
Nonlinear Dependence and Portfolio Decisions over the

Life Cycle ∗

Wei Jiang† Shize Li‡ Jialu Shen§

December 15, 2023

Abstract

Using data from the Panel Study of Income Dynamics and the Center for Research in Security

Prices, we show that nonlinear dependence between earning risk and stock return exists. Incorpo-

rating nonlinear dependence measured by sufficient statistics “between-squares correlation” into a
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1 Introduction

Microeconomic data on household portfolios in the United States show that fewer than 50% of house-

holds participate in the stock market, and, conditional on one’s participation in asset markets, average

equity holdings as a share of financial wealth total only 55%.1 However, life-cycle models consistently

predict all households should participate in the stock market and young households should invest

almost all of their financial wealth in stocks.2

A crucial element that has been widely considered in addressing these two puzzles is risky labor

income: the dependence between labor income and stock returns, and labor income risk.3 The former

approach relies on the correlations or cointegration between labor income and stock returns in order

to fit low participation rates and moderate life-cycle stock holdings conditional on one’s participation

while avoiding counterfactually high risk aversion estimators.4 However, empirical evidence regarding

the correlation and cointegration is limited and mixed,5 which leads to a growing body of literature

discussing individual labor income risk.6 One possible explanation for the limited support for the

dependence between income and stock markets could be the use of inadequate measures of dependence.

To cut through the mixed evidence, this work offers a novel solution. In contrast to previous lit-

erature focusing on linear dependence, our paper emphasizes nonlinear dependence. Existing papers

1See Ameriks and Zeldes (2011), Faig and Shum (2002), Heaton and Lucas (2000), and Poterba et al. (2001).
2For instance, Heaton and Lucas (2000), Koo (1998), Viceira (2001), Cocco et al. (2005), Gomes and Michaelides

(2005a), and Polkovnichenko (2007) are typical examples of how labor income can be viewed as an implicit riskless
asset that is abundant early in life and, therefore, induces higher stock market exposure in that period.

3Besides labor income, some other factors have been widely discussed as contributing to household portfolio decisions,
such as household preference (see, e.g., Gomes (2005); Cao et al. (2005); Peijnenburg (2018); Pagel (2018)), participation
costs (Vissing-Jørgensen (2002); Gomes and Michaelides (2005a)), peer effects (Hong et al. (2004)), housing (Cocco
(2005); Yao and Zhang (2005)), and borrowing constraints (Guiso et al. (1996); Haliassos and Michaelides (2003)).

4Campbell et al. (2001), Viceira (2001), Cocco et al. (2005), and Gomes and Michaelides (2005b) explore the effect
of contemporaneous correlation between labor income and stock market innovations. A number of studies allow for
long-run codependence between labor income and stock returns in the form of cointegration between these two processes
(Campbell (1996); Baxter and Jermann (1997); Lucas and Zeldes (2006); Santos and Veronesi (2006); Benzoni et al.
(2007); Huggett and Kaplan (2011)). Lynch and Tan (2011) and Huggett and Kaplan (2016) consider labor income
and stock returns under the context of the VAR framework.

5Davis and Willen (2013, 2000), Bonaparte et al. (2014), and Catherine (2022) demonstrate a relatively large
correlation, suggesting a considerable part of income risk can be hedged using stocks, but Campbell et al. (2001),
Vissing-Jørgensen (2002), and Cocco et al. (2005) find an extremely low and insignificant correlation. With respect to
cointegration, because of the unavailability of data, it is difficult to assess the magnitude of cointegration, and thus the
empirical support for cointegration is minimal.

6See Jagannathan et al. (1996), Davis and Willen (2013), Campbell et al. (2001), Viceira (2001), Haliassos and
Michaelides (2003), Cocco et al. (2005), Guvenen et al. (2014), Shen (2022), and Catherine (2022).
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suggest the potential existence of nonlinear dependence between labor and stock markets: Higher-

order moments in the labor income process are well documented and discussed in the literature

(Guvenen et al. (2014); Shen (2022); Catherine (2022)), and strong evidence of higher-order moments

of annual stock returns is found in Neuberger and Payne (2021). Motivated by these findings, we aim

to address three fundamental questions regarding nonlinear dependence. Firstly, does nonlinear de-

pendence exist in the data? Secondly, what is an appropriate and comprehensive measure of nonlinear

dependence? Lastly, how does this nonlinear dependence affect households’ portfolio decisions?

To answer the first question, we focus on simple measures of nonlinearity using the Panel Study

of Income Dynamics Survey (PSID) and the Center for Research in Security Prices (CRSP). We first

measure the level of coskewness and cokurtosisis between labor and stock markets, and find that they

are significantly different from the benchmark value if the variables are nonlinearly independent. Next,

when grouping households based on wealth and earnings growth, we consistently observe deviations

from the benchmark value in all three cokurtosis statistics and two coskewness statistics. There-

fore, these findings highlight the substantial nonlinearities present and emphasize the importance of

considering nonlinear dependence when studying households’ portfolio decisions.

However, existing measures such as coskewness, and cokurtosis are limited in their ability to

capture the entirety of nonlinear dependence. As a result, there is a need to explore and develop

more comprehensive measures that can better capture and quantify nonlinear dependence in a broader

sense. This paper introduces the “between-squares correlation,” which we define as the correlation

between the squares of labor income shocks and stock returns. We demonstrate that, given certain

regularity conditions and marginal distributions of labor income shocks and stock return innocations,

the between-squares correlation is a sufficient measure to encapsulate all other forms of nonlinear

dependence.

The between-squares correlation measures the likelihood that extreme values jointly occur in the

labor and stock markets, and, therefore, the analysis focuses on tail behavior. Such a specification

is independent of any linear dependence structure, such as correlation or cointegration, and thus

is consistent with empirically observed low contemporaneous correlations and cointegration between

market returns and labor income shocks. Specifically, between-square correlations can capture events
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in which labor income shocks move opposite to stock return shocks, even though two shocks could

be positively correlated, as shown in Figure 1. In graph A, when both variables satisfy normal

distribution, a positive linear correlation implies that they only tend to move in the same direction.

In contrast, as shown in graphs B and C, the two random variables are subject to mixture normal

distribution such that higher-order moments and nonlinear dependence exist. Graph C shows that,

when the between-squares correlation is positive, two types of comovements are possible: two variables

may move in the same and opposite directions. Apparently, our nonlinear dependence measure is able

to simultaneously capture both comovements between the labor market and stock market as shown

in empirical studies. Meanwhile, graph B emphasizes the fact that the existence of between-squares

correlation is unrelated to the presence of linear correlation.

Figure 1: Correlation and Between-squares Correlation
This graph compares the scatter plots of the linear correlation and the between-squares correlation, with the same
mean and variance. We fix E[Z1] = E[Z2] = 0, E[Z2

1 ] = E[Z2
2 ] = 0.04, E[Z3

1 ] = E[Z3
2 ] = −0.5, and E[Z4

1 ]/Var
2[Z1] =

E[Z4
2 ]/Var

2[Z2] = 3.5. In graph A, (Z1, Z2) follows the bivariate normal distribution with a linear correlation of 0.3.
In graph B, (Z1, Z2) follows a bivariate mixture normal distribution with a linear correlation of 0.0, and the between-
squares correlation of 0.3. In graph C, (Z1, Z2) follows a bivariate mixture normal distribution with a linear correlation
of 0.3, and the between-squares correlation of 0.3.

Using the PSID and the CRSP, we document the stylized facts about between-squares corre-

lation as follows. First, we find that between-squares correlations are significantly positive in the

data, whereas correlations are insignificant. More specifically, the cross-sectional distributions of the

between-squares correlations are right-skewed, indicating a significant fraction of households have an

extremely positive between-squares correlation between their income and return shocks. Secondly, we

categorize households into two groups: workers without college degrees versus workers with college
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degrees. Our results reveal notable heterogeneity across education groups. On average, college gradu-

ates exhibit higher between-squares correlation, and the distribution of between-squares correlations

is more positively skewed compared with that of their counterparts. Third, our regression results

suggest households are aware of the between-squares correlations when making their optimal port-

folio decisions. Overall, the data strongly supports the existence of the between-squares correlation,

emphasizes its significance, and highlights the importance of incorporating it into the model setup.

In addition to introducing and documenting the significant existence of the between-squares cor-

relation in the data, our study makes a significant contribution to the literature in several aspects.

First, by analyzing a one-period portfolio optimization problem considering higher moments, we find

that the between-squares correlations between stock returns and labor income have a notable impact

on portfolio skewness and kurtosis. The skewness channel dominates for negative between-squares

correlations, while the kurtosis channel becomes significant for positive correlations, resulting in a non-

linear relationship between the between-squares correlation and portfolio allocations. The presence

of nonlinear dependence highlights a new interpretation of the “stock-like” theory, where households’

labor income becomes more “stock-like.”

Then, using between-squares correlations, we revisit the participation decisions and optimal port-

folio choices of households with nontradable labor income over their life cycle. Our main innovation is

to explicitly model the nonlinear dependence between labor income and stock returns. The presence

of nonlinear dependence is contingent upon the existence of higher-order moments in both income

shocks and stock return innovations. While some may argue that existing literature, such as Catherine

(2022), Shen (2022), and Constantinides and Ghosh (2017), which considers higher-order moments

in one or both markets, could potentially imply significant between-squares correlations, our analysis

reveals that these models actually generate nearly zero between-squares correlations. This finding

highlights the significance of explicitly incorporating and modeling between-squares correlations to

accurately capture their true impact. To the best of our knowledge, this is the first paper capturing

the nonlinear dependence between labor income and stock returns in the form of the between-squares

correlation.

We find that between-squares correlation is important in simultaneously explaining low stock

4



market participation rates and moderate equity holdings for stock market participants. For each

education group, we estimate the dynamics of labor income, annual stock returns, and between-

squares correlations. Next, we incorporate these processes into the life-cycle model and find that the

model matches the U.S. data well with a moderate coefficient of relative risk aversion γ = 4.3 and

a small participation cost, compared with γ = 5.6 in Shen (2022), γ = 6.1 in Catherine (2022) and

γ = 11 in Fagereng et al. (2017).

Specifically, we find that households with between-squares correlations hold less shares of financial

wealth invested in stocks (risky shares) conditional on their participation in the stock market compared

with those without between-squares correlations. Moreover, after introducing the between-squares

correlation, the wealth threshold of participation still exhibits a mild U-shaped pattern with respect

to age, which is consistent with previous literature.7 We also observe that the between-squares

correlations increase the wealth threshold of participation across all ages, with a higher increase for

households without college degrees. This is likely because the between-squares correlations increase

uncertainty in the labor market, which leads to households being more cautious about investing in the

stock market. Households without college degrees tend to accumulate less wealth and are generally less

willing to participate in the stock market, making them more cautious about investing and requiring

a higher level of wealth before they are willing to do so.

In addition, we provide empirical evidence supporting that households are aware of nonlinear de-

pendence risk when making their portfolio decisions, aligning with our model’s predictions. Using the

PSID, we investigate the possibility of a relation between households’ portfolio decisions (participa-

tion decisions and risky asset holdings) and between-squares correlations. First, we find that the more

the between-squares correlation deviates from zero, the less likely households participate in the stock

market. Second, households do adjust their portfolio holdings of risky assets when between-squares

correlations are present, a finding that is consistent with the model’s prediction. A one-standard-

deviation from zero in between-squares correlations is associated with a 2.21% to 3.56% decrease in

equity shares. Moreover, in line with the model’s predictions, households without college degrees tend

to have portfolio decisions that correlate more with their between-squares correlations.

7See Fagereng et al. (2017).
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Finally, we investigate the consequences for both households and society if they ignore nonlinear

dependence. Measuring the equivalent wealth loss, we find that the cost of ignoring between-squares

correlation could reach 3.32% of their wealth when the households are young, lack college degrees, and

accumulate low wealth. Meanwhile, via a simulation study, we show that ignoring between-squares

correlation could increase the Gini index by 2.73% for the overall society and by 3.52% for college

graduates. Apparently, our finding shows that nonlinear dependence, as a new channel, plays an

important role in the evolution of wealth inequality.

This paper builds on a large body of literature that studies the role of non-diversifiable labor

income risk on life-cycle portfolio decisions. Research in this literature usually focuses on analyzing

labor income shocks that follow a lognormal distribution (e.g., Carroll (1997); Cocco et al. (2005);

Gomes and Michaelides (2005a); Fagereng et al. (2017)). Bagliano et al. (2019) consider personal

disaster risk during an individual’s working age period (20-65 years old), while Chang et al. (2018)

have assessed age-dependent labor market uncertainty. Inspired by Guvenen et al. (2014), Catherine

(2022) and Shen (2022) examine the importance of countercyclical earnings risk. However, what has

not yet been well investigated is the nonlinear dependence between labor and stock market risk and

how it affects households’ portfolio decisions. Our paper aims to fill this gap. By doing so, we offer a

new perspective on the risky labor income process and delve into how our measure affects households’

welfare and wealth inequality.

Further, our examination of nonlinear dependence contributes to another strand of the literature

analyzing the interaction between labor income risk and financial portfolio choice. Storesletten et al.

(2007), Benzoni et al. (2007), and Lynch and Tan (2011) show that labor income tends to move

together with stock returns in the long run. Including this linear correlation helps to match the data

well. However, the empirical evidence on the linear correlation is somewhat mixed (e.g., Campbell

et al. (2001)). For example, Huggett and Kaplan (2016) find that human capital and stock returns

have a smaller correlation than the one in Benzoni et al. (2007). Our model does not rely on the linear

dependence between labor and stock market risk. Instead, we investigate the nonlinear dependence

between labor and stock market and its impact on life-cycle portfolio decisions.

According to our theory, workers with college degrees tend to have a stronger between-squares

6



correlation and take less risk with their financial investments. This could be because college graduates

are more likely to receive performance-based compensation, making their income flow closely related

to firms’ market value. Our result is consistent with the results of Campbell et al. (2001), Angerer

and Lam (2009), and Betermier et al. (2012), all of whom show that workers in an industry with

higher income risk exhibit less risky asset shares.

This paper also contributes to another branch of the literature examining nonlinear dependence

across or within financial assets. Harvey and Siddique (2000) show that coskewness between an asset

and the market portfolio exists and can explain parts of the apparent nonsystematic components in

cross-sectional variation in expected returns. Patton (2009) examines the nonlinear dependence be-

tween hedge fund performance and market factor via testing the nonlinearity between the conditional

mean and variance with market factor. Menćıa (2011) further develops a multivariate framework

to investigate the nonlinear dependence in the conditional variance between the hedge fund and the

market portfolio. Regarding nonlinear dependence within an asset, Ding et al. (1993) and Granger

and Ding (1994) first propose using the powers of absolute returns to examine the “ARCH effect” and

volatility clustering. Cont (2001) revisits this nonlinear dependence by showing the persistence of au-

tocorrelation in squared returns for the S&P 500. Other papers that investigate nonlinear dependence

include LeBaron (1988), Scheinkman and LeBaron (1989), Hsieh (1989, 1993), Edwards and Susmel

(2001), Shephard (2010), and Madan and Wang (2020). Our analysis contributes to this literature

by examining nonlinear dependence across different markets. Motivated by the measures proposed

in Ding et al. (1993) and Granger and Ding (1994), we construct the between-squares correlation

to capture nonlinear dependence and document evidence that the nonlinear dependence across labor

market and stock market exists for a large sample of households.

The rest of the paper is organized as follows. Section 2 introduces the concept of between-squares

correlation and documents stylized facts related to it. Section 3 uses a one-period model that captures

the essential ingredients for our analysis and highlights the main mechanisms. Section 4 introduces

the life-cycle model’s setup. Section 5 shows the calibration, and Section 6 presents the quantitative

analysis. Section 7 conducts empirical analysis. Section 8 reveals economics implications of the

between-squares correlation, and Section 9 concludes.
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2 Nonlinear Dependence

2.1 Does Nonlinear Dependence Exist in the Data?

We employ a rigorous empirical framework to investigate the nonlinear dependence between labor

income shocks and innovations to stock returns by using the PSID survey data and CRSP data.

The PSID is a comprehensive survey that encompasses a diverse range of information about

the labor market and demographic variables, including age, education, household composition, and

marital status. The survey was conducted annually from 1968 to 1997 and biennially after 1997.

However, income-related variables were bracketed in the 1968 and 1969 waves, making them unusable

for our analysis. To optimize the use of data after 1997, we consider two time series: one with annual

data (∆t = 1) from 1970 to 1997 and another with biennial data (∆t = 2) from 1970 to 2017. To

construct the biennial series, we can directly use the PSID data after 1997, while for the data before

1997, we only retained observations from every other year, despite the data being collected annually.

The age profile may differ among households with a female head of household, necessitating a

separate estimation. Thus, the sample was divided based on the gender of the head of the household.

However, the subsample with a female head of household had insufficient observations, and we were

unable to perform a reliable estimation. Consequently, the analysis was restricted to households with

a male head of household.

We defined labor income as total reported labor income plus unemployment compensation, work-

ers’ compensation, social security, supplemental social security, other welfare, child support, and total

transfers, all this for both the head of household and if present his spouse. Then we deflate labor

income using the 2016 Consumer Price Index from the Bureau of Labor Statistics.

First, we closely follow the sample selection strategy of Nakajima and Smirnyagin (2019).8 We

only include households where the head has a minimum of 20 waves of positive labor income data. If a

household head retires in the current survey year, we delete all the information about this household.

