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Abstract

We estimate a model in which Bayesian investors learn not only about differential 

ability across funds but also about the nature of decreasing returns to scale (DRS)–  

how a fund’s performance depends on its size versus the size of its competition–  in real 

time and competitively allocate capital to funds, conditional on their current beliefs. 

We find that prior beliefs in the early 1990s feature fund-level DRS that are much 

steeper than indicated by their unbiased estimates, and that distorted beliefs about 

fund-level DRS alone account for about 5% of the variation in the aggregate allocation 

of capital to the mutual fund industry in the data. Aggregate allocation to active 

management can be explained without appealing to behavioral arguments.

∗This paper is a substantially revised version of Chapter 1 of my PhD thesis at Princeton University. An
earlier draft was circulated as “Why Has Active Asset Management Grown?”I am grateful for advice and
encouragement from my thesis committee: Chris Sims (chair), Wei Xiong, and Motohiro Yogo. I have also
benefited from comments by Jules van Binsbergen, John Cochrane, Diego Garcia, Valentin Haddad, Jakub
Kastl, Stefan Nagel,

,
Lubos Pástor, Robert Stambaugh, Youchang Wu, Tao Zha, and seminar participants at

AQR Capital Management, Atlanta Fed, Emory University, Hitotsubashi University, Princeton University,
Richmond Fed, Rutgers University, and University of Alberta.



1 Introduction

Recently, there has been an increased interest in capital allocation within the market for

mutual funds. For a long time, findings on capital allocation have generally been interpreted

as irrational return chasing by naive investors: fund flows respond to past performance de-

spite the fact that performance tends to be not persistent.1 But there is growing evidence

that the flow-performance relation can be consistent with rational response by learning in-

vestors.2 When a mutual fund outperforms, Bayesian updating leads investors to learn that

the fund will deliver positive average risk-adjusted returns (net alphas) at its current size.

In turn, there will be flows into that fund, which will stop when the fund is no longer ex-

pected to deliver positive net alphas.3 Key to this equilibration is investors anticipating

decreasing returns to scale (DRS): as the fund grows, its trades are associated with a larger

price impact, eroding its performance. Numerous studies provide ample panel evidence that

confirms such diseconomies of scale.4 While investors would learn the true degree of DRS in

the limit as the sample size approaches infinity, their perceptions of scalability at the time

of capital allocation decisions generally differ from the true scalability as it is unobservable.

Therefore, to quantify the capital response driven by investor learning, we must understand

the dynamics of their perceptions of not only skill but also scalability.

This paper investigates these issues by using the aggregate dynamics of capital allocation

to the mutual fund industry to reveal the beliefs of investors and therefore reveal which alpha

generating technology investors are using to process information. Specifically, we consider a

model in which investors learn about and allocate capital to active funds, characterized by

the two attributes mentioned above: (i) they have differential skills to generate alpha but (ii)

they face decreasing returns to scale (DRS) in deploying these skills, both at the fund level

1See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.
2See Berk and van Binsbergen (2017) for a review of recent advances in this strand of the mutual fund

literature.
3Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) conclude that mutual fund flows

are most responsive to capital asset pricing model (CAPM) alpha, whereas Ben-David et al. (2022) argue
that investors do not adjust fund performance using asset pricing models.

4See, e.g., Chen et al. (2004), Yan (2008), Pástor, Stambaugh, and Taylor (2015), and Zhu (2018).
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and at the strategy level.5 The Bayesian investors in our model learn about these parameters

governing fund alphas in real time and competitively allocate capital to funds, conditional on

their current beliefs. Consistent with the inherent diffi culty in estimating returns to scale, we

find that prior beliefs in the early 1990s feature fund-level DRS that are much steeper than

indicated by their unbiased estimates. We also find that such beliefs persist for two reasons.

First, our estimates indicate that the priors are relatively tighter for the effects of fund scale

than for skill. Second, fund sizes are determined in equilibrium not only by fund-level DRS,

but also by strategy-level DRS, both of which shrink fund sizes, making realized returns less

informative about the effects of fund scale than about skill. Overall, distorted beliefs about

fund-level DRS alone account for about 5% of the variation in the aggregate allocation of

capital to the mutual fund industry in the data.

To derive the model implications for the evolution of the size of the mutual fund industry,

we need to specify investors’prior beliefs, which we would update with the data to obtain,

at any point in time, their posterior beliefs and in turn their equilibrium allocation. In our

model, the size of a strategy segment is given by the ratio of the average incumbent fund’s

perceived skill to the perceived total strategy-level decreasing returns to scale the average

fund faces, where the total strategy-level DRS is equal to the direct strategy-level DRS plus

the product of fund-level DRS and the reciprocal of M , the number of incumbent funds.

Intuitively, if the size of a strategy segment increases by $1, so does the size of a fund in the

strategy segment by $1/M on average. Thus, the decrease in the average fund’s performance

associated with such an increase in strategy size is effectively the weighted sum of the direct

strategy-level DRS (with a weight of one) and fund-level DRS (with a weight of 1/M).

We estimate the parameters governing investors’prior beliefs as of the beginning of 1991

by comparing the aggregate allocation of capital across different strategy segments of the

5In Appendix A, we validate the particular regression model that investors in our model believe funds’
net alphas obey by empirically analyzing the nature of returns to scale for active mutual funds. Our
evidence suggests that our proxies for fund size and for strategy size are reasonably accurate in measuring
the limitations on a fund due to its size and due to the size of its competition, respectively.
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mutual fund industry from the model against the data for each month over the next 25

years, during which the industry grew dramatically.6 We do not use the first few years for

comparing the model against the data to avoid the initial condition from having an unduly

large impact on the estimation results.

