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Abstract

Motivated by prior evidence that the price of risk varies across frequencies, we study the
predictability of monthly excess bond returns estimating latent factors generating common
macroeconomic cycles of different lengths. Our method combines a new band spectrum
principal component estimator for frequency-specific factors and supervised learning. Not
all macroeconomic cycles are found to predict bond returns in real time, on the contrary,
predictability concentrates only at some bands of frequencies. Two macroeconomic factors
are powerful out-of-sample predictors and generate sizeable economic value for investors of
various kinds: the first one is obtained maximizing common cycles of at least 8 years related
to the inflation, the second one maximizing common cycles of 1 to 3 years related to the
term spread. The former predictor is relatively more accurate at shorter maturities and
during recessions, the latter at longer maturities and during expansions. Unlike all previous
works using nonoverlapping returns and data available in real-time, our forecasts generate
economic value: in an asset allocation exercise we find significant certain equivalent return
gains with respect to the expectations hypothesis benchmark. Our results are in line with
models based on countercyclical risk aversion.
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1. Introduction

According to the expectations hypothesis (EH) of the term structure of interest rates the long-
term rate is equal to the average of expected future short rates plus a constant risk premium.
While convincing results against the EH span the last four decades (Fama and Bliss, 1987;
Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005), the driving forces of time-variation
in risk premia are still intensely debated. Similarly to case of the equity premium studied by
Welch and Goyal (2008), part of this empirical debate owes to the difficulties in obtaining more
accurate out-of-sample excess bond return predictions than the historical average benchmark
implied by the EH. If investors demand compensation for the risk of recessions as in notable
rational expectations models (Campbell and Cochrane, 1999; Wachter, 2006), excess bond re-
turns should be predictable and evolve with the expected macroeconomic conditions. Ludvigson
and Ng (2009) resorting to dynamic factor analysis show that, unlike observed predictors, latent
common macroeconomic factors estimated via principal components from a large macroeconomic
dataset, contain significant out-of-sample predictive information and expected bond returns are
consistent with countercyclical risk aversion. Similarly, other influential works such as Cooper
and Priestley (2009), Greenwood and Vayanos (2014), Joslin et al. (2014) and Cieslak and Po-
vala (2015) established a link between the state of the economy and bond return predictability.
More recently, however, Ghysels et al. (2018) found that once real-time data is considered the
predictive power of latent macroeconomic factors like those considered by Ludvigson and Ng
(2009) vanishes.

As of today, a burgeoning literature has adopted more sophisticated machine learning meth-
ods. Motivated by the possible existence of irrelevant variation (unrelated to future bond re-
turns) in the plethora of widely adopted predictors such as observed variables or latent macroeco-
nomic factors, and/or nonlinearities, increasing interest has been devoted to supervised learning
(see Bianchi et al., 2021; Huang et al., 2022; Huang and Shi, 2023, among others). The evidence
of predictability in these works, however, comes with some limitations. First, they adopt over-
lapping returns which imply an annual holding period. The choice of overlapping returns has
been criticized since important short-run dynamics — such as Lehman Brothers’ bankruptcy
and business cycle turning points — are overlooked (Gargano et al., 2019; Wan et al., 2022),
and standard inference becomes unreliable (Bauer and Hamilton, 2018). Fan et al. (2022) show
that this is far from being an innocuous choice: evidence of predictability in overlapping returns
produced by deep learning approaches becomes weak in nonoverlapping returns.

Second, another important limitation in this literature is the difficulty of translating statis-
tical forecasting accuracy into economic value for investors. As in the work of Wan et al. (2022),
forecasts which are more accurate than the historical average benchmark in mean square error
terms are often associated with poor portfolio performance. First raised by Thornton and Va-
lente (2012) and Sarno et al. (2016), this is still an open issue, especially as far as real-time
nonoverlapping returns forecasting is concerned. Indeed, to the best of our knowledge, no pre-
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dictive method considered thus far has been found to generate any economic value in real-time
using nonoverlapping excess bond returns. Significant certain equivalent return (CER) gains are
found by Eriksen (2017); Bianchi et al. (2021); Huang et al. (2023) using overlapping returns,
and by Gargano et al. (2019) using nonoverlapping returns and fully revised macroeconomic
data.

While our work follows the recent trend of machine learning methods by allowing for nonlin-
earity and a high-dimensional predictor space, our framework is in the tradition of the seminal
work of Ludvigson and Ng (2009) because we consider latent common macroeconomic factors
and a dynamic factor model. Inspired by a number of recent works who show that the price
of risk varies across frequencies (see Dew-Becker and Giglio, 2016; Bandi et al., 2021; Neuhierl
and Varneskov, 2021, among many others), we extend this framework in the sense that our la-
tent macroeconomic factors are frequency-specific and generate common macroeconomic cycles
of given lengths. Our band spectrum factor model is nonlinear since in its frequency-domain
representation factor loadings are allowed to change across bands of frequencies. At the same
time, it has a linear time-domain representation with frequency-specific factors.

We show that common factors affecting a band of frequencies can be estimated via a general-
ized principal component estimator which is obtained by taking the component of the covariance
matrix associated with the same band of frequencies. As a result, we estimate frequency-specific
factors by maximizing specific cyclical comovements of the variables, rather than the comove-
ments associated with common cycles of all lenghts. In analogy with Engle (1974) who considers
the same setup but with observed factors (known as band spectrum regressions), we refer to
our estimator as Band Spectrum Principal Components (BSPCs). The principal component es-
timator emerges as a limiting case when the full spectrum, that is macroeconomic cycles of all
lengths, is considered.

Do common macroeconomic cycles of all lengths predict excess nonoverlapping bond re-
turns? In order to answer this question we first need to detect the latent macroeconomic factors
related to expected bond returns. Ludvigson and Ng (2009) identify a subset of factors via
an extensive model selection procedure based on the minimization of a BIC criterion among a
number of specifications for bond returns with estimated common factors. We do so by adopt-
ing a supervised learning approach based on the principle of statistical sufficiency: rather than
searching for a subset of factors which predicts bond returns, we focus on the space they span.
Known as the central subspace (Cook, 2007), this space is identified by projecting each predictor
onto observable proxies before extracting principal components (Cook and Forzani, 2008; Fan
et al., 2017). Similarly to identification methods via instrumental variables, these proxies ful-
fill exogeneity since they are orthogonal to common macroeconomic factors unrelated to future
bond returns. Our procedure is the same but we extract BSPCs. So our predictors are obtained
by choosing proxies for the central subspace and a band of frequencies for factor extraction.
Therefore, these predictors span a subspace of the space spanned by the factors driving common
macroeconomic cycles of given lengths.
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Using a real-time macroeconomic dataset of 54 variables, we estimate two frequency-specific
factors, one related to the inflation, the other to the term spread. While neither of them yields
reasonable evidence of predictability when full spectrum predictors are considered, the picture
is remarkably different when we instead focus on bands of frequencies. Two powerful predictors
are obtained by taking macroeconomic factors driving cycles of at least 8 years related to the
inflation and of 1 to 3 years related to the term spread. The former factor is relatively more
accurate for shorter maturities and during recessions, while the latter is more accurate for longer
maturities and during expansions. Using these two factors we find evidence of predictability in
both statistical and, most important, economic terms. In fact, to the best of our knowledge,
the finding of significant CER gains using real-time data and nonoverlapping returns is novel in
this literature. The forecasts produced by these two predictors are in line with the dominant
view that risk premia are countercyclical. We conclude so by observing that they generate: ex-
pected returns which are negatively correlated with cyclical indicators (especially, the Michigan
consumer sentiment index), countercyclical term premia, higher statistical accuracy and larger
economic value during recessions.

All in all, these conclusions are in line with those of Ludvigson and Ng (2009) and confirm
the existence of comovements between the macroeconomy and excess bond returns which are
captured by latent macroeconomic factors. Apart from rejecting the expectations hypothesis
in favour of countercyclical risk aversion, by allowing for frequency-specific factors we analyse
macroeconomic cycles of different lengths and so give a more detailed picture of bond return
predictability. In fact, our results are in line with other findings in the literature. Our predictor
obtained maximizing common macroeconomic cycles of at least 8 years related to the inflation
is consistent with the long-run risk models such as that of Bansal and Shaliastovich (2013) who
establish a link between long-run inflation expectations and bond premia.The performance of
our predictor obtained maximizing common macroeconomic cycles of 1 to 3 years related to
the term spread confirms the findings of Fama and French (1989) who conclude that the “term
spread is more closely related to the shorter-term business cycles identified by NBER”, and
highlights some similarities with Andreasen et al. (2021) who find that term structure variables
are powerful predictors during expansions. Futhermore, our term spread factor encompasses
the cycle factor identified by Cieslak and Povala (2015), that is a component of yields which is
orthogonal to the trend inflation and whose predictive power increases with the maturity.

The rest of this paper is as follows. In Section 2 we outline all the methodological aspects of
our work: our band spectrum factor model, its estimation, and the supervised learning method
we adopt to obtain predictors for our forecasting exercise. Section 3 is dedicated to the yield
data and the real-time macroeconomic dataset used to construct our predictors. Out-of-sample
forecasting results are presented in Section 4. The links to the real economy and the implications
for rational expectations models are explored in Section 5. Section 6 concludes.
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2. Methodology

There are two difficulties associated with the widespread use of principal components in predic-
tive regressions for bond returns (typically common factors estimated using large macroeconomic
datasets).

First, being linear combinations with maximum variance, principal components account
for variables’ comovements at all frequencies by aggregating cycles of all lengths. Albeit this
is adequate for predicting processes of various kinds, mounting evidence that systematic risk
varies across frequencies (Dew-Becker and Giglio, 2016; Bandi et al., 2021) motivates us to
investigate whether macroeconomic cycles of different lengths have the same relationship, or any
relationship whatsoever, with bond returns. If this is the case, principal components become
suboptimal predictors. To shed light on the possible existence of frequency-specific predictors,
we develop an approach to account for comovements among cycles of given lengths. In Section
2.1, we introduce a novel factor model with frequency-specific factors. In Section 2.2, we propose
an esitimator for frequency-specific factors. Our band spectrum principal components are linear
combinations of variables with maximum variance only within a band of frequencies, hence they
generalize principal components.

Second, as found by Ludvigson and Ng (2009), not all macroeconomic comovements need
to drive future bond returns in the sense that only a subset of common macroeconomic factors
may predict bond returns. In Section 2.3 we combine band spectrum principal components with
supervised learning so that we allow our predictors to live in a subspace of frequency-specific
common factors.

2.1. Frequency-specific factors

Consider a T × N panel X := {xit; i = 1, . . . , N ; t = 1, . . . , T} of mean-zero weakly stationary
variables with a latent factor structure

Xt = ΛFt + et (1)

where Xt is the N -dimensional vector (x1t, x2t, . . . , xNt)′, Λ a N × r matrix of loadings, Ft

an r-dimensional vector of unobservable factors, et a N -dimensional vector of idiosyncratic
terms which are weakly cross-correlated in the sense of Chamberlain and Rothschild (1983)
and Connor and Korajczyk (1986), and orthogonal to Ft at all leads and lags.1 Being the
factors common to all cross-sectional units x1t, · · · , xNt, the term ΛFt is known as the common
component of Xt and interpreted as the effect of comovements between the variables. In this
work we focus on a frequency-specific analysis of those comovements. Letting ι =

√
−1 be the

1Following Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986), we consider an approxi-
mate factor structure for which the cross-correlation generated by the idiosyncratic components is asymptotically
negligible. Exact factor structures assume instead that et has a diagonal covariance matrix. Orthogonality at all
leads and lags between the factors and idiosyncratic terms is assumed for simplicity. It could be relaxed to allow
for some weak dependence as in Assumption D of Bai and Ng (2002).
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imaginary unit, ω some frequency in [−π, π], we have the Fourier transforms Xω =
∑T

t=1 Xte
−ιωt,

Fω =
∑T

t=1 Fte
−ιωt, Eω =

∑T
t=1 ete

−ιωt.2 The factor model (1) allows for a frequency-domain
representation

Xω = ΛFω + Eω

which shows that the relationship between the cycles of length 2π/ω of Xt and those of the same
length of the common factors Ft is constant and independent of ω.

