50 12.78 13.06
200 12.58 12.33 13.52 13.95 13.08 14.02 12.57 13.10 13.17
250 12.26 12.21 13.29 14.02 12.79 14.29 12.64 12.84 13.04

Numbers in the table correspond to the annualized average sample standard deviation of out-of-sample portfolio
returns in percentage. For each portfolio the sample standard deviation is computed over an evaluation horizon
H = 756 observations and an in-sample estimation window length T = 1000. Numbers in bold (italic) correspond
to the smallest (second smallest) number in each row.
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Figure 1: Relative performance of the LWE method to two competing strategies
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The figure plots the 5-day moving average of the out-of-sample realized portfolio volatility (in percentage)
of DCW diagonal or HAR DCC minus that from the LWE diagonal approach. The y-axis is the out-of-
sample realized portfolio volatility differences, and the x-axis is the date.

strategies, and the sample and RW strategies in ascending order. The small portfolio exposure of

the DCW and ES strategies is consistent with the findings in Golosnoy et al. (2019), Cipollini et al.

(2021), which could be due to the smoothing effect of the vector ARIMA-type forecasting models

for the weights. Nevertheless, the LWE method still outperforms the remaining competing models

with a competitive average portfolio exposure. In fact, we shall show that one can further reduce the

transaction cost of the LWE method via penalization, which is elaborated in the following section.

4.1 Penalizing the LWE Method for Transaction Cost Reduction

As discussed in Section 3.2.1, one can consider a penalized LWE method to reduce transaction costs.

For the current day trading setup, we shall set f(w) = N ||w||22 to penalize the portfolio exposure,

which directly translates to a lower transaction costs. One needs to choose a tuning parameter λ

which controls for the degree of shrinkage: the larger λ, the closer the estimated weights to the equally

weighted portfolio (with unit portfolio exposure), and hence less transaction cost. Obviously, this

leads to a trade-off between transaction cost and portfolio variance, since any penalized solution is no

longer minimizing the unconditional portfolio variance.

To showcase the effect of penalization on the time series of portfolio weights, Figure 2 plots the

time series of the forecasted weights during the out-of-sample period for unrestricted estimators (the

upper panels) and penalized LWE diagonal estimators (lower panels) without any investment con-

straints. As can be seen from the upper panels of the figure, the estimated weights of the unrestricted
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Table 4.3: Out-of-sample average portfolio exposure

N LWE LWE sample RW ES HAR HAR DCW DCW
scalar diagonal CCC DCC scalar diagonal

Panel 1: Unrestricted portfolio weights

10 1.09 1.09 1.21 1.15 1.07 1.14 1.09 1.07 1.06
20 1.15 1.13 1.53 1.33 1.12 1.33 1.16 1.11 1.09
30 1.25 1.23 1.78 1.63 1.19 1.63 1.29 1.17 1.15
40 1.38 1.34 2.08 1.93 1.28 1.93 1.43 1.24 1.22
50 1.50 1.46 2.32 2.23 1.39 2.24 1.57 1.32 1.29
60 1.64 1.59 2.57 2.55 1.51 2.55 1.70 1.41 1.38
70 1.74 1.69 2.88 2.89 1.61 2.89 1.84 1.48 1.44
80 1.85 1.77 3.11 3.24 1.70 3.23 1.95 1.53 1.49
90 1.92 1.86 3.44 3.60 1.79 3.60 2.04 1.57 1.54
100 2.01 1.93 3.64 4.00 1.89 3.99 2.13 1.62 1.57
150 2.48 2.31 4.74 6.26 2.38 6.12 2.55 1.85 1.83
200 2.78 2.67 5.84 7.32 2.60 7.02 2.94 1.92 1.94
250 2.97 2.93 6.59 6.45 2.45 6.19 3.23 1.86 1.84

Panel 2: ∀n ≤ N, |w(n)| ≤ max(5%, 5/N)

10 1.09 1.09 1.21 1.14 1.07 1.14 1.08 1.07 1.06
20 1.14 1.12 1.52 1.31 1.11 1.31 1.15 1.10 1.08
30 1.23 1.21 1.76 1.56 1.18 1.57 1.26 1.16 1.13
40 1.34 1.30 2.04 1.81 1.25 1.82 1.38 1.22 1.20
50 1.45 1.40 2.21 2.04 1.34 2.05 1.50 1.29 1.26
60 1.57 1.51 2.39 2.26 1.46 2.27 1.62 1.38 1.35
70 1.65 1.58 2.59 2.47 1.53 2.48 1.73 1.43 1.40
80 1.75 1.65 2.73 2.66 1.61 2.66 1.82 1.48 1.45
90 1.82 1.72 2.90 2.84 1.69 2.84 1.90 1.53 1.49
100 1.90 1.78 3.02 3.01 1.78 3.00 1.96 1.57 1.53
150 2.42 2.19 4.14 4.55 2.29 4.48 2.44 1.84 1.81
200 2.74 2.59 5.23 5.65 2.55 5.50 2.85 1.92 1.93
250 2.95 2.86 5.98 5.77 2.42 5.54 3.16 1.86 1.84

Panel 3: ∀n ≤ N, |w(n)| ≤ max(3%, 3/N)

10 1.07 1.07 1.18 1.11 1.07 1.11 1.07 1.06 1.05
20 1.11 1.09 1.46 1.25 1.09 1.25 1.12 1.08 1.07
30 1.17 1.16 1.61 1.44 1.14 1.45 1.20 1.12 1.11
40 1.27 1.23 1.82 1.61 1.20 1.63 1.30 1.18 1.16
50 1.36 1.32 1.90 1.76 1.27 1.77 1.39 1.24 1.22
60 1.46 1.41 1.99 1.89 1.36 1.90 1.48 1.31 1.29
70 1.51 1.46 2.09 2.00 1.42 2.01 1.56 1.35 1.33
80 1.58 1.51 2.16 2.10 1.48 2.10 1.62 1.39 1.37
90 1.63 1.56 2.25 2.18 1.55 2.18 1.67 1.43 1.41
100 1.69 1.60 2.30 2.26 1.60 2.26 1.71 1.47 1.44
150 2.22 2.03 3.23 3.37 2.10 3.33 2.20 1.77 1.73
200 2.60 2.44 4.13 4.29 2.42 4.20 2.64 1.90 1.89
250 2.84 2.73 4.86 4.71 2.36 4.56 2.98 1.85 1.83

Panel 4: ∀n ≤ N,w(n) ∈ [0,max(3%, 3/N)]

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
150 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Numbers in the table correspond to the portfolio exposures averaged across H = 756 out-of-sample observations for
portfolios of size N (in rows). Numbers in bold and italic correspond to the smallest and second smallest exposure
for a given portfolio size N correspondingly.
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Figure 2: Time series plots of DCW weight estimates and LWE diagonal with λ = 0, 0.5, 5.
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Different panels on the plot correspond to the time series of estimated weights over the 3 years of the
out-of-sample period for N = 30. The upper left panel corresponds to the unrestricted diagonal DCW
weight estimator and other panels correspond to the LWE diagonal estimator with different values of the
tuning parameter λ.