Our estimates suggest that the investors’initial beliefs are strongly at odds with the true

values of the parameters governing alphas. Specifically, investors believed at the beginning

of 1991 in average levels of skills considerably higher than the average estimated fund fixed

effects (which would lead to an overallocation) and in returns to scale substantially more

negative than the estimates of the size-performance relation (which would lead to an un-

derallocation). Overall, we find that the latter bias is dominant, which induces investors to

initially underallocate to active mutual funds. Interestingly, while the priors are strongly at

odds with the true values of the parameters, they are also considerably disperse, indicating

substantial prior uncertainty about the key parameters.

Having actively learned about actively managed funds in their early years, investors as

of March 1993 already held beliefs quite different from their beliefs at the beginning of 1991.

First, expectations about skills are broadly in line with the data. Second, expectations

about strategy-level decreasing returns to scale are no longer exaggerated; if anything, they

are somewhat understated. Only the expectations about fund-level decreasing returns to

scale continue to be exaggerated, although not as dramatic as under the priors. Importantly,

examining the evolution of these expectations, we find that the investors’beliefs as of March

1993 persist for a long time, and their beliefs, even toward the end of our sample period, are

quite similar.

Our results highlight that learning about the nature of returns to scale is generally slower

than learning about skill. Investors persist in their beliefs that decreasing returns to scale

are driven mainly by fund size. This bias, combined with the observed steady entry of new

6We use the nine categories corresponding to Morningstar’s 3×3 stylebox to assign each fund its strategy
segment. Funds in the same Morningstar category presumably follow similar investment strategies and thus
compete against each other.
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funds, explains why the mutual fund industry grew dramatically during our sample period.

To see this, recall that the total strategy-level DRS the average fund faces is affected by the

product of fund-level DRS and the reciprocal of the number of incumbent funds. Since there

are few funds initially, investors initially exaggerate the total impact of strategy scale based

on their perceptions of steep fund-level DRS. In addition, investors interpret the sustained

fund entry as signaling a decline in the total impact of strategy scale much sharper than

warranted because their beliefs about steep fund-level DRS persist. This decline in the

perceived total impact of strategy scale, which coincides with a relatively stable perceived

skill of the average incumbent fund (because it is broadly unbiased to begin with), translates

into industry growth. Quantitatively, we find that around 37% of the variance of aggregate

sizes (across strategy segments and over time) can be related to fluctuations in the perceived

total impact of strategy scale, which is economically significant.

The key role played by steeper-than-warranted perceived fund-level decreasing returns

in accounting for the aggregate allocation of capital over time raises a natural question:

why does this bias in investors’ beliefs endure? Bayesian learning implies the % change

in investors’perception of each parameter upon observing fund returns is proportional to

the product of investors’uncertainty about the parameter– its perceived variance over its

perceived value– and returns’weight on the parameter.7 Now, for any given fund, its returns

have a weight of one on its skill, whereas its returns have weights equal to its size and the

size of its competition on fund-level DRS and strategy-level DRS, respectively. We find

that, in equilibrium, both fund size and strategy size are generally not large enough for

fund returns to be as informative about parameters governing DRS as they are about fund

skill. Heuristically, learning about the nature of returns to scale is generally slower than

learning about managerial skill because investors first decompose performance into skill and

the total effects of scale, which they then decompose to analyze the nature of returns to scale

(fund-level vs strategy-level). Such learning process interacts with and amplifies the initial

7This statement is ignoring the off-diagonal elements of the covariance matrix of the key parameters
(perceived by investors before observing fund alphas), but they tend to be small in magnitude.
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beliefs that are relatively more biased about fund-level DRS than they are about skill levels

or about strategy-level DRS, resulting in a very slow learning about fund-level decreasing

returns.

We assess how well a purist learning model can reproduce the size dynamics in the data

by first specifying investors’beliefs as of March 1993 (based on our estimates), which we

update with actual data on observed returns. We then compute counterfactual fund sizes by

invoking that the expected alpha on any fund receiving positive investment ought to be zero

with respect to the counterfactual investors’beliefs; we compute the model-implied strategy

size by adding up counterfactual fund sizes across all funds within a given strategy segment.

In turn, we show that the aspects of learning in our model does surprisingly well in accounting

for the aggregate size dynamics in the data– the R-squared from a panel regression of log

actual aggregate sizes on log model-implied strategy sizes is about 0.96.

Our framework builds upon the influential models of Berk and Green (2004) and Pástor

and Stambaugh (2012), amended to allow for learning about the nature of returns to scale

and for the effect of entry and exit dynamics on aggregate fluctuations in capital allocation;

Section 4.4.1 carefully relates our model to those of Berk and Green (2004) and Pástor

and Stambaugh (2012). The main contribution of this paper is to show when such models,

in which investors rationally learn from the history of observed returns, can quantitatively

reproduce the observed dynamics of the aggregate allocation to mutual funds. Key to this

result is that investors start with biased beliefs that fund-level decreasing returns to scale

are much steeper than warranted by the data. This result can explain why the observed

industry growth coincides with steady entry of new funds.

Another contribution of ours is to show that learning about fund-level DRS is especially

slow. Investors persist in their beliefs about steeper-than-warranted fund-level DRS. This

evidence is consistent with the inherent diffi culty in estimating returns to scale. We estimate

later in the paper that a $100 million increase in fund size (which is about 10% of the

interquartile range) depresses performance by less than 0.01% per month, or 12 bps per year.

5



While this effect is clearly economically significant, it would be swamped by the performance

variation due to differences in skill, which we estimate to be roughly distributed with mean

0.5% per month and standard deviation 0.5% per month. This, in turn, is swamped by

portfolio volatility of around 2% per month. Against these fluctuations, a small decrease in

performance due to fund-level DRS would be hard to detect, resulting in very slow undoing

of investors’prior bias about the nature of returns to scale.