We are interested in a more general framework in which comovements are allowed to vary
across frequencies. Consider, for example, a partition of [−π, π] into two disjoint subsets Ω1 and
Ω2.3 Allowing for different cyclical comovements across these two bands of frequencies calls for
a frequency-domain representation

Xω =

Λ1Fω + Eω ω ∈ Ω1

Λ2Fω + Eω ω ∈ Ω2
(2)

Equation (2) can be rewritten as

Xω = Λ1Fω,1 + Λ2Fω,2 + Eω (3)

where Fω,1 =

Fω ω ∈ Ω1

0 ω ∈ Ω2
and Fω,2 =

0 ω ∈ Ω1

Fω ω ∈ Ω2

As a result, we are interested in the band spectrum factor model

Xt = Λ1Ft (Ω1) + Λ2Ft (Ω2) + et (4)

where Ft (Ω1), Ft (Ω2) are common factors across the spectral components of Xt at frequencies
ω in Ω1 and Ω2, respectively, which, by construction, are the inverse Fourier transforms of Fω,1

and Fω,2. Being the factors Ft (Ω) unrelated to any frequency out of the band Ω, we refer to
them as frequency-specific factors which generate the common cycles of Xt of length 2π/ω for
all frequencies ω ∈ Ω.

The band spectrum factor model (4) implies a canonical decomposition of the covariance
matrix

C0 ≡ E
(
XtX′

t

)
= Λ1E

(
Ft (Ω1) Ft (Ω1)′

)
Λ′

1 + Λ2E
(
Ft (Ω2) Ft (Ω2)′

)
Λ′

2 + E
(
ete′

t

)
(5)

for which the first term is the covariance of the comovements at frequencies in Ω1, the second
is the covariance of the comovements at frequencies in Ω2, and the last one is the “weak” (i.e.

2In practice we consider the Fourier frequencies ωk = πk/T with k = −T, −T + 1, · · · , T .
3For simplicity and without loss of generality, two bands of frequencies are considered in this section. In the

empirical part of this work we consider four bands.
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asymptotically negligible) covariance generated by idiosyncratic cycles of any length.4

In order to estimate the frequency-specific factors Ft (Ω), one needs to disentangle common
from idiosyncratic covariances in Ω. Of course, this is only possible with a prior estimate
of the total comovements in Ω. Exploiting the well-known inverse Fourier transform C0 =∫ π

−π S (ω) dω, where S (ω) = (2π)−1 ∑∞
k=−∞ e−ιkωCk is the spectral density matrix at frequency

ω and Ck = E
(
XtX′

t−k

)
, the component of C0 due to the covariance among all (common and

idiosyncratic) cycles in Ω is

C0 (Ω) :=
∫

ω∈Ω
E

(
XωX ′

ω

)
dω =

∫
ω∈Ω

S (ω) dω (6)

In the rest of this paper we refer to C0 (Ω) as the band spectrum covariance matrix of Xt in Ω.

2.2. Band Spectrum Principal components

Estimating common factors via asymptotic principal components is a well-known result (Bai
and Ng, 2002; Stock and Watson, 2002a; Forni et al., 2000). Assuming that T −1 ∑T

t=1 FtF′
t and

N−1ΛΛ′ converge to some positive definite matrices (with distinct eigenvalues) as T and N grow
to infinity is enough to ensure that r eigenvalues of ΛT −1 ∑T

t=1 FtF′
tΛ′ diverge as N grows to

infinity. This implies that r eigenvalues of the covariance matrix of the data C0 diverge as well.
Further assuming that the covariance matrix of the idiosyncratic terms has bounded eigenvalues
as N grows to infinity, and some moment conditions, the space spanned by the factors can be
estimated from the eigenvalue decomposition of the sample covariance matrix of the data.

The covariance structure (5) generated by the band spectrum factor model (4) suggests that
frequency-specific factors Ft (Ω1) and Ft (Ω2) can be estimated following the same logic within
a band of frequencies. Consider the covariance in the band Ω1

C0 (Ω1) =
∫

ω∈Ω1
E

(
XωX ′

ω

)
= Λ1

∫
ω∈Ω1

E
(
Fω,1F ′

ω,1

)
dω Λ′

1 +
∫

ω∈Ω1
E

(
EωE ′

ω

)
dω

= Λ1E
(
Ft (Ω1) Ft (Ω1)′

)
Λ′

1 +
∫

ω∈Ω1
E

(
EωE ′

ω

)
dω (7)

where we used equation (3) and (4). Assuming that N−1Λ1Λ′
1 and T −1 ∑T

t=1 Ft (Ω1) Ft (Ω1)′

converge to positive definite matrices (with distinct eigenvalues) as N → ∞ and T → ∞
respectively, we have that r eigenvalues of C0 (Ω1) diverge as N → ∞. This, combined with
the usual assumptions on the idiosyncratic errors mentioned above, implies that as N , T jointly
grow to infinity, the second term of (7) becomes negligible and the eigenvectors associated with

4To see this, it is enough to note that

C0 =
∫ π

−π

E
(
XωX ′

ω

)
dω = Λ1

∫ π

−π

E
(
Fω,1F ′

ω,1
)

dω Λ′
1 + Λ2

∫ π

−π

E
(
Fω,2F ′

ω,2
)

dω Λ′
2 + E

(
ete′

t

)
= Λ1

∫
ω∈Ω1

E
(
FωF ′

ω

)
dω Λ′

1 + Λ2

∫
ω∈Ω2

E
(
FωF ′

ω

)
dω Λ′

2 + E
(
ete′

t

)
since,

∫
ω∈Ω2

E
(
Fω,1F ′

ω,1
)

dω = 0,
∫

ω∈Ω1
E

(
Fω,2F ′

ω,2
)

dω = 0 , and et is orthogonal to all common factors.
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largest r eigenvalues of C0 (Ω1) span the space of Ft (Ω1). This motivates the band spectrum
principal component estimator

F̂t (Ω1) =
√

TV ′
r (Ω1) Xt (8)

where Vr (Ω1) = (v1 (Ω1) , v2 (Ω1) , . . . vr (Ω1)) and vj (Ω1) is the eigenvector associated with the
j-th largest eigenvalue of Ĉ0 (Ω1) for j ≤ r. Similarly, F̂t (Ω2) =

√
TV ′

r (Ω2) Xt.

The band spectrum covariance C0 (Ω) can be estimated by replacing S (ω) in equation (6)
with its estimate. We use the lag-window estimator

Ŝ (ω) =
MT∑

j=−MT

Kj (MT ) e−ιjωĈj (9)

where Ĉj is the sample estimate of Cj , and Kj (MT ) = 1 − |j|
MT

is the triangular kernel with
bandwidth MT , which is known to be consistent if T −1MT → 0 as T → ∞ and MT → ∞.5 In
practice MT = ⌊

√
T ⌋ is often chosen, where ⌊·⌋ denotes the floor function. In the rest of this

paper we refer to such estimator as

Ĉ0 (Ω) =
∫

ω∈Ω
Ŝ (ω) dω

While a formal proof on the consistent estimation of frequency-specific factors based on the
above discussion is left to Appendix A, in the next subsection we provide simulation evidence
that the proposed estimator performs well in finite samples.

2.2.1. Simulation results

We generate r = 2 common factors Ft = AFt−1 + ηt with A = diag (0.4, 0.4), and idiosyncratic
errors eit = 0.8εit + 0.2ϵt where ηt, εit and ϵt are mutually independent iid N(0, 1). So we
have autocorrelated factors and weakly cross-sectional dependent errors. A T × N panel X is
generated as described in equation (4) with Ω2 = [−θ, θ], and Ω1 = [−π, −θ) ∪ (θ, π] considering
three different scenarios.

DGP 1 : θ = π/2, Λ1, Λ2 independently drawn from a uniform distribution in [−1, 1].

DGP 2 : θ = π/4, Λ1 and Λ2 independently drawn from a uniform distribution in [−1, 1].

DGP 3 : θ = π/4, Λ1 = Λ2 drawn from a uniform distribution in [−1, 1].

We measure estimation accuracy by projecting estimated factors onto real ones and report trace-
R2 statistics

R2
(
Ŷ, Y

)
= tr

(
Ŷ′PY Ŷ

)
/tr

(
Ŷ′Ŷ

)
(10)

of such multivariate projections, where tr(·) stands for trace, PY = Y (Y′Y)−1 Y′, Y and Ŷ
are either F, F (Ω1), F (Ω2) and F̂, F̂ (Ω1), F̂ (Ω2), respectively. The results for each DGP and

5See Wu and Zaffaroni (2017).
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T × N = [25 50 100 200] × [25 50 100 200] are obtained as averages across 500 replications.

The trace-R2 statistics in Table 1 show that in presence of frequency-specific effects, that
is under DGP 1 and DGP 2, the BSPC estimator yields mean-square consistent estimation
of frequency-specific factors as N and T grow. At the same time, the principal component
estimator F̂t does not seem to converge to Ft; this is particularly true for DGP 2. On the
contrary, under DGP 3 for which loadings are constant across frequencies, that is in absence of
frequency-specific effects, the BSPC estimator estimates Ft. Intuitively, the BSPC becomes a
relatively inefficient but consistent estimator since it only uses a band of frequencies while the
factor loadings are instead constant over the spectrum in the frequency-domain representation
(2). Nonetheless, the loss of efficiency is very mild since the trace-R2 of the two BSPC estimates,
R2

(
F̂t (Ω1) , Ft

)
and R2

(
F̂t (Ω2) , Ft

)
, are very close to those of the usual principal component

estimator, R2
(
F̂t, Ft

)
.

In Figure 1 we report the results of a similar exercise for r = 1 and N = T = 200. The
solid lines are the spectra obtained with the unfeasible lag-window estimator that uses true
factors, the dashed lines are instead obtained using the factors estimated via BSPCs. In short,
Figure 1 helps visualizing the key property of the BSPC estimator. When a band spectrum
factor model holds BSPCs estimate frequency-specific factors. That is the case of the first two
DGPs. Under a standard factor model with constant loadings across frequencies, BSPCs instead
estimate the same factors. Indeed, under DGP 3 the estimated spectra of F̂t (Ω1) and F̂t (Ω2)
are undistinguishable because F̂t (Ω1) and F̂t (Ω2) are both estimates of Ft (rather than Ft (Ω1)
and Ft (Ω2), respectively). The same applies to the corresponding confidence bands. This is far
from being a surprising result since for j = 1, 2 we have that F̂ (Ωj) = XΛ̂j

(
Λ̂jΛ̂′

j

)−1
which

obviously yields the same estimate across the two bands if Λ1 = Λ2.

2.2.2. Relation with spectral regressions and principal components

As briefly mentioned in Section 1, there are important antecedents to our band spectrum princi-
pal component estimator. The idea of estimating models on a band of frequencies dates back to
the regression analysis with distributed lags of Hannan (1963, 1965). The most direct antecedent
is however the seminal work of Engle (1974) on band spectrum regressions which is based on
a usual least squares framework limited to a band of frequencies. Although ours is a high-
dimensional problem with a set of predictors driven by unobserved factors, our band spectrum
principal component estimator is closely related to band spectrum regressions since it solves the
least squares problem argmin

Λ,Fω

∫
ω∈Ω (Xω − ΛFω)′ (Xω − ΛFω) dω. Indeed, with observed factors

the above problem reverts to a band spectrum regression of Xt on Ft. Finally, it is straightfor-
ward to note that band spectrum principal components generalise principal components which
are obtained by solving the full spectrum problem corresponding to Ω = [−π, π].

Accounting for the use of spectral regressions and closely related methods for the analysis of
frequency-specific effects in economics and finance goes beyond the scope of this paper. We refer
to the recent survey of Bandi and Tamoni (2022) for an up-to-date, comprehensive discussion
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of this vast strand of literature.

2.3. Forecasting bond returns: supervised learning and band spectrum principal
components

The success of principal components analysis in economics and finance spans several decades be-
cause the space spanned by a high-dimensional process, such as a collection of macroeconomic
variables Xt = (x1t, x2t, · · · , xNt) is well approximated by that spanned by a small number
of principal components (F1t, F2t, · · · , Frt), with r ≪ N . Indeed, principal components have
maximum variance among all linear combinations of Xt, and are widely used to estimate un-
observable common factors (Bai and Ng, 2002; Forni et al., 2000; Stock and Watson, 2002a).
Indeed, principal components are widely used to predict macroeconomic aggregates (see e.g.
Stock and Watson, 2002b; Giannone et al., 2008; Forni et al., 2018, among many others).