LWE estimator (λ = 0) are more volatile over time compared to the diagonal DCW weights, which

explains its relatively high portfolio exposure as reported in Table 4.3. With the increase in the tun-

ing parameter λ, the penalized LWE weights become smoother over time, resulting in a drastically

smaller portfolio exposure. This clearly shows the effectiveness of the penalization to reduce portfolio

exposure.

We proceed to examine the performances of the penalized LWE estimators relative to some well-

established covariance estimators designed with the aim to stabilize the intertemporal portfolio weights

and reduce transaction costs. As the performances of the penalized LWE diagonal and scalar estimators

are similar, we only report the diagonal version for conciseness. The first competing method is a plug-

in estimator with shrinkage to the market covariance matrix, which is estimated using T in-sample

returns (Ledoit and Wolf, 2004). For the weight forecast, we use the last available estimate Σ̂t. The

second method is a plug-in estimator with non-linear eigenvalue shrinkage of the covariance matrix,

also estimated using T in-sample returns (Ledoit and Wolf, 2020). Again, the last available estimate

Σ̂t is used for the weight forecast. The third method is the daily equally weighted portfolio. We

present the out-of-sample performances of the methods in Table 4.4.

Several interesting conclusions can be drawn from Table 4.4. First, as λ increases, the performance

of the penalized LWE estimator measured in realized portfolio volatility always deteriorates (Panel

1), in exchange of a lower portfolio exposure (Panel 3). The portfolio return standard deviation
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Table 4.4: Performances of the penalized LWE estimator and the competing strategies

N
LWE LWE LWE LWE LWE LW LW 1/N
λ =0.1 λ =0.5 λ =1 λ =3 λ =5 2004 2020

Panel 1: out-of-sample annualized average portfolio realized volatility

10 14.36 14.37 14.38 14.47 14.57 16.02 16.08 18.48
20 13.44 13.46 13.51 13.73 13.90 15.60 15.77 16.07
30 12.84 12.86 12.94 13.22 13.43 14.85 15.00 15.31
40 12.63 12.67 12.78 13.13 13.36 14.68 14.87 15.04
50 12.53 12.60 12.74 13.14 13.39 14.63 14.85 15.01
60 12.49 12.58 12.75 13.20 13.47 14.59 14.79 15.07
70 12.51 12.60 12.76 13.24 13.54 14.65 14.84 15.18
80 12.29 12.38 12.56 13.09 13.42 14.65 14.85 15.11
90 12.19 12.30 12.49 13.03 13.36 14.63 14.83 14.99
100 12.18 12.31 12.52 13.09 13.42 14.60 14.79 15.03
150 12.21 12.41 12.66 13.31 13.67 14.66 14.86 15.43
200 12.16 12.34 12.65 13.44 13.86 14.48 14.70 15.72
250 11.64 11.89 12.30 13.38 13.95 14.23 14.37 16.19

Panel 2: out-of-sample annualized standard deviation of portfolio returns

10 12.94 12.90 12.87 12.87 12.92 13.54 13.53 16.82
20 12.38 12.29 12.26 12.33 12.44 13.31 13.32 14.16
30 11.81 11.69 11.67 11.81 11.96 12.31 12.32 13.56
40 11.46 11.30 11.28 11.50 11.70 12.43 12.51 13.34
50 11.51 11.39 11.42 11.69 11.89 12.44 12.49 13.32
60 11.83 11.64 11.67 11.95 12.15 12.54 12.57 13.47
70 12.07 11.83 11.83 12.09 12.30 12.71 12.76 13.62
80 12.05 11.80 11.81 12.09 12.30 12.92 13.01 13.59
90 12.39 12.06 12.02 12.22 12.39 13.03 13.18 13.59
100 12.15 11.91 11.93 12.21 12.41 13.06 13.18 13.67
150 12.09 11.92 12.01 12.40 12.65 13.36 13.61 14.12
200 12.02 11.85 11.96 12.44 12.75 13.41 13.60 14.38
250 12.03 11.74 11.82 12.41 12.81 12.97 12.80 14.71

Panel 3: out-of-sample average portfolio exposure

10 1.09 1.08 1.08 1.06 1.05 1.19 1.21 1.00
20 1.13 1.11 1.10 1.06 1.05 1.45 1.50 1.00
30 1.22 1.19 1.16 1.10 1.06 1.65 1.72 1.00
40 1.33 1.27 1.23 1.13 1.08 1.90 2.00 1.00
50 1.43 1.36 1.30 1.17 1.11 2.07 2.19 1.00
60 1.56 1.47 1.39 1.22 1.14 2.25 2.39 1.00
70 1.65 1.53 1.43 1.23 1.14 2.51 2.64 1.00
80 1.72 1.58 1.47 1.24 1.15 2.71 2.82 1.00
90 1.80 1.63 1.51 1.26 1.15 2.92 3.05 1.00
100 1.86 1.68 1.54 1.27 1.16 3.07 3.20 1.00
150 2.20 1.93 1.73 1.36 1.21 3.91 3.88 1.00
200 2.52 2.15 1.89 1.43 1.25 4.61 4.47 1.00
250 2.74 2.27 1.95 1.42 1.23 5.07 4.78 1.00

For each strategy and N , panel 1 reports the annualized average realized GMVP portfolio volatility in percentage.
Panel 2 reports the annualized average sample standard deviation of out-of-sample portfolio returns in percentage.
Panel 3 reports the portfolio exposures averaged over the out-of-sample period. All the measures are computed over
an evaluation horizon H = 756 observations and an in-sample estimation window length T = 1000. Numbers in
bold and italic correspond to the smallest and second smallest number in each row (in panel 3, the ranking does not
include the 1/N portfolio).
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seems to first decrease then increase with λ (Panel 2), reflecting the differences of the two objective

functions. Importantly, regardless of the choice of λ, the LWE method comfortably beats the two

shrinkage-based methods and the equally weighted portfolio in minimizing the portfolio variance. The

LWE method even has considerably lower portfolio exposure than the shrinkage-based methods, which

clearly demonstrates the practicability of our method. Also, the LWE method with λ = 1 still delivers

smaller realized portfolio volatility than those of the DWE methods in Table 4.1 on average, but with

a comparable transaction cost. One can further impose investment constraints by combining Eq. (4.1)

with the penalized LWE estimator. The results are qualitatively similar and are available upon request.