Then we employ a methodology similar to that of Cocco et al. (2005). We decompose the logarithm

of household i’s labor income at age t into two components: a deterministic function of age t and a

8See Appendix A for details.
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vector of other individual characteristics, and an error structure that captures both transitory shocks

and persistent shocks. To quantitatively assess the excess return on our stylized risky asset, we use

CRSP data on the New York Stock Exchange value-weighted stock return relative to the Treasury

bill rate. The linear correlation and nonlinear dependence between return innovations and persistent

income shocks are then easily computed.

We categorize all households into two groups, college graduates and a no-college group, to ac-

count for the impact of education. This is based on the well-established observation that households

exhibit distinct behavioral patterns across different education levels (see Attanasio (1995); Hubbard

et al. (1995); Cocco et al. (2005)). Subsequently, we conduct separate estimations of the nonlinear

dependence for each group to understand the effect of education on our results.

Table 1 presents summary statistics that compare five commonly used measures of nonlinear

dependence between labor income and stock returns, two coskewness and three cokurtosis, for both

annual and biennial data. All the statistics, except one coskewness statistic for biennial data, are

significantly positive in the full sample. Moreover, we show that these results hold for households

without college degrees. On the other hand, only one statistic of coskewness and one statistic of

cokurtosis are significant for college graduates. Figure 2 shows the coskewness and cokurtosis across

various percentiles of the earnings growth distribution. The data reveal that all statistics deviate from

the benchmark values (red dashed lines) if there is no nonlinear dependence, which then indicates

the presence of nontrivial, nonlinear dependence. Similarly, as shown in Figure 20, when examining

households grouped by wealth percentiles, we consistently observe positive coskewness and cokurtosis

across different percentiles of the wealth distribution, except for occasional drops below zero for

the lowest wealth group. Overall, both Table 1 and Figure 2 suggest that there exists a nonlinear

dependence between labor and stock markets.9

9Additional evidence for the existence of nonlinear dependence between labor and stock markets are provided in
Appendix H.
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Table 1: Summary Statistics: Coskewness and Cokurtosis
This table presents summary statistics of coskewness and cokurtosis between labor income growth shock and stock
return shock from various samples using PSID and CRSP data. We construct the labor income growth shock as
follows: (1) Estimate the labor income shock δi,t by yit = f(t,Ωit) + δi,t, where f(t,Ωit) is a deterministic function of
age t and a vector of other individual characteristics Ωit. The function f(t,Ωit) is additively separable in t and Ωit.
The vector Ωit of personal characteristics other than age and the fixed household effect includes marital status and
household composition. Household composition is defined as the additional number of family members in the household
besides the head and, if applicable, spouse. (2) We define labor income growth shock ∆y∗it,∆t with ∆t period as the ∆t
difference of the labor income shock ∆y∗it,∆t = y∗i,t+∆t− y∗it. Panel A displays results for the entire sample, while panels
B and C show results for households without and with college degrees, respectively. The column labeled ”Annual data”
(or ”Biennial data”) indicates whether the statistics are derived from annual (or biennial) data from the period of 1970
to 1997 (or 2017). The five coskewness and cokurtosis measures between two random variables Z1 and Z2 are defined
by

S(Z1, Z1, Z2) ≜
E[(Z1 − EZ1)

2(Z2 − EZ2)]

σ2
1σ2

,(1)

S(Z1, Z2, Z2) ≜
E[(X1 − EZ1)(Z2 − EZ2)

2]

σ2
1σ2

,(2)

K(Z1, Z1, Z1, Z2) ≜
E[(Z1 − EZ1)

3(Z2 − EZ2)]

σ3
1σ2

,(3)

K(Z1, Z1, Z2, Z2) ≜
E[(Z1 − EZ1)

2(Z2 − EZ2)
2]

σ2
1σ

2
2

.(4)

K(Z1, Z2, Z2, Z2) ≜
E[(Z1 − EZ1)(Z2 − EZ2)

3]

σ1σ3
2

,(5)

where σi is the standard deviation of Zi , i = 1 , 2.

Panel A: Full sample Panel B: No college Panel C: College

Annual
data

Biennial
data

Annual
data

Biennial
data

Annual
data

Biennial
data

S(∆y∗it,∆t,∆y∗it,∆t, ηt)
Mean 0.344 0.561 0.329 0.540 0.393 0.623

p-value < 0.01% < 0.01% < 0.01% < 0.01% < 0.01% < 0.01%

S(∆y∗it,∆t, ηt, ηt)
Mean −0.05 0.014 −0.055 −0.001 −0.053 0.059

p-value < 0.01% 0.375 < 0.01% 0.914 0.080 0.081

K(∆y∗it,∆t,∆y∗it,∆t,∆y∗it,∆t, ηt)
Mean 0.119 0.178 0.203 0.248 −0.158 −0.023

p-value 0.062 < 0.01% < 0.01% < 0.01% 0.269 0.828

K(∆y∗it,∆t, ηt, ηt, ηt)
Mean 0.095 0.264 0.119 0.277 0.017 0.224

p-value 0.005 < 0.01% < 0.01% < 0.01% 0.818 0.038

K(∆y∗it,∆t,∆y∗it,∆t, ηt, ηt)
Mean 1.128 1.44 1.109 1.392 1.192 1.576

p-value < 0.01% < 0.01% < 0.01% < 0.01% < 0.01% < 0.01%

Observations 435 517 306 348 129 169
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Figure 2: Coskewness and Cokurtosis between Labor Income Growth Shock and Stock
Return
These graphs display the coskewness and cokurtosis between labor income growth shock (the same as Table 1) and
stock return for the full sample. We use the biennial labor income data and stock return from the PSID and CRSP, re-
spectively. Households are grouped by percentiles of average labor income growth shock over all waves. The coskewness
and cokurtosis values are calculated using the definitions provided by (1) to (5). Red dashed lines are the benchmark
values if there is no nonlinear dependence.

0 20 40 60 80 100
Percentile of avg. (de-trend) labor income growth

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
(a) Coskewness SSS(((∆∆∆yyy∗it,2,∆∆∆yyy∗it,2,ηηη t)))

0 20 40 60 80 100
Percentile of avg. (de-trend) labor income growth

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
(b) Coskewness SSS(((∆∆∆yyy∗it,2,ηηη t ,ηηη t)))

0 20 40 60 80 100
Percentile of avg. (de-trend) labor income growth

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
(c) Cokurtosis KKK(((∆∆∆yyy∗it,2,∆∆∆yyy∗it,2,∆∆∆yyy∗it,2,ηηη t)))

0 20 40 60 80 100
Percentile of avg. (de-trend) labor income growth

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
(d) Cokurtosis KKK(((∆∆∆yyy∗it,2,ηηη t ,ηηη t ,ηηη t)))

0 20 40 60 80 100
Percentile of (de-trend) avg. labor income growth

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
(e) Cokurtosis KKK(((∆∆∆yyy∗it,2,∆∆∆yyy∗it,2,ηηη t ,ηηη t)))

11



2.2 Between-squares Correlation

We have shown that nonlinear dependence exists in the data with different coskewness and cokurtosis.

However, it is important to acknowledge the limitations of the five measures employed in our study.

First, these measures lack normalization, which makes it challenging to draw fair comparisons. Second,

each measure captures only a specific aspect of nonlinear dependence. Therefore, to address these

limitations, we introduce the between-squares correlation, which is defined as the Pearson correlation

between the de-meaned squares of two random variables:

Corrsq(Z1, Z2) := Corr
(
(Z1 − EZ1)

2 , (Z2 − EZ2)
2) ,(6)

where Corr(·, ·) denotes the Pearson correlation coefficient function.

The between-squares correlation can be viewed as the normalized cokurtosis,10 which takes the

value within the range of [−1, 1], and captures the common sensitivity to extreme states for the two

variables. For example, two random variables with a high level of the between-squares correlation

will tend to undergo both extremely positive and extremely negative deviations.

Under a normality assumption, the between-squares correlation is completely determined by the

linear correlation, that is, Corrsq(Z1, Z2) = Corr2(Z1, Z2) when (Z1, Z2) is binormal. However, when

data are subject to risks from higher-order moments (i.e., Shen (2022)), the between-squares cor-

relation emerges and cannot be determined by the linear correlation. For instance, in this paper,

we assume both labor income shocks and stock return innovations follow a mixture normal distri-

bution, and thus both labor income and stock return are subject to higher-order moments and the

between-squares correlation between them exists.

On the other hand, compared with cointegration, introducing between-squares correlation requires

fewer assumptions on the evolution of stock price and labor income. Cointegration requires a linear

combination of the two series to be stationary, which is a stringent constraint. In contrast, the

between-squares correlation measures the correlation of higher moments and does not impose any

additional theoretical constraints. Therefore, the between-squares correlation is a more flexible and

10The between-squares correlation can be related to the cokurtosis defined in equation (4) through the following
equation: Corrsq(Z1, Z2) = K(Z1, Z1, Z2, , Z2)/

√
(Kurt[Z1]− 1)(Kurt[Z2]− 1).
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convenient measure for capturing the nonlinear dependence between two variables without requiring

a specific functional form.

More importantly, we find that the between-squares correlation can serve as a sufficient statis-

tic for nonlinear dependence under some proper assumptions. It simplifies the analysis and allows

for more efficient estimation of the nonlinear relationship between labor income and stock market

returns. Specifically, in Appendix B, we show that when two variables follow a mixture normal distri-

bution and satisfy certain regularity conditions, the between-squares correlation, together with linear

correlation and other marginal moments, is sufficient to characterize the joint distribution of these

two variables. This implies that, once the linear correlation and marginal moments are known, any

additional nonlinear dependence can be entirely captured by the between-squares correlation. For

example, all five coskewness and cokurtosis can be determined by the between-squares correlation as

shown in Appendix B.3. Hence, the between-squares correlation is a valuable tool for characteriz-

ing the nonlinear dependence between two variables, even when knowledge of the joint distribution

underlying them is limited.

In addition, the between-squares correlation holds substantial economic implications. The rela-

tionship between labor and stock markets extends beyond simple linear correlation, exhibiting a more

intricate dependence structure. Several studies, including Michelacci and Quadrini (2009), Bronars

and Famulari (2001), and Nickell and Wadhwani (1991), explore two types of comovements between

shareholder value and wages. For instance, Bronars and Famulari (2001) show that firms in a grow-

ing environment pay lower wages, indicating an opposite comovement between firm value and labor

income. On the other hand, Nickell and Wadhwani (1991) show that firms facing severer financial

constraints tend to pay lower wages, implying that firm value and labor income move in the same

direction during a financial crisis. These findings illustrate the complex dynamics at play.

Complex comovements between labor and stock markets can also be driven by other factors. For

instance, macroeconomic policies aimed at boosting economic growth, such as increased government

spending, may have negative distributional effects on labor income, leading to reduced real purchas-

ing power for workers. Increased competition for labor and resources resulting from infrastructure

spending, on the other hand, drive up prices and reduce profits in other industries. Additionally,
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policies that increase inflation or interest rates may result in a decrease in job opportunities and labor

income. Therefore, by using the between-squares correlation, we can analyze the joint occurrence of

extreme values in the labor and stock markets that may arise due to these policies, enabling a more

comprehensive understanding of their effects on workers and the economy.

2.3 Stylized Facts

Figure 3 shows the histogram and kernel density of estimations across the full sample, which high-

lights a high density of positive between-squares correlation. The long right tail indicates that many

households earn income that is highly exposed to the stock market concerning the between-squares

correlation. Though there are few negative between-squares correlations, these negative estimates

cluster around zero, suggesting that a positive between-squares correlation is a reasonable assump-

tion for the model setup. Furthermore, this assumption is supported by the findings presented in

Table 2.

Figure 3: Between-squares Correlation Distribution
This graph displays the histogram and kernel density of between-squares correlation estimates between labor income
shock and excess stock return for the full sample. We use labor income and stock return data from the PSID and
CRSP, respectively. Graph A uses the annual data from 1970 to 1997, while graph B uses the biennial data covering
the period from 1970 to 2017.
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(b) Biennial data

Table 2 provides summary statistics for the between-squares correlation, with results from different

data frequencies supporting a significant and positive between-squares correlation. Panel A reveals
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Table 2: Summary Statistics: Between-squares Correlation
This table presents summary statistics from various samples using PSID and CRSP data. Panel A displays results for
the entire sample, while panels B and C show results for households without and with college degrees, respectively.
The column labeled ”Annual data” (or ”Biennial data”) indicates whether the statistics are derived from annual (or
biennial) data from the period of 1970 to 1997 (or 2017). ”Fraction > k” shows the percentage of samples in which the
between-squares correlation exceeds k.

Panel A: Full sample Panel B: No college Panel C: College

Between-squares
Correlation

Annual
data

Biennial
data

Annual
data

Biennial
data

Annual
data

Biennial
data

Mean 0.044 0.041 0.034 0.032 0.070 0.060

St.Dev 0.247 0.233 0.241 0.224 0.259 0.250

p-value < 0.2% < 0.1% 0.014 < 1% < 0.3% < 0.2%

P10 −0.232 −0.208 −0.236 −0.214 −0.211 −0.186

P25 −0.142 −0.140 −0.152 −0.141 −0.115 −0.135

P50 0.006 0.001 0.007 0.000 0.005 0.004

P75 0.200 0.179 0.177 0.150 0.244 0.206

P90 0.400 0.378 0.357 0.366 0.433 0.406

Fraction > 0 51.26% 50.29% 51.63% 50.00% 50.39% 50.89%

Fraction > 0.1 34.71% 34.24% 34.64% 33.33% 34.88% 36.09%

Fraction > 0.2 24.83% 23.60% 22.55% 22.41% 30.23% 26.04%

Observations 435 517 306 348 129 169
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that the full sample exhibits positive average values of 0.044 and 0.041 for annual and biennial data,

respectively. These values are significantly different from zero, with p-values of less than < 0.2%.

While medians are close to zero, substantial variability exists in the values of the between-squares

correlation. Panel A also provides the interquartile range of the between-squares correlation for both

data frequencies over the full sample. We find that the 75th and 90th percentiles are substantially

positive at 0.2 and 0.4, respectively. Moreover, more than half of the estimations are positive, with

about one-third featuring a substantially positive between-squares correlation (≥ 0.1), and over one-

fifth exceeding 0.2. Therefore, we assume a positive between-squares correlation and use the sample

mean as our calibration target for model setup.

Figure 4: Participation rate and Cond. Risky Share for different Corrsq

The figure presents the participation rates and conditional risky share for different Corrsq subsamples. The samples
are by quartiles of Corrsq between income growth and market returns. The data are from the PSID and CRSP.
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Panels B and C in Table 2 present statistics for two education groups, with results similar to

those of the full sample. However, most statistics for the no-college group are lower than those for

college graduates, with the average between-squares correlation for college graduates approximately

twice that of the no-college group. Based on these findings, we perform separate calibrations for each

group and investigate the disparities in corresponding policy rules in Section 6.

Then, we provide graphical evidence showing how the between-squares correlation influences mar-

ket participation and portfolio choice. Graphs A and B in Figure 4 show the participation rates and

conditional risky asset shares, conditional upon the positive level of the between-squares correlation.

In graph A, we present the average participation rates for households with the lowest between-squares

correlation (bottom quartile) and highest between-squares correlation (top quartile). We find that

households with low between-squares correlation participate more in the market than those in the

high between-squares correlation subsample. Meanwhile, conditional on participation, households

with low between-squares correlation hold more risky asset shares.

Graphs C and D in Figure 4 show the participation rates and conditional risky asset shares,

conditional upon the negative level of the between-squares correlation. In contrast to the positive

between-squares correlation, when considering the average participation rates, households in the top

quartile of negative between-squares correlation exhibit significantly higher participation rates com-

pared to those in the bottom quartile of negative between-squares correlation. This suggests that

a more negative between-squares correlation is associated with a decreased likelihood of households

participating in risky assets. Meanwhile, conditional on participation, our analysis reveals that house-

holds with a more negative between-squares correlation tend to hold a lower proportion of risky asset

shares. This suggests that as the negative between-squares correlation becomes less pronounced,

households exhibit a greater inclination to allocate a larger share of their portfolio to risky assets.

Overall, the first look depicted in Figure 4 suggests that between-squares correlation plays a signif-

icant role in explaining the portfolio decisions of households. Moreover, it exhibits a nonlinear impact

on both participation rates and conditional risky asset shares. These findings highlight the need

for further exploration and analysis between between-squares correlation and households’ portfolio

decisions.
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3 A First Model: A Mean-Variance-Skewness-Kurtosis Op-

timization Problem

To understand the impact of between-squares correlation on portfolio allocation, we start with a

parsimonious one-period portfolio optimization problem.11 Through this model, we show that the

between-squares correlation has a nonlinear effect on portfolio allocation, and it affects households’

portfolio allocation via two pathways: skewness channel and kurtosis channel.

We consider a one-period economy with two assets, a stock with a random return RS and a bond

with a constant gross return Rf . For simplicity, we assume the household is endowed with a fixed

amount of initial wealth (W0) and consumes a constant value during this period. Then she decides

how many shares of wealth (α) are invested in stock and saves the rest. Meanwhile, she faces labor

income risk, captured by W0R
L, where RL is the income shock. So her next-period-wealth (W1) is

given by

(7) W1 = W0R
p = W0(1 + αRS + (1− α)Rf +RL) = W0(1 +Rf + αRE +RL),

where RE = RS −Rf is excess return and Rp = 1+Rf +αRE +RL is portfolio return.12 In addition,

we consider mixture normal distributions for both excess return, RE, and labor income risk, RL, and

account for the existence of linear correlation and between-squares correlation between them.

Let u(·) be any utility function, and her one-period portfolio optimization problem is

max
α

E[u(W1)](8)

s.t. W1 = W0R
p .

Given W0 is known, her end-of-period utility entirely depends on the portfolio return Rp.