Predicting a specific target, such as excess bond returns, is a different problem than fitting
a collection of macroeconomic variables or aggregates. Even if the macroeconomy contains
predictive information for bond returns, some common macroeconomic factors may represent
macroeconomic fluctuations unrelated to bond returns. In this case, it becomes necessary to
identify a subspace the predictive signal lives in which is spanned by a subset of common
factors. For example, in their seminal work, Ludvigson and Ng (2009) perform an extensive
model selection procedure for which 8 principal components and powers thereof are considered
in the minimisation of a BIC criterion. Their selected specification is a linear combination of(
F̂1t, F̂ 3

1t, F̂3t, F̂4t, F̂8t

)
.

The problem of estimating a predictive signal living in a common factor subspace has been
widely considered in the statistical learning literature. Supervised statistical learning solves this
problem in a simpler manner by embedding the individual predictive power of each covariate
x1t, x2t, . . . , xNt into the extraction of the predictive signal via principal components. Taking
correlation as a measure of predictive power, Bair et al. (2006) estimate predictors as principal
components of a subset of covariates that correlate well with the predictive target.6 Another
strand of this literature is based on the idea of sufficiency for estimating a minimal common
factor subspace, which is referred to as the central subspace. This subspace is minimal because,
despite dimension reduction, it contains all the information in the covariates for the predictive
target.7 These methods are based on the projection of each covariate xit onto proxies for the
central subspace, such as the observed past of the predictive target (Cook and Forzani, 2008)
and/or other observed variables (Fan et al., 2017). Principal components are then applied to
the fitted values of the covariates.8

6A similar method without subset selection is proposed by Huang et al. (2022).
7That is, the conditional distribution of the target given the predictors X is the same as that given a lower-

dimensional transformation of X.
8Note, however, that Fan et al. (2017) extend this framework in a number of respects, like allowing the

predictive target to be some unknown nonlinear function of a subset of common factors.
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In a linear predictive model the dimension of the central subspace is one.9 For example, in
the model rxt+1 = µ+λ′

rxFt +εt+1 (where λrx may have one or more zero elements), the central
subspace is Span (λ′

rxFt). If, also, Ft obeys a standard factor model (1), one principal component
of fitted data would suffice. This is so because, if zt is a vector of proxies for the central subspace,
each projection x̂it (z) of xit on zt has a “signal” component which is proportional to λ′

rxFt, and
a principal component of x̂1t (z) , x̂2t (z), · · · , x̂Nt (z) estimates that predictive signal.

In this work we investigate whether the central subspace for excess bond returns is spanned
by frequency-specific factors by generalizing the linear predictive model discussed above. Con-
sider, for example, rxt+1 = µ + λ′

rxFt (Ω) + εt+1. In this scenario, the central subspace becomes
Span (λ′

rxFt (Ω)) and the predictive signal is estimated by a band spectrum principal component
at the band Ω of x̂1t (z) , x̂2t (z), · · · , x̂Nt (z). This example can be extended by allowing for
frequency-specific factors in different bands, such as rxt+1 = µ+λ′

rx,1Ft (Ω1)+λ′
rx,2Ft (Ω2)+εt+1.

In this case, allowing for λ′
rx,1Ft (Ω1) to be proxied by z(1)

t and λ′
rx,2Ft (Ω2) by z(2)

t , for the cen-
tral subspace we need one band spectrum principal component in Ω1 of fitted data x̂1t

(
z(1)

)
,

x̂2t

(
z(1)

)
, · · · , x̂Nt

(
z(1)

)
, and one in Ω2 of x̂1t

(
z(2)

)
, x̂2t

(
z(2)

)
, · · · , x̂Nt

(
z(2)

)
.

In full generality, our predictors are obtained as follows. Letting zt now be a vector of proxies
for the central subspace at frequencies in Ω, we take the projections x̂it (z) = Proj (xit|zt) where
x̂it (z) is an estimate of the component of xit driven by the subset of Ω-specific factors that
predicts excess bond returns. Letting Ĉx̂,0 (Ω, z) be the band spectrum covariance matrix of
the T × N panel of fitted data X̂ (z) := {x̂it (z) ; i = 1, . . . , N ; t = 1, . . . , T}, we consider band
spectrum principal components of fitted data

v∗
x̂ (Ω, z) = arg max

v∈RN , v′v=1
v′Ĉx̂,0 (Ω, z) v

F̂t (Ω, z) = v∗
x̂ (Ω, z)′ X̂t (z) (11)

where X̂t (z) = (x̂1t (z) , x̂2t (z) , · · · , x̂Nt (z))′. As discussed in Section 2.2, for the band spectrum
covariance we use the plugin estimator

Ĉx̂,0 (Ω, z) =
∫

ω∈Ω
Ŝx̂ (ω) dω (12)

where Ŝx̂ (ω) is the estimated spectral density matrix of X̂ (z) obtained using a lag-window
estimator as in equation (9). In the empirical part of this work, we predict one month ahead
excess bond returns using the predictors F̂t (Ω, z) for different choices of Ω and z.

9The dimension of the central subspace is greater than one in the nonlinear case considered by Fan et al.
(2017).
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3. Data

3.1. Excess bond returns

The (continuously compounded) yield of a n-year bond is

y
(n)
t = − 1

n
p

(n)
t

where p
(n)
t = ln P

(n)
t , and P

(n)
t denotes the time t nominal price of a bond with n-years left

to maturity. The excess return of a risky n-year bond is given by the difference between the
log return from a n-year bond bought at time t and sold m months later, and the yield on a
m-period risk-free rate at time t.

rx
(n)
t+m = p

(n− m
12 )

t+m − p
(n)
t − m

12y
( m

12 )
t = ny

(n)
t −

(
n − m

12

)
y
(n− m

12 )
t − m

12y
( m

12 )
t (13)

where m is the holding period and y
( m

12 )
t is the annualized m-period risk-free rate.

Setting m = 1, we construct (monthly) nonoverlapping excess bond returns. In so doing, we
follow recent works (such as Gargano et al., 2019; Wan et al., 2022; Borup et al., 2023) which
avocate the use of nonoverlapping returns versus the commonly used monthly overlapping returns
corresponding to an annual holding period (m = 12). There are a number of reasons for doing so.
First, there are important short-lived dynamics in excess bond returns, such as Lehman Brothers’
bankruptcy, which cannot be captured with annual holding periods. Second, overlapping returns
present difficulties with the turning points of business cycles, which bear an intimate relationship
with return predictability. Third, nonoverlapping returns are free from the inferencial problems
with overlapping returns described by Bauer and Hamilton (2018). Finally, in this work we are
interested in characterising the predictability of bond returns related to macroeconomic cycles of
different lengths: adopting overlapping returns would impair the interpretation of cycles shorter
than 1 year.

Yield data is taken from the zero-coupon Treasury yield curve dataset of Liu and Wu (2021)
considering maturities up to 10 years. This is the same choice as in works conducting a similar
out-of-sample predictive exercise, such as Bianchi et al. (2021), Fan et al. (2022). This dataset
is obtained using a nonparametric kernel-smoothing method which compares favourably to the
popular alternative dataset of Gürkaynak et al. (2007) as it takes into account Treasury bills and
securities with less than 3 months to maturity and is found to contain smaller pricing errors.10

10The popular dataset of Fama and Bliss (1987) is instead unfit to our analysis since it starts from the 1-year
maturity, hence it cannot be used to contruct nonoverlapping returns.
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3.2. Real-time macroeconomic data

We obtain real-time macroeconomic data from the ALFRED database published by the Federal
Reserve Bank of St. Louis. Apart from minor differences due to discontinued variables, our
dataset is similar to that adopted by Ghysels et al. (2018) and Wan et al. (2022).11 We observe
N = 54 variables which can be broadly classified as “output and income”, “labor market”,
“housing”, “money and credit”, “prices”. Most of these variables are not stationary and need
being transformed to achieve stationarity. After these transformations, reported in Appendix B,
the sample observations available span from August 1972 until December 2020. Some variables
are available at earlier dates, however this is the largest sample available without missing values.

We observe a total of 465 vintages running from April 1982 to December 2020.12 With
no ragged-edge data, our first vintage dated April 1982 would be based on 117 data points
from August 1972 onwards. However, these variables are available with a publication delay,
typically one or two months. For example, our April 1982 vintage contains variables observed
from August 1972 until to March 1982 and some from August 1972 until to February 1982. For
each vintage we cope with this problem by discarding the first few observations of the variables
with a shorter publication delay until a balanced panel is obtained. This leaves us, for example,
with an April 1982 vintage of our full dataset collecting all variables with an actual sample size
of 115 observations.

Finally, we remove outliers without looking into the future and standardise the data before
the estimation of our predictors.13

As a preliminary investigation into our macroeconomic dataset, we use the full sample in our
latest vintage dated December 2020 of dimension (T, N) = (579, 54) to decompose the covariance
matrix into its components in the frequency bands indicated below.

Ω1 = [2π/12, π] corresponding to cycles of length up to 1 year;

Ω2 = [2π/36, 2π/12] corresponding to cycles of length between 1 and 3 years;

Ω3 = [2π/96, 2π/36] corresponding to cycles of length between 3 and 8 years;

Ω4 = [0, 2π/96] corresponding to cycles of length of 8+ years,

where, to simplify the notation, the italic Ω = [ω, ω] denotes the band Ω = [−ω, −ω] ∪ [ω, ω]
with 0 ≤ ω < ω ≤ π. In Figure 2, for each band we show the normalized band spectrum covari-
ance matrix C0 (Ω) = 0.5 (ω − ω)−1 C0 (Ω) of our dataset with variables grouped by five broad

11More precisely, 8 out of 60 variables used in Ghysels et al. (2018) were discontinued in December 2015 and,
thus, we exclude them. Our dataset includes the remaining 52 variables plus CURRDD and DEDEP SL also
used by Wan et al. (2022).

12Infrequently, two vintages of a variable are released in a month. In such cases we take the last vintage of the
month. If no vintage is published in a month we take the last vintage of the previous month.

13For a given vintage, we define as outliers observations with absolute value larger than 6 times the interquartile
distance and replace them with the median, where both interquantile distance and median are calculated from
the empirical density in that vintage. Standardization is the standard practice for principal component estimators
since principal components are not invariant with respect to the scale of the predictors.
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categories.14 All in all, stronger comovements are visible as lower frequencies are considered,
a finding which is broadly in line with the well-known typical spectral shape popularized by
Granger (1966) — this is particularly evident for housing variables. Other interesting patterns
emerge from this picture such as the nearly constant covariances over all bands of “money and
credit variables”, and the covariance within the “prices” category, which is somewhat stronger
at the two extreme bands Ω1 and Ω4.

Nonetheless, Figure 2 does not help understanding whether these comovements are generated
by frequency-specific factors. Indeed, the typical spectral shape is also consistent with a usual
factor model with no frequency-specific factors and persistent common factors. In order to shed
more light on the eigenstructure of the data, we proceed like in our simulation exercise in Section
2.2. We measure how close are the common factors estimated in these bands via band spectrum
principal components. As shown by our simulation, in absence of frequency-specific effects,
factors estimated at different frequency bands are very correlated. As a measure of absolute
correlation among the BSPC estimates in Ω1, . . . , Ω4, in Table 2 we report trace-R2 statistics
R2

(
F̂t (Ωi) , F̂t (Ωj)

)
as in equation (10) for i ̸= j = 1, . . . , 4, where F̂t (Ωi) is a r-dimensional

vector of band spectrum principal components estimated as in equation (8). The first six rows
of Table 2 show that the correlation between estimated factors decreases as different frequencies
more apart in the spectrum are considered. For example, the trace-R2 between the first BSPC
in Ω1 and those in Ω2, Ω3 and Ω4 are 0.929, 0.703, 0.574, respectively. Overall, these differences
seem to persist when more than one principal component is taken in each band. In the last
four rows of Table 2 we report trace-R2 statistics between our BSPC estimates and conventional
principal components. Principal components correlate relatively little especially with the first
few BSPCs at lower frequencies. For example, R2

(
F̂t (Ω4) , F̂t

)
= 0.713 for r = 2 (and a smaller

value is found for r = 1). For sake of comparison, in our simulation exercise under no frequency-
specific effects, the trace-R2 between BSPCs and PC is about 0.91 even for a considerably smaller
sample size such as (T, N) = (100, 25) and 0.92 for (T, N) = (50, 50).