Nevertheless, we find that, in the new millennium, the aggregate allocation to mutual

funds is broadly rational. The number of funds competing for investors grows large enough

to ensure that investors’persistent bias about fund-level DRS has little influence on their

perceptions of the total impact of strategy scale, which in turn are broadly consistent with

the true values since 2001. This, coupled with our result discussed earlier that perceptions

about the average fund’s skill are broadly in line with the data, accentuates that the aggregate

misallocation of capital to the mutual fund industry is small over the last two decades.

Our study relates to a large literature on learning in mutual funds.8 Much of this litera-

ture focuses on learning about managerial skill. Baks, Metrick, and Wachter (2001), Pástor

and Stambaugh (2002), and Avramov and Wermers (2006) accentuate the benefits of in-

vesting in active mutual funds from the Bayesian perspective of investors. Lynch and Musto

(2003) explain that the observed convex flow-performance relationship9 is consistent with in-

vestor learning, because bad past performance is less informative about future performance

than good past performance, whereas Berk and Green (2004) show that the flow-performance

relationship can be consistent with investor learning, even if past performance is not informa-

tive about future performance,10 in the presence of fund-level decreasing returns to scale.11

8See Pastor and Veronesi (2009) for a review of the extensive literature that relies on parameter uncertainty
and learning to explain empirical puzzles in mutual funds and beyond.

9See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.
10See Malkiel (1995), Gruber (1996), Carhart (1997), and Fama and French (2010), among others, for

evidence that performance is largely unpredictable. Some evidence of persistence in performance does exist
at shorter horizons; see, for example, Bollen and Busse (2005) and Mamaysky, Spiegel, and Zhang (2008).
11Other studies that model learning in mutual funds with a focus on the determinants of flow-performance

relationship include Huang, Wei, and Yan (2007) (investors’ participation costs), Franzoni and Schmalz
(2017) (market states), and Binsbergen, Kim, and Kim (2021) (fund-level decreasing returns to scale).
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Pástor and Stambaugh (2012) explain that the popularity of active funds can persist even

if they underperform, since learning about industry-level decreasing returns to scale is slow.

Brown and Wu (2016) find that flows to a fund respond positively to the performance of the

fund’s family, which they show is consistent with cross-fund learning within groups. None

of these studies consider learning about the nature of returns to scale, nor do they provide

a formal account of whether a model based solely on Bayesian learning can quantitatively

capture the historical fluctuations in capital allocation to the mutual fund industry.

On the other hand, there is evidence that investors do not react to new information as

Bayesians. Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) pro-

vide empirical evidence that investors do not respond immediately, as well as exponentially

weighting past returns over long horizons when allocating capital across funds. Choi, Kahra-

man, and Mukherjee (2016) find that investors move capital in the right direction, but not

suffi ciently so, relative to a Bayesian benchmark; Roussanov, Ruan, and Wei (2022) find that

investors over-weight recent performance and under-weight distant performance information

more heavily than a Bayesian investor would. Roussanov, Ruan, and Wei (2021) document

that marketing plays an important role in determining fund size, indicating that there exist

substantial frictions in the market for mutual funds. We do not mean to suggest that such

alternative explanations play no role in capital allocation to mutual funds. Rather, we sim-

ply highlight the joint-hypothesis problem: we can test whether investors learn as Bayesians

only if we take a stand on what they learn about.

More broadly, this study adds to a growing literature addressing the evolution of the

equilibrium size of the financial industry (e.g., Philippon 2015).12 Our model, like most of

those in the literature on learning in mutual funds, is partial equilibrium in the sense that we

do not model the market for assets. Another strand of the mutual fund literature studies the

asset pricing implications of asset management by abstracting from learning-related issues.

12In addition to Philippon (2015), recent examples of studies that empirically analyze various aspects of
the size of the financial sector include Khorana, Servaes, and Tufano (2005), Greenwood and Scharfstein
(2013), Cochrane (2013), and Philippon and Reshef (2013).
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For example, Stambaugh (2020) analyze the amount of mispricing and the amount of active

management under general equilibrium with many assets and costly trading. In his model,

when managers become more skilled, they more accurately identify profit opportunities,

but then active management in aggregate reduces mispricing, shrinking the profits those

opportunities offer.13

2 The Model

The model has two types of agents: fund managers and investors. There are Mt active

fund managers at time t who have the potential ability to identify and exploit opportunities

to outperform passive benchmarks. There are S categories, which classify funds based on

their investment styles. In other words, we assume that Mst active funds at time t are

following investment strategy s, withMt =
∑S

s=1Mst. We abuse notation by writing i ∈Mst

if fund i is following investment strategy s. We use the nine categories corresponding to

Morningstar’s 3 × 3 stylebox (large growth, mid-cap blend, etc.) for our empirical work.

There is competitive provision of capital by investors to these active funds.

We model the rates of returns earned by investors in the funds belonging to category s

at time t− 1 as

Rn
st = αst +RB

st + ust (1)

where Rn
st is the Mst−1 × 1 vector of fund returns in excess of the riskless rate, αst is the

Mst−1× 1 vector of fund alphas, RB
st is the Mst−1× 1 vector of excess returns on the passive

benchmarks, and ust is the Mst−1 × 1 vector of the residuals. The elements of the residual

vector ust have the following factor structure:

uist = xst + εist (2)

13Additional examples of recent studies in this strand of the literature include García and Vanden (2009),
Stambaugh (2014), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016), Gârleanu and Pedersen (2018),
and Buffa, Vayanos, and Woolley (2021), among many others.

8



for i ∈ Mst−1, where all εist’s have a mean of zero, a variance of σ2ε,s, and zero correlation

across funds and periods. For each category s the common factor xst has mean zero and

variance σ2x,s. We assume that these common factors are independently distributed across

categories. The values of σx,s and σε,s for all categories s are constants known to investors.