In accordance with Appendix C, the optimization problem (Equation 8) for this household can

be approximated by the following optimization problem that takes into account the mean, variance,

11For simplicity, we do not consider participation decisions.
12This portfolio return has a constant unit of labor income return. It captures that labor income is nontradable and

households can only adjust their risky asset holding to achieve a target portfolio return.
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skewness, and kurtosis of portfolio returns (MVSK):

(9) max
α

E(Rp)− λ1Var(R
p)− λ2Skew(R

p)− λ3Kurt(Rp),

where λ1, λ2, λ3 are risk weights contingent upon the household’s utility.

The main focus of our investigation is to examine the influence of between-squares correlation

on households’ portfolio allocation, as determined by Equation (9). Lemma 1 demonstrates that the

nonlinear dependence measured by various coskewness and cokurtosis measures impacts the skewness

and kurtosis of the portfolio, while leaving the variance unchanged. However, it is important to note

that relying solely on any of these measures fails to fully capture the influence of nonlinear dependence

on households’ portfolio risk profile.

Lemma 1. Let (RE, RL)T be a random vector. A portfolio return Π (α,RE ,RL) is defined as the

linear combination αRE + RL. Then the standard deviation, skewness, and kurtosis of this portfolio

can be represented as:

σΠ =
√
α2σ2

E + 2ασEσLCorr (RE, RL) + σ2
L,

SkewΠ =
1

σ3
Π

[
α3σ3

ESE + σ3
LSL + 3α2σ2

EσLS(R
E, RE, RL) + 3ασEσ

2
LS(R

E, RL, RL)
]
,

KurtΠ =
1

σ4
Π

[
α4σ4

EKE + σ4
LKL + 4α3K(RE, RE, RE, RL) + 6α2K(RE, RE, RL, RL)

+ 4αK(RE, RL, RL, RL)
]
,

where σa, Sa, Ka, a ∈ {E,L} are the standard deviation, skewness and kurtosis of RE and RL.

Therefore, to fully capture the nonlinear dependence, we propose the between-squares correlation

as a sufficient measure of nonlinear dependence, given proper assumptions and regularity conditions.

As demonstrated by the following theorem, given risky asset shares, portfolio risk profile such as

skewness and kurtosis is solely influenced by the nonlinear dependence measured by between-squares

correlation. The proof is relegated to Appendix B.

Theorem 1. Let (RE, RL)T be a random vector satisfying bivariate mixture normal distribution. A
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portfolio return Π (α,RE ,RL) is defined as the linear combination αRE + RL. Given same regularity

conditions of Theorem 3, The standard deviation of this portfolio is independent of the between-squares

correlations and given by:

σΠ =
√
α2σ2

E + 2ασEσLCorr (RE, RL) + σ2
L.

And the skewness, kurtosis of this portfolio can be represented as the following functions of Corrsq(RE, RL):

SkewΠ = sgn(ρ1 +
a1
2a2

)ks

√
Corrsq(RE, RL)− 4a0a2 − a21

4a2
+ bs,

KurtΠ = akCorr
sq(RE, RL) + sgn(ρ1 +

a1
2a2

)bk

√
Corrsq(RE, RL)− 4a0a2 − a21

4a2
+ ck,

where sgn(·) represents the sign function and the values of ρ1, a0, a1, a2, ks, bs, ak, ck are in Appendix B.

Furthermore, it is worth noting that variance is solely dependent on linear correlation and marginal

distributions, and can not capture the risks associated with nonlinear dependence. Consequently, our

results suggest that an alternative approach of using utility functions with higher-order moments,

rather than the conventional Markowitz mean-variance portfolio optimization, is more effective in

capturing and managing portfolio risks.

Figure 5 shows the skewness and kurtosis of portfolio returns as the between-squares correlation

varies, while holding the linear correlation and other moments constant at α = 1. We find that changes

in the between-squares correlation have dissimilar impacts on portfolio skewness and kurtosis. More

precisely, we note a substantial reduction in skewness from -0.50 to -0.65, while kurtosis remains

unchanged, as the between-squares correlation falls from 0 to -0.10. In contrast, as the between-

squares correlation rises from 0 to 0.25, we observe a marked increase in kurtosis from 3.25 to 4.10,

while skewness remains relatively constant with a slight decrease.

Overall, these findings indicate that the impact of between-squares correlation on portfolio risk is

primarily driven by the skewness channel when the between-squares correlation is negative, while the

kurtosis channel becomes more prominent when it is positive. Therefore, it is expected that households

with a nontradable labor income would strategically decrease their risky share to minimize portfolio
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Figure 5: Changes in Skewness and Kurtosis
This figure shows the changes in higher-order moments of portfolio returns as the between-squares correlation varies
while keeping all other parameters constant. Graph A shows the changes in skewness, and graph B shows the changes
in kurtosis. The risky share of wealth (α) is set to 1 and linear correlation is set to 0.1. Other moments are fixed
as follows: E[RL] = 0,Var(RL) = 0.252,Skew(RL) = −0.5,Kurt(RL) = 3.0 for labor income risk, and E[RS ] =
0,Var(RS) = 0.22,Skew(RS) = −1,Kurt(RS) = 4.5 for stock return innovations.
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risk and optimize the risk-adjusted objective when the between-squares correlation deviates from zero.

As anticipated, the results depicted in Figure 6 are consistent with our findings, displaying the

optimal risky share as the between-squares correlation varies. To gain a deeper understanding of the

asymmetric impact of between-squares correlation on skewness and kurtosis, we analyze another two

model specifications. The first specification accounts for mean, variance, and skewness (MVS), while

the second specification considers mean, variance, and kurtosis (MVK).

As the between-squares correlation increases from -0.10 to 0, the optimal risky share rises, but

it decreases when the between-squares correlation increases from 0 to 0.20. These findings can be

explained through the lens of the reduced models, MVK and MVS. When the between-squares cor-

relation is negative, the MVS undergoes a more significant change compared to the MVK, indicating

that negative between-squares correlation has a more substantial impact on portfolio skewness than

kurtosis. Consequently, the MVSK displays a similar pattern to MVS when the between-squares

correlation is negative, suggesting a skewness channel.

Conversely, when the between-squares correlation becomes positive, the impact on portfolio skew-

ness is minor, as MVS remains relatively flat. However, the effect of between-squares correlation on

portfolio kurtosis is significant, as depicted by the MVK under positive between-squares correlation.
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Figure 6: Optimal Risky Share
This graph compares the optimal risky share for varying between-squares correlation while holding all other parameters
constant. The analysis is performed under three distinct model specifications: MVSK, MVS, and MVK. The MVSK
model considers the mean, variance, skewness, and kurtosis of portfolio returns, while the MVS model only considers the
mean, variance, and skewness of portfolio returns, and the MVK model only takes into account the mean, variance, and
kurtosis of portfolio returns. The parameters used in the simulation are E[RS ] = 0.04, Std[RS ] = 0.2, Skew[RS ] = −0.5,
Kurt[RS ] = 4.5, E[RL] = 0.01, Std[RL] = 0.25, Skew[RL] = −1, Kurt[RL] = 3, Corr[RS , RL] = 0.1, W0 = 1.
We calibrate the coefficients λ1, λ2, λ3 using the CRRA utility function with a relative risk aversion of 3, given the
parameters above. The corresponding values of λ1, λ2, λ3 are 0.9473, −0.0054, 0.0011, respectively.
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Therefore, a similar pattern is observed between MVSK and MVK, as the impact of positive between-

squares correlation on kurtosis dominates the optimal risky share, indicating a kurtosis channel.

4 Baseline Model

After understanding the effect of the between-squares correlation using a one-period model, we pro-

ceed to develop a dynamic life-cycle model. Each period, households earn labor income subject to

countercyclical earnings risk and make decisions regarding consumption, stock market participation

and risky asset holdings conditional on participation. Importantly, we introduce between-squares

correlation between the labor and stock markets.

4.1 Preferences

We follow the convention in life-cycle models and let adult age (t) correspond to effective age minus

19. Each period corresponds to one year and households live for a maximum of 81 periods (age 100).

22



Households start working at the age of 20 and receive uncertain labor income exogenously until the

age of 65. They retire at the age of 65. The probability that an adult is alive at age t conditional on

being alive at age t− 1 is denoted as pt.
13 At each point in time there is a stationary age distribution

of households in the economy with no population growth.

Households have Epstein-Zin (1989) preferences, a recursive preference in which the elasticity of

intertemporal substitution is separated from the relative risk aversion. For household i, let Xi,t denote

the cash-on-hand at the beginning of age t, and the utility function is given by

(10) Ui,t =

{
(1− β)C

1−1/ψ
i,t + β

(
Et
[
pt+1U

1−γ
i,t+1 + b(1− pt+1)X

1−γ
i,t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

,

where β is the discount factor, b determines the strength of bequest motive, γ is the coefficient of

relative risk aversion, and ψ is the elasticity of intertemporal substitution.

4.2 Financial Assets Return

We assume financial market assets consist of two financial assets in which households can invest, one

riskless and one risky asset. The riskless asset has a constant gross return Rf , and the return of the

risky asset is given by

(11) RS
t+1 = Rf + µ+ ηt+1,

where µ is the excess return of the risky asset and ηt+1 is the shock to returns, independently and

identically distributed as

(12) ηt ∼


N(µη,1, ση,1) with prob. pη,

N(µη,2, ση,2) with prob. 1− pη,

13pt is taken from the mortality tables of the National Center for Health Statistics.

23



Our assumption of a mixture normal distribution is mainly motivated by two reasons.14 First, as

argued before, the mixture normal assumption allows us to deal with a more complicated dependence

structure, such as the between-squares correlation between stock return and labor income introduced

in our model. Under normality, the between-squares correlation is always the square of the correlation;

however, in Section 2.3, we show that from the data, the between-squares correlation is actually

similar to the correlation in magnitude. Therefore, deviation from normality allows us to construct

a more realistic between-squares correlation. Second, the mixture normal assumption enables us to

incorporate higher moments in the stock return innovations. Higher moments in the high-frequency

returns data have been discussed and considered important for many years, but the long-horizon

higher moments are difficult to measure accurately using standard techniques. Neuberger and Payne

(2021) show that short-horizon returns can be used to estimate the higher moments of long-horizon

returns, and their empirical results identify a high level of negative skewness and excess kurtosis of

annual U.S. equity market returns. Therefore, we introduce mixture normal shocks instead of normal

shocks to capture such moments.

4.3 Labor Income Process

The labor income process during the working period is defined as:

(13) yit = f(t,Ωit) + δi,t,

where f(t,Ωit) is a deterministic function of age t and a vector of other individual characteristics Ωit.

We further decompose the labor income shock δi,t into a persistent shock, νi,t, and a transitory shock,

ϵi,t:

δi,t = νi,t + ϵi,t.(14)

14Our findings about nonlinear dependence remain valid regardless of the assumption of the mixture normal as-
sumption. Alternative distributions, i.e., Laplace distributions, can capture higher moments in the process while still
allowing for the existence of nonlinear dependence.
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We assume that ϵi,t is normally distributed as N(0, σ2
ϵ) and independent of νi,t and the stock return

shock, ηi,t. The persistent shock νit is given by

νi,t = λνi,t−1 + ui,t,(15)

where ui,t follows a mixture normal distribution:

uit =


N(µu,1, σ

2
u,1) with prob. pu,

N(µu,2, σ
2
u,2) with prob. 1− pu.

(16)

We assume ui,t is correlated with the stock return shock ηi,t, and the dependence structure is captured

by both the Pearson correlation and between-squares correlation. We define the correlations between

components of ui,t and ηi,t as

ρa,b = Corr(u
(a)
i,t , η

(b)
t ), a = 1, 2, b = 1, 2.(17)

The four correlations ρa,b control for the value of the correlation and between-squares correlation

between ui,t and ηi,t.
15,16

Income during retirement is assumed to be exogenous and deterministic, with all households

retiring in time period K, corresponding to the retirement age of 65. Income during retirement

follows

yit = log(λ) + f(K,ΩiK) + viK , t > K,(18)

where it is a constant fraction (λ) of the permanent component of labor income in the last working

period.

15See Appendix B for the explicit forms.
16In Appendix I, we show that the between-squares correlations are zero in the models used in Catherine (2022) and

Shen (2022) where they use the assumptions of mixture normal distribution but do not explicitly model between-squares
correlation. This highlights the importance of explicitly including between-squares correlation in the model in order to
capture its effect.

25



4.4 Wealth Accumulation

At each period t, households start with accumulated wealth, receive labor income, and decide whether

they want to participate in the stock market. They consume Ct and invest the rest on a portfolio

consisting of αt shares of risky assets and 1 − αt of riskless assets if they choose to participate in

the stock market. Otherwise, they will invest the rest on riskless assets. The participation decision

is represented by a dummy variable IP , which is one if households decide to participate and zero

otherwise. To participate in the stock market, households need to pay a fixed cost, F , which represents

the cost of acquiring information about the stock market and transaction fees. We write cash-on-hand

Xi,t as

Xi,t+1 = (Xi,t − Ci,t)R
p
i,t+1 − FIpi,tPi,t + Yi,t+1,(19)

where Rp
i,t+1 is the portfolio return given by

Rp
i,t+1 = αi,tR

S
t+1 + (1− αi,t)Rf .(20)

Lastly, we restrict borrowing from riskless assets or future labor income, and short sales on risky

assets. Specifically, households face the following constraints:

(21) 0 ≤ αi,t ≤ 1,

(22) 0 < Ci,t ≤ Xi,t.

4.5 Households’ Optimization Problem

In each period t, households choose whether or not they participate in the market, and decide their

consumption and risky shares (Ipi,t, Ci,t, αi,t) based on cash-on-hand Xi,t to maximize the expected
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utility. The optimization problem can be stated as

(23) Vi,t = max
{Ipi,u}Tu=t,{αi,u}Tu=t,{Ci,u}Tu=t

Et(Ui,t),

where Ui,t is defined in equation (10) and is subject to the constraints given by equations (11) to (22).

Since analytical solutions do not exist for this problem, we use a numerical solution method.

We standardize the entire problem with persistent labor income Pi,t defined as log(Pit) = yit, and

introduce a new state, adjusted persistent income shock wi,t, defined as log(wi,t) = (1 − λ)νi,t.
17

Specifically, let xi,t =
Xi,t
Pi,t

and ci,t =
Ci,t
Pi,t

be the normalized cash on hand and consumption. The

normalized value function vi,t =
Vi,t
Pi,t

is

vi,t(xi,t, wi,t) = max
{αi,u}Tu=t
{ci,u}Tu=t


(1− β)c

1− 1
ψ

i,t

+β

(
Et
(
Pi,t+1

Pi,t

)1−γ [
pt+1v

1−γ
i,t+1 + (1− pt+1)bx

1−γ
i,t+1

]) 1−1/ψ
1−γ


1

1−1/ψ

,(24)

subject to

xi,t+1 =


(xi,t − ci,t)R

p
i,t+1

Pi,t
Pi,t+1

− FIpi,t + eεi,t+1 for t ≤ K ,

(xi,t − ci,t)R
p
i,t+1 − FIpi,t + k for t > K .

(25)

lnwi,t+1 =


λ lnwi,t + (1− λ)ui,t+1 for t ≤ K ,

0. for t > K .

(26)

Pi,t
Pi,t+1

=


wi,te

f(t,Ωit)−f(t+1,Ωi,t+1)−ui,t+1 for t ≤ K ,

1 for t > K .

(27)

We use a numerical method to recursively solve the optimization problem above. In the last period,

households predict a certain death, and therefore the policy functions are determined by the bequest

motive. We start from this terminal condition and then iterate backward. Appendix D presents the

17We use wi,t as a state instead of νi,t for the convenience of calculation.
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details of the numerical solution method.

5 Calibration

To estimate the model, we adopt a two-stage strategy, each with distinct purposes. In the first

stage estimation, we calibrate all the stand-alone parameters that can be clearly identified without

explicitly referring to our model setting. For example, the dynamics of labor income and stock returns

are exogenous variables which do not depend on our model. We use the PSID and CRSP, as well as

generalized method of moments (GMM), to match the empirical moments. In the second stage, we

estimate the parameters of preference to align with specific moments of the empirical data, ensuring

a overall goodness-of-fit between the model and empirical observations. Using the simulated method

of moments (SMM), we calibrate these parameters to match the average life-cycle profiles from SCF

data.

5.1 Labor Income and Stock Return

We estimate the parameters of labor income and stock return jointly with the GMM. To estimate labor

income shocks, we need to get the family-specific fixed effects f(t,Ωit) of labor income in equation

(13). Following the method of Cocco et al. (2005), we use the PSID from 1970 to 2017 and run a

regression analysis to estimate f(t,Ωit).
18 The residuals from the regression can be considered to

be realizations of the labor income shock, δi,t. Then we take the annual excess returns from CRSP

between 1970 and 2017, for which the de-meaned series can be considered to be realizations of stock

return shocks, ηt. Using these data, we can calibrate parameters of labor income and stock returns.

We apply GMM targeting (1) mean, variance, skewness, and kurtosis of stock return shocks ηt; (2)

mean and variance, skewness, and kurtosis of δi,t; and (3) correlation and between-squares correlation

between δi,t − δi,t−1 and ηt.
19 For stock returns, Neuberger and Payne (2021) propose a new method

using short-horizon stock returns to estimate long-horizon moments, and we use their results for the

18See Table 12 for variable definitions and Appendix A for the data selection principle and other details.
19We use third- and fourth-order moments in GMM. For simplicity, we refer to such higher-order moments as skewness

and kurtosis. See Appendix B for details.
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annual logarithm return with the standard deviation of 0.216, skewness of −1.41, and excess kurtosis

of 5.62. For the labor income process, following Nakajima and Smirnyagin (2019), we target the

moments of different age groups. We consider four age groups indexed by {30, 40, 50, 60}, and each

group contains ages ±5 years.20 Lastly, for the dependence structure between two markets, we use

the average between-squares correlation in Table 2 and the average correlation estimated through the

same methodology.