While these results cast some doubts on the lack of frequency-specific effects, this is far from
being clear-cut evidence. Most importantly, this preliminary analysis of our macroeconomic
dataset is not insightful on the predictive power of (BS)PC for excess bond returns.

4. Excess bond returns forecasts

We forecast nonoverlapping excess bond returns (13) one month ahead via usual predictive
regressions of the type

r̂x
(n)
t+1 = α̂ + β̂F̂t (Ω, z) (14)

14The normalization by the size of the band gives comparable covariances C0 (Ω)s across bands of different sizes.
Their non-normalized counterparts C0 (Ω)s are, instead, the components of C0 due to the fluctuations in different
bands. For example, with our chosen bands we have C0 =

∑4
i=1 C0 (Ωi) =

∑4
i=1 2 (ωi − ωi) C0 (Ωi).
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where F̂t (Ω, z) is a supervised band spectrum principal component obtained as in equation (11)
for some choice of Ω and z to be discussed below.15

Our predictions are obtained estimating the forecasting equation (14) over an expanding
window, that is, at time t we use all past data available in real time t which, as explained in
Section 3.2, generally means using observations up to month t − 2 or t − 1.

Our first prediction is made at the time of our first vintage of April 1982 to predict the
excess bond returns in May 1982 and so on until the last prediction made using the November
2020 vintage to predict the excess bond returns in December 2020. Denoting T0 the time
corresponding to April 1982 and T that corresponding to December 2020, our out-of-sample
forecasts are made in real time t = T0, T0 + 1, . . . , T − 1.

The methodology described in Section 2, is based on two key choices: a band of frequencies Ω
for our frequency-specific factors, and a vector of proxies z for the predictive signal in the common
macroeconomic cycles corresponding to the frequencies in Ω. Similarly in spirit to previous
works on frequency-, horizon- or scale-specific effects, in order to dissect the predictability of
excess bond returns we explore different choices of Ω. For example, Bandi et al. (2019) study
scale-specific predictability in predictive regressions under temporal aggregation over different
horizons. In order to observe whether the predictive power of common macroeconomic cycles
varies across frequency bands, we consider the bands Ω1, Ω2, Ω3, Ω4, as defined in Section 3.2.

For each band Ωi, i = 1, . . . , 4, we consider two alternative vectors of proxies zt, both
including the average excess bond return across maturities r̄xt+1 = 1

9
∑10

n=2 rx
(n)
t+1.

zInfl
t = (inflt, r̄xt+1)′ , where inflt = (1 − L)2 CPIt and CPIt is the “Consumer Price Index

for All Urban Consumers: All Items” taken from the ALFRED dataset.16

zT ms
t = (tmst, r̄xt+1)′ , where tmst is the term spread which we take from the dataset of Welch

and Goyal (2008).

As discussed in Section 2.3, the supervised learning literature suggests the target variable to be
predicted as a natural proxy for the central subspace. Since, following Cochrane and Piazzesi
(2005), the same factors are used to predict excess bond returns across all maturities, in both
choices above we consider the “average target” r̄xt+1 rather than each target rx

(n)
t+1. Of course,

since r̄xt+1 leads the predictors xit, these choices mean that at time t the projections x̂it (z) =
Proj (xit|zt) can be estimated up to time t − 1. Inflation and term spread are well-known
predictors of excess returns since at least Fama (1981) and Fama and French (1989).

In order to reach a conclusion regarding the existence of frequency-specific effects, we also
make predictions based on full spectrum principal components of fitted data corresponding to

15The estimation of the spectral density matrix in equation (9) is defined with a bandwidth equal to the smallest
integer near to the square root of the sample size. As explained in Section 3.2, publication delays dictate the
actual sample size available for our expanding estimation in real time t. Hence, our bandwidth becomes ⌊

√
T t⌋

where Tt is the actual sample size in t.
16Since CP I is part of our macroeconomic dataset, using it as a proxy means removing it from the panel

X before the estimation of factors. Clearly, not doing so would yield a panel of fitted data X̂ with a singular
convariance matrix.
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Ω0 = [0, π] for which cycles of any length are aggregated.

For i = 0, 1, . . . , 4, the predictions obtained using the predictor F̂t

(
Ωi, zInfl

)
in the fore-

casting equation (14) are denoted as Infl (Ωi), while Tms (Ωi) stands for the predictions using
F̂t

(
Ωi, zT ms

)
.

4.1. Statistical accuracy

We compare our forecasts against the standard benchmark suggested by the expectations hy-
pothesis, the historical mean r̂x

(n)
t+1,EH . Following Campbell and Thompson (2008), we use the

out-of-sample R2 measure

oosR2 = 1 −
∑T

t=T0+1

(
r̂x

(n)
t − rx

(n)
t

)2

∑T
t=T0+1

(
r̂x

(n)
t,EH − rx

(n)
t

)2 (15)

that is, a relative reduction in mean square error, which in all tables is reported in percentages.
Following the standard practice in this literature, we evaluate the statistical significance of these
mean square error improvements using the test of Clark and West (2006).

The oosR2 values in Table 3 support the existence of frequency-specific predictors as the
forecasts corresponding to the bands Ω2, Ω3 and Ω4 are considerably more accurate than those
corresponding to Ω1 and the full spectrum.

Starting from the forecasts obtained using the vector of proxies zInfl
t , while the oosR2s

of Infl (Ω0) and Infl (Ω1) are either negative or insignificant at all maturities, Infl (Ω2),
Infl (Ω3), Infl (Ω4) provide large oosR2s at all maturities which are 1% significant at ma-
turities 2 to 6 and 5% significant at maturities 7 to 10. Also, the oosR2s of Infl (Ω2), Infl (Ω3),
Infl (Ω4) are larger at shorter maturities. Overall, Infl (Ω4) is slightly more accurate than
Infl (Ω2) and Infl (Ω3) at each maturity.

Much statistical significance is found across all bands when zT ms
t is used as proxy. How-

ever, 1% significance at all maturities is only found for Tms (Ω2 ), Tms (Ω3 ) and Tms (Ω4 ).
Furthermore, Tms (Ω0) and Tms (Ω1 ) are associated with smaller oosR2s at all maturities and
considerably so for maturities of at least 3 years. Tms (Ω2 ), Tms (Ω3 ) and Tms (Ω4 ) provide
their largest oosR2s at maturities longer than 3 years.

4.2. Economic value of the forecasts

Thus far we found statistical evidence of bond return predictablility using frequency-specific
factors. However, as pointed out by works such as Thornton and Valente (2012) and Sarno et al.
(2016), statistically accurate forecasts do not necessarily generate economic value for inverstors
trading on Treasury bonds. Therefore, we now examine whether our forecasts translate into
economic gains for investors with mean-variance preferences or a power utility function. In both
cases, we consider the asset allocation decisions of an investor who selects weights w

(n)
t on a
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risky bond with n years to maturity versus the one-month T-bill, that is a risk-free yield y
(1/12)
t .

A mean-variance investor maximizes the utility function

U
(
w

(n)
t , rx

(n)
t+1

)
= Et

(
R

(n)
p,t+1

)
− γ

2 Vart

(
R

(n)
p,t+1

)
(16)

where γ is the relative risk aversion and R
(n)
p,t+1 = y

(1/12)
t +w

(n)
t rx

(n)
t+1 the portfolio return at time

t + 1 given the generic allocation w
(n)
t . The solution of the above optimisation problem is

ẇ
(n)
t = γ−1 r̂x

(n)
t+1(

σ̂
(n)
t+1|t

)2

where r̂x
(n)
t+1 is some excess return forecast on n-year bond, and

(
σ̂

(n)
t+1|t

)2
is the conditional

variance estimated using a rolling window estimator over the past five years of observations as
in Campbell and Thompson (2008).

A power utility investor instead maximizes the utility function

U
(
w

(n)
t , rx

(n)
t+1

)
= 1

1 − γ

((
1 − w

(n)
t

)
exp

(
y

(1/12)
t

)
+ w

(n)
t exp

(
y

(1/12)
t + rx

(n)
t+1

))1−γ
(17)

In this case, the optimal weights we use are those obtained under the log-normal approximation
of Campbell and Viceira (1999)

ẇ
(n)
t = 1

γ
(
σ̂

(n)
t+1|t

)2

[
r̂x

(n)
t+1 +

(
σ̂

(n)
t+1|t

)2
/2

]

Under both preferences, we follow Campbell and Thompson (2008) who windorise the
weights by imposing the restriction 0 ≤ w

(n)
t ≤ 1.5 to prevent the investor from taking ex-

treme positions such as leveraging above 150% and shorting positions.

The optimal portfolio weights ẇt given some predictions r̂x
(n)
t+1 are used at every time t

to compute the investor’s realized utilities U̇t+1. Similarly, the benchmark realized utilities
U̇t+1,EH are obtained using optimal weights given the expectations hypothesis forecasts r̂x

(n)
t+1,EH .

The certainty equivalent return (CER) gains of a given predictive model with respect to the
benchmark are obtained as the difference between its average realized utility over time and the
average benchmark realized utility. So positive CER gains indicate that the predictive model
considered produces economic value in excess of that of the expectations hypothesis model.
We report CER gains in annualized percentage terms. Finally, to test whether these gains are
statistically greater than zero, we use the test of Diebold and Mariano (1995). Specifically, we
estimate the regression

U̇
(n)
t+1 − U̇

(n)
t+1,EH = δ(n) + ϵ

(n)
t+1

and test if δ(n) equals zero. To examine the effect of risk aversion γ, we repeat the above analysis
considering the values 3, 5 and 8.
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Table 4 shows the CER gains for investors with mean-variance utility. The most important
result here is the evidence of significant CER gains which thus far, to the best of our knowledge,
has not been found with nonoverlapping returns using data available in real-time. However,
no single predictor provides significant CER gains at all maturties and across all risk aversion
coefficients. For example, no prediction is significant at maturties 9 and 10 when γ = 8.

Similarly to the oosR2s in the previous section, when zInfl
t is used we find evidence of

frequency-specific effects with results varying much across our spectral bands. Regardless the risk
aversion coefficient, all CER gains of Infl (Ω0) and Infl (Ω1 ) are either negative or insignificant.
The CER gains of Infl (Ω2 ), Infl (Ω3 ) and Infl (Ω4 ) are instead significant across all maturities
for γ = 3, until maturity 8 for γ = 5, and until maturity 6 for γ = 8. At least for γ = 5, 8,
Infl (Ω4) is slightly better than Infl (Ω2) and Infl (Ω3).17

Some interesting patterns across our spectral bands emerge when zT ms
t is used. For all risk

aversion coefficients, Tms (Ω1 ) gives significant CER gains at maturities 2 to 6 and insignificant
gains at maturities 8 to 10. Tms (Ω2 ) has the largest (significant) CER gains at maturities 7 to
10 for risk aversion γ = 3, 5, and at maturities 5 to 8 for γ = 8. Despite being outperformed by
Tms (Ω2 ), Tms (Ω3 ), Tms (Ω4 ) in statistical terms, Tms (Ω0) generates some significant CER
gains, especially at the two shortest maturities, 2 and 3.

At least qualitatively, the results are very similar for power utility investors; the correspond-
ing CER gains are reported in Appendix C (Table 10).

4.3. Two predictors

In the previous sections we found considerable differences between forecasts obtained across
different bands of frequencies both in statistical and economic terms. This is true for both
families of predictors F̂t

(
Ω, zInfl

)
and F̂t

(
Ω, zT ms

)
as Ω varies between the bands Ω1 to Ω4.

Nonetheless, Tms (Ω) predictions are better when shorter common macroeconomic cycles are
considered and are relatively more accurate for bonds with longer maturities, while the opposite
applies to Infl (Ω). So, we are tempted to conjecture that zInfl and zT ms proxy for different
predictable components of excess bond returns.