In practice, the choice of λ depends on the practitioner’s trade-off between portfolio performance

measures and the transaction cost, which can be fine-tuned to deliver a desirable level of transaction

cost and at the same time minimising the unconditional realized portfolio variance. Distinct from all its

competing methods, this unique feature of our LWE method provides the investor with great flexibility

to tailor the portfolio allocations while preserving certain optimality of the target performance metric.

5 Conclusions

This paper presents a novel semi-parametric linear portfolio weight estimation approach (LWE) that

offers several advantages over existing methods. By assuming a dynamic linear model directly for the ex

ante optimal GMVP weights, the LWE model avoids restrictive assumptions about return distributions

or high-dimensional covariance matrix dynamics. The parameters of the LWE model can be estimated

by directly minimizing the unconditional GMVP problem whose solution is unique and in closed form.

Consequently, the LWE model can accommodate rich dynamics in the optimal GMVP weights with a

very fast computation speed, even in relatively large dimensions. The theoretical properties of the LWE

parameter estimates, such as consistency and asymptotic normality, can be established by exploiting

its method-of-moment nature. The theoretical results provide a basis for rigorous statistical inference

and hypothesis tests. Several extensions of the LWE model are also discussed, which provide useful

tools to improve ivestability of the portfolio weights.

In the empirical application, the LWE is shown to outperform competing estimators that rely

on realized covariance forecasting and shrinkage of covariance matrices together with alternative ap-

proaches employed in GMVP realized weight forecasting. The LWE exhibits superior forecasting

precision and economic measures of portfolio performance. Furthermore, the LWE can be extended

to incorporate controls for portfolio rebalancing that leads to a reduction in transaction costs.

As a potential avenue for future research, it would be interesting to explore the use of machine

learning techniques to improve the univariate forecasting model employed in the LWE method. This

could potentially enhance the forecasting accuracy and performance of the estimator. Following the

same vein, one can also extend the LWE method to solve the dynamic mean-variance portfolio allo-
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cation problem. Overall, the LWE approach presented in this paper offers a promising framework for

dynamic portfolio weight estimation, as it provides robust results, theoretical support, and practical

advantages for portfolio management and decision-making.
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Callot, L., Caner, M., Önder, A. Ö., and Ulaşan, E. (2021). A nodewise regression approach to

estimating large portfolios. Journal of Business & Economic Statistics, 39(2):520–531.

Chiriac, R. and Voev, V. (2011). Modelling and forecasting multivariate realized volatility. Journal

of Applied Econometrics, 26(6):922–947.

Cipollini, F., Gallo, G. M., and Palandri, A. (2021). A dynamic conditional approach to forecasting

30



portfolio weights. International Journal of Forecasting, 37(3):1111–1126.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial

Econometrics, 7(2):174–196.

DeMiguel, V., Garlappi, L., and Uppal, R. (2009). Optimal versus naive diversification: How inefficient

is the 1/N portfolio strategy? Review of Financial Studies, 22(5):1915–1953.

DeMiguel, V., Nogales, F. J., and Uppal, R. (2014). Stock return serial dependence and Out-of-Sample

portfolio performance. Review of Financial Studies, 27(4):1031–1073.

Diebold, F. X. and Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business &

Economic Statistics, 13(3):253–263.

Ding, Y., Li, Y., and Zheng, X. (2021). High dimensional minimum variance portfolio estimation

under statistical factor models. Journal of Econometrics, 222(1):502–515.

Domowitz, I. and White, H. (1982). Misspecified models with dependent observations. Journal of

Econometrics, 20(1):35–58.

Engle, R. F., Ledoit, O., and Wolf, M. (2019). Large dynamic covariance matrices. Journal of Business

& Economic Statistics, 37(2):363–375.

Fan, J., Furger, A., and Xiu, D. (2016). Incorporating Global Industrial Classification Standard

Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-

Frequency Data. Journal of Business & Economic Statistics, 34(4):489–503.

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and Its Oracle

Properties. Journal of the American Statistical Association, 96(456):1348–1360.

Golosnoy, V., Gribisch, B., and Liesenfeld, R. (2012). The conditional autoregressive wishart model

for multivariate stock market volatility. Journal of Econometrics, 167(1):211–223.

Golosnoy, V., Gribisch, B., and Seifert, M. I. (2019). Exponential smoothing of realized portfolio

weights. Journal of Empirical Finance, 53:222–237.

Gourieroux, C., Jasiak, J., and Sufana, R. (2009). The Wishart Autoregressive process of multivariate

stochastic volatility. Journal of Econometrics, 150(2):167–181.

Hall, A. R. (1996). Generalized Method of Moments: Advanced Text in Econometrics, volume 100-101.

Oxford University Press, New York.

Hansen, P. R. and Lunde, A. (2006). Consistent ranking of volatility models. Journal of Econometrics,

131(1):97–121.

Harvey, D., Leybourne, S., and Newbold, P. (1997). Testing the equality of prediction mean squared

errors. International Journal of Forecasting, 13(2):281–291.

Hautsch, N., Kyj, L. M., and Malec, P. (2015). Do high-frequency data improve high-dimensional

31



portfolio allocations? Journal of Applied Econometrics, 30(2):263–290.

Hautsch, N. and Voigt, S. (2019). Large-scale portfolio allocation under transaction costs and model

uncertainty. Journal of Econometrics, 212(1):221–240.

Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong

constraints helps. The Journal of Finance, 58(4):1651–1684.

Jin, X. and Maheu, J. M. (2013). Modeling realized covariances and returns. Journal of Financial

Econometrics, 11(2):335–369.

Laurent, S., Rombouts, J. V. K., and Violante, F. (2013). On loss functions and ranking forecasting

performances of multivariate volatility models. Journal of Econometrics, 173(1):1–10.

Ledoit, O. and Wolf, M. (2004). Honey, i shrunk the sample covariance matrix. The Journal of

Portfolio Management, 30(4):110–119.

Ledoit, O. and Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix for portfolio selection:

Markowitz meets goldilocks. The Review of Financial Studies, 30(12):4349–4388.

Ledoit, O. and Wolf, M. (2020). Analytical nonlinear shrinkage of large-dimensional covariance ma-

trices. Annals of Statistics, 48(5):3043–3065.

Li, J. (2015). Sparse and stable portfolio selection with parameter uncertainty. Journal of Business

& Economic Statistics, 33(3):381–392.