In total, we calibrate five parameters {pη, µ1
η, µ

2
η, σ

1
η, σ

2
η} that control for stock return dynamics,

seven parameters {pu, µ1
u, µ

2
u, σ

1
u, σ

2
u, λ, σϵ} that control for labor income dynamics, and four param-

eters {ρ11, ρ12, ρ21, ρ22} that determine the dependence structure. For simplicity, we assume that

ρ11 = ρ22 and ρ12 = ρ21. Consistent with Section 2, we control for education and split households

into two groups: households without college degrees and college graduates. For each group, we esti-

mate the between-squares correlation and calibrate the parameters. Overall, we apply GMM with 19

moments to 14 parameters.

Panels A and B in Table 3 report the calibration results. For those parameters unrelated to shocks,

we take their values from Cocco et al. (2005). Specifically, the riskless rate Rf − 1 is set to 2% and

the equity premium µ is 4%. The replacement rate λ is calibrated as the ratio of the average of labor

income for retirees in a given education group to the average of labor income in the last working year

prior to retirement, which is 0.903 for the no-college group and 0.945 for college graduates.

5.2 Preference and Bequest Motive

We use the SCF data from 2007 to 2019 and calibrate the preference parameters and fixed cost rate

to match the average participation rate, risky asset share, and normalized wealth for different age

groups.

To capture the different behaviors between two educational groups, we calibrate the parameters

separately, except that relative risk aversion γ and the fixed cost rate F are assumed to be the same

between groups.21 To approximate the life-cycle profiles for an average household, we assume that

20Group 30 contains ages 22-35; group 40 contains ages 35-45; group 50 encompasses ages 45-55; and group 60
aggregates the remaining ages 55-65.

21In Appendix J, we relax this assumption and allow the risk aversion estimates to vary between two educational
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households with college degrees make up 30% of the world’s population, which is observed from the

PSID.

We calculate the average participation rate, risky asset share, and normalized wealth for 15 age

groups in [20, 65] from the SCF data and obtain 45 moments in total.22 The SMM seeks the parameters

that minimize

(m̂−m)′W (m̂−m),(28)

where m̂ refers to the simulated moments, m refers to the targets, and W is the inverse of the

covariance matrix of the empirical moments, which is estimated by bootstrapping the true data.

5.3 Results

In this section, we summarize the results of a two-step calibration. Table 3 presents the calibration

parameters. Panel A describes the parameters for the stock return shock. There are 17.1% chances to

draw the innovation from N(-0.184, 0.394) and 82.9% chances to draw the innovation from N(0.038,

0.126). Although recessions or rare disasters happen less frequently, when they do happen, house-

holds are more likely to suffer negative stock returns and the stock market becomes more volatile.23

Meanwhile, shocks to labor income also display a structure similar to the stock return innovations.

Panel B shows that for college graduates, the probability of the mixture normal distribution (pu)

is 0.279. This implies college graduates are less likely to expect a negative mean growth (−15.6%)

than a positive mean growth (6%). Households without college degrees have fewer opportunities to

experience a negative growth rate (−12.4%), but on the other side, their positive growth rate is also

smaller (4.6%) compared with college graduates. In addition, households without college degrees face

much more transient risk than college graduates, with a standard deviation of 20.4% compared with

13.8% for college graduates. This can be explained by the fact that households with higher education

groups. Results remain valid.
22We construct nonoverlapping age groups every 3 ages. For example, the first group includes samples of ages [20, 22],

and the second includes samples of ages [23, 25]. The exception is the last group, which includes samples of ages [62, 65].
23Such a structure of stock return shock has been studied by several researchers. See Fagereng et al. (2017), Shen

(2022), and Catherine (2022).
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levels are more likely to have stable income flows.

Table 3: Baseline Calibration Parameters
This table reports the calibrated parameters of the life-cycle model. We use data from the PSID and CRSP and
construct a two-step calibration. Panel A reports the parameters for the mixture normal shock, which controls the
stock return process. Panel B reports the parameters for persistent shock νi,t (mixture normal distributed) and transient
shock ϵi,t (normal distributed) which controls for the labor income process for different groups. The two correlation
parameters are correlations between components of the stock return shock, ηt, and the persistent labor income shock,
νi,t. Panel C reports the preference parameters and fixed costs for different groups. We assume the two groups have
the same risk aversion and fixed cost.

Panel A: Stock return shock, ηt

Mixture weight pη 0.171

Mean of 1st component µη,1 -0.184

Mean of 2nd component µη,2 0.038

SD of 1st component ση,1 0.394

SD of 2nd component ση,2 0.126

Panel B: Labor income shocks ui,t and ϵi,t

No college College

Mixture weight of ui,t pu 0.271 0.279

Mean of 1st component of ui,t µu,1 -0.124 -0.156

Mean of 2nd component of ui,t µu,2 0.046 0.060

SD of 1st component of ui,t σu,1 0.172 0.231

SD of 2nd component of ui,t σu,2 0.010 0.013

SD of transient shock ϵi,t σϵ 0.204 0.138

1st auto-correlation coefficient λ 0.918 0.959

Replacement rate k 0.903 0.945

Panel C: Dependence parameters

No college College

Dependence parameter 1 ρ1 0.832 0.769

Dependence parameter 2 ρ2 -0.166 -0.222

The parameters of the dependence structure (college graduates, 0.769 and −0.222; households

without college degrees, 0.832 and−0.166) in panel C imply the linear correlation and between-squares

correlation are 0.0457, 0.0692 for the college group, and 0.0382, 0.0327 for households without college

degrees. The calibration results of the correlation are consistent with those of Cocco et al. (2005),

which show that a correlation is not significantly different from 0. The between-squares correlation
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Table 4: Preference Parameters
This table presents the preference parameters of both the baseline model and the model without between-squares
correlation. For the model without between-squares correlation, we adjust only the two correlation parameters to
eliminate any between-squares correlation. The calibration of the preference parameters follows the methodology
discussed in Section 5.2.

Baseline model Model without Corrsq

No college College No college College

Relative risk aversion γ 4.3 4.3 5.3 5.3

EIS ϕ 0.28 0.95 0.30 0.90

Discount factor β 90.2% 98.5% 92.0% 98.6%

Bequest motive b 2.5 2.5 2.5 2.5

Fixed cost rate F 0.005 0.005 0.005 0.005

is in the same order of magnitude as the linear correlation. However, it is big enough to generate an

obvious difference in policy function, as we will show in Section 6.

Table 4 shows the calibration results of preference parameters and the fixed cost rate. For com-

parison, we also calibrate the model without between-squares correlation and report the preference

parameters in Table 4. This alternative model can be viewed as being similar to the ones presented in

Catherine (2022) and Shen (2022), and serves as a useful point of comparison. Including the between-

squares correlation, risk aversion estimate drops from 5.3 to 4.3. With this moderate risk aversion

and low fixed cost of 0.005 (0.5% of the household’s expected annual income), our model matches

the data well. Therefore, the inclusion of the between-squares correlation provides a possibility to fit

the empirical data, especially the portfolio choice, with a lower but reasonable risk aversion estimate.

In addition, the strength of the bequest motive (b) is 2.5, is within the range of existing empirical

evidence and calibrations. Compared with college graduates, households without college degrees are

more impatient with a discount factor of 0.902. No college group accumulates less wealth and has a

weaker incentive to pay the fixed cost, leading to a low participation rate. College graduates have an

EIS of ψ = 0.95, and households without college degrees have a lower EIS of ψ = 0.28. These mea-

sures are consistent with those of Vissing-Jørgensen (2002), Brav et al. (2002), Malloy et al. (2009),

23Compared with existing literature, the difference is even larger, for example, the models without between-squares
correlation have risk aversion estimates of γ = 11 in Fagereng et al. (2017), γ = 5.6 in Shen (2022) and γ = 6.1 in
Catherine (2022).
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Table 5: Moments of Labor Income and Stock Return
This table reports relative errors of the moments targeted to calibrate labor income and stock return. Panels A and
B report the mean, variance, and higher moments of stock return shock and labor income shock. Panel C reports the
error in the dependence structure, including the Corr and between-squares correlation. Moments from the model are
computed with calibrated parameters under a mixture normal distribution. Empirical moments are from the PSID and
CRSP.

Panel A: Moments of stock return shock

Model Data

SD 0.216 0.216

3rd moment -1.412 -1.410

4th moment 8.595 8.620

Panel B: Moments of labor income shock

No college College

Model Data Model Data

SD:

25− 35
35− 45
45− 55
55− 65

0.378 0.408 0.386 0.405

0.428 0.432 0.412 0.395

0.449 0.443 0.416 0.392

0.457 0.464 0.417 0.414

3rd moment:

25− 35
35− 45
45− 55
55− 65

-0.021 -0.021 -0.032 -0.026

-0.027 -0.032 -0.034 -0.036

-0.029 -0.032 -0.035 -0.040

-0.029 -0.033 -0.035 -0.044

4th moment:

25− 35
35− 45
45− 55
55− 65

0.066 0.081 0.076 0.086

0.107 0.106 0.097 0.094

0.128 0.116 0.100 0.093

0.138 0.130 0.101 0.105

Panel C: Dependence structure

No college College

Model Data Model Data

Linear correlation 0.0382 0.0377 0.0457 0.0456

Between-squares correlation 0.0327 0.0338 0.0692 0.0696
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and Gomes and Michaelides (2008). Table 5 reports the fitness of the calibration for our baseline

model. Overall, we can conclude that the baseline model aligns closely with the data.

The existence of the between-squares correlation increases the labor income risk, and thus labor

income becomes more stock-like. Households need to balance their stock holdings in order to control

for total risk. Introducing nonlinear dependence provides us with a better understanding of labor

income risk without a counterfactually high-risk aversion, which may complicate an explanation of

other economic behaviors.

Figure 7: Calibration Results
The three graphs show the comparison among the baseline model, the model without between-squares correlation, and
SCF data for an average household. To align with the PSID, we assume that households with college degrees make
up 30% of the world’s population. The parameters for the baseline model and the model without between-squares
correlation have been taken from Table 3 and Table 4. We use triennial SCF data from 2007 to 2019 to calculate
empirical moments. We calculate moments using nonoverlapping age groups from 20 to 65. Each age group contains
samples of three successive ages. Graphs A, B, and C show the results of participation rate, conditional risky share,
and normalized wealth, respectively.
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Figure 7 compares the life-cycle profiles of participation rate, conditional risky asset share and the

normalized wealth for an average household implied by the baseline model and the model that does

not account for the between-squares correlation. Graph A compares the participation rates between

the models and the data. Overall, both models demonstrate a more realistic representation of the

participation rate, although it is worth noting that the participation rates are consistently higher

across various age groups when the between-squares correlation is ignored. Graph B compares the

share of wealth in stocks and shows that the models can generate a low share of wealth in stocks

that matches the data. However, it is noteworthy that without considering the between-squares

correlation, the model tends to produce more imprudent portfolio choices compared with the baseline

model. Graph C illustrates that both models match the wealth accumulation well.

6 Quantitative Analysis

We have known that the between-squares correlation, as a measure of nonlinear dependence, exposes

households to a new risk source and makes labor income more stock-like. To better understand

the implications of the between-squares correlation, we present the results of the baseline model

with calibrated parameters and compare them to those generated by an alternative model that does

not consider the between-squares correlation, using the same parameters. We maintain the same

correlations the same for both models to facilitate a fair comparison.

6.1 Policy Function

Figure 8 shows the policy functions for the share of wealth in stocks at different ages for both the

no-college group and college graduates. Conditional on participation, introducing a small between-

squares correlation lowers the optimal portfolio rule significantly, with the largest drop of 14.6% at

age 40 for the college group.

We also observe that the optimal portfolio rule decreases with both financial wealth and age, which

is consistent with the literature (e.g., Cocco et al. (2005)). This is mainly driven by the bond-like

property of labor income. The present value of labor income can be considered to be a substitution
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for riskless assets. Households will evaluate the risk-free position from labor income and balance the

portfolio choice. The effect is weaker for wealthier households since labor income becomes trivial

compared to wealth. Thus, households with less wealth will hold more positions of riskless assets

through labor income and make more aggressive portfolio choices. However, labor income is not a

complete substitution for riskless assets since it has risks from different shocks. As stated in Benzoni

et al. (2007), labor income also has stock-like features. The nonlinear dependence on stock returns will

make labor income more stock-like when considering the between-squares correlation. Although the

decreasing pattern remains, the model with the between-squares correlation narrows the gap between

the rich and poor.

To take a closer look, we calculate the difference in the optimal portfolio rules between the baseline

model and the model without the between-squares correlation. Table 6 presents the results. We find

the difference is much more significant for the no-college group with little wealth. For example, among

all age-20 households without college degrees, the largest decrease is 28.9%; however, for the wealthiest

age-20 households, this difference can decrease to 12.5%. This heterogeneity across different wealth

levels is driven by the fact households with less wealth attach more importance to the value of their

labor income stream, and extra risk exposure from the between-squares correlation will make them

tilt their financial portfolio more aggressively toward safe assets.

Table 6: Change in Optimal Risky Asset Shares with the between-squares correlation
This table reports the difference in optimal risky share αt between the baseline model and the alternative model without
the between-squares correlation for college graduates and the no-college group. The data are from the policy functions
discussed in Section 6.1. We calculate the difference for each age and wealth ratio. For instance, the second percentage
(−12.7%) corresponding with the age-20 college graduates is calculated as the difference in the optimal share at a wealth
ratio of 2.0 from the model with the between-squares correlation (28.4%) from the model without the between-squares
correlation (32%). We also report the largest difference for each age.

Group Age Largest diff.
Wealth ratio

2.0 4.0 8.0 10.0

No college

20 −28.9% −22.6% −18.0% −14.3% −12.5%

40 −26.7% −21.1% −20.6% −13.2% −14.3%

60 −26.7% −25.0% −22.5% −18.8% −16.7%

College

20 −15.6% −12.7% −8.4% −7.6% −7.4%

40 −21.1% −12.8% −10.4% −10.3% −10.1%

60 −16.9% −11.5% −12.1% −12.1% −10.9%
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Figure 8: Optimal Risky Asset Shares Policy Function
These six graphs plot the optimal risky asset shares policy functions for different ages and groups. The first column
corresponds with the no-college group and the second corresponds with the college group. The policy functions are
solved with calibrated parameters. We take the adjusted persistent income shock wi,t as 1.
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Including a per-period participation cost allows us to discuss the wealth-participation threshold.

Two facts may prevent households from participating in the stock market. First, the participation

cost might be too high relative to households’ accumulated wealth. Then for households with less

wealth, the optimal choice is not to pay for stock market participation. Second, labor income risk

alone might already exceed households’ risk tolerance. When households expect higher labor income

risk, they will not participate in the stock market as a way to avoid taking additional risks. Such a

case is less likely for those wealthier households since labor income makes up a smaller proportion

of their wealth. Introducing between-squares correlation makes labor income more stock-like, thus

affecting households’ participation decisions through the second channel.

Figure 9: Participation Wealth Threshold
These two graphs plot the participation wealth threshold across a range of ages for the two groups. The threshold is
calculated from the corresponding equity share policy function. It takes the largest value of wealth ratios at which
households will not participate in the stock market. We take the adjusted persistent income shock wi,t as 1.
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Figure 9 presents the wealth-participation threshold with respect to age. For both groups, in-

cluding the between-squares correlation implies a higher threshold for participation. In general, the

wealth threshold increases by 0 to 22.64% (4.05% to 10.84%) for the no-college group (college gradu-

ates). Moreover, the U-shaped pattern of the participation threshold is also consistent with the results

in Fagereng et al. (2017). At early ages, households accumulate little wealth, thereby limiting the

benefit of participating below the participation cost. When households age, they accumulate more

wealth, resulting in a higher optimal risky asset share and making stock market participation more
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attractive. Therefore, the wealth threshold decreases. When households approach retirement age,

the fall in the present value of future labor income flows gradually dominates and leads to the rebal-

ancing of the portfolio. In addition, we also observe heterogeneity between college graduates and the

no-college group. The U-shaped pattern of the participation threshold decays for both groups when

the between-squares correlation is included, but the effect is much stronger for households without

college degrees.

6.2 Simulation Results

We simulate the participation decisions, risky asset shares, and wealth accumulation of 100, 000

households over their life cycle. Figure 10 shows the average profiles for college graduates and the

no-college group.

First, we find that the participation rate increases with age, no matter whether or not the between-

squares correlation is included (graphs A and C). Since households typically accumulate more wealth

as they age, it is much easier for older households to pass the participation threshold. Second, average

conditional risky asset shares are roughly hump-shaped with respect to age (graphs B and D). This

is consistent with Cocco et al. (2005); however, a large correlation, such as 0.2 and 0.4, is required

in Cocco et al. (2005) to generate a very significant hump-shaped pattern of conditional risky share.

Here, we do not need to impose a large correlation. Instead, a small between-squares correlation

and higher-order moments can pull the trigger. Since optimal portfolio rules decrease with wealth,

relatively poor investors will be very aggressive and almost invest fully in the stock market, whereas

richer investors will invest more prudently. At each period, some households will just cross the

participation threshold and become aggressively poor investors.

On the contrary, once households enter the market, they will decrease their risky asset shares

with more wealth accumulation. During early working periods, since most households have very low

wealth accumulation, the effect of new investors will dominate and increase average conditional risky

asset shares. When more and more households participate in the market, the rebalancing effect from

those investors who stay in the market will dominate and decrease the average risky asset shares.