Searching for more convincing evidence, we now extend our out-of-sample predictive exercise
by considering the following additional predictive models based on two predictors

r̂x
(n)
t+1 = α̂ + β̂1F̂t

(
Ωi, zInfl

)
+ β̂2F̂t

(
Ωj , zT ms

)
(18)

for any possible pair of predictors for i, j = 0, 1, . . . , 4. For each pair we make forecasts and
in Figure 3 we report averages across maturities of oosR2 and CER gains under mean-variance
preferences. These results show that the most accurate individual predictors described in the
previous sections combine well together. For example, in line with the above results on Infl (Ω4)

17Among Infl (Ω2), Infl (Ω3), Infl (Ω4), the latter is the only one to exceed the others at some maturities by
at least 0.01 and at the same or higher levels of significance.
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and Tms (Ω2), the predictions based on both predictors F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
yield

the largest average oosR2 and average CER gains for all risk aversion coefficients. Also, similarly
to the evidence on individual predictors, full spectrum predictions — corresponding to the pair
F̂t

(
Ω0, zInfl

)
, F̂t

(
Ω0, zT ms

)
— or those based on the shortest macroeconomic cycles are less

accurate.18 Again, oosR2 and CER gains vary much across the bands of frequencies considered.
F̂t

(
Ω, zInfl

)
gives much better results at Ω2, Ω3, Ω4, that is when higher-frequency fluctuations

are excluded. F̂t

(
Ω, zT ms

)
is more accurate at Ω2, especially in terms of CER gains.

In Table 5, for each maturity we report all results — oosR2 and CER gains — based on our
most accurate predictors F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
:

All forecasts are obtained by projecting excess bond returns onto both factors, that is using
the (18) for i = 4 and j = 2;

Avg forecasts are simple forecasts combinations obtained averaging the two predictions Infl (Ω4)
and Tms (Ω2) at each point in time.

In Panel A of Table 5 we see that All gives oosR2s which are considerably larger than Infl (Ω4)
and Tms (Ω2) (or any other prediction obtained with a single predictor) and 1% significant at
all maturities. Avg forecasts are also accurate in statistical terms but they are outperformed
by All at each maturity (they are also outperformed by Infl (Ω4) at the two shortest maturi-
ties). The evidence in Panel B of Table 5 is even stronger since, unlike any forecast based on
individual predictors discussed above (Table 4), All gives significant CER gains at all maturities
and for any value of risk aversion. This strengthens our novel result of significant CER gains
using nonoverlapping returns and data available in real time. Similarly to their performance in
statistical terms, Avg predictions yield good economic value but not as much as All with some
insignificant CER gains (i.e. for maturities longer than 7 years and γ = 8).

All forecasts are our best both in economic and statistical terms. We must conclude that
F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
are two powerful predictors for different predictive components

of excess bond returns.

5. Links to the real economy

Motivated by the intuition that investors demand compensation for the risk of recessions, no-
table rational expectations models, such as Campbell and Cochrane (1999) and Wachter (2006),
feature countercyclical risk aversion. Futhermore, countercyclical risk premia have been widely
documented by prior empirical works dismissing the expectations hypothesis such as Fama and
Bliss (1987) and Campbell and Shiller (1991). Having established evidence of predictability, we

18Despite positive averages across maturities, in unreported results (available upon request), we found
that the full spectrum pair F̂

(
Ω0, zInfl

)
, F̂

(
Ω0, zT ms

)
and the pair at our highest-frequency band

F̂
(
Ω1, zInfl

)
, F̂

(
Ω1, zT ms

)
provide little evidence of significant CER gains across maturities and risk aversion

coefficients.
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now investigate whether our out-of-sample expected returns are consistent with such a theoret-
ically appealing feature of countercyclical risk premia.

We start by measuring whether our expected returns correlate with monthly measures of
real economic activity growth. As seen in Table 6, expected returns generated by our two most
accurate predictors F̂t

(
Ω4, zInfl

)
, F̂t

(
Ω2, zT ms

)
either individually (Infl (Ω4) and Tms (Ω2))

or jointly (All and Avg) are clearly countercyclical. All these forecasts are negatively correlated
with the Michigan consumer sentiment index (MCSI) and significantly so at 1% for all maturities.
Evidence of counterciclicality is also found by looking at the year-on-year industrial production
growth (IP y-o-y growth) and the Chicago Fed National Activity sub-index on consumption and
housing (CFNAI C&H). The only exception is the correlation between Tms (Ω2 ) and IP y-o-y
growth which is still negative but insignificant. The magnitude of all correlations increases with
the maturities.19

Following Ludvigson and Ng (2009), we extend this analyisis by considering the term
premium, defined as the gap between an n-year yield y

(n)
t and its expectation component

n−1Et

(
y

(1)
t + y

(1)
t+1 + · · · + y

(1)
t+n−1

)
, which can be estimated as

tp
(n)
t = 1

n

(
r̂x

(n)
t+12 + r̂x

(n−1)
t+24 + · · · + r̂x

(2)
t+12(n−1)

)
(19)

where the hats stand for predictions at time t. While the expectations hypothesis implies a
constant term premium, rational expectation models with time-varying risk aversion instead
predict a countercyclical term premium. Adopting the standard VAR procedure for multi-step
ahead forecasts introduced by Ludvigson and Ng (2009) and followed by many works closely
related to ours (Ghysels et al., 2018; Huang et al., 2023), we measure the cyclical properties of the
term premium implied by our All forecasts.20 In Figure 4 we show the term premium estimated
for n = 5 and n = 10 (left to right) and excluding or including our predictors F̂t

(
Ω4, zInfl

)
,

F̂t

(
Ω2, zT ms

)
(top to bottom), against IP y-o-y growth. For n = 5 the correlation between the

estimated term premium and industrial production growth is −0.33 when our predictors are
included and 0.21 otherwise; for n = 10 both estimated term premia are countercyclical but the
countercyclicality obtained including our predictors is almost twice as large (i.e. the correlation
is −0.29 versus −0.17). All correlation coefficients are 1% significant.

Adopting another popular way in the literature to study the cyclical pattern of predictability,
we now split our sample into periods of recessions and expansions using the NBER recession
indicator and observe how our forecasts perform in these two subsamples.21 Mirroring the
analysis in Section 4, we evaluate our forecasts in both statistical and economic terms. In Table
7 we decompose the oosR2 of the models using F̂t

(
Ω4, zInfl

)
, F̂t

(
Ω2, zT ms

)
either individually

(Infl (Ω4) and Tms (Ω2)) or jointly (All and Avg). Most predictability is found in recessions.
19Similar evidence is obtained by adjusting for risk. Table 11 in Appendix C reports larger Sharpe ratios during

recessions than expansions for all maturities and predictions Infl (Ω4), T ms (Ω2), All and Avg.
20Following Ludvigson and Ng (2009) h-year-ahead predictions are obtained using a monthly vector autoregres-

sive model with 12 lags that includes as variables the excess bond returns and a set of predictors.
21The recession indicator “USREC”, is taken from the FRED database.
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However, unlike a number of works concluding that return predictability is concentrated in
recessions and absent during expansions — among many others see Rapach and Zhou (2013),
Henkel et al. (2011), Dangl and Halling (2012) for equity returns, and Sarno et al. (2016);
Gargano et al. (2019) for bond returns —, we find some evidence of predictability even in
expansions. Nonetheless, this result is not unprecedented in the literature. In fact, the same
finding is reported by Bianchi et al. (2021) who also use machine learning techniques, albeit
different from ours. Even more interestingly, Table 7 clarifies that predictability in expansions
is entirely caught by one predictor, F̂t

(
Ω2, zT ms

)
, which highlights two remarkable similarities

with Andreasen et al. (2021) regarding the performance of term structure predictors across the
business cycle. First, they are powerful during expansions. Second, the forecasts they generate
are less accurate during recessions for longer maturities. The only forecasts in Table 7 obtained
without including F̂t

(
Ω2, zT ms

)
, i.e. Infl (Ω4), generate negative oosR2 in expansions at most

maturities, while Tms (Ω2) and All give 1%-significant improvements over the benchamark at
all maturities (Avg is still significant at all maturities, but just at 5% for maturities longer than
6 years). This result confirms the interpretation that inflation and the term spread proxy for
two unrelated predictable components of expected returns.

Table 7 also shows that accuracy in recessions is way higher than during expansions and,
conversely to expansions, it is due to our other predictor, F̂t

(
Ω4, zInfl

)
. In line with the above

results, oosR2 are much larger during recessions. Similar findings are in Table 8 where we report
the CER gains in expansions and recessions: larger economic value is during recessions and is
mostly generated by F̂t

(
Ω4, zInfl

)
, whereas smaller but significant economic value is generated

by F̂t

(
Ω2, zT ms

)
during expansions.

6. Conclusions

Motivated by mounting evidence of frequency-specific effects in financial markets (see e.g. Dew-
Becker and Giglio, 2016; Bandi et al., 2021; Neuhierl and Varneskov, 2021), we study the pre-
dictability of nonoverlapping excess bond returns using frequency-specific latent macroeconomic
factors estimated in real time. Our method combines a novel band spectrum principal compo-
nent estimator for frequency-specific factors and an existing supervised learning technique based
on observable proxies for future excess bond returns which helps us identify a subset of common
macroeconomic factors with predictive power.

Two predictive factors are obtained, the one using inflation as proxy, the other using the
term spread. In both cases, we estimate these factors at different bands of frequencies finding
that the predictive power of common macroeconomic factors varies widely across cycles of differ-
ent lengths. Using our inflation factor, we find that common macroeconomic cycles of at most
one year are extremely poor predictors. Longer macroeconomic cycles related to the inflation are
instead powerful predictors, especially so for cycles of at least 8 years. The predictor obtained
maximizing such cycles is relatively more powerful for shorter maturities and generates much
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predictability during recessions. Also using our term spread factor we find evidence that pre-
dictability concentrates within a spectral band, however such band corresponds to much shorter
common macroeconomic cycles. The predictor obtained maximizing common macroeconomic
cycles of 1 to 3 years related to the term spread is instead relatively more powerful for longer
maturities and generates significant predictability during expansions. As a result, it is not sur-
prising that a model which includes both predictors is our best specification being the most
accurate in statistical terms and generating significant economic value for investors of various
kinds (i.e. with mean-variance or power utility and a range of risk aversions). Furthermore,
our results are in line with countercyclical risk aversion since we find countercyclical expected
returns and term premia, and predictability is relatively stronger during recessions.

Other works found evidence of predictability and countercyclical risk aversion, however ours
is the first one doing so using real-time data and nonoverlapping returns. In so doing, we confirm
the big picture of Ludvigson and Ng (2009) on the predictive power of latent macroeconomic
factors while taking into account the reasonable concerns of Ghysels et al. (2018) on the use of
revised macroeconomic data, and the drawbacks associated with the use of overlapping returns.
Other interesting results emerge thanks to the frequency-specific nature of our analysis. Our
inflation factor capturing cycles of at least 8 years is consistent with the long-run risk model of
Bansal and Shaliastovich (2013) and the yield decomposition of Cieslak and Povala (2015). Our
term spread factor has cyclical properties similar to those found by Fama and French (1989)
and is very reminiscent of previous results in the literature on yield curve predictors such as
those of Andreasen et al. (2021) regarding predictability during expansions, and the cycle factor
proposed by Cieslak and Povala (2015) whose predictive power increases with the maturity.
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Tables

Table 1: Simulation results.

DGP 1 DGP 2 DGP 3

R2
(

F̂t (Ω1) , Ft (Ω1)
)

R2
(

F̂t (Ω1) , Ft (Ω1)
)

R2
(

F̂t (Ω1) , Ft

)
N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200

T = 25 0.543 0.677 0.751 0.818 0.728 0.826 0.878 0.918 0.844 0.881 0.903 0.914
50 0.583 0.733 0.826 0.902 0.774 0.870 0.929 0.962 0.886 0.922 0.941 0.950
100 0.625 0.762 0.863 0.927 0.797 0.886 0.940 0.969 0.911 0.942 0.960 0.969
200 0.643 0.773 0.875 0.932 0.813 0.893 0.946 0.972 0.921 0.955 0.971 0.980

R2
(

F̂t (Ω2) , Ft (Ω2)
)

R2
(

F̂t (Ω2) , Ft (Ω2)
)

R2
(

F̂t (Ω2) , Ft

)
N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200

T = 25 0.781 0.836 0.865 0.884 0.607 0.682 0.715 0.761 0.847 0.880 0.901 0.912
50 0.837 0.888 0.919 0.929 0.720 0.804 0.851 0.883 0.891 0.924 0.942 0.950
100 0.861 0.910 0.940 0.956 0.763 0.845 0.895 0.928 0.913 0.944 0.961 0.970
200 0.874 0.926 0.957 0.969 0.782 0.866 0.922 0.947 0.923 0.956 0.972 0.980

R2
(

F̂t, Ft

)
R2

(
F̂t, Ft

)
R2

(
F̂t, Ft

)
N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200

T = 25 0.586 0.619 0.646 0.654 0.523 0.548 0.570 0.581 0.853 0.887 0.907 0.918
50 0.620 0.654 0.685 0.693 0.494 0.529 0.549 0.553 0.891 0.925 0.943 0.952
100 0.623 0.674 0.693 0.703 0.479 0.515 0.532 0.538 0.913 0.944 0.961 0.970
200 0.644 0.682 0.713 0.717 0.481 0.498 0.528 0.530 0.923 0.955 0.972 0.980

Notes: The table reports trace-R2 statistics (10). Data generating processes and all details of the simulation exercise are
described in Section 2.2.1. T ,N denote the dimension of the panel considered for each DGP.