Li, Y., Nolte, I., Vasios, M., Voev, V., and Xu, Q. (2022). Weighted Least Squares Realized Covariation

Estimation. Journal of Banking & Finance, 137:106420.

Lunde, A., Shephard, N., and Sheppard, K. (2016). Econometric Analysis of Vast Covariance Matrices

Using Composite Realized Kernels and Their Application to Portfolio Choice. Journal of Business

and Economic Statistics, 34(4):504–518.

McLeish, D. L. (1975). A Maximal Inequality and Dependent Strong Laws. The Annals of Probability,

3(5):829–839.

Newey, W. K. and McFadden, D. B. T. H. o. E. (1994). Large sample estimation and hypothesis

testing. In Handbook of Econometrics, volume 4, chapter 36, pages 2111–2245. Elsevier.

Noureldin, D., Shephard, N., and Sheppard, K. (2012). Multivariate high-frequency-based volatility

(HEAVY) models. Journal of Applied Econometrics, 27(6):907–933.

Oh, D. H. and Patton, A. J. (2016). High-dimensional copula-based distributions with mixed frequency

data. Journal of Econometrics, 193(2):349–366.

Okhrin, Y. and Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econo-

metrics, 134(1):235–256.

Opschoor, A., Janus, P., Lucas, A., and Van Dijk, D. (2018). New HEAVY Models for Fat-Tailed

32



Realized Covariances and Returns. Journal of Business & Economic Statistics, 36(4):643–657.

Palandri, A. (2022). Rank-invariance conditions for the comparison of volatility forecasts. The Econo-

metrics Journal, 25(1):155–175.

Patton, A. J. and Sheppard, K. (2009). Evaluating Volatility and Correlation Forecasts. In Mikosch,

T., Kreiß, J. P., Davis, R., and Andersen, T. G., editors, Handbook of Financial Time Series, pages

810–838. Springer Berlin Heidelberg.

Tibshirani, R. (1994). Regression Selection and Shrinkage via the Lasso. Journal of the Royal Statistical

Society B, 58:267–288.

Varneskov, R. T. (2016). Flat-top realized kernel estimation of quadratic covariation with nonsyn-

chronous and noisy asset prices. Journal of Business & Economic Statistics, 34(1):1–22.

Yen, Y.-M. (2016). Sparse weighted-norm minimum variance portfolios. Review of Finance, 20(3):1259–

1287.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal of Econometrics,

160(1):33–47.

A Appendix

A.1 Technical Proofs

Proof of Proposition 1. We shall abuse the notation and write 0 as a vector of zeros with appropriate

dimension throughout this proof. Start with the observation that Z̃ ′ι = 0. Now notice that Z̃ε̃t =

Z̃(w̃9t − w̃
F
t ) = w9t − w

F
t ∈ V. Therefore:

Et−1[Σ̃tε̃t] = Et−1[Z̃ ′Σt(w
9
t − w

F
t )] = Et−1

[ Z̃ ′ι

ι′Σ−1
t ι

]
− Z̃ ′ι

ι′Ω−1
t ι

= 0. (A.1)

This completes the proof.

Proof of Theorem 1. Assumption 3 implies that β0 is the unique optimal solution of the following

problem for every t by the optimality of wF
t and the strict convexity of the optimization problem:

min
β∈B

Et−1[(wt(β) + ηt)
′Σt(wt(β) + ηt)]. (A.2)

Since β0 is optimal and unique for every t, it must also be the unique optimal solution of the following

problem below by the law of total expectation:

min
β∈B

E[(wt(β) + ηt)
′Σt(wt(β) + ηt)]. (A.3)
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To prove the first minimization problem of Eq. (3.12), note that:

E[(wt(β) + ηt)
′Σt(wt(β) + ηt)] = E[wt(β)′Σtwt(β)] + 2 E[wt(β)′Σtηt] + E[η′tΣtηt]. (A.4)

Clearly the last term is independent of β and can be ignored in the optimization. For the second from

last term, using the definition of wt(β) and recall Assumption 3:

E[wt(β)′Σtηt] = E[e′NΣtηt] + β′ E[X ′tZ̃
′ΣtZ̃η̃t] = E[e′NΣtηt], (A.5)

which is also independent of β. The above result directly implies that:

min
β∈B

E[(wt(β) + ηt)
′Σt(wt(β) + ηt)]⇔ min

β∈B
E[wt(β)′Σtwt(β)], (A.6)

which is the claimed result in the first minimization problem of Eq. (3.12). For the second minimization

problem in Eq. (3.12), notice that:

wt(β)′Σtwt(β) = (wt(β)− w9t + w9t )′Σt(wt(β)′ − w9t + w9t )

= (w9t − wt(β))′︸ ︷︷ ︸
=ũt(β)′Z̃′

Σtwt(β)(w9t − wt(β)) + (w9t )′Σtw
9
t

= ũt(β)′Σ̃tũt(β) + (w9t )′Σtw
9
t .

(A.7)

where the cross term vanishes due to (wt(β)′−w9t )′Σtw
9
t ∝ (wt(β)′−w9t )′ι = 0. As the last quantity

does not depend on β, minimizing E[wt(β)′Σtwt(β)] is equivalent to minimizing E[ũt(β)′Σ̃tũt(β)],

which proves the equivalence of the two optimizations in Eq. (3.12) as desired.

Eq. (3.13) can be obtained by taking the first-order condition of minβ∈B E[ũt(β)′Σ̃tũt(β)] and set

it to zero. Finally, Eq. (3.17) can be obtained by solving for β0 explicitly from Eq. (3.13):

E[X ′tΣ̃tũt(β0)] = 0⇔ E[X ′tΣ̃tXt]β0 = E[X ′tΣ̃tw̃
9
t ]⇔ β0 = E[X ′tΣ̃tXt]

−1 E[X ′tΣ̃tw̃
9
t ].

and Assumption 3 ensures that E[X ′tΣ̃tXt] is invertible, so the solution exists and is unique. This

completes the proof.

Proof of Proposition 2. Note that when w̃F
t = β0 and Xt = IN−1, β0 satisfies the following equation

by Eq. (3.17):

E[Σ̃t]β0 = E[Σ̃tw̃
9
t ] = E

[ Z̃ ′ΣtZ̃ZΣ−1
t ι

ι′Σ−1
t ι

]
. (A.8)
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We shall prove that the above equation holds when β0 = Z E[Σt]−1ι
ι′ E[Σt]−1ι

, which implies that:

Z̃ ′ E[Σt]Z̃Z E[Σt]
−1ι

ι′ E[Σt]−1ι
= E

[ Z̃ ′ΣtZ̃ZΣ−1
t ι

ι′Σ−1
t ι

]
. (A.9)

To prove this result, let S be an arbitrary N -by-N positive definite matrix, and consider the following

two equivalent optimization problems, where the equivalence follows from Eq. (3.12):

min
β∈B

(eN + Z̃β)′S(eN + Z̃β)⇔ min
β∈B

(ZS−1ι

ι′S−1ι
− β

)′
Z̃ ′SZ̃

(ZS−1ι

ι′S−1ι
− β

)
. (A.10)

As the optimization problem is strictly convex with a unique solution, their solutions must coincide.