Thus, the average optimal risky asset share is hump-shaped. Its peak depends on the steepness of
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Figure 10: Life-Cycle Profile of Portfolio Decisions
These six graphs plot the life-cycle profiles for the two groups and compare the results between the baseline model and
the model without the between-squares correlation. The profiles are calculated from a simulation of 100000 households.
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the participation rate. In our model, college graduates accumulate wealth much faster and are more

likely to enter the stock market in their early twenties. Thus, conditional risky asset shares for college

graduates reach the peak much earlier than those for the no-college group.

Then, we find that the introduction of the between-squares correlation decreases the share of

wealth in stocks to a large extent but leads to only a tiny reduction in average wealth (graph F)

and average consumption (graph E). The existence of the between-squares correlation between stock

returns innovations and labor income shocks indicates that large joint downward movements are more

likely, thus making labor income more uncertain and undermining the nature of income serving as

a riskless asset. As a result, the average return on households’ financial wealth is lower, thereby

lowering households’ accumulated wealth over their life cycle.

6.3 Sensitivity Analysis

To test the robustness of the effect of the between-squares correlation, we perform a sensitivity analysis

with respect to relative risk aversion, EIS, and the discount rate. For simplicity, we report only the

results for the college group at age 20. Results for the no-college group and other ages are qualitatively

similar and are available upon request.

Figure 11 plots the life-cycle profile of risky asset shares with different parameters.24 We find that

the between-squares correlation has a very robust effect on portfolio choices. Although the change of

parameters may reshape the risky asset shares curve a lot, the effect of the between-squares correlation

always exists and stays strong.

24Throughout this section, we assume that the state variable wi,t takes a value of 1. In Appendix G, we conduct
another sensitivity analysis for the case where wi,t is not fixed at 1.
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Figure 11: Sensitivity Analysis
The four graphs plot the mean conditional risky share across ages for different parameters. In each graph, we change
only one parameter to test the robustness. The profiles are calculated from a simulation of 100, 000 households.
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7 Empirical Evidence

Calibrated to the U.S. data, our model shows that the presence of the between-squares correlation

between stock and labor income significantly affects households’ portfolio decisions. In particular,

households may choose not to participate in the stock market or delay their participation. Even when

households do participate in the stock market, their risky asset holdings are significantly reduced

because of the between-squares correlation.

To look for any empirical support for these predictions, we conduct a regression analysis concerning

how participation decisions and risky asset holdings respond to the between-squares correlation. To

do this, we use data from the PSID.

We only use the PSID from 1997 to 2019, as before 1997, PSID did not report the value of

stock holdings.25 The detailed information enables us to explore the empirical link between labor

income and portfolio decisions. We define the variables following Brunnermeier and Nagel (2008).

Financial wealth is calculated as the sum of equity in stocks and the value in safe accounts, where

the value in safe accounts is the money amount in checking and savings accounts, money market

funds, certificates of deposit, government bonds, or Treasury bills. We calculate the ratio of financial

wealth invested in stocks and assign a value of one if households participate in the stock market and

zero if not. To estimate the between-squares correlation between labor income risk and stock returns

risk for each household, we use the annual income level and the CRSP index. Moreover, we observe

a nonlinear relationship between the between-squares correlation and households’ portfolio decisions

from the model.26 Specifically, the between-squares correlation has an almost opposite relationship

with portfolio decisions at the tipping point of zero. Therefore, we distinguish between positive and

negative between-squares correlation to better capture this nonlinear relationship.

We begin our empirical analysis by estimating a probit stock market participation regression. In

25Before 1997, only the 1984 and 1989 waves report the data on stock holdings.
26See Section 2.3 for details.
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this analysis, we define the dummy variable for participation as the dependent variable:

Iit =


1 if household participates, or

0 if household does not participate,

(29)

which takes the value of one if households own stocks and the value of zero if households do not

participate in the market. We estimate a household’s propensity to participate in the stock market,

represented by p(I = 1).

Our key independent variables are Corrsq,+ and Corrsq,−, which capture positive and negative

between-squares correlation. This is inspired by the demonstrated nonlinear impact on portfolio

decisions, as discussed in the first model in Section 3 and Appendix E.27 We investigate whether

a link exists between the between-squares correlation and participation decisions and if there is any

heterogeneity between college graduates and households without college degrees. Following the related

literature, we control for households’ characteristics, such as the level of income and wealth, income

risk, marriage status, age, and education. These household-level variables serve as a reasonable proxy

for real and perceived market participation costs:

P(αi > 0) =Φ(β0 + β+
1 Corr

sq,+
i + β−

1 Corr
sq,−
i + β2Corri + β3 ln(yi) + β4agei + β5age

2
i+(30)

β6wi + β7si + β8ski + β9ki +DmIM +
∑

D
(year)
i I

(year)
i ),

α∗
i =β0 + β+

1 Corr
sq,+
i + β−

1 Corr
sq,−
i + β2Corri + β3 ln(yi) + β4agei + β5age

2
i+(31)

β6wi + β7si + β8ski + β9ki +DmIM +
∑

D
(year)
j I

(year)
ij ,

where αi is the risky share, Φ is the cumulative distribution function of the standard normal distribu-

tion, yi is the labor income, wi is the financial wealth, si, ski, ki are the standard deviation, skewness,

and kurtosis of biennial log growth rate of labor income, Im is the dummy variable for marriage status,

27Appendix E provides evidence of the nonlinear effect of between-squares correlation for our full model.

44



{I(year)ij } are the year dummies, and α∗
i is defined by

αi =


0, α∗

i ≤ 0

α∗
i , 0 < α∗

i < 1

1, α∗
i ≥ 1.

(32)

Table 7 shows the marginal effects from probit market participation regressions. Our results indicate

that the absolute value of the between-squares correlation is significantly negatively correlated with

households’ participation decisions. In particular, we find that when the positive (negative) between-

squares correlation increases, the market participation propensity decreases (increases). This result

still holds under different model specifications.

Table 7: Probit Participation Regression Estimates
This table reports marginal effects from probit regressions. The dependent variable is a dummy variable that denotes
whether an individual participates in the stock market. We construct probit models using different sample populations.
We omit the constants and year dummies.

Full sample No college College

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Corrsq,+ −0.411∗∗∗ −0.256∗∗ −0.241∗∗ −0.505∗∗∗ −0.339∗∗∗ −0.205∗∗ −0.492∗∗∗ −0.294∗∗∗ −0.237∗∗∗

(0.098) (0.102) (0.112) (0.079) (0.083) (0.093) (0.06) (0.063) (0.071)

Corrsq,− 0.473∗∗∗ 0.281∗∗ 0.295∗∗ 0.771∗∗∗ 0.497∗∗∗ 0.302∗∗ 0.640∗∗∗ 0.356∗∗∗ 0.263∗∗∗

(0.122) (0.125) (0.141) (0.1) (0.104) (0.117) (0.075) (0.078) (0.089)

Corr −0.047 −0.059 −0.055 −0.038 −0.028 −0.021

(0.055) (0.058) (0.048) (0.049) (0.036) (0.037)

ln(y) 0.684∗∗∗ 0.529∗∗∗ 0.86∗∗∗ 0.55∗∗∗ 0.933∗∗∗ 0.669∗∗∗

(0.052) (0.067) (0.047) (0.056) (0.034) (0.041)

Age/10 −0.327 −0.001 −0.273∗

(0.231) (0.186) (0.143)

Age2/100 0.034 −0.001 0.025

(0.027) (0.022) (0.017)

Marriage −0.343∗∗∗ −0.152∗∗ −0.347∗∗∗

(0.082) (0.07) (0.052)

FWealth 0.17∗∗∗ 0.253∗∗∗ 0.247∗∗∗

(0.011) (0.014) (0.009)

Std(dδ) 0.094 −0.011 −0.001

(0.154) (0.13) (0.098)

Skew(dδ) 0.01 −0.019 −0.012

(0.035) (0.03) (0.023)

Kurt(dδ) −0.023 −0.031∗ −0.022

(0.021) (0.018) (0.014)

N 7,954 4,794 3,160

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Moreover, the coefficients of the between-squares correlation remain statistically significant for

both college graduates and the no-college group. Across all model specifications, we find that the

relation between between-squares correlation and participation decisions is stronger for the no-college

group than for the college graduates. Specifically, for the coefficients in front of Corrsq,+, we observe

a value of -0.505 (model (4)) for the no-college group, while for college graduates, it is -0.492 (model

(7)). As we include more control variables, the discrepancy between these two coefficients tends

to grow. These differences indicate that households with college degrees exhibit greater resilience

compared to those without college degrees.

Next, we look for a link between the between-squares correlation and risky asset shares. We run

tobit regressions for market participants. In this exercise, the dependent variable is the share of

wealth in stocks and the independent variable of interest is the between-squares correlation (Corrsq,+

and Corrsq,−). Additionally, we control for a set of variables that may cause movement in risky asset

holdings.

Table 8 presents the regression results for all households, the no-college group, and college gradu-

ates. Our focus is on the coefficient for the between-squares correlation (Corrsq,+ and Corrsq,−). We

find the coefficients in front of Corrsq,+ (Corrsq,−) are consistently negative (positive) for all house-

holds, the no-college group, and college graduates, with a high statistical significance. For example, in

the model specification (3), where we consider a broad set of control variables, the coefficient estimate

of Corrsq,+ (-0.095) remains significant. For college graduates, the coefficient estimate is -0.092, which

is smaller than that (-0.100) for the no-college group, but both estimates are statistically significant.

Overall, we find that the empirical evidence supports our model’s predictions. Between-squares

correlations have nonlinear correlation with participation decisions and risky asset shares. For all

households, the positive (negative) between-squares correlation is negatively (positively) correlated

with participation in the stock market and risky asset holdings. This result is stronger for the no-

college group compared with college graduates.
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Table 8: Tobit Model of the Risky Share
This table reports marginal effects from tobit regressions. The dependent variable is the risky share of households. We
construct tobit models using different sample populations. We omit the constants and year dummies.

Full sample No college College

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Corrsq,+ −0.280∗∗∗ −0.168∗∗∗ −0.095∗∗∗ −0.316∗∗∗ −0.209∗∗∗ −0.100∗ −0.200∗∗∗ −0.135∗∗∗ −0.092∗∗

(0.034) (0.032) (0.034) (0.05) (0.049) (0.051) (0.042) (0.042) (0.044)

Corrsq,− 0.404∗∗∗ 0.245∗∗∗ 0.153∗∗∗ 0.511∗∗∗ 0.33∗∗∗ 0.182∗∗∗ 0.293∗∗∗ 0.215∗∗∗ 0.152∗∗∗

(0.042) (0.04) (0.043) (0.064) (0.062) (0.065) (0.053) (0.052) (0.055)

Corr −0.017 −0.011 −0.031 −0.027 −0.027 −0.021

(0.018) (0.018) (0.029) (0.027) (0.023) (0.023)

ln(y) 0.471∗∗∗ 0.461∗∗∗ 0.503∗∗∗ 0.33∗∗∗ 0.282∗∗∗ 0.282∗∗∗

(0.017) (0.019) (0.028) (0.03) (0.021) (0.025)

Age/10 −0.428 0.836 0.435

(0.686) (1.021) (0.893)

Age2/100 1.162 −0.644 0.101

(0.808) (1.205) (1.049)

Marriage −0.191∗∗∗ −0.089∗∗ −0.147∗∗∗

(0.025) (0.039) (0.032)

FWealth 0.008∗∗∗ 0.075∗∗∗ 0.004∗∗∗

(0.001) (0.005) (0.001)

Std(dδ) 0.079∗ −0.002 0.145∗∗

(0.047) (0.071) (0.06)

Skew(dδ) −0.006 −0.019 0.012

(0.011) (0.016) (0.013)

Kurt(dδ) −0.002 −0.004 −0.008

(0.006) (0.01) (0.007)

N 7,954 4,794 3,160

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

8 Economic Consequences of Ignoring Nonlinear Dependence

8.1 Equivalent Wealth Loss

So far, we have shown that the between-squares correlation has a significant impact on households’

participation decisions and portfolio choices. However, it is also important to understand how the

between-squares correlation affects households’ welfare. To answer this question, we consider the

equivalent wealth loss from ignoring the between-squares correlation between the labor income market

and the stock market. We denote v, v0 as the value functions of models with the between-squares

correlation and without the between-squares correlation, respectively. For other parameters, we take

the value from Section 5.3. Then the equivalent wealth loss ∆x(t, w) at age t with adjusted persistent
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income shock w can be defined as

v(t, x, w) = v0(t, x+∆x,w).(33)

Table 9: Cost of Ignoring the between-squares correlation
This table reports the relative equivalent wealth loss, ∆x/x for two education groups at various ages and levels of
wealth. The values reported in the table were obtained using the parameter values calibrated in Section 5.3 (Tables 3
and 5), with the adjusted persistent income shock as w = 1.

Group Age
Normalized wealth

1 2 4 6 8 10

No college

20 3.32% 2.86% 2.54% 2.05% 1.87% 1.74%
40 3.14% 2.67% 1.97% 1.83% 1.58% 1.44%
60 0.28% 0.18% 0.14% 0.15% 0.12% 0.11%

College

20 1.72% 1.59% 1.26% 1.01% 0.85% 0.72%
40 1.26% 0.90% 0.53% 0.34% 0.23% 0.13%
60 0.05% 0.09% 0.10% 0.09% 0.08% 0.07%

Table 9 reports the relative equivalent wealth loss, ∆x/x, against different ages and wealth with

an adjusted persistent income shock as w = 1. The results are reported separately for households

with college degrees and households without college degrees. Our findings suggest that ignoring

the between-squares correlation between labor income and stock markets can lead to substantial

welfare losses for households. This effect is especially pronounced for households without college

degrees. In particular, the welfare losses for households without college degrees can reach up to

3.32% of equivalent wealth. These losses are economically significant, given that the between-squares

correlation is estimated to be 0.033 for the no-college group. Furthermore, we find that the equivalent

wealth loss decreases with age and wealth, which is consistent with the diminishing effect of the

between-squares correlation on optimal portfolio rules and the participation threshold.

8.2 Wealth Inequality

Given the importance of the between-squares correlation for household welfare, it is natural to consider

how it may affect macroeconomics, particularly with respect to wealth inequality. Recent studies have

made major inroads into documenting trends in wealth inequality in the United States (see Piketty
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and Saez (2003); Saez and Zucman (2020)). The causes and consequences of these trends in wealth

inequality have become a prominent topic of debate in recent years, underscoring the importance of

understanding the role of the between-squares correlation in shaping broader economic outcomes.

To investigate the potential impact of the between-squares correlation on wealth inequality, we

simulate 100,000 households over a period of 500 years. We then calculate the Gini index, a widely

used measure of wealth inequality, and compare the Gini indexes obtained when the between-squares

correlation is recognized to those obtained when it is ignored. We recognize that dividing households

into only two groups may not capture the full range of heterogeneity in their preferences and attitudes

towards risk. Therefore, we explore various combinations of discount factors and risk aversion to better

capture the diversity of household behaviors in their saving and investment decisions (see MaCurdy

(1982); Gourinchas and Parker (2002)), while also accounting for preferences that may shift over time

because of external shocks, as demonstrated by Guiso et al. (2018).

Table 10 presents the difference in Gini indexes between ignoring and recognizing the between-

squares correlation. The between-squares correlation for households with college degrees is 0.069 and

the between-squares correlation for households without college degrees is 0.033. Panel A of Table

10 shows that when the between-squares correlation is ignored, the Gini index increases inefficiently

for the full sample of households. Specifically, with different combinations of discount rates and

risk aversion parameters, the difference in Gini indexes increases by 0.61% to 2.73%, indicating a

significant impact of ignoring the between-squares correlation on wealth inequality.28

When households ignore the between-squares correlation between the labor income and stock

markets, they overlook the interconnections between these two markets. This can result in a misallo-

cation of resources, where households may invest more heavily in the stock market. Moreover, such

misallocation can have a heterogeneous effect on households with different levels of wealth. House-

holds with lower levels of wealth may increase their risky asset shares more than those with higher

28Considering the between-squares correlation yields a Gini index of 0.203, while ignoring it generates a higher Gini
index of 0.210. The models generate lower Gini coefficients than empirical data due to two limitations of our baseline
model. Firstly, the model fails to capture the behavior of the wealthiest households, who accumulate wealth through
means that differ significantly from labor income. Secondly, the model does not account for portfolio heterogeneity,
with rich households having portfolios dominated by corporate and noncorporate equities while middle-class households
have highly leveraged portfolios heavily concentrated in residential real estate. Despite these limitations, the models
still exhibit a valid trend, and incorporating these features could result in even greater wealth inequality.

49



levels of wealth, even though the latter group may invest more in dollar value terms. Therefore,

the misallocation of resources resulting from ignoring the between-squares correlation can exacerbate

wealth inequality. Households with higher levels of wealth may be better equipped to diversify their

portfolios, manage their risk exposure and benefit more from investing in the stock market, while

households with lower levels of wealth may be more vulnerable to changes in the labor and stock

markets.

Meanwhile, Table 10 panel B suggests that the difference between ignoring and recognizing the

between-squares correlation is even wider for households with college degrees compared to those

without. Specifically, the difference in Gini index can be as high as 2.32% for households with college

degrees, whereas it is only 1.78% for households without college degrees. This indicates a greater

concentration of wealth among households with higher levels of education, which may contribute to

overall inequality in the society.