The factor structure in equation (2) means that the benchmark-adjusted returns of funds

in the same category are correlated as long as σx,s > 0, but those of funds from different

categories are not correlated.14 These assumptions are consistent with empirical evidence

for active equity mutual funds. The average pairwise correlation in residuals between funds

belonging to the same Morningstar Category is 0.31, but the average correlation between

funds from different categories is only 0.07. As a result, investors update their beliefs about

any given fund using not only its return history but also the histories of other funds in the

same category.

Our key assumption is that funds face decreasing returns to scale both at the fund level

and at the strategy level. That is, we assume that the expected benchmark-adjusted return

received by investors in fund i belonging to category s at time t is given by:

αist+1 = ais − bsqist − csQst, (3)

where qist is the size of the fund, with Qst =
∑

i∈Mst
qist (i.e., the size of the fund’s category

measures the size of its competition).15 The parameter ais can be interpreted as the alpha

on the first cent invested in active management through the fund, bs > 0 is a parameter that

captures the decreasing returns to fund scale the fund faces (which can vary by category),16

14Intuitively, funds in the same sector, which presumably follow similar investment strategies, are likely
to identify the same opportunities to outperform, resulting in correlated performance.
15This assumption is consistent with empirical evidence regarding the nature of returns to scale. We

empirically analyze the nature of returns to scale in active mutual fund management following Zhu (2018) in
Appendix A. We find strong evidence of decreasing returns both at the fund level and at the strategy level.
These findings are unaffected by the addition of industry size, as defined by Pástor, Stambaugh, and Taylor
(2015) (i.e., IndustrySize), which itself is insignificant throughout. This result suggests that category size
does a good job of capturing the adverse effect of aggregate scale on fund performance. In short, the relation
(3) is a reasonable way of modeling returns to scale both at the fund level and at an aggregate level.
16See, for example, Chen et al. (2004), Yan (2008), Pollet and Wilson (2008), and Zhu (2018).
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and cs > 0 is a parameter that captures the decreasing returns to strategy scale the fund

faces (which can vary by category).17 The parameters ais and bs, cs in equation (3) are

unknown to investors. We denote the first and second moments of those parameters formed

with respect to the subjective model, perceived by investors at time t, by

Ê



ais

bs

cs


∣∣∣∣∣∣∣∣∣∣
It

 =


âist

b̂st

ĉst

 , (4)

V̂ ar



ais

bs

cs


∣∣∣∣∣∣∣∣∣∣
It

 =


σ̂2a,ist σ̂ab,ist σ̂ac,ist

σ̂ab,ist σ̂2b,st σ̂bc,st

σ̂ac,ist σ̂bc,st σ̂2c,st

 , (5)

where It denotes the time t information set available to investors. These parameters are not

the only unknowns to the investors: abilities of any other active funds in the same category,

whether they are in business or not, are also unknown. So our investors learn about the skill

parameters for all funds within a given category, including those that have yet to enter, as

well as the parameters governing returns to scale for that category by observing the histories

of all funds belonging to that category, as explained later in Section 2.1.

As in Berk and Green (2004), we assume that all funds must have net alphas of zero

based on investors’perceptions of the parameters governing them in real time. This can

be justified as long as investors competitively supply (remove) capital to (from) funds with

positive (negative) excess expected returns from their subjective perspective, implying that

investors perceive all funds earn an expected return commensurate with the risk of the fund.

At each point in time, then, capital flows into and out of each fund so that the net alpha on

17See Wahal and Wang (2011), Pástor, Stambaugh, and Taylor (2015), and Hoberg, Kumar, and Prabhala
(2018) for evidence that a fund’s ability to outperform declines as the size of the fund’s competition increases,
which in turn motivates aggregate-level decreasing returns to scale as modeled here.
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any surviving fund is zero, as perceived by investors:

Êt (αist+1) = 0. (6)

Condition (6) clearly implies that investors do not perceive any predictability in fund al-

phas and that the perceived alphas of all funds will be zero, regardless of their skill levels.

The circumflex on the expectation operator indicates that the expectation is formed with

respect to the investors’perceived model (as opposed to the true model, analyzed by an

econometrician using the full sample).

Taking expectations of both sides of (3), and requiring net alphas of zero as in (6), gives

âist = b̂stqist + ĉstQst (7)

for i ∈Mst. Let qst denote the Mst× 1 vector of sizes of all funds belonging to category s at

time t. As {âist} and b̂st, ĉst change, qst changes to ensure that this equation is satisfied for all

of these funds. The following proposition gives the equilibrium values of the key quantities,

Qst and qst, in terms of investors’posterior expectations, {âist} and b̂st, ĉst.

Proposition 1 In equilibrium, for each category s at any point in time,

Qst =
âst

b̂st/Mst + ĉst
, (8)

where âst is the average perceived skill of all incumbent funds within that category at time t,

and in turn,

qst =
âst − γstâst

b̂st
, (9)

where γst = ĉst/
(
b̂st/Mst + ĉst

)
.

Proof. Aggregating equation (7) across all incumbent funds in a given category s at time t,
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and using the fact that the category size is given by Qst =
∑

i∈Mst
qist, gives

∑
i∈Mst

âist = b̂stQst +MstĉstQst = Mst

(
b̂st/Mst + ĉst

)
Qst. (10)

Rewriting (10) now gives (8). Equation (7) can then be rewritten as

qist =
âist − ĉstQst

b̂st
=
âist − γstâst

b̂st
(11)

where the resulting expression in terms of perceived skills in (11) relies on (8).

Intuitively, the size of a category is given by the ratio of the average incumbent fund’s

perceived skill to the total decreasing returns to strategy scale the average fund is perceived to

face. If the size of the category increases by $1, so does the size of a typical fund belonging

to that category by $1/Mst. Such an increase in category size is associated with a total

decrease in fund performance of cs (directly from strategy-level decreasing returns to scale)

plus bs/Mst (indirectly through fund-level decreasing returns to scale).