Equating the solutions obtained from both problems yields:

− Z̃ ′SeN =
Z̃ ′SZ̃ZS−1ι

ι′S−1ι
. (A.11)

As the choice of S is arbitrary, one can apply the above relation to both sizes of Eq. (A.10) by setting

S = E[Σt] and S = Σt, respectively:

− Z̃ ′ E[Σt]eN =
Z̃ ′ E[Σt]Z̃Z E[Σt]

−1ι

ι′ E[Σt]−1ι
= E

[ Z̃ ′ΣtZ̃ZΣ−1
t ι

ι′Σ−1
t ι

]
= −E[Z̃ ′ΣteN ], (A.12)

but the leftmost and the rightmost expressions are clearly equivalent. This completes the proof.

Proof of Proposition 3. Let us write the objective function in Eq. (3.26) as:

GT (β;λ) =
1

T

T∑
t=1

ũt(β)′Σ̃tũt(β) + λf(eN + Z̃XT+1β), (A.13)

which is clearly a quadratic function of β. We shall now verify that, for all finite λ ≥ 0, the above

function is strictly convex in β, thus a unique minimizer exists. To wit, we can compute the Hessian

of the optimization problem:

∂2GT (β;λ)

∂β′∂β
=

2

T

T∑
t=1

X ′tΣ̃tXt︸ ︷︷ ︸
(I)

+2λX ′T+1ÃXT+1︸ ︷︷ ︸
(II)

� 0, (A.14)

where Ã = Z̃ ′AZ̃. Note that (I) is of full rank and hence positive definite by the assumption that

T > b(K). For (II), Ã with rank N−1 is positive definite by assumption, and the quadratic structure

suggests that the second term is positive semi-definite, although not positive definite as it is rank

deficient due to the fact that b(K) > N − 1 in general. As a result, for any finite λ, (I) + 2λ(II) is

positive definite, hence GT (β;λ) is strictly convex, and any minimizer of GT (β;λ) must be unique.
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In fact, the rank deficiency of (II) also hinted that the solution of GT (β;λ) may not be unique as

λ→∞, which we shall discuss later in this proof.

For any finite λ, we now derive the unique minimizer of GT (β;λ). This can be done by setting

the first order condition to zero:

∂GT (β;λ)

∂β
=

2

T

T∑
t=1

(X ′tΣ̃tXtβ −XtΣ̃tw̃
9
t ) + 2λ(X ′T+1ÃXT+1β +X ′T+1Z̃

′(AeN + a)) = 0b(K)×1

⇔ β̂T,λ =

(
1

T

T∑
t=1

X ′tΣ̃tXt + λX ′T+1ÃXT+1

)−1(
1

T

T∑
t=1

XtΣ̃tw̃
9
t − λX

′
T+1Z̃

′(AeN + a)

)
,

(A.15)

which is the desired expression. One should immediately verify that the matrix inverse is well-defined

for any finite λ by Eq. (A.14), and β̂T,0 = β̂T where β̂T,λ is clearly continuous at λ = 0, which proves

the claim as λ→ 0.

We now turn to the case λ → ∞. First, one should notice that as λ → ∞, the matrix inverse

in β̂T,λ becomes defective due to the aforementioned rank deficiency problem of (II). This results in

a positive semi-definite Hessian of the limiting problem limλ→∞GT (β;λ). As a result, there can be

many minima β̂T,∞ that minimize limλ→∞GT (β;λ), all with the same minimized objective function.

We shall now characterize all solutions to this problem. Notice that, as λ diverges, the minimization

problem is equivalent to the minimization of the penalty function:

min
β∈B

lim
λ→∞

1

T

T∑
t=1

ũt(β)′Σ̃tũt(β) + λf(wT+1(β))⇔ min
β∈B

f(wT+1(β)). (A.16)

However, the penalty function f(w) has a well-defined unique minimum w∗ in Eq. (3.30) by the positive

definiteness of A, which can be solved by the standard Lagrange multiplier method. Therefore, if any

optimal β̂T,∞ exists, it must satisfy w∗ = wT+1(β̂T,∞). We now show that such β̂T,∞ always exists,

so w∗ is always attained. Write w̃∗ = Zw∗ ∈ W̃ as the dimension-reduced optimal weight, then

w∗ = wT+1(β̂T,∞) is equivalent to the existence of β̂T,∞ such that w̃∗ = XT+1β̂T,∞ holds. As XT+1

has rank b(K) ≥ N−1 by Assumption 3, where theN−1 comes from the constant term in Eq. (3.3) that

is always included, β̂T,∞ solves the underdetermined system of equations XT+1β − w̃∗ = 0(N−1)×1,

which either has zero or infinitely many solutions. Nevertheless, in the notation of Eq. (3.3), the

following is always a trivial solution to the above problem for all b(K) ≥ N−1, which does not depend

on the choice of XT+1:

β̂T,∞ = [w̃∗;0(b(K)−N+1)×1]. (A.17)

Therefore, for any b(K) > N−1, there must exist infinitely many solutions β̂T,∞, which jointly satisfy

w̃∗ = XT+1β̂T,∞ and hence w∗ = wT+1(β̂T,∞). This completes the proof.
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A.2 Descriptive statistic

Table A.1: Descriptive statistic

Returns RC Returns RC

Ticker Min Mean Max Skew Kurto Av. Av. Ticker Min Mean Max Skew Kurto Av. Av.
ness sis var. corr. ness sis var. corr.