Table 10: Changes in Gini Index
This table examines the impact of the between-squares correlation on wealth inequality, comparing the Gini index
obtained when this correlation is ignored to those obtained when it is recognized. Panel A shows the results for full
samples of households considering different combinations of discount rates and risk aversion parameters. Panel B shows
the results separately for households with and without college degrees using the same combinations of discount rates
and risk aversion parameters as in panel A. The notation (βc, βnc) indicates that we use βc as the discount rate for the
college group and βnc as the discount rate for the no college group. This notation allows us to distinguish between the
two education groups and analyze their respective impacts on wealth inequality.

Panel A: Full samples

Risk aversion

Discount rate 4.3 4.8 5.3

(92%, 92%) 1.49% 2.22% 2.73%
(94%, 92%) 1.67% 2.08% 2.21%
(96%, 92%) 1.44% 1.49% 1.45%
(98%, 92%) 0.93% 0.82% 0.61%

Panel B: Changes in Gini Index for each education group

Risk aversion

Discount rate 4.3 4.8 5.3

(92%, 92%): College 1.14% 2.32% 3.52%
(94%, 92%): College 1.44% 2.14% 2.47%
(96%, 92%): College 1.22% 1.40% 1.51%
(98%, 92%): College 1.62% 1.04% 0.88%
(92%, 92%): No college 1.28% 1.78% 2.18%
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Moreover, given that we observe a right-skewed distribution of the between-squares correlation in

Section 2.3, it is important to investigate the effect of higher correlation levels to fully understand the

potential impact on wealth inequality. This motivates our investigation into the differences in Gini

index, as shown in Table 11, particularly in relation to higher levels of between-squares correlation.

To achieve this, we raise the between-squares correlation by 50% for both education groups. Our

findings indicate that as the between-squares correlation increases, the difference in the Gini index

between recognizing and ignoring the between-squares correlation for all samples reaches a maximum

of 3.44%, increasing from the initial 2.73%. Specifically, for households with college degrees, the

difference is even wider at 4.62%.

While the magnitude of these differences may not seem significant at first glance, it is important to

note that the Gini index has increased by less than 3.0% from 1970 to 2017, and the maximum change

in the US over time since 1969 has been 6.76%.29 When compared with these numbers, ignoring the

between-squares correlation actually have a considerable impact on wealth inequality. Therefore, it

is important to take into account the between-squares correlation.

Overall, recognizing the importance of the between-squares correlation between the labor income

and stock markets can help households make more informed decisions about their investment and

risk management strategies. This can lead to a more efficient allocation of resources and a potentially

more equitable distribution of wealth. Our findings highlight the importance of a channel that has

received relatively little attention to date: the between-squares correlation between labor income and

stock markets induces large shifts in the wealth inequality.

29Figure 13 in Appendix F compares the Gini coefficient in each year to the benchmark year of 1969 and displays
the relative changes over time.
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Table 11: Changes in Gini Index with Higher Between-squares Correlation
This table examines the impact of the between-squares correlation on wealth inequality, comparing the Gini index
obtained when this correlation is ignored to those obtained when it is recognized, with a focus on higher levels of
between-squares correlation. Panel A shows the results for full samples of households considering different combinations
of discount rates and risk aversion parameters. Panel B shows the results separately for households with and without
college degrees using the same combinations of discount rates and risk aversion parameters as in panel A. The notation
(βc, βnc) indicates that we use βc as the discount rate for the college group and βnc as the discount rate for the no
college group. This notation allows us to distinguish between the two education groups and analyze their respective
impacts on wealth inequality.

Panel A: Full samples

Risk aversion

Discount rate 4.3 4.8 5.3

(92%, 92%) 1.84% 2.76% 3.44%
(94%, 92% ) 2.05% 2.66% 2.95%
(96%, 92%) 1.98% 2.05% 2.08%
(98%, 92%) 1.07% 0.91% 0.80%

Panel B: Changes in Gini Index for each education group

Risk Aversion

Discount rate 4.3 4.8 5.3

(92%, 92%): College 1.44% 3.15% 4.62%
(94%, 92%): College 1.98% 2.95% 3.61%
(96%, 92%): College 1.72% 2.07% 2.38%
(98%, 92%): College 0.99% 1.08% 1.14%
(92%, 92%): No college 1.41% 1.97% 2.36%

9 Conclusion

In this paper, we consider the optimal portfolio decisions of a household when stock returns and

income shocks are nonlinearly dependent. We document the existence of nonlinear dependence in the

data and show that in the presence of nonlinear dependence measured by between-squares correlation,

households are less willing to participate in the market and significantly reduce their stock investments.

Heterogeneity exists between college graduates and households without college degrees. Moreover,

our paper shows that the between-squares correlation is independent of the linear correlation, which

the literature provides mixed evidence about. Therefore, our model complements existing studies and

can potentially help explain both the limited participation puzzle and moderate risky asset holdings

observed in the data. Using a simple one-period model, we show that the impact of the between-
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squares correlation on portfolio choices can be attributed to two pathways: the skewness channel and

the kurtosis channel. The degree to which one channel dominates over the other is contingent on the

level of between-squares correlation. We further provide empirical evidence that is supportive of the

model’s prediction. In addition, we find that ignoring the nonlinear dependence reduces households’

welfare and increases wealth inequality.

Although our model accounts for between-squares correlation between labor and stock markets,

it does not endogenize this nonlinear dependence, nor does it address the asset pricing implications.

To further explore this relationship, it would be valuable to study the between-squares correlation

using a general equilibrium framework, as in Guvenen (2009) for a macroeconomic model. Such an

extension would offer a characterization of the risk premium, taking into account the complex and

interdependent nature of labor and stock markets.
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Appendix

Nonlinear Dependence and Households’ Portfolio Decisions over the Life Cycle

Wei Jiang Shize Li Jialu Shen

Appendix A Data

A.1 Panel Study of Income Dynamics

The Panel Study of Income Dynamics (PSID) is a longitudinal household survey spanning from 1968

to 2019, with data from over 18,000 individuals residing in 5,000 families in the United States. The

survey covers a wide range of topics, including family information and financial situations, which

are essential in most life cycle household models. PSID is particularly suitable for our model, as we

require time series data on labor income to estimate its correlations with stock returns. However,

PSID has some well-know issues for researchers and many papers have discussed the approaches to

deal with them1.

In this paper, we follow the sample selection principle of Nakajima and Smirnyagin (2019). First,

we exclude years prior to 1970, as the 1968 and 1969 waves lack some data and are inconsistent

with subsequent waves. Second, we drop SEO and Latino samples, which are collected with unequal

selection probabilities. PSID includes approximately 2,000 low-income SEO samples and 2,000 Latino

samples, and we exclude them from our analysis. Third, we drop observations with missing or non-

positive head/spousal labor incomes. The top 1% of head’s and wife’s labor incomes are then trimmed,

as PSID brackets many finance-related variables (such as labor income) with an upper boundary. This

trimming selection is intended to exclude bracketed or extreme samples. Finally, households with

income growth anomalies (annual log growth rate outside the range of 1/20 to 20) are also dropped

from our analysis. We construct variables following Brunnermeier and Nagel (2008), with variable

definitions summarized in the following table.

1Such as Cocco et al. (2005), Gomes and Michaelides (2005b) and Nakajima and Smirnyagin (2019).
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Table 12: Varible definitions

Variable Definition

Labor Income Yit

Includes the labor income of both reference person and spouse, labor
part of farm income and business income, all transfer income of the
family, and social securities.

Riskless Assets

Checking and savings accounts, money market funds, certificates of
deposits, savings bonds, and treasury bills
Bonds, bond funds, cash value in a life insurance, valuable collection
for investment purposes, and rights in a trust or estate

Risky Assets
the combined value of shares of stock in publicly held corporations,
mutual funds, and investment trusts

IRA Assets Value of private annuities or Individual Retirement Accounts

Other Debts
Credit card debt, student loans, medical or legal bills, and loans from
relatives

Home Equity Value of the home minus remaining mortgage principal

Liquid Assets Riskless Assets + Risky Assets

Financial Wealth Liquid Assets - Other Debts + Home Equity

A.2 SCF Data

The Survey of Consumer Finances (SCF) is a triennial cross-sectional survey of U.S. families that

collects information on families’ balance sheets, pensions, income, and demographic characteristics.

The survey also includes data from related surveys of pension providers and earlier surveys conducted

by the Federal Reserve Board. We utilize data from five waves of the survey, spanning from 2007 to

2019, and construct variables using the code-book and macro-variable definitions from the Federal

Reserve website.

Following Gomes and Michaelides (2005b), we construct variables for SCF. Labor income is defined

as the sum of wages and salaries (X5702), unemployment or worker’s compensation (X5716), and

Social Security or other pensions, annuities, or other disability or retirement programs (X5722).

Financial wealth is then constructed in the same way as variable FIN in the publicly available SCF

data set, which is comprised of LIQ (all types of transaction accounts – checking, saving, money

market, and call accounts), CDS (certificates of deposit), total directly held mutual funds, stocks,

bonds, total quasi-liquid financial assets (the sum of IRAs, thrift accounts, and future pensions),

2



savings bonds, the cash value of whole life insurance, other managed assets (trusts, annuities, and

managed investment accounts in which the household has equity interest), and other financial assets

(includes loans from the household to someone else, future proceeds, royalties, futures, nonpublic

stock, and deferred compensation). Furthermore, data on financial assets invested in the risky asset is

obtained from variable EQUITY in the publicly available SCF data set, which consists of directly held

stock, stock mutual funds, or amounts of stock in retirement accounts. We calculate the conditional

risky share as (EQUITY)/(FIN) conditional on EQUITY being positive.

Appendix B Bivariate Mixture Normal Distribution

This section begins by defining the mixture normal distribution and describing its first four moments.

Then, we establish that the between-squares correlation can function as an adequate measure of

nonlinear dependence, subject to certain regularity conditions.

Definition 1. A random vector (Z1, Z2)
T follows a bivariate mixture normal distribution with pa-

rameters p1, µ11, µ12, σ11, σ12, p2, µ21, µ22, σ21, σ22, ρ11, ρ12, ρ21, ρ22 if:

Z1 = I1Z11 + (1− I1)Z12,(34)

Z2 = I2Z21 + (1− I2)Z22,(35)

where Ii ∼ B(1, pi), Zi1 is independent of Zi2 for i = 1,2 and for i = 1, 2, j = 1, 2, Zij = (Z1i, Z2j)
T

is binomially distributed subject to:

E(Zij) = (µ1i, µ2j)
T ,

Cov(Zij) =

 σ2
1i ρijσ1iσ2j

ρijσ1iσ2j σ2
2j

 .
For convenience, in the rest of the appendix, we use the shorthand notation p11 = p1, p12 =

1− p1, p21 = p2, p22 = 1− p2.
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B.1 Central Moments and Correlations

Denote µi, σi, si, ki as the mean, standard deviation, skewness and kurtosis of Zi, i = 1, 2. The first

four moments of Zi are given by

µi =E[Zi] = pi1µi1 + pi2µi2,(36)

σ2
i =Var[Zi] = pi1σ

2
i1 + pi2σ

2
i2 + pi1pi2(µi1 − µi2)

2,(37)

si =Skew[Zi] = σ−3
i pi1pi2(µi1 − µi2)

(
3(σ2

i1 − σ2
i2) + (1− 2pi1)(µi1 − µi2)

2
)
,(38)

ki =kurt[Zi] = σ−4
i

[
3pi2σ

4
i1 + 3pi1σ

4
i2 + pi1pi2(µi1 − µi2)

2
(
6(pi1σ

2
i2 + pi2σ

2
i1)+(39)

(3p2i1 − 3pi1 + 1)(µi1 − µi2)
2
)]
.

The Pearson correlation and between-squares correlations between Z1 and Z2 are given by

Corr(Z1, Z2) =
1

σ1σ2

∑
i,j=1,2

p1ip2jσ1iσ2jρij(40)

Corrsq(Z1, Z2) =
1

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(2
∑
i,j=1,2

p1ip2jσ
2
1iσ

2
2jρ

2
ij

+ 4(µ11 − µ12)(µ21 − µ22)p11p12p21p22
∑
i,j=1,2

(−1)i+jσ1iσ2jρij) .(41)

The moments and correlations can be calculated straightforwardly using their definitions. How-

ever, we elaborate on the process of characterizing the between-squares correlation. Denote Z∗
ij =

Zij − µij
σij

, i, j = 1, 2, and we construct Schmidt orthogonalization as follows

Z∗∗
11 =Z∗

11,

Z∗∗
12 =Z∗

12,

Z∗∗
21 =Z∗

21 − ρ11Z
∗∗
11 − ρ21Z

∗∗
12 ,

Z∗∗
22 =Z∗22− ρ12Z

∗∗
11 − ρ22Z

∗∗
12 +

ρ11ρ12 + ρ21ρ22
1− ρ211 − ρ221

Z∗∗
21 .
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Subsequently, we obtain

Corrsq(Z1, Z2) =Corr
(
(σ11I1Z

∗
11 + σ12(1− I1)Z

∗
12 + (I1 − p1)(µ11 − µ12))

2,

(σ21I2Z
∗
21 + σ22(1− I2)Z

∗
22 + (I2 − p2)(µ21 − µ22))

2
)

=
1

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

Cov
(
(σ11I1Z

∗∗
11 + σ12(1− I1)Z

∗∗
12 + (I1 − p1)(µ11 − µ12))

2,

(σ21I2(ρ11Z
∗∗
11 + ρ21Z

∗∗
12 + Z∗∗

21) + σ22(1− I2)(ρ12Z
∗∗
11 + ρ22Z

∗∗
12

− ρ11ρ12 + ρ21ρ22
1− ρ211 − ρ221

Z∗∗
21 + Z∗∗

22) + (I2 − p2)(µ21 − µ22))
2
)

=
1

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

Cov
(
(σ11I1Z

∗∗
11 + σ12(1− I1)Z

∗∗
12 + (I1 − p1)(µ11 − µ12))

2,

((σ21I2ρ11 + σ22(1− I2)ρ12)Z
∗∗
11 + (σ21I2ρ21 + σ22(1− I2)ρ22)Z

∗∗
12+

(I2 − p2)(µ21 − µ22))
2
)
.

By exploiting the mutual independence of yij, we derive (41).

B.2 Sufficiency of the First Four Moments

In Appendix B.1, we provided the first four moments of a mixture normal distribution. In this section,

we explore whether these moments can uniquely characterize such a distribution. To achieve this,

we will outline particular regularity conditions that establish the uniqueness of a mixture normal

distribution based on its first four moments alone.

Theorem 2. Let Z1 be a random variable that follows a mixture normal distribution as defined in

(34). Denote the mean, standard deviation, skewness, and kurtosis of Z1 as µ, σ, s, and k, respectively.

For convenience, we refer to the parameters of Z1 as p, µ1, µ2, σ1, σ2, and ud(Z1) = µ1 − µ2. If the

following conditions hold:

1

2
+

√
15
√

13− 2
√
31

30
<p < 1,(42)

−2p(1− p) (2p− 1)(
p2 − p+ 1

3

) (
1

3
t3/2 − t1/2

)
≤s < 0,(43)

0 <ud ≤ tσ2,(44)

5



where t =

(√
90k − 158

31
+ 1.9

)
, then the first four moments ((µ, σ, s, k)T ) are sufficient statistics

for uniquely characterizing a mixture normal distribution, implying that no other mixture normal

distributed random variable Z̃1 exists with different parameters but the same first four moments as

Z1.

Proof. From (37) and (38), we obtain

σ2
1 =

p2 − 1

3
ud +

σ3s

3p

1√
ud

+ σ2,(45)

σ2
2 =

p(1− 2p)

3
ud −

σ3s

3(1− p)

1√
ud

+ σ2.(46)

Then substitute (45) and (46) into (39), we get:

f(ud) = 0,(47)

where,

f(ud) =

(
−10(p2 − p+

1

30
)2 +

31

90

)
u2d − 2σ2 (2p− 1)2 ud +

2sσ3 · (1− 2p)

3p (p− 1)
u
1/2
d(48)

+
2sσ5 (2p− 1)

p (p− 1)
u
−1/2
d +

s2σ6
(
p2 − p+ 1

3

)
p2 (p2 − 2p+ 1)

u−1
d − σ4(k − 3).

We can then demonstrate that under the following three constraints, (47) has a unique solution:

1) f(ud) is convex. Examining its second derivative,

f ′′(ud) =
2
(
p2 − p+ 1

3

)
p2 (p2 − 2p+ 1)

s2σ6x−3
3 +

3 (2p− 1)

2p (p− 1)
sσ5x

− 5
2

3 − (1− 2p)

6p (p− 1)
sσ3x

− 3
2

3

− 20p4 + 40p3 − 64p2

3
+

4p

3
+

2

3
.

we can find that the first three terms are positive since p ∈ (1/2, 1) and s < 0. By applying the

6



root formula of quartic equations, we can easily verify that

− 10p4 + 20p3 − 32p2

3
+

2p

3
+

1

3
> 0, p ∈ [1/2, 1]

is equivalent to (42). Therefore, f ′′(ud) > 0 i.e. f(ud) is convex.

2) As the coefficient of u−1
d in f(ud) is strictly positive, we can conclude that lim

ud→0
f(ud) = +∞.