Table 2: Macro data: BSPC estimates.

r

1 2 3 5 8

R2
(

F̂t (Ω1) , F̂t (Ω2)
)

0.929 0.826 0.794 0.786 0.824
R2

(
F̂t (Ω1) , F̂t (Ω3)

)
0.703 0.593 0.619 0.685 0.759

R2
(

F̂t (Ω1) , F̂t (Ω4)
)

0.574 0.556 0.590 0.646 0.732
R2

(
F̂t (Ω2) , F̂t (Ω3)

)
0.878 0.790 0.809 0.922 0.959

R2
(

F̂t (Ω2) , F̂t (Ω4)
)

0.727 0.770 0.787 0.908 0.938
R2

(
F̂t (Ω3) , F̂t (Ω4)

)
0.941 0.997 0.997 0.987 0.983

R2
(

F̂t (Ω1) , F̂t

)
0.997 0.910 0.878 0.905 0.962

R2
(

F̂t (Ω2) , F̂t

)
0.953 0.941 0.904 0.935 0.904

R2
(

F̂t (Ω3) , F̂t

)
0.748 0.738 0.791 0.873 0.866

R2
(

F̂t (Ω4) , F̂t

)
0.617 0.713 0.773 0.849 0.850

Notes: Trace-R2 statistics (10) for common factors in the of the ALFRED dataset (December 2020 vintage) estimated via
band spectrum principal components.
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Table 3: Out of sample R2 across frequency bands.

Maturities
2 3 4 5 6 7 8 9 10

Infl (Ω1) 0.593 0.279 0.136 −0.023 −0.150 −0.047 0.027 0.027 −0.023
Infl (Ω2) 4.385∗∗∗ 3.723∗∗∗ 2.418∗∗∗ 1.948∗∗∗ 1.993∗∗∗ 1.871∗∗ 1.885∗∗ 1.653∗∗ 1.573∗∗

Infl (Ω3) 4.481∗∗∗ 3.904∗∗∗ 2.606∗∗∗ 2.115∗∗∗ 2.094∗∗∗ 1.936∗∗ 1.936∗∗ 1.687∗∗ 1.567∗∗

Infl (Ω4) 4.578∗∗∗ 3.990∗∗∗ 2.679∗∗∗ 2.170∗∗∗ 2.142∗∗∗ 1.987∗∗ 1.982∗∗ 1.725∗∗ 1.597∗∗

Infl (Ω0) 0.568 0.200 0.074 −0.106 −0.289 −0.143 −0.059 −0.049 −0.041

T ms (Ω1) 0.237∗∗∗ 0.973∗∗∗ 0.625∗∗ 0.738∗∗ 0.533∗∗ 0.380∗∗ 0.316∗ 0.269∗ 0.146
T ms (Ω2) 0.412∗∗∗ 1.514∗∗∗ 2.033∗∗∗ 2.226∗∗∗ 2.012∗∗∗ 1.880∗∗∗ 1.774∗∗∗ 1.743∗∗∗ 1.531∗∗∗

T ms (Ω3) 0.580∗∗∗ 1.457∗∗∗ 1.973∗∗∗ 2.186∗∗∗ 2.062∗∗∗ 2.035∗∗∗ 1.969∗∗∗ 1.980∗∗∗ 1.800∗∗∗

T ms (Ω4) 0.564∗∗∗ 1.437∗∗∗ 1.951∗∗∗ 2.164∗∗∗ 2.044∗∗∗ 2.020∗∗∗ 1.957∗∗∗ 1.968∗∗∗ 1.792∗∗∗

T ms (Ω0) 0.074∗∗∗ 0.820∗∗∗ 0.557∗∗∗ 0.748∗∗ 0.544∗∗ 0.390∗∗ 0.358∗∗ 0.309∗ 0.127∗

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. The predictions obtained
using the predictor F̂t

(
Ωi, zInfl

)
in the forecasting equation (14) are denoted as Infl (Ωi) for i = 0, 1, . . . , 4. Tms (Ωi)

stands for the same predictions using F̂t

(
Ωi, zT ms

)
. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level

using the test of Clark and West (2006).
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Table 4: CER gains (Mean-Variance utility)

Maturities
2 3 4 5 6 7 8 9 10

γ = 3
Infl (Ω1) 0.128 0.176 0.275 0.119 −0.029 −0.158 −0.206 −0.407 −0.517
Infl (Ω2) 0.401∗ 0.685∗∗ 0.806∗∗ 0.843∗∗ 0.904∗ 0.933∗ 1.194∗ 1.328∗∗ 1.450∗∗

Infl (Ω3) 0.463∗ 0.749∗∗ 0.888∗∗ 0.935∗∗ 1.014∗ 1.061∗ 1.286∗ 1.467∗∗ 1.604∗∗

Infl (Ω4) 0.457∗ 0.743∗∗ 0.887∗∗ 0.922∗∗ 1.017∗ 1.070∗ 1.285∗ 1.475∗∗ 1.622∗∗

Infl (Ω0) 0.029 0.103 0.194 0.020 −0.151 −0.299 −0.318 −0.585 −0.670

T ms (Ω1) 0.433∗ 0.567∗ 0.496∗ 0.564∗ 0.819∗ 0.774 0.837 0.948 0.935
T ms (Ω2) 0.238 0.510∗ 0.699∗ 0.644 0.776 1.007∗ 1.285∗ 1.738∗∗ 1.888∗∗

T ms (Ω3) 0.163 0.327 0.397 0.369 0.604 0.982 1.259∗ 1.605∗∗ 1.722∗∗

T ms (Ω4) 0.156 0.317 0.391 0.352 0.586 0.966 1.241∗ 1.575∗∗ 1.688∗

T ms (Ω0) 0.453∗ 0.579∗ 0.475 0.542 0.755 0.893∗ 1.088∗ 1.336∗∗ 1.374∗

γ = 5
Infl (Ω1) 0.121 0.154 0.053 −0.099 −0.340 −0.439 −0.581 −0.748 −0.892
Infl (Ω2) 0.422∗ 0.653∗∗ 0.671∗∗ 0.635∗ 0.750∗ 0.907∗ 0.994∗ 0.738 0.668
Infl (Ω3) 0.478∗∗ 0.725∗∗ 0.745∗∗ 0.726∗ 0.842∗ 1.045∗∗ 1.129∗∗ 0.859 0.782
Infl (Ω4) 0.478∗∗ 0.721∗∗ 0.745∗∗ 0.741∗∗ 0.849∗ 1.068∗∗ 1.156∗∗ 0.888 0.811
Infl (Ω0) 0.079 0.116 −0.042 −0.186 −0.468 −0.582 −0.757 −0.898 −0.950

T ms (Ω1) 0.427∗ 0.489∗ 0.533∗ 0.688∗ 0.749∗ 0.839∗ 0.792 0.697 0.617
T ms (Ω2) 0.276 0.471∗ 0.492 0.684∗ 0.966∗ 1.442∗∗ 1.595∗∗ 1.664∗∗ 1.638∗∗

T ms (Ω3) 0.158 0.232 0.271 0.506 0.742 1.174∗ 1.334∗ 1.544∗ 1.611∗

T ms (Ω4) 0.150 0.227 0.263 0.493 0.725 1.146∗ 1.306∗ 1.527∗ 1.576∗

T ms (Ω0) 0.427∗∗ 0.506∗∗ 0.467 0.718∗ 0.935∗∗ 1.064∗∗ 1.114∗∗ 1.063∗ 1.005

γ = 8
Infl (Ω1) 0.084 0.055 −0.093 −0.235 −0.489 −0.661 −0.707 −0.666 −0.700
Infl (Ω2) 0.401∗∗ 0.542∗∗ 0.443∗ 0.601∗∗ 0.701∗ 0.482 0.384 0.245 0.215
Infl (Ω3) 0.460∗∗ 0.601∗∗ 0.515∗ 0.706∗∗ 0.815∗∗ 0.596 0.476 0.303 0.274
Infl (Ω4) 0.462∗∗ 0.599∗∗ 0.525∗ 0.722∗∗ 0.835∗∗ 0.617 0.495 0.319 0.281
Infl (Ω0) 0.064 −0.019 −0.206 −0.381 −0.610 −0.746 −0.844 −0.803 −0.813

T ms (Ω1) 0.366∗∗ 0.433∗ 0.494∗ 0.632∗ 0.724∗ 0.573 0.444 0.248 0.162
T ms (Ω2) 0.260∗ 0.300 0.512∗ 0.910∗∗ 1.219∗∗ 1.201∗∗ 1.122∗ 0.866 0.645
T ms (Ω3) 0.130 0.096 0.308 0.664∗ 0.908∗ 1.082∗ 1.065 0.931 0.707
T ms (Ω4) 0.124 0.088 0.299 0.647∗ 0.890∗ 1.054∗ 1.041 0.912 0.690
T ms (Ω0) 0.372∗∗ 0.437∗ 0.573∗∗ 0.774∗∗ 0.918∗∗ 0.760 0.681 0.509 0.386

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. The predictions obtained
using the predictor F̂t

(
Ωi, zInfl

)
in the forecasting equation (14) are denoted as Infl (Ωi) for i = 0, 1, . . . , 4. Tms (Ωi)

stands for the same predictions using F̂t

(
Ωi, zT ms

)
. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level

using the test of Diebold and Mariano (1995).
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Table 5: oosR2s and CER gains using F̂
(
Ω4, zInfl

)
and F̂

(
Ω2, zT ms

)
Maturities

2 3 4 5 6 7 8 9 10

Panel A: Out of sample R2

All 5.934∗∗∗ 5.560∗∗∗ 4.495∗∗∗ 4.125∗∗∗ 4.184∗∗∗ 4.170∗∗∗ 4.056∗∗∗ 3.665∗∗∗ 3.354∗∗∗

Avg 4.004∗∗∗ 3.728∗∗∗ 3.050∗∗∗ 2.784∗∗∗ 2.734∗∗∗ 2.533∗∗∗ 2.439∗∗∗ 2.234∗∗∗ 2.026∗∗∗

Panel B: CER gains

Mean-Variance utility, γ = 3
All 0.473∗ 0.717∗ 1.017∗∗ 1.229∗∗ 1.596∗∗ 2.064∗∗ 2.478∗∗ 2.779∗∗∗ 2.999∗∗∗

Avg 0.507∗∗ 0.797∗∗ 0.972∗∗∗ 0.979∗∗ 1.184∗∗ 1.269∗∗ 1.441∗∗ 1.660∗∗ 1.791∗∗

Mean-Variance utility, γ = 5
All 0.453∗ 0.649∗ 0.946∗∗ 1.247∗∗ 1.675∗∗ 2.185∗∗∗ 2.376∗∗∗ 2.397∗∗ 2.466∗∗

Avg 0.518∗∗ 0.728∗∗ 0.811∗∗ 0.912∗∗ 1.143∗∗ 1.271∗∗ 1.357∗∗ 1.265∗ 1.193∗

Mean-Variance utility, γ = 8
All 0.433∗ 0.635∗∗ 0.870∗∗ 1.231∗∗ 1.603∗∗∗ 1.726∗∗ 1.684∗∗ 1.479∗ 1.370∗

Avg 0.447∗∗ 0.623∗∗ 0.727∗∗ 0.920∗∗∗ 1.035∗∗ 0.914∗ 0.815 0.604 0.509

Notes: Forecasts labelled All are obtained as in equation (18) for i = 4 and j = 2. Avg forecasts are simple forecasts
combinations obtained by averaging Infl (Ω4) and T ms (Ω2) predictions at each point in time. In Panel A ∗, ∗∗, ∗∗∗

denote statistical significance at 10, 5, 1 percent level using the test of Clark and West (2006). In Panel B ∗, ∗∗, ∗∗∗

denote statistical significance at 10, 5, 1 percent level using the test of Diebold and Mariano (1995).