AAPL -7.76 0.06 8.32 -0.17 6.09 2.12 0.22 SYY -17.31 0.01 17.57 -0.13 33.88 2.61 0.22
MSFT -6.52 0.05 7.41 -0.23 6.54 1.95 0.22 EXC -8.69 0.05 14.07 0.31 13.71 2.15 0.16
AMZN -8.86 -0.02 7.10 -0.28 5.70 2.40 0.19 VLO -13.58 -0.04 11.47 -0.09 7.44 4.94 0.15
GOOG -6.18 0.02 4.99 -0.47 5.55 1.89 0.22 COF -11.03 -0.01 11.75 -0.38 9.47 2.97 0.25
TSLA -13.68 0.03 14.68 0.28 5.83 7.30 0.10 O -20.01 -0.01 11.65 -2.30 39.84 2.20 0.15
BRK B -5.09 -0.04 5.12 -0.21 7.52 1.10 0.36 ADM -10.24 0.00 5.91 -0.36 6.83 1.99 0.24
UNH -8.08 0.03 8.36 0.02 8.41 2.29 0.19 AIG -14.48 -0.01 10.70 -0.47 13.37 2.86 0.25
JNJ -7.96 0.00 6.07 -0.89 11.22 1.34 0.23 TRV -11.90 0.01 10.16 -0.30 16.41 1.74 0.26
NVDA -11.14 0.06 10.74 -0.20 6.25 4.50 0.14 FCX -21.73 -0.06 16.60 0.04 9.05 7.92 0.12
XOM -7.16 -0.04 8.07 -0.11 6.93 2.14 0.25 HCA -11.38 0.04 22.73 0.77 23.03 4.87 0.16
PG -6.48 0.04 7.08 -0.05 11.62 1.36 0.20 ECL -12.10 0.00 12.48 -0.48 21.38 1.87 0.24
JPM -5.44 0.00 8.17 0.07 6.51 2.16 0.29 NXPI -11.60 -0.04 16.07 0.42 10.36 4.00 0.14
V -7.00 -0.01 6.36 -0.24 7.11 1.80 0.25 STZ -12.14 0.00 10.82 -0.33 13.17 2.47 0.18
HD -9.26 0.04 7.25 -0.31 9.43 1.90 0.26 ADSK -10.78 0.06 8.61 -0.30 6.26 3.57 0.16
PFE -6.59 -0.02 5.78 -0.31 7.25 1.78 0.21 PSX -12.75 -0.05 10.28 -0.31 8.30 3.70 0.19
CVX -18.70 -0.03 7.90 -0.98 22.52 2.35 0.24 MAR -15.12 0.04 9.56 -0.44 10.72 3.62 0.21
MA -11.27 -0.02 9.17 -0.56 9.88 2.11 0.24 XEL -14.61 0.05 8.04 -0.91 17.85 1.74 0.14
ABBV -10.92 0.01 7.19 -0.47 7.35 2.73 0.17 DLTR -12.88 0.01 10.65 -0.15 11.76 2.90 0.16
LLY -7.89 0.05 10.26 0.43 9.28 2.15 0.17 WMB -29.10 -0.04 31.02 -0.09 39.05 5.53 0.17
KO -9.41 0.01 6.29 -0.74 12.67 1.20 0.23 DLR -11.02 0.03 9.28 -0.67 9.98 2.48 0.11
MRK -7.92 -0.03 7.24 -0.16 7.31 1.79 0.21 TEL -9.32 0.00 6.80 -0.54 7.47 2.32 0.26
PEP -12.89 0.03 9.02 -0.68 25.25 1.40 0.22 A -5.11 0.02 7.25 0.01 5.26 2.10 0.23
BAC -10.24 -0.02 8.46 -0.14 7.27 2.41 0.26 MNST -7.35 0.01 12.44 0.24 8.14 2.70 0.16
COST -6.60 0.04 6.04 -0.04 7.32 1.44 0.22 PRU -13.15 -0.02 10.38 -0.55 10.18 2.81 0.26
VZ -5.00 0.00 7.48 0.27 7.20 1.42 0.21 MSI -8.47 0.04 9.54 -0.39 10.02 2.09 0.21
TMO -7.20 0.01 6.76 -0.42 6.64 2.06 0.21 ALL -7.75 0.02 7.54 0.01 10.19 1.80 0.28
AVGO -10.76 0.02 14.75 0.07 8.05 3.34 0.17 CTSH -8.10 0.01 11.58 0.10 9.51 2.24 0.23
ABT -9.16 0.03 7.03 -0.44 8.66 1.82 0.23 EA -6.83 0.03 12.11 0.14 6.40 3.31 0.13
MCD -6.46 0.03 10.05 0.70 15.09 1.41 0.23 YUM -9.85 0.03 12.05 0.15 13.78 1.99 0.22
ADBE -7.89 0.04 7.64 -0.33 6.34 2.52 0.18 JCI -8.43 0.00 5.76 -0.47 5.73 2.26 0.25
DIS -10.86 -0.04 7.79 -0.25 10.09 1.92 0.26 HPQ -10.54 0.07 14.43 0.17 10.16 3.03 0.21
WMT -10.63 0.03 7.18 -0.07 13.40 1.39 0.20 AFL -9.76 0.01 22.09 2.39 60.19 1.94 0.30
CSCO -7.37 0.05 10.31 0.12 9.95 1.85 0.26 BAX -7.94 0.01 9.35 0.14 9.69 1.83 0.20
ACN -5.77 0.06 12.11 0.43 12.11 1.67 0.27 ED -14.32 0.03 14.27 -0.80 30.17 1.74 0.13
CRM -8.40 0.00 11.95 -0.12 7.09 3.14 0.16 KMI -16.67 -0.09 11.03 -0.57 12.47 3.43 0.19
DHR -10.99 0.01 6.43 -0.43 10.48 1.66 0.25 SPG -22.80 -0.07 18.53 -1.89 34.21 3.74 0.15
BMY -7.77 -0.02 6.01 -0.42 6.32 2.19 0.18 DVN -16.12 -0.07 17.29 0.07 6.48 8.14 0.12
NEE -7.19 0.04 9.29 0.16 10.88 1.86 0.14 PH -10.26 0.00 9.23 -0.09 7.22 2.90 0.23
PM -8.80 0.02 7.25 -0.27 9.44 1.81 0.19 HSY -12.99 0.05 15.20 0.71 30.58 1.89 0.16
WFC -9.13 -0.02 8.67 -0.29 8.96 2.35 0.27 PEG -5.69 0.04 7.34 0.12 6.98 1.96 0.15
T -7.09 -0.04 6.28 -0.29 7.76 1.39 0.24 BK -7.60 0.00 7.20 -0.21 6.04 2.15 0.27
INTC -7.11 0.06 12.63 0.46 9.31 2.40 0.22 KR -8.25 0.05 12.19 0.25 8.61 2.82 0.15
QCOM -10.66 0.01 20.48 1.03 21.00 2.64 0.20 WEC -20.23 0.06 10.21 -2.16 44.15 2.00 0.13