3) f(tσ2) < 0. First, we can rewrite the inequality as follows:

(
−10(p2 − p+

1

30
)2 +

31

90

)
u2d − 2σ2 (2p− 1)2 ud − σ4(k − 3) < 0

⇔ud <

(
2(2p− 1)2

−10(p2 − p+ 1
30
)2 + 31

90

+
(k − 3)σ2

(−10(p2 − p+ 1
30
)2 + 31

90
)

1

ud

)
σ2

⇐ud ≤
(
3.8 +

90

31
(k − 3)

σ2

ud

)
σ2

⇐ud ≤
(√

90k − 158

31
+ 1.9

)
σ2,

where we have used the following inequality:2

(2p− 1)2

−10(p2 − p+ 1
30
)2 + 31

90

=

(
−5p2

2
+

5p

2
+

11

24
− 1

8 (2p− 1)2

)−1

> 1.9

which holds for 1
2
+

√
15
√

13−2
√
31

30
< p < 1. Second, we have

[
2sσ3 (1− 2p)

3p (p− 1)
u
1/2
d +

2sσ5 · (2p− 1)

p (p− 1)
u
−1/2
d +

s2σ6
(
p2 − p+ 1

3

)
p2 (p2 − 2p+ 1)

u−1
d

]
ud=tσ2

< 0

⇔2 (1− 2p)

p (p− 1)

(
1

3
t3/2 − t1/2

)
+

s
(
p2 − p+ 1

3

)
p2 (p2 − 2p+ 1)

> 0

⇔s > −2p(1− p) (2p− 1)(
p2 − p+ 1

3

) (
1

3
t3/2 − t1/2

)
.

Given constraints 1), 2), and 3), the equation f(ud) = 0 has one and only one root. Using equations

2This inequality can be verified using the first derivative. However, the exact lower bound is quite complicated, and
here we have rounded it to two significant digits for simplicity.
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(36), (45), and (46), we can conclude that the value of ud uniquely determines the values of the other

parameters. Therefore, we can say that (µ, σ, s, k)T is a sufficient statistic.

Theorem 2 establishes that the first four moments are sufficient statistics for characterizing a

mixture normal distribution, provided that p satisfies both (42) and (43). The range of values for

p satisfying (42) is approximately (0.6763, 1), and conditions (43) and (44) also imply that this

range is wide enough to cover parameter values estimated from data. For example, if we consider

p = 0.7, σ = 0.2, k = 6, the two constraints become:

−2.5457 ≤s < 0,

0 <ud ≤ 0.2164,

It is worth mentioning that the calibrated parameters in Table 3 satisfy these three conditions.

Therefore, we introduce the following assumption, which guarantees that the first four moments can

serve as sufficient statistics for uniquely characterizing a mixture normal distribution:

• Assumption 1: The probability parameter and first four moments of Z1, Z2 satisfy conditions

(42), (43) and (44).

B.3 Sufficiency of Between-squares Correlation

Various measures of nonlinear dependence have been employed in the literature to capture nonlinear

dependencies. For example, Harvey and Siddique (2000) use coskewness as a measure of dependence

between an individual asset and a market portfolio. In this section, we demonstrate that, subject

to certain regularity conditions, the between-squares correlation is a sufficient measure to capture all

nonlinear dependencies.

First, let us examine the frequently used nonlinear dependences in the 3rd and 4th degrees.

Assuming that Z1 and Z2 follow the mixture normal distribution, we can demonstrate that it is

sufficient to use between-squares correlation to measure all of the coskewness and cokurtosis mentioned

above, subject to a mild condition. As we have established the sufficiency of the first four moments

8



of one mixture normal distribution in Appendix B.2, we will assume that the moments, except for

Corr and Corrsq, are fixed in this section.

Using the properties of the bivariate normal distribution,3 Lemma 1 provides a method for calcu-

lating coskewness and cokurtosis for bivariate mixture normal distributions.

Lemma 2. If (Z1, Z2)
T follows a bivariate mixture normal distribution with parameters p1, µ11, µ12,

σ11, σ12, p2, µ21, µ22, σ21, σ22, ρ11, ρ12, ρ21, ρ22 and µi, σi, si, ki defined in Appendix B.1, then:

S(Z1, Z1, Z2) =
2(µ11 − µ12)p11p12

σ2
1σ2

[
σ11(p21σ21ρ11 + p22σ22ρ12)− σ12(p21σ21ρ21 + p22σ22ρ22)

]
,

K(Z1, Z1, Z1, Z2) =
3

σ3
1σ2

[
p11σ11(σ

2
11 + p212(µ11 − µ12)

2)(p21σ21ρ11 + p22σ22ρ12)

+ p21σ12(σ
2
12 + p211(µ11 − µ12)

2)(p21σ21ρ21 + p22σ22ρ22)
]

K(Z1, Z1, Z2, Z2) =
√

(k1 − 1)(k2 − 1)Corrsq(X1, X2) + 1.

Proof. Let Z11 and Z12 be the two normal components of Z1, where Z1 = I1Z11 + (1 − I1)Z12 and

I1 ∼ B(1, p1). Similarly, let Z21 and Z22 be the components of Z2. Using the properties of normal

distributions, we have S(Z1i, Z1i, Z2j) = 0. Therefore, we can rewrite the expression as follows:

E[(Z1 − EZ1)
2(Z2 − EZ2)] =

∑
i,j=1,2

p1ip2jE[(Z1i − EZ1i) + EZ1i − EZ1)
2((Z2j − EZ2j) + EZ2j − EZ2)]

=
∑
i,j=1,2

p1ip2j
[
σ2
1iσ2jS(Z1i, Z1i, Z2j) + 2(EZ1i − EZ1)ρij

]
,

=2
∑
i,j=1,2

p1ip2jρij(EZ1i − EZ1).

where σ2
1i and σ

2
2j are the variances of Z1i and Z2j, respectively, and ρij is the correlation between Z1i

and Z2j. Since EZ1i = µ1i and EZ1 = p1µ11+(1−p1)µ12, we can derive the equation of S(Z1, Z1, Z2).

The calculation for cokurtosis is similar, and thus, we will not provide the details here.

It is evident that the cokurtosis K(Z1, Z1, Z2, Z2) can be calculated using Corrsq(Z1, Z2). However,

3If (Z1, Z2)
T follows a bivariate normal distribution with mean (µ1, µ2)

T and covariance

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, then:

S(Z1, Z1, Z2) = 0,K(Z1, Z1, Z1, Z2) = K(Z1, Z2, Z21, Z2) = 3ρ,K(Z1, Z1, Z2, Z2) = 1 + 2ρ2.

9



for the remaining cases, we require Lemma 2.

Lemma 3. The bivariate mixture normal distribution with parameters p1, µ11, µ12, σ11, σ12, p2, µ21,

µ22, σ21, σ22, ρ11, ρ12, ρ21, ρ22 is represented by the random vector (Z1, Z2)
T . Here, ρ11 = ρ22 = ρ1,

ρ12 = ρ21 = ρ2, and we define ιij = p1ip2jσ1iσ2j, for i, j = 1, 2.. Using these notations, we can express

the following equations:

ρ2 = kρ1 + b,(49)

Corrsq(Z1,Z2) = a0 + a1ρ1 + a2ρ
2
1, a2 > 0,(50)

where

k =− ι11 + ι22
ι12 + ι21

,

b =
σ1σ2Corr(Z1, Z2)

ι12 + ι21
,

a2 =
2

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(
ι211

p11p21
+

k2ι212
p11p22

+
k2ι221
p12p21

+
ι222

p12p22

)
,

a1 =
4(µ11 − µ12)(µ21 − µ22)

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(p12p22ι11 − kp12p21ι12 − kp11p22ι21 + p11p21ι22)

+
4kb

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(
ι212

p11p22
+

ι221
p12p21

)
a0 =

2

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(
ι212

p11p22
+

ι221
p12p21

)
b2 − 4(µ11 − µ12)(µ21 − µ22)

σ2
1σ

2
2

√
(k1 − 1)(k2 − 1)

(p12p21ι12 + p11p22ι21) b.

Proof. We can easily verify Lemma 2 using equations (40) and (41).

Solving (50), we obtain the following solutions

ρ+1 = − a1
2a2

+

 1√
a2

√
Corrsq − 4a0a2 − a21

4a2

 , ρ−1 = − a1
2a2

−

 1√
a2

√
Corrsq − 4a0a2 − a21

4a2

(51)

Assuming the marginal distributions and linear correlation are given, Lemma 3 and (49) imply that

S(Z1, Z1, Z2) and K(Z1, Z1, Z1, Z2) are linearly dependent on ρ1. Therefore, they can be determined

uniquely by Corrsq(Z1,Z2), subject to the following assumption:
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• Assumption 2: Suppose that (Z1, Z2)
T follows a bivariate mixture normal distribution, where

the parameters satisfy ρ11 = ρ22 = ρ1, ρ12 = ρ21 = ρ2, and only one of ρ+1 and ρ−1 falls within the

interval [−1, 1]. In this case, Equation (50) provides a solution for only one root in the interval

[−1, 1].

When Corrsq(Z1,Z2) is positive, the condition in Assumption 2 can be easily satisfied, which is con-

sistent with data estimation. The following theorem establishes that the between-squares correlation

is a sufficient measure of nonlinear dependence under mixture normal distributions.

Theorem 3. Let (Z1, Z2)
T follow a bivariate mixture normal distribution. Denote µi, σi, si, ki as the

mean, standard deviation, skewness and kurtosis of Xi. Assuming Assumptions 1 and 2 hold, the

vector (µ1, σ1, s1, k1, µ2, σ2, s2, k2,Corr(Z1, Z2),Corr
sq(Z1, Z2))

T constutues sufficient statistics that

can uniquely determine the joint distribution of (Z1, Z2)
T .

Proof. Based on Theorem 2 and assuming Assumption 1 holds, we can conclude that the vector

(µi, σi, si, ki)
T is sufficient for Zi and can be used to determine the underlying parameters (µi1, µi2, σi1, σi2)

T .

Additionally, Assumption 2 implies that Equations (49) and (50) have only one solution. Therefore,

this vector (µ1, σ1, s1, k1, µ2, σ2, s2, k2,Corr(Z1, Z2),Corr
sq(Z1, Z2))

T constitutes sufficient statistics to

uniquely determine ρ1, ρ2.

Theorem 3 establishes that, under Assumptions 1 and 2, the between-squares correlation can act

as a sufficient measure of all types of nonlinear dependence between two random variables that follow

a bivariate mixture normal distribution.

Appendix C A First Model

In this section, we first show that the household’s one-period utility optimization problem can be

simplified to a one-period model that incorporates higher-order moments of portfolio returns. We

then explore the higher-order moments of the portfolio returns in this simplified model.
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C.1 A First Model as an Approximation to the Full model

As per the assumptions outlined in Section 3, W0 represents the initial wealth, W1 = RpW0 repre-

sents the wealth after one period, and w1 = E[W1] represents the expected wealth. Let u(·) be the

utility function for a representative household. The portfolio optimization problem based on utility

maximization can be expressed as follows:

max
α

E[u(W1)](52)

s.t. W1 = W0R
p = W0(1 +Rf + αRE +RL) .

where Rf represents the risk-free rate, R
E represents the excess return of the risky asset, RL represents

the income shock, and α represents the allocation to the risky asset.

We can approximate u(W1) in terms of its Taylor series expansion around w1. Specifically, we

have:

u(W1) = u(w1) +
4∑

n=1

1

n!
u(n)(w1)(W1 − w1)

n +O[(W1 − w1)
5] .

where u(n)(w1) denotes the n-th derivative of u(w1), and O[(W1 − w1)
5] represents the error term of

the approximation.

Taking the expectation of both sides and keeping up to the fourth order terms, we obtain:

E[u(W1)] ≈
u(w1)

w1

E[W1] +
1

2
u(2)(w1)Var(W1) +

1

6
u(3)(w1)Var

1.5(W1)Skew(W1)

+
1

24
u(4)(w1)Var

2(W1)Kurt(W1)

≈u(w1)

w1

W0

(
E(Rp)− λ1Var(R

p)− λ2Skew(R
p)− λ3Kurt(Rp)

)
,

where Var(Rp), Skew(Rp), and Kurt(Rp) denote the portfolio’s variance, skewness, and kurtosis,

respectively, and the risk weights λ1, λ2, λ3 satisfy

λ1 = −1

2

u(2)(w1)w1

u(w1)
W0, λ2 = −1

6

u(3)(w1)w1

u(w1)
V ar1.5(Rp)W 3

0 , λ3 = − 1

24

u(4)(w1)w1

u(w1)
V ar2(Rp)W 4

0 .

12



The risk weights λ1, λ2, λ3 can be estimated using the household’s utility function and its conjectured

wealth expectation and variance. For instance, if we denote the predicted waelth mean and portfolio

return variance as ŵ1 and V̂ar(Rp), respectively, we can approximate the objective function of (52)

as follows:

E[u(W1)] ≈
u(ŵ1)

ŵ1

W0

(
E(Rp)− λ1Var(R

p)− λ2Skew(R
p)− λ3Kurt(Rp)

)
,(53)

where the risk weights can be approximated as follows

λ1 ≈ −1

2

u(2)(ŵ1)ŵ1

u(ŵ1)
W0, λ2 ≈ −1

6

u(3)(ŵ1)ŵ1

u(ŵ1)
V̂ar(Rp)1.5W 3

0 , λ3 ≈ − 1

24

u(4)(ŵ1)w1

u(ŵ1)
V̂ar(Rp)2W 4

0 .

Hence, we can estimate the one-period utility optimization problem using Equation (9), and the

risk weights λ1, λ2, and λ3 are related to the utility of the household.

C.2 Higher Order Moments of the Portfolio Return

Using Lemma 2, we can calculate the skewness and kurtosis of the portfolio return in the first model

as Lemma 1.

As shown in Appendix B.2, assuming that (RE, RL)T follows a bivariate mixture normal distri-

bution and satisfies Assumptions 1 and 2 with dependence parameters ρ1 and ρ2, we can express

S(RE, RE, RL) and K(RE, RE, RE, RL) as linear functions of ρ1, given marginal distributions and

linear correlation. Thus we can represent them as

S(RE, RE, RL) =as,1ρ1 + bs,1,

S(RE, RL, RL) =as,2ρ1 + bs,2,

K(RE, RE, RE, RL) =ak,1ρ1 + bs,1,

K(RE, RL, RL, RL) =ak,2ρ1 + bs,2.

The coefficients a’s and b’s can be calculated using Lemma 2 and 3.
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Combining the above equations with Equation (51), we can rewrite the portfolio’s (defined in

Theorem 1) skewness and kurtosis as follows:

SkewΠ = sgn(ρ1 +
a1
2a2

)ks

√
Corrsq(RE, RL)− 4a0a2 − a21

4a2
+ bs,(54)

KurtΠ = akCorr
sq(RE, RL) + sgn(ρ1 +

a1
2a2

)bk

√
Corrsq(RE, RL)− 4a0a2 − a21

4a2
+ ck,(55)

where sgn(·) represents the sign function and

ks =
3√
a2σ3

Π

[
α2σ2

EσLas,1 + ασEσ
2
Las,2

]
,

bs =
1

σ3
Π

[
α3σ3

ESE + α2σ2
EσLbs,1 + 3ασEσ

2
Lbs,2 + 3σ3

LSL
]
,

ak =
6

σ4
Π

α2σ2
Eσ

2
L

√
(KE − 1)(KL − 1),

bk =
4√
a2σ4

Π

[
α3σ3

EσLak,1 + ασEσ
3
Lak,2

]
,

ck =
1

σ4
Π

[
α4σ4

EKE + 4α3σ3
EσLbk,1 + 4ασEσ

3
Lbk,2 + σ4

LKL

]
.

We can use Equations (54) and (55) to solve the portfolio optimization problem (52) with the ap-

proximation form (53). This reveals that the nonlinear impact of the between-squares correlation is

transmitted through the skewness channel and kurtosis channel.

Appendix D Numerical Methods

D.1 Numerical Solutions to the Household Optimization

The model can be solved numerically using a backward induction method. In this approach, the

value function for each period depends on a continuous variable, the normalized cash on hand xt,

which needs to be discretized since we use a grid search to optimize the value function. The terminal

condition in the last period is determined by the bequest motive, and the value function corresponds

to the bequest function.
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To solve the model, we iterate backward for each period t prior to T and for each point in the state

space. We use a grid search to compute the value associated with each consumption and risky share

grid, and select the optimal grids that achieve the maximum value as the policy rules. This iterative

procedure is repeated for each period t until we obtain the optimal policy rules for all periods.

In order to approximate the expected value in the backward induction process, we use the

Gauss-Hermite method for a mixture normal distribution. Specifically, we consider the expecta-

tion E[h(γt+1, ηt+1, ϵt+1)] with respect to (γt+1, ϵt+1, ηt+1), where γt+1 = I1Z11 + (1 − I1)Z12, ηt+1 =

I2Z21 + (1− I2)Z22, and ϵt+1 ∼ N(0, σ2
ϵ).

To apply the Gauss-Hermite method, we can use it on the four normal distributions embedded in

the mixture normal. Specifically, we obtain:

E[h] =
∑
i,j=1,2

p1ip2jE[h(Z1i, Z2j, ϵt+1)],

where pn1 = 1 − pn2 = P[In = 1], n = 1, 2. For each component of the summation, the vector

(Z1i, Z2j, ϵt+1)
T is normally distributed, and we can apply the Gauss-Hermite method to approximate

the expected value.

D.2 Calibration

In this section, we present the following explicit form of moments that can be utilized in the GMM

method discussed in Section 4.1.

Based on Equations (14) and (15), we can obtain

δit =
t∑

s=0

λt−suis + ϵit.