Similarly, the size of a fund is given by the ratio of its perceived skill adjusted for strategy-

level DRS to the perceived decreasing returns to its scale. The adjustment for strategy-level

DRS amounts to a negative exposure, −γst, to the average skill of the fund’s competitors.

Note that condition (6) implies investors’belief that bs > 0 is a necessary condition for the

coexistence of funds with heterogeneous perceived skills. For b̂st ≈ 0, γst is close to one,

which in turn would force the below-average funds out of business: Only the highest-skill

funds can remains in business. This foreshadows that the subjective fund-level decreasing

returns, as perceived by investors, play an important role in enabling the model to produce

empirically realistic distributions of fund size, as shown later in Section 4.4.2.
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2.1 Prior and Posterior Beliefs

In this subsection, we discuss the prior and posterior beliefs about the key parameters, {ais}

and bs, cs, as well as the likelihood of a history of aggregate sizes (i.e., {Qst}Tt=1) implied by

those parameters.

2.1.1 Prior Beliefs

We focus on prior beliefs in which the key parameters from different categories are not

correlated. Technically, combined with (1)—(3), this assumption implies posterior beliefs

in which the key parameters from different categories continue to be uncorrelated. The

equilibrium allocations in each category can then be computed based only on the historical

data for that category by Proposition 1. That is, we can estimate investors’prior beliefs

category by category. Economically, such prior beliefs already allow for complex learning

that would plausibly encompass the true learning problem investors face.

At the beginning of the sample, the investors’prior about the ability of any given fund

within category s is that ais is normally distributed with mean âs0 and variance σ̂
2
a,s0. We

allow investors to believe a priori that these skill parameters are correlated. The prior

correlation in skills between funds within category s will be denoted ρ̂s0. If ρ̂s0 = 0, then

investors believe that ais is idiosyncratic to the fund, just as in Berk and Green (2004),

whereas if ρ̂s0 = 1, investors believe that all funds within a given category are created equal

(ais = as, where as is unknown), just as in Pástor and Stambaugh (2012). Our focus is on

the case in which ρ̂s0 ∈ (0, 1)– investors believe that a fund’s skill is a combination of a fund-

specific component and a common component shared by all funds in the same category.18

Note that the returns of funds in operation right now are informative about the skills of

funds that have not yet entered as long as σx,s > 0. The learning problem faced by investors

is then essentially equivalent to learning about the skills not only of the incumbent funds

18An example of a study analyzing the effect of cross-fund learning on fund flows is Brown and Wu (2016),
although their source of cross-fund learning is common skill shared by funds in the same family.
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i ∈ Mst, but also of a hypothetical fund (labeled “∞”) that represents a potential entrant

in the respective fund category, in addition to learning about the nature of returns to scale

that we discuss in the next paragraph.

A common assumption in the literature is that the effects of scale are known to investors,

except for Pástor and Stambaugh (2012) who consider learning about industry-level decreas-

ing returns to scale. Pástor and Stambaugh’s treatment of DRS corresponds to a setting

in which bs = 0 and cs is an unknown positive value. While we consider such prior beliefs

as well, our focus is on prior beliefs in which returns are decreasing in both fund scale and

strategy scale at uncertain rates (i.e., both bs and cs are unknown positive values). We show

in Section 4.4.2 that investors who believe a priori that bs > 0 make very different allocation

decisions than investors who believe that bs = 0, even after observing exactly the same data.

To summarize, we specify a multivariate normal joint prior distribution for {ais}i∈Ms0∪{∞}

and bs, cs: 
{ais}i∈Ms0∪{∞}

bs

cs

 ∼ N
(
Ês0, V̂s0

)
, (12)

where N
(
Ês0, V̂s0

)
denotes a multivariate normal distribution with mean Ês0 and covariance
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matrix V̂s0. Denote

Ês0 =



âs0

â∞s0

b̂s0

ĉs0


=



âs0ιMs0 +ws0

âs0

b̂s0

ĉs0


, (13)

V̂s0 =



σ̂2a,s0
(
ρ̂s0ιMs0ι

′
Ms0

+ (1− ρ̂s0) IMs0

)
ρ̂s0σ̂

2
a,s0ιMs0 σ̂ab,s0ιMs0 σ̂ac,s0ιMs0

ρ̂s0σ̂
2
a,s0ι

′
Ms0

σ̂2a,s0 σ̂ab,s0 σ̂ac,s0

σ̂ab,s0ι
′
Ms0

σ̂ab,s0 σ̂2b,s0 σ̂bc,s0

σ̂ac,s0ι
′
Ms0

σ̂ac,s0 σ̂bc,s0 σ̂2c,s0


, (14)

where ws0 is theMs0× 1 vector of “belief shocks”(see below); ιMs0 and IMs0 denote anMs0-

vector of ones and an Mj0×Mj0 identity matrix, respectively. We specify σ̂ab,s0 = σ̂ac,s0 = 0

and σ̂bc,s0 = 0 for simplicity. We consider a wide range of prior beliefs, subject to the

constraint that âs0, b̂s0, ĉs0 > 0 and ρ̂s0 > 0. Such beliefs reflect the notion that active funds

do have the skill to generate alpha but they face decreasing returns, both at the fund level

and at the strategy level, in deploying these skills and that funds in the same category share

a common unobservable skill component.