TXN -6.86 0.04 10.00 0.05 6.72 2.12 0.24 ILMN -9.66 0.04 10.75 -0.12 5.68 4.50 0.12
UPS -6.10 0.01 8.23 0.42 9.32 1.73 0.27 TWTR -20.93 -0.08 9.78 -0.52 7.64 6.75 0.10
NKE -6.39 0.01 9.38 -0.03 6.85 2.01 0.22 FAST -11.75 0.04 8.69 -0.22 8.98 2.63 0.21
UNP -7.08 0.02 7.37 0.08 6.25 2.23 0.24 PCAR -7.71 0.01 8.74 0.21 6.91 2.50 0.24
AMGN -7.31 0.00 7.95 0.17 6.53 2.52 0.17 PPG -8.36 0.01 7.90 -0.18 8.24 2.17 0.24
IBM -6.72 0.00 5.58 -0.15 7.18 1.50 0.30 NUE -6.29 -0.03 8.65 0.09 4.58 3.21 0.20
MDT -6.95 -0.03 5.36 -0.35 6.25 1.83 0.24 CMI -10.97 -0.01 11.51 0.11 9.24 2.51 0.23
CVS -7.00 -0.02 8.03 -0.10 6.59 2.39 0.22 DFS -23.14 -0.02 14.29 -1.83 30.68 3.18 0.25
AMT -8.62 0.03 11.17 0.17 10.69 1.98 0.16 HES -11.10 -0.02 12.78 0.20 5.37 6.01 0.14
LOW -16.45 0.03 8.14 -1.17 17.24 2.38 0.23 AVB -11.52 0.01 11.18 -0.26 15.80 2.36 0.14
HON -7.20 0.00 8.78 0.04 9.54 1.65 0.32 AMP -9.98 0.00 13.34 0.42 11.70 3.27 0.24
ORCL -6.32 0.05 8.53 0.23 8.85 1.73 0.25 ROST -13.78 0.00 9.20 -0.51 10.64 2.88 0.19
INTU -8.36 0.07 12.53 -0.19 8.85 2.39 0.20 HAL -17.77 -0.07 11.46 -0.52 9.81 5.79 0.15
COP -8.97 -0.03 15.00 0.28 7.86 4.05 0.18 WY -11.52 0.00 16.46 0.11 15.14 2.68 0.22
MS -7.62 -0.01 9.84 0.10 6.69 2.75 0.25 TSN -6.84 0.01 20.87 1.14 24.05 2.62 0.17
GS -7.64 0.00 8.44 -0.01 7.18 2.25 0.26 EBAY -6.80 0.04 7.53 0.02 5.26 2.53 0.19
LMT -8.54 -0.01 11.90 0.14 14.39 1.76 0.23 EQR -8.66 0.01 8.99 -0.23 9.47 2.40 0.15
SCHW -8.24 0.02 10.87 -0.03 6.32 3.11 0.22 OKE -27.77 -0.06 24.06 -1.31 27.87 5.55 0.17
CAT -10.19 0.01 6.38 -0.19 6.77 2.50 0.24 GLW -12.40 0.04 10.96 0.01 10.51 2.40 0.25
SBUX -7.22 0.02 8.21 -0.11 7.24 1.97 0.23 DTE -8.51 0.03 11.37 0.12 12.87 1.94 0.14
C -8.03 -0.05 11.12 -0.13 8.17 2.74 0.25 DHI -10.13 -0.01 7.54 -0.38 5.99 4.07 0.16
PLD -11.04 0.03 6.80 -0.63 9.78 2.12 0.18 EIX -13.07 0.04 8.85 -0.91 15.05 2.57 0.13
ADP -6.80 0.06 11.18 0.26 12.83 1.96 0.27 ROK -11.84 0.03 9.01 -0.04 8.80 2.80 0.22
MDLZ -5.46 0.01 5.91 0.15 6.39 1.66 0.22 FITB -8.98 -0.01 14.19 0.29 9.27 3.39 0.22
AXP -8.20 -0.02 13.22 0.37 13.54 2.04 0.29 STT -7.78 0.02 12.35 0.03 7.86 2.92 0.24
CI -9.84 0.02 12.03 0.12 8.12 3.07 0.16 AEE -12.77 0.05 14.06 -0.07 18.98 1.99 0.13
NFLX -9.71 0.02 11.32 0.11 5.50 4.58 0.12 TSCO -6.78 0.03 8.02 0.12 5.05 3.22 0.16
ZTS -10.28 0.03 10.52 0.06 10.12 2.27 0.18 ETR -8.65 0.02 11.52 -0.01 10.88 2.09 0.13
DUK -10.41 0.02 9.12 -0.10 13.08 1.58 0.15 LYB -12.58 -0.05 14.36 0.08 8.66 3.71 0.19
CB -7.19 0.02 8.01 0.20 9.70 1.82 0.26 LH -14.53 0.00 10.62 -0.71 15.39 2.76 0.17
DE -7.16 0.04 9.45 0.20 6.94 2.41 0.23 HIG -18.60 0.02 25.57 2.02 61.48 2.69 0.25
MMC -7.93 0.05 8.60 -0.10 10.36 1.46 0.30 LUV -11.62 -0.06 8.57 -0.39 6.60 4.06 0.17
GILD -8.17 -0.05 7.37 -0.01 6.37 2.79 0.16 FE -19.51 0.02 13.14 -1.02 28.23 2.45 0.14
BA -16.43 -0.07 10.55 -0.73 13.21 3.69 0.22 ABC -9.03 0.01 10.24 -0.14 8.20 3.01 0.17
AMAT -8.71 0.01 9.63 -0.11 5.43 3.58 0.17 VTR -22.39 -0.02 15.62 -1.88 33.43 3.80 0.13
MO -12.16 0.01 8.66 -0.87 13.08 1.94 0.19 LEN -9.45 -0.03 13.31 0.16 8.19 4.25 0.16
SO -9.60 0.04 14.33 0.62 22.97 1.59 0.15 PPL -11.73 -0.01 8.56 -0.47 11.61 1.89 0.16
CCI -8.06 0.02 10.58 0.34 9.68 1.96 0.15 FANG -15.95 -0.02 16.24 -0.03 6.96 9.04 0.10
MMM -10.29 -0.01 8.31 -0.59 12.24 1.51 0.30 CMS -12.54 0.05 10.55 -0.33 15.99 1.85 0.14
CME -12.30 0.03 10.26 -0.55 12.70 2.10 0.19 VMC -14.41 -0.02 15.82 0.14 12.92 3.62 0.16
GE -9.83 -0.09 11.12 0.00 7.57 3.27 0.23 DAL -22.62 -0.11 8.75 -1.22 14.99 4.93 0.17
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NOC -8.33 0.02 10.74 0.02 10.36 2.13 0.21 K -10.26 0.02 8.84 -0.04 12.27 1.84 0.16
CL -7.66 0.02 8.78 0.19 11.22 1.48 0.21 PWR -20.74 0.01 10.70 -1.10 18.18 3.37 0.20