Table 6: Macroeconomic determinants of expected excess returns

Maturities
2 3 4 5 6 7 8 9 10

IP y-o-y growth
Infl (Ω4) −0.147∗∗∗ −0.149∗∗∗ −0.151∗∗∗ −0.151∗∗∗ −0.157∗∗∗ −0.165∗∗∗ −0.164∗∗∗ −0.172∗∗∗ −0.177∗∗∗

T ms (Ω2) −0.052 −0.054 −0.055 −0.056 −0.056 −0.059 −0.055 −0.060 −0.063
All −0.106∗∗ −0.094∗∗ −0.079∗ −0.080∗ −0.094∗∗ −0.101∗∗ −0.097∗∗ −0.102∗∗ −0.109∗∗

Avg −0.115∗∗ −0.113∗∗ −0.110∗∗ −0.110∗∗ −0.115∗∗ −0.122∗∗∗ −0.119∗∗ −0.126∗∗∗ −0.130∗∗∗

CFNAI C&H
Infl (Ω4) −0.061 −0.089∗ −0.133∗∗∗ −0.149∗∗∗ −0.132∗∗∗ −0.144∗∗∗ −0.141∗∗∗ −0.167∗∗∗ −0.176∗∗∗

T ms (Ω2) −0.093∗∗ −0.106∗∗ −0.125∗∗∗ −0.142∗∗∗ −0.136∗∗∗ −0.154∗∗∗ −0.147∗∗∗ −0.167∗∗∗ −0.177∗∗∗

All −0.054 −0.073 −0.100∗∗ −0.118∗∗ −0.114∗∗ −0.131∗∗∗ −0.128∗∗∗ −0.146∗∗∗ −0.158∗∗∗

Avg −0.087∗ −0.111∗∗ −0.146∗∗∗ −0.164∗∗∗ −0.153∗∗∗ −0.170∗∗∗ −0.165∗∗∗ −0.190∗∗∗ −0.201∗∗∗

MCSI
Infl (Ω4) −0.150∗∗∗ −0.158∗∗∗ −0.168∗∗∗ −0.170∗∗∗ −0.165∗∗∗ −0.170∗∗∗ −0.164∗∗∗ −0.173∗∗∗ −0.177∗∗∗

T ms (Ω2) −0.256∗∗∗ −0.267∗∗∗ −0.277∗∗∗ −0.287∗∗∗ −0.283∗∗∗ −0.291∗∗∗ −0.284∗∗∗ −0.295∗∗∗ −0.301∗∗∗

All −0.266∗∗∗ −0.300∗∗∗ −0.331∗∗∗ −0.343∗∗∗ −0.338∗∗∗ −0.350∗∗∗ −0.347∗∗∗ −0.361∗∗∗ −0.369∗∗∗

Avg −0.230∗∗∗ −0.244∗∗∗ −0.260∗∗∗ −0.267∗∗∗ −0.261∗∗∗ −0.269∗∗∗ −0.262∗∗∗ −0.274∗∗∗ −0.280∗∗∗

Notes: Correlation between expected returns and macroeconomic cyclical indicators. IP y-o-y growth stands is the year-
on-year industrial production growth, CFNAI C&H is the Chicago Fed National Activity sub-index on consumption and
housing, MCSI is the Michigan consumer sentiment index. Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled All are
obtained as in equation (18) for i = 4 and j = 2. Avg forecasts are simple forecasts combinations obtained by averaging
Infl (Ω4) and T ms (Ω2) predictions at each point in time. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent
level.
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Table 7: Out of sample R2 in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) −1.179 0.350∗∗ 0.202∗ −0.011 −0.357 −0.708 −0.642 −0.556 −0.628
T ms (Ω2) 0.231∗∗∗ 1.492∗∗∗ 2.023∗∗∗ 2.024∗∗∗ 1.790∗∗∗ 1.557∗∗∗ 1.566∗∗∗ 1.479∗∗∗ 1.290∗∗∗

All 0.162∗∗∗ 1.940∗∗∗ 2.131∗∗∗ 2.035∗∗∗ 1.797∗∗∗ 1.414∗∗∗ 1.439∗∗∗ 1.444∗∗∗ 1.229∗∗∗

Avg 1.232∗∗∗ 1.995∗∗∗ 1.880∗∗∗ 1.656∗∗∗ 1.425∗∗∗ 1.070∗∗ 1.072∗∗ 1.009∗∗ 0.840∗∗

Recessions
Infl (Ω4) 20.969∗∗ 17.282∗∗∗ 12.847∗∗∗ 11.972∗∗∗ 14.482∗∗∗ 14.387∗∗ 13.494∗∗ 11.632∗∗ 10.859∗∗

T ms (Ω2) 0.928∗ 1.599∗ 2.073∗ 3.132∗ 3.095∗ 3.335 2.634 2.829 2.464
All 22.355∗∗ 18.774∗∗ 14.205∗∗ 13.512∗∗ 15.949∗∗ 16.805∗∗ 15.455∗∗ 13.222∗∗ 12.097∗∗

Avg 11.890∗∗∗ 10.048∗∗∗ 7.847∗∗∗ 7.843∗∗∗ 9.186∗∗∗ 9.245∗∗ 8.401∗∗ 7.523∗∗ 6.926∗∗

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled All are obtained as in equation (18) for i = 4 and j = 2.
Avg forecasts are simple forecasts combinations obtained by averaging Infl (Ω4) and T ms (Ω2) predictions at each point
in time. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Clark and West (2006).

Table 8: CER gains in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) 0.260 0.425∗ 0.362 0.350 0.410 0.584 0.640 0.386 0.286
T ms (Ω2) 0.302 0.491∗ 0.478 0.646 0.932∗ 1.394∗∗ 1.558∗∗ 1.663∗∗ 1.730∗∗

All 0.207 0.328 0.536 0.813∗ 1.168∗ 1.656∗∗ 1.892∗∗ 2.100∗∗ 2.253∗∗

Avg 0.346∗ 0.545∗∗ 0.611∗ 0.695∗ 0.886∗ 0.992∗ 1.102∗ 1.076∗ 1.043

Recessions
Infl (Ω4) 2.672∗ 3.708∗ 4.608∗∗ 4.686∗∗ 5.265∗∗ 5.941∗∗ 6.352∗ 5.942∗ 6.096∗

T ms (Ω2) 0.017 0.279 0.647 1.101 1.345 1.896 1.832 1.468 0.426
All 2.932∗ 3.877∗ 5.123∗∗ 5.672∗∗ 6.812∗∗ 7.474∗∗ 7.120∗ 5.191 4.332
Avg 2.252∗ 2.574∗ 2.839∗∗ 3.111∗∗ 3.755∗∗ 4.096∗∗ 3.926∗∗ 3.098 2.592

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled All are obtained as in equation (18) for i = 4 and j = 2.
Avg forecasts are simple forecasts combinations obtained by averaging Infl (Ω4) and T ms (Ω2) predictions at each point
in time. CER gains are calculated as in the economic evaluation exercise described in Section 4.2 under mean-variance
prefences and with γ = 5. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Diebold and
Mariano (1995).
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Figures

DGP 1 DGP 2

DGP 3

Figure 1: Simulation: spectral density of true and estimated frequency-specific factors
Notes: Simulation exercise for the DGPs described in Section 2.2.1 with (T, N) = (200, 200) and r = 1. All spectral densities are estimated
using a lag-window estimator (9). Shaded areas denote 95% confidence bands.
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Figure 2: ALFRED dataset: covariance matrix decomposition by its cyclical components
Notes: Cycle length are: up to 1 year (Ω1); between 1 and 3 years (Ω2); between 3 and 8 years (Ω3); 8+ years (Ω4). For
the generic band Ω = [ω, ω], we consider the normalised band spectrum covariance C0 (Ω) = 0.5 (ω − ω)−1 C0 (Ω).
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Figure 3: Average oosR2 and CER gains using all combinations of two predictors
Notes: Average out-of-sample R2 and CER gains under mean-variance preferences across maturities corresponding to the
predictions obtained as in equation (18) for any i, j = 0, 1, . . . , 4.
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Figure 4: Cyclical properties of the term premium
Notes: The term premium is estimated as in equation (19). In the top plots, only yields are used to predict excess
bond returns. In the bottom plots the expected excess bond returns are obtained using our macroeconomic predictors
F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
.
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Appendix

A. Frequency-specific factor estimation

In this section we establish the consistent estimation of the space spanned by frequency-specific
factors which motivates the use of estimated factors in our predictive regressions as if such
factors were observed.

For j = 1, 2, define the N -dimensional vectors Xt (Ωj) =
∫

ω∈Ωj
Xωe−ιωtdω and et (Ωj) =∫

ω∈Ωj
Eωe−ιωtdω, the T × N matrices X (Ωj) = (X1 (Ωj) , X2 (Ωj) , · · · , XT (Ωj))′ and E (Ωj) =

(e1 (Ωj) , e2 (Ωj) , · · · , eT (Ωj))′ with generic entries xit (Ωj) and eit (Ωj), respectively, and the
T -dimensional vectors ei = (ei1, ei2, · · · , eiT )′, ei (Ωj) = (ei1 (Ωj) , ei2 (Ωj) , · · · , eiT (Ωj))′. We
will use the singular value decomposition

(NT )−1/2 X (Ωj) = VNT (Ωj) DNT (Ωj) UNT (Ωj)′

= VNT,r (Ωj) DNT,r (Ωj) UNT,r (Ωj)′ + VNT,N−r (Ωj) DNT,N−r (Ωj) UNT,N−r (Ωj)′

where the diagonal entries of DNT (Ωj) are sorted in decreasing order. Finally, ∥A∥ =
√

tr (AA′).

Assumption 1. For i = 1, 2

(i) E (eit|Λ1, Λ2, Ft (Ω1) , Ft (Ω2)) = 0

(ii) It exists M < ∞ such that

(a) E
(
N−1/2 ∑N

i=1 (eiteis − E (eiteis))
)2

≤ M ;

(b) T −1 ∑T
t=1

∑T
s=1 |E (eiteis)| ≤ M , for all i;

(c) N−1T −1/2 ∥e′
tE′∥ = Op

(
min

(
N−1/2, T −1/2

))
, for all i;

(d) T −1N−1/2 ∥e′
iE∥ = Op

(
min

(
N−1/2, T −1/2

))
, for all t.

Assumption 2. For j = 1, 2

(i) limN→∞ N−1Λ′
jΛj = CΛ,j

(ii) plimT →∞ T −1F (Ωj)′ F (Ωj) = CF (Ωj)

where CΛ,j and CF (Ωj) are positive definite with distinct eigenvalues.

Assumption 3. For j = 1, 2

(i) E
∥∥∥N−1/2 ∑

i Λjeit (Ωj)
∥∥∥2

≤ M and (NT )−1 et (Ωj)′ E (Ωj)′ F (Ωj)′ = Op
(
min

(
N−1, T −1))

,
for each t;

(ii) E
∥∥∥T −1/2 ∑T

t=1 Ft (Ωj) eit (Ωj)
∥∥∥2

≤ M and (NT )−1 ei (Ωj)′ E (Ωj) Λj = Op
(
min

(
N−1, T −1))

,
for each i.
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Assumption 1 corresponds to Assumption A1 of Bai and Ng (2020), while Assumptions 2, 3
merely readapt their Assumptions A2, A3 to our context with frequency-specific factors. Under
these assumptions and following the same steps as in Proposition 1 of Bai and Ng (2020), it is
straightforward to obtain that

(NT )−1 X (Ωj) X (Ωj)′ F̂ (Ωj) = F̂ (Ωj) DNT,r (Ωj)

= (NT )−1
(
F (Ωj) Λ′

jΛjF (Ωj)′ + F (Ωj) Λ′
jE (Ωj)′ + E (Ωj) ΛjF (Ωj)′ + E (Ωj) E (Ωj)′

)
F̂ (Ωj)

Defining the rotation matrix HNT (Ωj) =
(

Λ′
jΛj

N

) (
F(Ωj)F̂(Ωj)

T

)
DNT,r (Ωj)−1, we have

T −1
∥∥∥F̂ (Ωj) − F (Ωj) HNT (Ωj)

∥∥∥2
≤ 2

T

∥∥∥∥E (Ωj) Λj

N

∥∥∥∥2 ∥F (Ωj)∥2

T

∥∥∥F̂ (Ωj)
∥∥∥2

T −1+

+
∥∥∥∥∥E (Ωj) E (Ωj)′

NT

∥∥∥∥∥
2 ∥∥∥F̂ (Ωj)

∥∥∥2
T −1

∥∥∥DNT,r (Ωj)−1
∥∥∥2

= A + B

A is Op
(
N−1)

because T −1
∥∥∥E(Ωj)Λj

N

∥∥∥2
is Op

(
N−1)

by Assumption 3,
∥∥∥F̂ (Ωj)

∥∥∥2
T −1 is Op (1)

by Assumption 2 and ∥F (Ωj)∥2 T −1 = r because F (Ωj) =
√

TVNT,r and the columns of VNT,r

are unit-length.