2.1.2 Posterior Beliefs

To update their beliefs about {ais}i∈Mst−1∪{∞} and bs, cs, investors conduct inference about

these parameters based on the cross-sectional data on funds’returns and size. At the begin-

ning of time t, the newly available data relevant for learning about the parameters governing

fund alphas in category s consist of {αist, qist−1}i∈Mst−1
(from which the category size Qst−1

can be inferred). Investors’beliefs at time t − 1 for {ais}i∈Mst−1∪{∞} and bs, cs are given by

a multivariate normal distribution, whose moments are Êst−1 and V̂st−1. Those moments

are updated by using standard results from Bayesian statistics on the multivariate normal
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distribution

Ṽst−1|t = V̂st−1 − V̂st−1Z ′st−1V̂ art−1 (αst)
−1 Zst−1V̂st−1, (15)

Ẽst−1|t = Êst−1 + V̂st−1Z
′
st−1V̂ art−1 (αst)

−1αst, (16)

where

Zst−1 =

[
IMst−1 0Mst−1 −qst−1 −Qst−1ιMst−1

]
,

V̂ art−1 (αst)
−1 = Z ′st−1V̂st−1Z

′
st−1 + σ2x,sιMst−1ι

′
Mst−1 + σ2ε,sIMst−1 ,

and 0Mst−1 denotes an Mst−1-vector of zeros. Note that

Ẽst−1|t =



ãst−1|t

ã∞st

b̃st

c̃st


, Ṽst−1|t =



Σ̃aa,st−1|t Σ̃a∞,st−1|t Σ̃ab,st−1|t Σ̃ac,st−1|t

Σ̃′a∞,st−1|t σ̃2a,∞st σ̃ab,∞st σ̃ac,∞st

Σ̃′ab,st−1|t σ̃ab,∞st σ̃2b,st σ̃bc,st

Σ̃′ac,st−1|t σ̃ac,∞st σ̃bc,st σ̃2c,st


. (17)

Having the updated moments Ẽst−1|t and Ṽst−1|t of the key parameters at time t − 1

({ais}i∈Mst−1∪{∞} and bs, cs), we obtain the updated moments of the key parameters at time

t ({ais}i∈Mst∪{∞} and bs, cs) in two steps. First, we drop from Ẽst−1|t and Ṽst−1|t their elements

that represent moments related to ais for i ∈ Mst−1 \Mst (i.e., exiting funds). Second, we

add the moments related to ais for i ∈ Mst \Mst−1 (i.e., new funds), which we set equal to

the corresponding moments related to a∞s. Taking into account the entry and exit of funds
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leads to the following moments

Ẽst|t =



ãst|t

ã∞st

b̃st

c̃st


, Ṽst|t =



Σ̃aa,st|t Σ̃a∞,st|t Σ̃ab,st|t Σ̃ac,st|t

Σ̃′a∞,st|t σ̃2a,∞st σ̃ab,∞st σ̃ac,∞st

Σ̃′ab,st|t σ̃ab,∞st σ̃2b,st σ̃bc,st

Σ̃′ac,st|t σ̃ac,∞st σ̃bc,st σ̃2c,st


, (18)

which are the same as (17) but with ãst−1|t and Σ̃aa,st−1|t , Σ̃a∞,st−1|t , Σ̃ab,st−1|t , Σ̃ac,st−1|t re-

placed by ãst|t and Σ̃aa,st|t , Σ̃a∞,st|t , Σ̃ab,st|t , Σ̃ac,st|t , respectively.

Finally, the posterior distribution of {ais}i∈Mst∪{∞} and bs, cs is multivariate normal as

in equation (12), except that Ês0 and V̂s0 are replaced by Êst and V̂st, where

Êst = Ẽst|t +

 wst

03

 , V̂st = Ṽst|t , (19)

and wst is the Mst × 1 vector of belief shocks. Equation (19) means that Bayesian learning

determines the posteriors, up to shocks to expected skills of funds operating at time t.

Combining equations (7) and (19) gives the shock to fund i’s perceived skill at time t as

wist = b̃stqist + c̃stQst − ãist = b̂stqist + ĉstQst − ãist.

In other words, wist are wedges in the equilibrium condition (7) computed by using (18), i.e.,

investor beliefs based solely on Bayesian updating.

In any purely learning-based model of capital allocation, note that, for a given specifi-

cation of priors about {ais} and bs, cs, Qst is a deterministic function of data up to time t.

As a result, the likelihood function for {Qst; t = 1, . . . , T} would be degenerate. Following

the DSGE model literature, we add belief shocks, which means that the likelihood function

is nondegenerate because there are as many structural shocks as there are observables (i.e.,
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panel data on fund size). Economically speaking, given the inherent complexity of inferring

a fund’s optimal size, it seems warranted that there are forces affecting capital allocation

beyond the aspects of learning in our simple model: the belief shocks capture such forces.

2.1.3 Other Sources of Learning

There are many other sources of potential learning. For example, decreasing returns para-

meter can be heterogeneous (Barras, Scaillet, and Binsbergen et al.). Investors might also

learn about betas.

2.1.4 Entry and Exit of Funds

We take as given funds’entry and exit (i.e., the supply side), with a focus on using them

to identify what investors learn and how they allocate their capital (i.e., the demand side).

Specifically, difference, if any, between the observed size and the size based on the investors’

posteriors just after Bayesian updating due to entry and exit should manifest as belief shocks,

which in turn are penalized in our estimation, as we discuss in the next section.

While endogenizing fund entry and exit would be a natural extension of our framework,

note that, for the sake of understanding how investors allocate capital, it would simply

add an additional dimension of learning for investors. Moreover, such models struggle to

quantitatively reproduce salient features related to entry and exit in the data, including the

number of funds over time, because there are few observations of entry or exit (i.e., the

minority classes) for hundreds of observations of continuing incumbents (i.e., the majority

class). This is an example of imbalanced classification problems, which are generally chal-

lenging.19 Hence, such models deliver poor fits to the data on aggregate allocations to mutual

funds for reasons unrelated to the learning process. We leave the task of modeling both the

demand and supply sides of this market for future research.

19Fraud detection represents an important real-life example of imbalanced classification problems.
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2.1.5 The Likelihood Function

We derive the likelihood function of our learning model for the multiple time series of aggre-

gate allocations {Qst} across (mutually exclusive) S categories of the mutual fund industry.