We then proceed to compute the moments:

Corr(ηt+1, δit+1 − δit) =Cor(ηt+1, uit+1)
σu√

σ2
u + 2σ2

ϵ

=
σu√

σ2
u + 2σ2

ϵ

Cor(ηt+1, ut+1),
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Corrbs(ηt+1, δit+1 − δit) = Corbs(ηt+1, uit+1)

√
Var(u2it+1)√

Var((uit+1 + ϵit+1 − ϵit)2)

=

√
kurtu − 1σ2

u√
(kurtu − 1)σ4

u + 8σ4
ϵ + 8σ2

uσ
2
ϵ

Corbs(ηt+1, ut+1)

Var[δi,t] =
1− λ2(t−s+1)

1− λ2
σ2
u + σ2

ϵ

Skew[δi,t] =
σ3
u

(Var[δi,t])3/2
1− λ3(t−s+1)

1− λ3
Skewu,

Kurt[δi,t] =
1

(Var[δi,t])2

[
3σ4

ϵ + 6
1− λ2(t−s+1)

1− λ2
σ2
ϵσ

2
u+

3

(1− λ2(t−s+1)

1− λ2

)2

− 1− λ4(t−s+1)

1− λ4

σ4
u +

1− λ4(t−s+1)

1− λ4
σ4
uKurtu

 ,
where Cor(ηt+1, ut+1),Cor

bs(ηt+1, ut+1), σu, Skewu and Kurtu can be computed using the results pre-

sented in Appendix B.1.

Appendix E Nonlinear Effect of the Between-squares Cor-

relation

This section demonstrates that households facing a nonzero between-squares correlation between labor

income and stock markets may choose to delay their investment and opt for less risky shares. Our

numerical simulations confirm that the nonlinear impact of between-squares correlation on household

policy functions remains consistent in our full model, aligning with the findings of the first model

presented in Section 3.

Figure 12 illustrates the policy functions of households at ages 20, 40, and 60 in our full model,

with different levels of between-squares correlation, using the parameter values of the first model

in Section 3. Figure 12 graph C displays the participation wealth threshold, which indicates that

households are more inclined to invest in the stock market when the between-squares correlation

approaches a turning point near zero.

In addition, graphs A and B demonstrate that households that participate in the stock market
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are more willing to hold a larger proportion of risky assets when the between-squares correlation

approaches the turning point near zero for different wealth levels. However, when the between-

squares correlation deviates from the turning point, households tend to reduce their allocation to

risky assets to decrease their portfolio risk.

Figure 12: Changes in Portfolio Decisions
This figure shows the participation rate and conditional risky share generated by the policy functions with between-
squares correlation taking -0.03, 0, and 0.06 for the college group. Other parameters are the same as those in section
Section 5.3. We assume the normalized persistent income shock as wi,t = 1.
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These findings suggest that between-squares correlation has a nonlinear effect on household port-

folio decisions, as shown in the first model. This effect occurs through two channels: skewness and

kurtosis. A negative correlation increases skewness, leading to delayed participation and reduced

risky asset exposure, while a positive correlation increases kurtosis, resulting in similar decisions.

It is worth noting that The effects of the two channels are asymmetric, with the kurtosis channel
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having a greater impact. In conclusion, the nonlinear relationship between labor income and stock

returns, as observed in the presence of between-squares correlation, supports a new interpretation of

the ”stock-like” theory (i.e., Benzoni et al. (2007)), where households’ labor income becomes more

similar to stocks. This finding highlights the importance of accounting for the nonlinear dynamics of

asset returns and their influence on portfolio decisions.

Appendix F Gini Coefficient Evolution in the USA

Figure 13 displays the evolution trend of the Gini coefficient in the United States from 1970 to 2017,

using data from The World Inequality Database.

To analyze the evolution of income inequality over time, we have chosen 1970 as the benchmark

year and calculated the relative changes in the Gini coefficient over the 48-year period. Our findings

indicate that, except for the years surrounding the economic crises in 1987 and 2007, the changes in

the Gini coefficient compared to 1969 remained within the range of [−5%, 5%].

Figure 13: Gini Coefficient Evolution in the US
This figure shows the Gini coefficient evolution trend in the US from 1970 to 2017, using data from The World Inequality
Database. We have chosen 1962 as the benchmark year and calculated the relative changes in the Gini coefficient.
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Appendix G Sensitivity Analysis of Adjusted Persistent In-

come Shock

In this paper, we assumed an adjusted persistent income shock as 1 when analyzing policy functions.

However, different persistent income shocks can significantly impact households’ portfolio decisions.

To explore this effect, we present the policy functions for various adjusted persistent income shocks

in Figure 14. The optimal risky share pattern is similar across different wi,t, but the level differs.

Generally, larger wi,t values indicate more aggressive portfolio decisions as households expect higher

future labor income. Wealthier and older households are less sensitive to wi,t as labor income becomes

more trivial for them. Specifically, wealthier households have accumulated a significant amount of

wealth that can provide a buffer against income shocks and they may prioritize maintaining their

level of cash on hand or other financial goals rather than adjusting their portfolio decisions based on

changes in labor income. Similarly, older households may have already accumulated sufficient savings

for retirement or have other sources of income, such as pensions or social security. Additionally,

older households may be more concerned with preserving their wealth and managing risks associated

with potential events such as death shocks, rather than making significant changes to their portfolio

decisions based on changes in labor income.

Appendix H Additional Evidence of Nonlinear Dependence

In this appendix, we provide additional evidence regarding nonlinear dependence between labor and

stock markets. Figure 15 and Figure 16 show the distribution of coskewness and cokurtosis respec-

tively. We can see that both coskewness and cokurtosis have positive mean for both annual frequency

and biennual frequency. These findings suggest the presence of nonlinearity in the data, highlight-

ing the importance of including nonlinear dependence to capture the complexity of the underlying

distributions.

Figure 17 shows the coskewness and cokurtosis when we rank households on the basis of the

wealth. We find that across five statistics, nearly all wealth groups exhibit significantly positive values,
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Figure 14: Sensitivity Analysis of adjusted persistent income shock
The figure presents six panels displaying the policy functions for optimal risky asset share across different age and
education groups. The first column corresponds to the households without college degrees, and the second column
corresponds to the households with college degrees. The policy functions are generated using calibrated parameters,
with the adjusted persistent income shock wi,t set to 0.95, 1, 1.05 for each panel.
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especially for the two cokurtosis statistics. The findings suggest that the nonlinear dependencies

captured by coskewness and cokurtosis are present across various wealth groups.

Figure 18 and Figure 19 replicate the analysis conducted in Figure 2 and Figure 17, without

controlling for the household characteristics. The focus is solely on the nonlinear dependence between

labor and stock markets without considering the potential effects of specific individual factors. The

analysis reveals that irrespective of whether households are grouped by earnings growth or wealth,

the coskewness and cokurtosis statistics consistently deviate from zero. Moreover, the majority of

these statistics tend to be positive across the different groups. The consistent positive deviations from

zero in these statistics across various groups, whether based on earnings growth or wealth, imply a

pervasive presence of nonlinear relationships between labor and stock markets, free from the potential

confounding effects of controlling factors.

Figure 20 shows the coskewness and cokurtosis when we group households based on both earnings

growth and wealth while controlling for household characteristics. The results from this analysis

indicate that the overall findings are consistent with those observed in Figure 2 and Figure 17. Across

all subgroups, the coskewness and cokurtosis statistics display deviations from zero. Furthermore, for

the majority of subgroups, the five statistics examined exhibit positive values. The similarity of these

results to the previous analyses further supports the presence of nonlinear relationships.
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Figure 15: Coskewness Distribution
This graph displays the histogram and kernel density of two types of coskewness estimates between labor income shock
and excess stock return for the full sample. We use labor income and stock return data from the PSID and CRSP,
respectively. Panel (a) uses the annual data from 1970 to 1997, while panel (b) uses the biennial data covering the
period from 1970 to 2017.
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(a) Annual: Coskewness SSS(((∆∆∆yyyit,2,∆∆∆yyyit,2,ηηη t)))
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(b) Biennial: Coskewness SSS(((∆∆∆yyyit,2,∆∆∆yyyit,2,ηηη t)))
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Figure 16: Cokurtosis Distribution
This graph displays the histogram and kernel density of three types of cokurtosis estimates between labor income shock
and excess stock return for the full sample. We use labor income and stock return data from the PSID and CRSP,
respectively. Panel (a) uses the annual data from 1970 to 1997, while panel (b) uses the biennial data covering the
period from 1970 to 2017.
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(a) Annual: Cokurtosis KKK(((∆∆∆yyyit,2,∆∆∆yyyit,2,∆∆∆yyyit,2,ηηη t)))
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Figure 17: Coskewness and Cokurtosis between Labor Income Growth Shock and Stock
Return
These graphs display the coskewness and cokurtosis between labor income growth shock (the same as Table 1) and
stock return for the full sample. We use the biennial labor income data and stock return from the PSID and CRSP,
respectively. Households are grouped by percentiles of average financial wealth over all waves. The coskewness and
cokurtosis values are calculated using the definitions provided as (1) to (5).
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Figure 18: Coskewness and Cokurtosis between Labor Income Growth Rate and Stock
Return
These graphs display the coskewness and cokurtosis between labor income growth shock (the same as Table 1) and
stock return for the full sample. We use the biennial labor income data and stock return from the PSID and CRSP,
respectively. Households are grouped by percentiles of average labor income growth rate over all waves. The coskewness
and cokurtosis values are calculated using the definitions provided as (1) to (5).
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Figure 19: Coskewness and Cokurtosis by Wealth
These graphs display the coskewness and cokurtosis between labor income growth rate and stock return for the full
sample. We use the biennial labor income data and stock return from the PSID and CRSP, respectively. Households are
grouped by percentiles of average financial wealth over all waves. The coskewness and cokurtosis values are calculated
using the definitions provided in the Appendix B.3.
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Figure 20: Coskewness and Cokurtosis by Wealth and Labor Income
These graphs display the coskewness and cokurtosis between labor income growth rate and stock return for the full
sample. We use the biennial labor income data and stock return from the PSID and CRSP, respectively. Households are
grouped by percentiles of average financial wealth and average labor income growth rate over all waves. The coskewness
and cokurtosis values are calculated using the definitions provided as (1) to (5).
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Appendix I Modeling Between-Squares Correlation: Is It

Necessary?

There is a potential argument suggesting that including higher-order moments in the labor income

process and stock return innovations would result in significant between-squares correlations. Nev-

ertheless, our analysis suggests that the between-squares correlations are nearly negligible in their

particular setup. This emphasizes the significance of explicitly incorporating the between-squares

correlations into the model.

Specifically, from Table 13, panel D, we see that that by using the parameters from Catherine

(2022), such as a frequency of important events in a worker’s career (pz) of 0.136, an expected log

return in years of stock market crashes (µ−
s ) of -0.245, an average growth rate of labor shocks when

important events occur (µ−
z ) of -0.086, and a correlation of 0.161 between the growth rate of the wage

index and stock returns, the between-squares correlation is computed as 0.0056, which is remarkably

close to zero.4 Therefore, the effect of between-squares correlation on portfolio decisions is neglected.

Moreover, we want to understand the parameter requirements necessary to achieve a between-

squares correlation of a similar magnitude as observed in our paper, without explicitly modeling

the between-squares correlation process. Table 13 presents the between-squares correlations under

different parameter settings. In panel A, the between-squares correlation is examined with varying

values of µ−
z . We discover that without explicitly incorporating a between-squares correlation process,

an average growth rate of -1.5 can only generate a between-squares correlation of 0.0233. In panel

B, we observe that reducing the expected log stock returns in years of stock market crashes to -1.245

can yield a between-squares correlation of 0.071. However, expected log stock returns of -1.245 imply

an average loss of 71.21% during crashes, which contradicts the data.

In addition, panel C of Table 13 demonstrates that if we increase the frequency of important

events in a worker’s career to 0.846, the resulting between-squares correlation is 0.0715. However, if

we impose the constraint that pz should not exceed 0.5, as done by Catherine (2022), the between-

4To maintain consistency with the notations used in Catherine et al. (2022) Catherine (2022), we adopt the same

terminology. Since µ−
z is just a constant term in Eq (10) in Catherine (2022)), for illustration, we refer to it as the

average growth rate of labor shocks when important events happen in a worker’s career.
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Table 13: Between-squares correlations with different parameters

This table reports simulated between-squares correlations by changing the value of one or two parameters. Other
parameters follow estimations from Catherine (2022) that the frequency of important events in a worker’s career (pz)
is 0.136, the expected log return in years of stock market crashes (µ−

s ) is -0.245, the average growth rate of labor

shocks when important events occur (µ−
z ) is -0.086, and the correlation between the growth rate of the wage index

and stock returns is 0.161.

Panel A: Corrsq with different average growth rate of income shocks in crashes (µ−
z )

Average growth rate of income shocks in crashes (µ−
z )

-0.086 -0.1 -0.2 -0.3 -0.4 -0.5 -1.5

Corrsq 0.0056 0.0059 0.0087 0.0141 0.0154 0.0161 0.0233

Panel B: Corrsq with different expected log stock return in crashes (µ−
s )

Expected stock return in crashes (µ−
s )

-0.245 -0.3 -0.4 -0.5 -0.6 -0.7 -1.245

Corrsq 0.0056 0.0084 0.0103 0.0154 0.0219 0.0281 0.0710

Panel C: Corrsq with different frequency of important events (pz)

Frequency of important events (pz)

0.136 0.2 0.3 0.4 0.5 0.6 0.846

Corrsq 0.0056 0.0069 0.0090 0.0122 0.0164 0.0223 0.0715

Panel D: Corrsq with different Corr between the growth rate of the wage index and stock returns (λls)

Corr between the growth rate of the wage index and stock returns (λls)

0.161 0.2 0.3 0.4 0.5 0.6 0.72

Corrsq 0.0056 0.0069 0.0084 0.0168 0.0395 0.0531 0.0701

Panel E: Robust check of Corrsq in Catherine (2022)

Average growth rate of income shocks in crashes (µ−
z )

-0.3 -0.4 -0.5 -0.6 -0.7 -1.245

Expected log stock return
in crashes (µ−

s )

-0.245 0.0056 0.0059 0.0087 0.0141 0.0154 0.0161
-0.3 0.0084 0.0093 0.0109 0.0163 0.0169 0.0186
-0.4 0.0103 0.0117 0.0168 0.0210 0.0251 0.0308
-0.5 0.0154 0.0180 0.0220 0.0278 0.0327 0.0345
-0.6 0.0219 0.0226 0.0272 0.0363 0.0403 0.0440
-0.7 0.0281 0.0273 0.0362 0.0425 0.0499 0.0520
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squares correlation decreases to 0.0168, which is significantly smaller than the 0.0696 observed in

our model setup. Furthermore, panel D suggests that increasing the linear correlation between the

growth rate of the wage index and stock returns to 0.72 can also generate a between-squares correlation

of 0.0701. However, this would result in a substantially higher linear correlation of 0.234 between

idiosyncratic income shocks and stock returns, in contrast to the observed fact of no significant linear

correlation between these two variables.

Panel E provides additional insights into the between-squares correlation for various combinations

of expected stock returns in crashes and the average growth rate of income shocks when important

events occur in a worker’s career while controlling for the frequency of important events and the linear

correlation between the growth rate of the wage index and stock returns. It is obvious that even with

different combinations, the maximum between-squares correlation achieved is 0.052, which remains

lower than our between-squares correlation of 0.0692.

Overall, this appendix highlights the significance of explicitly incorporating the between-squares

correlation in the lifecycle model to capture its effect. It emphasizes that higher-order moments in

both labor and stock markets alone are insufficient to account for the between-squares correlation.

Implicitly, this suggests that an explicit consideration of between-squares correlation is crucial for an

accurate representation of the dynamics in the model.

Appendix J Heterogeneous Risk Aversions

To explore the robustness of our findings, we relax our assumption and allow the risk aversion esti-

mates to be different between the baseline model and the alternative model without between-squares

correlation. We follow the same calibration methodologies as described in Section 5 and report the

calibration in Table 14 and Figure 21.

From this table, we find that including between-squares lowers the risk aversion estimates for both

college graduates and households without college degrees, which is consistent with the calibration

results in Table 4. Moreover, after relaxing the assumption of the same risk aversion between college

graduates and households without college degrees, the EIS of households without college degrees is
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Table 14: Preference Parameters under Heterogeneous Risk Aversions
This table presents the preference parameters of both the baseline model and the model without between-squares
correlation under heterogeneous risk aversions. For the model without between-squares correlation, we adjust only the
two correlation parameters to eliminate any between-squares correlation. The calibration of the preference parameters
follows the methodology discussed in Section 5.

Baseline model Model without Corrsq

No college College No college College

Relative risk aversion γ 4.3 4.8 4.8 5.3

EIS ϕ 0.30 0.90 0.28 0.95

Discount factor β 92.0% 98.5% 92.0% 98.0%

Bequest motive b 2.5 2.5 2.5 2.5

Fixed cost rate F 0.005 0.005 0.005 0.005

still lower than that of stockholders. Gomes and Michaelides (2005a) and Gomes and Michaelides

(2008) find that households with low risk aversion and low EIS are less likely to participate in the

stock market, while households with high risk aversion and high EIS are more willing to participate

in the stock market. The calibration in Table 14 seems to be consistent with their results.

Figure 21 shows the life-cycle profiles for both the baseline model and the model without between-

squares correlation. Overall, we find that the baseline model generates the participation rate, condi-

tional risky asset holdings and wealth accumulation that closely align with the data. On the other

hand, the model without between-squares correlation overestimates the conditional risky asset hold-

ings when compared to the data.
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Figure 21: Calibration Results under Heterogeneous Risk Aversions
The three graphs show the comparison among the baseline model, the model without between-squares correlation,
and SCF data for an average household under heterogeneous risk aversions. To align with the PSID, we assume that
households with college degrees make up 30% of the world’s population. The parameters for the baseline model and
the model without between-squares correlation have been taken from Table 3 and Table 14. We use triennial SCF data
from 2007 to 2019 to calculate empirical moments. We calculate moments using nonoverlapping age groups from 20 to
65. Each age group contains samples of three successive ages. Graphs A, B, and C show the results of participation
rate, conditional risky share, and normalized wealth, respectively.
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