B is Op
(
T −1)

because, under Assumption 1,
∥∥∥E(Ωj)E(Ωj)′

NT

∥∥∥2
≤

∥∥∥EE′

NT

∥∥∥2
= Op

(
min

(
N−1, T −1))

by Lemma 1 of Bai and Ng (2020), and
∥∥∥DNT,r (Ωj)−1

∥∥∥2
is Op (1) since by Assumption 2 the

largest r eigenvalues of T −1X (Ωj) X (Ωj)′ are Op (N).

Hence, T −1
∥∥∥F̂ (Ωj) − F (Ωj) HNT (Ωj)

∥∥∥2
is Op

(
min(N−1, T −1)

)
.
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B. Real-time macroeconomic data

Table 9: ALFRED data

Mnemonic Description Tcode

1 AWHMAN Avg Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1
2 AWHNONAG Avg Weekly Hours Of Production And Nonsupervisory Employees: Total private 2
3 AWOTMAN Avg Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 2
4 CE16OV Civilian Employment 5
5 CLF16OV Civilian Labor Force 5
6 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6
7 CURRDD Currency Component of M1 Plus Demand Deposits 6
8 CURRSL Currency Component of M1 5
9 DEMDEPSL Demand Deposits at Commercial Banks 6
10 DMANEMP All Employees: Durable goods 5
11 DSPI Disposable Personal Income 5
12 DSPIC96 Real Disposable Personal Income 5
13 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4
14 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
15 HOUST2F Housing Starts: 2-4 Units 4
16 INDPRO Industrial Production Index 5
17 M1SL M1 Money Stock 6
18 MANEMP All Employees: Manufacturing 5
19 NDMANEMP All Employees: Nondurable goods 5
20 OCDSL Other Checkable Deposits 6
21 PAYEMS All Employees: Total nonfarm 5
22 PCE Personal Consumption Expenditures 5
23 PCEDG Personal Consumption Expenditures: Durable Goods 5
24 PCEND Personal Consumption Expenditures: Nondurable Goods 5
25 PCES Personal Consumption Expenditures: Services 5
26 PI Personal Income 5
27 SAVINGSL Savings Deposits - Total 6
28 SRVPRD All Employees: Service-Providing Industries 5
29 STDCBSL Small Time Deposits at Commercial Banks 6
30 STDSL Small Time Deposits - Total 6
31 STDTI Small Time Deposits at Thrift Institutions 6
32 SVGCBSL Savings Deposits at Commercial Banks 6
33 SVGTI Savings Deposits at Thrift Institutions 6
34 SVSTCBSL Savings and Small Time Deposits at Commercial Banks 6
35 TCDSL Total Checkable Deposits 6
36 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5
37 UEMP15OV Civilians Unemployed - 15 Weeks & Over 5
38 UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
39 UEMP27OV Civilians Unemployed for 27 Weeks and Over 5
40 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 5
41 UEMPMEAN Average (Mean) Duration of Unemployment 2
42 UEMPMED Median Duration of Unemployment 2
43 UNEMPLOY Unemployed 5
44 UNRATE Civilian Unemployment Rate 2
45 USCONS All Employees: Construction 5
46 USFIRE All Employees: Financial Activities 5
47 USGOOD All Employees: Goods-Producing Industries 5
48 USGOVT All Employees: Government 5
49 USMINE All Employees: Mining and logging 5
50 USPRIV All Employees: Total Private Industries 5
51 USSERV All Employees: Other Services 5
52 USTPU All Employees: Trade, Transportation & Utilities 5
53 USTRADE All Employees: Retail Trade 5
54 USWTRADE All Employees: Wholesale Trade 5

Notes: Tcode indicates the transformation adopted to achieve stationarity and is as follows. Letting x̃it be a raw variable
and xit its stationary transformation, we consider one of the following six transformation codes. 1: xit = x̃it; 2: xit =
(1 − L) x̃it; 3: xit = (1 − L)2 x̃it; 4: xit = ln (x̃it); 5: xit = (1 − L) lnx̃it; 6: xit = (1 − L)2 lnx̃it.
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C. Additional empirical results

Table 10: CER gains (Power utility)

Maturities
2 3 4 5 6 7 8 9 10

γ = 3
Infl (Ω1) 0.126 0.166 0.261 0.201 0.061 −0.085 −0.132 −0.186 −0.260
Infl (Ω2) 0.387∗ 0.640∗ 0.804∗∗ 0.876∗∗ 0.892∗ 0.983∗ 1.174∗ 1.400∗∗ 1.571∗∗

Infl (Ω3) 0.454∗ 0.709∗∗ 0.883∗∗ 0.960∗∗ 0.994∗ 1.076∗ 1.267∗ 1.511∗∗ 1.709∗∗

Infl (Ω4) 0.449∗ 0.706∗∗ 0.881∗∗ 0.948∗∗ 0.991∗ 1.082∗ 1.273∗ 1.511∗∗ 1.700∗∗

Infl (Ω0) 0.029 0.073 0.213 0.088 −0.034 −0.192 −0.228 −0.331 −0.410

T ms (Ω1) 0.395∗ 0.551∗ 0.498∗ 0.536 0.712 0.744 0.763 0.921 0.938
T ms (Ω2) 0.209 0.463∗ 0.725∗ 0.658 0.775 0.950 1.145∗ 1.647∗∗ 1.810∗∗

T ms (Ω3) 0.139 0.287 0.415 0.386 0.542 0.879 1.133 1.580∗∗ 1.683∗∗

T ms (Ω4) 0.129 0.271 0.414 0.378 0.525 0.862 1.109 1.552∗ 1.651∗

T ms (Ω0) 0.437∗ 0.554∗ 0.490∗ 0.512 0.676 0.823 0.923 1.266∗∗ 1.277∗

All 0.440∗ 0.670∗ 0.990∗∗ 1.167∗∗ 1.543∗∗ 1.924∗∗ 2.308∗∗ 2.713∗∗ 2.965∗∗∗

Avg 0.489∗∗ 0.732∗∗ 0.984∗∗∗ 1.031∗∗ 1.242∗∗ 1.342∗∗ 1.489∗∗ 1.733∗∗ 1.853∗∗

γ = 5
Infl (Ω1) 0.116 0.167 0.092 −0.050 −0.291 −0.310 −0.456 −0.612 −0.689
Infl (Ω2) 0.404∗ 0.646∗∗ 0.679∗∗ 0.683∗ 0.729∗ 0.943∗ 1.059∗ 0.907∗ 0.876
Infl (Ω3) 0.459∗∗ 0.712∗∗ 0.737∗∗ 0.750∗∗ 0.822∗ 1.040∗∗ 1.192∗∗ 1.031∗ 0.989∗

Infl (Ω4) 0.460∗∗ 0.710∗∗ 0.732∗∗ 0.758∗∗ 0.823∗ 1.056∗∗ 1.213∗∗ 1.053∗ 1.013∗

Infl (Ω0) 0.072 0.116 0.002 −0.141 −0.416 −0.455 −0.617 −0.781 −0.770

T ms (Ω1) 0.417∗ 0.497∗ 0.484∗ 0.675∗ 0.687∗ 0.822∗ 0.797 0.731 0.702
T ms (Ω2) 0.259 0.467∗ 0.490 0.642∗ 0.858∗ 1.361∗∗ 1.540∗∗ 1.713∗∗ 1.766∗∗

T ms (Ω3) 0.153 0.228 0.246 0.461 0.659 1.103∗ 1.262∗ 1.537∗ 1.663∗

T ms (Ω4) 0.144 0.221 0.239 0.452 0.645 1.067∗ 1.231∗ 1.518∗ 1.641∗

T ms (Ω0) 0.429∗∗ 0.509∗∗ 0.446 0.660∗ 0.850∗ 1.055∗∗ 1.100∗∗ 1.068∗ 1.045

All 0.437∗ 0.629∗ 0.900∗∗ 1.187∗∗ 1.569∗∗ 2.142∗∗∗ 2.356∗∗∗ 2.448∗∗∗ 2.596∗∗∗

Avg 0.498∗∗ 0.713∗∗ 0.810∗∗ 0.910∗∗ 1.101∗∗ 1.351∗∗ 1.432∗∗ 1.416∗∗ 1.394∗∗

γ = 8
Infl (Ω1) 0.085 0.074 −0.050 −0.213 −0.451 −0.607 −0.666 −0.594 −0.632
Infl (Ω2) 0.394∗∗ 0.538∗∗ 0.462∗ 0.585∗∗ 0.722∗ 0.559 0.474 0.399 0.420
Infl (Ω3) 0.451∗∗ 0.592∗∗ 0.538∗ 0.681∗∗ 0.840∗∗ 0.662 0.574 0.472 0.466
Infl (Ω4) 0.452∗∗ 0.591∗∗ 0.548∗∗ 0.695∗∗ 0.860∗∗ 0.683 0.593 0.487 0.469
Infl (Ω0) 0.066 0.002 −0.150 −0.340 −0.570 −0.693 −0.788 −0.711 −0.713

T ms (Ω1) 0.359∗∗ 0.415∗ 0.507∗ 0.612∗∗ 0.704∗ 0.578 0.470 0.324 0.242
T ms (Ω2) 0.249∗ 0.299 0.494∗ 0.847∗∗ 1.168∗∗ 1.214∗∗ 1.146∗ 0.964 0.766
T ms (Ω3) 0.129 0.098 0.303 0.600∗ 0.857∗ 1.052∗ 1.062∗ 1.018 0.824
T ms (Ω4) 0.122 0.088 0.296 0.583 0.838∗ 1.020∗ 1.034 0.998 0.804
T ms (Ω0) 0.368∗∗ 0.423∗ 0.559∗∗ 0.729∗∗ 0.890∗∗ 0.776∗ 0.698 0.558 0.438

All 0.420∗ 0.603∗∗ 0.855∗∗ 1.168∗∗ 1.553∗∗∗ 1.719∗∗ 1.702∗∗ 1.554∗∗ 1.487∗

Avg 0.438∗∗ 0.604∗∗ 0.723∗∗ 0.905∗∗∗ 1.048∗∗ 0.979∗∗ 0.915∗ 0.756 0.666

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. All forecasts
are obtained as in equation (18) for i = 4 and j = 2, Avg forecasts are simple forecasts combinations obtained
averaging the two predictions produced by Infl (Ω4) and T ms (Ω2). ∗, ∗∗, ∗∗∗ denote statistical significance
at 10, 5, 1 percent level using the test of Diebold and Mariano (1995).
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Table 11: Sharpe ratios in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) 0.227 0.218 0.189 0.172 0.166 0.153 0.151 0.127 0.122
T ms (Ω2) 0.221 0.212 0.190 0.184 0.185 0.182 0.181 0.170 0.170
All 0.214 0.202 0.196 0.193 0.196 0.191 0.192 0.184 0.186
Avg 0.232 0.223 0.202 0.188 0.184 0.167 0.166 0.152 0.149

Recessions
Infl (Ω4) 0.684 0.652 0.574 0.521 0.499 0.428 0.385 0.334 0.315
T ms (Ω2) 0.621 0.581 0.470 0.408 0.388 0.332 0.285 0.240 0.208
All 0.711 0.664 0.578 0.525 0.514 0.452 0.397 0.328 0.290
Avg 0.691 0.683 0.562 0.493 0.479 0.402 0.340 0.275 0.249

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. All forecasts are obtained as in equation (18) for i = 4 and j = 2, Avg
forecasts are simple forecasts combinations obtained averaging the two predictions produced by Infl (Ω4) and T ms (Ω2).
Sharpe ratios are calculated from portfolio returns obtained as in the economic evaluation exercise described in Section 4.2
under mean-variance prefences and with γ = 5.
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