Recall from Proposition 1 that the equilibrium value of Qst is:

Qst =
âst

b̂st/Mst + ĉst
=

ãst + wst

b̂st/Mst + ĉst
,

where ãst = 1
Mst

∑
i∈Mst

ãist and wst = 1
Mst

∑
i∈Mst

wist denote the average perceived skill

of all incumbent funds belonging to category s based on investor beliefs at time t just

after Bayesian updating and the average value of realized belief shocks across those funds,

respectively.

To characterize the conditional distribution of Qst given the histories for all funds within

that category, we need to make a distributional assumption for wist. We shall proceed under

the assumption that the conditional distributions of qist and in turn Qst are normal:

wist ∼ N
(
0, σ2w,s

)
,

where Cov (wist, wi′s′t′) is equal to ρw,sσ
2
w,s if i

′ 6= i, s′ = s, t′ = t and zero otherwise, which

implies V ar (wst) =
((

1− 1
Mst

)
ρw,s + 1

Mst

)
σ2w,s.

We can now characterize the joint distribution of a sequence of observations Qs1, . . . , QsT .

Let θs =
[
âs0, b̂s0, ĉs0, σ̂a,s0, ρ̂s0, σ̂b,s0, σ̂c,s0

]′
, θw,s =

[
σw,s, ρw,s

]′
and define the time t infor-

mation set Ist = {αisτ , qisτ−1; i ∈Msτ−1}tτ=1. First, the conditional density of Qst can be
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expressed as

p (Qst |θs, θw,s, Ist ) =
1√

2π V ar(wst)

(b̂st/Mst+ĉst)
2

exp

−1

2

(
Qst − ãst

b̂st/Mst+ĉst

)2
V ar(wst)

(b̂st/Mst+ĉst)
2



=

∣∣∣̂bst/Mst + ĉst

∣∣∣√
2πV ar (wst)

exp

(
−1

2

w2st
V ar (wst)

)

Note that {ãist}i∈Mst−1
and b̃st, c̃st are determined by the information set Ist at time t, so ãst

and b̂st, ĉst (which are the same as b̃st, c̃st) are known conditional on Ist. Note also that Mst

is known because we take as given funds’entry and exit. Thus, the log of the joint density

of Qs1:T– the log likelihood function– can be expressed as

T∑
τ=1

log p (Qsτ |θs, θw,s, Isτ ) =
T∑
τ=1

log
(∣∣∣̂bsτ/Msτ + ĉsτ

∣∣∣)− T

2
log (2π) (20)

−1

2

T∑
τ=1

log (V ar (wsτ ))−
1

2

T∑
τ=1

w2sτ
V ar (wsτ )

Since posterior beliefs about the key parameters from different categories are uncorrelated,

the log likelihood function for the multiple time series {Qst; t = 1, . . . , T}Ss=1 is simply the

sum of (20) across all the S categories of the mutual fund industry. The log likelihood

function (20), combined with a prior distribution for θs (Section 3.1), forms the basis for our

Bayesian inference.

3 Data and Priors

Our data come from CRSP and Morningstar. We require that funds appear in both CRSP

and Morningstar, which allows us to validate data accuracy across the two databases. We

merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then com-

pare assets and returns across the two sources in an effort to check the accuracy of each match
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following Berk and van Binsbergen (2015) and Pástor, Stambaugh, and Taylor (2015). We

refer the readers to the data appendices of those papers for the details.

Our sample contains 2,772 actively managed domestic equity mutual funds in the US

between 1991 and 2014.20,21 We start the sample in 1991, the first year in which CRSP

provides monthly data on funds’size. We use Morningstar Category to categorize funds into

nine groups corresponding to Morningstar’s 3 × 3 stylebox (large value, mid-cap growth,

etc.). We also drop any fund/month observations with expense ratios less than 0.1% per

year, or with lagged fund size (in 2011 dollars) less than $15 million.

We now define the key variables used in our empirical analysis: fund performance and

fund size. Summary statistics are in Table 1.

We use the standard risk-based approach to measuring fund performance. The recent

literature finds that investors use the CAPM in making their capital allocation decisions

(Berk and van Binsbergen 2016; Barber, Huang, and Odean 2016), so we adopt the CAPM.

In this case the risk adjustment RB
ist is given by:

RB
ist = βisMKTt,

where MKT is the market excess return and βis is the market beta of fund i belonging to

category s. We estimate βis by regressing the fund’s excess return to investors onto the

market portfolio over the fund’s lifetime. Our measure of fund performance is then αist, the

realized return for the fund in month t less RB
ist. The average of αist is +1.3 bp per month.22

Fund size (qist−1) equals the fund’s AUM at the end of the previous month, inflated

20My Morningstar data was collected when I was at Princeton University. I moved to Emory University
in 2016, and unfortunately Emory University does not have access to the Morningstar database. I am in the
process of gaining access to the Morningstar database beyond 2014 through other channels.
21We use keywords in the Primary Prospectus Benchmark variable in Morningstar to exclude bond funds,

international funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop funds
identified by CRSP or Morningstar as index funds, in addition to funds whose name contains “index.”
22In earlier versions of the paper, we constructed fund performance by subtracting the benchmark return

from the fund’s return, effectively assuming that all funds have a benchmark beta of one (Pástor and Stam-
baugh 2012; Pástor, Stambaugh, and Taylor 2015) but this simple approach leads to the same conclusions.
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to December 2011 dollars by using the ratio of the total stock market capitalization in

December 2011 to its value at the end of the previous month. Adjusting AUM by inflation

this way reflects the notion that the fund’s relative (rather than absolute) size is relevant for

capturing decreasing returns to scale it faces. There is considerable dispersion in fund size:

the inner-quartile range is $83 million to $917 million.