SYK -9.49 0.01 9.08 -0.66 9.55 2.02 0.22 RF -12.98 -0.01 12.60 -0.08 8.93 3.77 0.20
TJX -13.97 -0.01 7.47 -0.74 13.64 2.40 0.22 URI -12.76 0.00 13.63 -0.15 7.03 5.70 0.16
TGT -8.40 0.01 8.51 -0.06 7.68 2.20 0.19 IR -10.83 0.03 9.27 -0.15 9.39 2.92 0.24
PNC -8.73 0.02 10.45 0.04 8.49 2.41 0.26 SWK -13.87 -0.01 16.20 0.11 17.34 2.65 0.23
D -11.74 0.03 13.68 -0.15 22.08 1.68 0.15 MOS -24.32 -0.08 15.78 -0.50 12.95 5.41 0.15
MU -10.10 -0.08 9.90 -0.22 4.39 5.54 0.13 CAG -14.08 0.02 16.91 0.20 20.87 2.39 0.17
USB -9.23 -0.01 11.23 0.00 11.17 2.04 0.30 EXPD -7.25 0.06 9.26 -0.13 8.08 2.32 0.19
CSX -8.86 0.06 9.16 0.18 7.16 2.45 0.23 KEY -16.25 -0.02 15.34 -0.01 13.77 3.46 0.21
ATVI -8.95 -0.03 8.28 -0.32 5.65 3.39 0.14 DGX -9.00 0.02 9.91 -0.17 9.67 2.41 0.17
EOG -9.58 -0.03 10.77 0.32 5.90 5.06 0.15 PFG -8.24 0.01 12.99 -0.04 8.76 3.22 0.24
EW -9.84 0.03 12.16 -0.09 7.55 2.97 0.15 KMX -12.04 0.03 9.32 -0.19 7.87 3.73 0.18
EL -6.27 0.02 7.84 -0.09 6.69 2.08 0.20 IP -8.92 -0.01 10.11 0.15 7.36 2.73 0.22
HUM -12.89 0.05 18.07 0.91 19.13 3.28 0.13 SWKS -10.60 -0.01 12.01 -0.03 6.14 4.19 0.15
AON -10.85 0.03 9.62 -0.34 14.10 1.84 0.23 AKAM -9.35 0.01 16.34 0.24 12.01 2.91 0.17
WM -11.94 0.03 10.43 -0.08 22.71 1.35 0.25 MRO -15.93 -0.13 13.86 -0.01 5.85 8.54 0.12
FIS -7.64 0.02 8.55 -0.18 7.22 2.05 0.24 GRMN -12.40 0.00 8.98 -0.49 10.33 2.49 0.20
DG -7.82 0.03 11.18 0.13 9.04 2.25 0.17 INCY -15.13 -0.03 11.15 -0.07 5.55 6.98 0.08
FDX -7.43 -0.02 12.20 0.13 9.18 2.54 0.24 CAH -8.38 -0.01 7.03 -0.41 5.90 2.83 0.20
FISV -7.92 0.04 6.02 -0.43 7.52 2.08 0.23 EXPE -15.83 -0.01 11.21 -0.31 9.75 4.41 0.15
LRCX -8.61 0.01 9.89 -0.11 6.01 3.86 0.16 VFC -8.86 -0.01 8.89 -0.33 8.51 2.76 0.21
NSC -11.58 0.04 10.74 -0.03 9.72 2.54 0.22 NTAP -10.48 0.06 11.60 0.05 7.00 3.23 0.19
OXY -20.75 -0.08 15.04 -0.15 12.85 5.96 0.16 STX -18.73 0.05 10.45 -0.58 9.38 4.33 0.16
ITW -9.88 0.04 11.95 0.08 13.37 1.88 0.30 BBY -11.71 0.04 9.28 -0.30 6.31 3.90 0.16
ETN -12.89 -0.01 14.45 -0.24 17.40 2.31 0.27 IRM -11.12 -0.01 9.36 -0.44 7.92 2.77 0.16
GD -6.75 0.00 7.77 -0.03 7.10 1.92 0.25 AES -13.20 0.02 15.84 0.04 10.86 3.39 0.15
PXD -9.52 -0.01 11.99 0.07 5.06 5.79 0.13 WDC -11.88 -0.07 10.74 -0.26 5.19 5.27 0.15
AEP -12.96 0.03 10.71 -0.50 17.81 1.79 0.14 OMC -11.46 -0.03 6.30 -0.43 9.62 2.47 0.21
NEM -15.04 0.00 17.75 0.15 10.57 4.07 0.05 CHRW -7.78 0.05 7.02 -0.14 5.64 2.39 0.17
GM -9.35 -0.08 9.22 0.04 6.19 3.24 0.20 MAS -11.01 0.02 9.62 -0.36 8.37 2.65 0.22
SLB -11.20 -0.06 13.08 0.12 7.19 4.49 0.17 KIM -14.96 -0.03 14.41 -0.46 12.36 4.21 0.16
EMR -12.18 -0.02 12.81 -0.08 13.64 2.21 0.28 CTXS -7.39 0.03 11.36 0.26 8.18 2.72 0.16
MCK -9.74 0.00 11.61 -0.18 7.79 3.29 0.17 LVS -13.70 -0.06 10.66 -0.09 6.86 4.19 0.16
SRE -14.09 0.01 10.12 -0.28 18.50 2.13 0.15 UAL -29.92 -0.12 10.69 -1.44 18.30 6.88 0.14
KMB -7.48 0.03 9.15 -0.08 10.74 1.68 0.17 NI -11.93 0.05 13.39 -0.01 14.23 2.16 0.14
GIS -10.25 0.05 10.71 0.06 12.66 1.79 0.18 L -18.31 0.00 9.48 -1.16 27.55 2.29 0.27
KLAC -12.90 0.05 12.59 -0.08 9.15 3.37 0.17 EMN -7.89 0.00 8.73 0.03 5.86 3.52 0.20
MPC -20.76 -0.04 14.51 -0.39 10.82 5.72 0.15 HST -7.30 -0.04 12.49 0.35 8.32 3.96 0.18
F -7.36 -0.09 10.00 0.17 6.62 3.10 0.22 APA -35.82 -0.13 15.06 -1.24 19.90 8.83 0.12
MET -12.33 -0.02 9.93 -0.32 9.58 2.60 0.26 MGM -23.15 -0.06 10.36 -1.14 14.75 5.99 0.16

The table reports the sample moments of the returns used in Section 4 and time series average realized variances and correlations
with the other assets. Minimum, mean and maximum of returns are scaled by 100 and average realized variances by 104.
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