The top panel of Figure 1 shows the number of funds in our sample over time. The

number of funds increases from 338 in 1991 to 1,550 in 2014. The sustained entry of new

funds holds across all three size-based categories: large-cap (the dashed blue line), mid-

cap (the dotted green line), and small-cap (the dash-dotted red line). The middle panel

shows the reciprocal of the Herfindahl index– the so-called “effective number of funds”–

over time.23 The effective number of funds increases from 74 in 1991 to 238 in 2014. This

trend is consistent with the large cross-sectional variation in fund size.

As in the previous section, category size (Qst−1) is the sum of fund sizes across all funds

within a given category (i.e., the sum of AUM across all funds belonging to that category,

divided by the total stock market capitalization in the same month, then multiplied by the

total stock market capitalization at the end of 2011). The bottom panel of Figure 1 plots the

industry size (i.e., the sum of fund sizes across all funds), as well as the aggregate sizes at

the level of the three Morningstar size categories (large-cap, mid-cap, and small-cap). The

figure scales these time series such that they represent the fraction of total stock market

capitalization that the sample’s mutual funds own at each point in time. It starts at 4.6%

in January 1991, peaks at 13.6% in July 2008, and finishes at 12.9% in December 2014.

In sum, we find that the active mutual fund industry grew over the period 1991—2014.

This growth in industry size is driven by increases in the number of funds, consistent with

the evidence of Berk and van Binsbergen (2015) and Pástor, Stambaugh, and Taylor (2015).

23The Herfindahl index is a measure of the size of funds in relation to the category they belong to and an
indicator of the degree of competition among them. It ranges from 1/N to one, where N is the number of
funds in the market. Equivalently, its reciprocal can range from one (i.e., one fund dominates the market)
up to N (i.e., all the funds in a given category have the same size).
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Importantly, identification of the investors’learning problem in our model comes from the

time-series variation in aggregate capital allocation due to changing competitive landscapes.

3.1 Prior Distributions

We adopt a Bayesian approach to estimating the model, which involves specifying the prior

distribution for the model parameters θs (i.e., parameters governing investors’prior beliefs)

and θw,s (i.e., parameters governing the distribution of belief shocks).

To obtain priors for the prior expectations about the key parameters (âs0 and b̂s0, ĉs0),

we estimate the following regression via Zhu’s (2018) recursive demeaning procedure based

on the full sample (1991—2014):24

αist = ψ0,is − ψ1qist−1 − ψ2Qst−1 − ψ3Qst−1 ∗ 1 (LrgCap) + uist, (21)

where 1 (LrgCap) is a dummy variable, equal to one if the fund is classified by Morningstar as

a large-cap fund and zero otherwise. This regression is analogous to those in Table 2, except

that we add the interaction of Qst−1 with 1 (LrgCap).25 We find that Qst−1×1 (LrgCap) en-

ters positively and significantly (i.e., the estimate of ψ3 is negative), indicating that strategy-

level decreasing returns to scale are less pronounced for large-cap funds presumably because

such funds are likely to face smaller total price impact costs from trading large-cap stocks.

The estimates of ψ1, ψ2, ψ3 are used to set the prior means for b̂s0, ĉs0 in our analysis.
26

We use the average of the estimated fund fixed effects ψ0,is across all funds to set the prior

means for âs0 at 0.5% per month. Priors for âs0 and b̂s0, ĉs0 are chosen to be log-normally

distributed. Such non-negative distributions reflect the notion that investors expected at

24The results based on the estimates from the main sample (March 1993—December 2014) are very similar.
25We also tried adding the interactions of qst−1 with indicators for the three Morningstar size categories

(small, mid-cap, and large), but we did not find significant interactions.
26Specifically, we set the prior means for b̂s0 to the estimate of ψ1 for all categories s. We set the prior

means for ĉs0 to the sum of the estimates ψ2, ψ3 for the three large-cap categories and to the estimate of ψ2
for all other categories.
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the beginning of 1991 that active funds do have the skill to generate alpha but they face

decreasing returns, both at the fund level and at the strategy level. For each of âs0, b̂s0, ĉs0,

the prior standard deviations are specified to be almost 3 times larger than their means so

that the priors are fairly disperse.

The prior means for σ̂a,s0, σ̂b,s0, σ̂c,s0 are set at one half of the prior means for âs0, b̂s0, ĉs0,

respectively. We choose prior distributions for σ̂a,s0 and σ̂b,s0, σ̂c,s0 to be inverse gamma.

Our priors for âs0, b̂s0, ĉs0 and σ̂a,s0, σ̂b,s0, σ̂c,s0 imply that the investors’priors admit small

(2 and 4 percent) probabilities of (i) ais < 0 and (ii) bs < 0 or cs < 0. To the extent that

priors for σ̂a,s0, σ̂b,s0, σ̂c,s0 are much more diffi cult to specify (because the “rational”amount

of prior uncertainty cannot be observed), for each of these parameters, the prior distribution

is parameterized such that it has infinite standard deviation.

Priors for the off-diagonal elements of the covariance matrix of the key parameters (per-

ceived by investors a priori) are even more diffi cult to specify. Thus, we use very dispersed

beta distributions centered around 0.5 for the priors of ρ̂s0’s. On the other hand, recall that

we specify σ̂ab,s0 = σ̂ac,s0 = 0 and σ̂bc,s0 = 0 for simplicity. This assumption is clearly an

oversimplification. Thus, we estimate the model parameters governing investors’beliefs at

the beginning of 1991 using only the period from March 1993 to December 2014 for the

likelihood function (Section 2.1.5). This allows us to avoid the first few years, during which

the oversimplification can have an unduly large impact on the equilibrium allocations, from

affecting the estimation results.

The marginal prior distributions for the model parameters θs (i.e., parameters governing

investors’prior beliefs) are summarized in the first three columns of Table 3. We assume

all parameters to be a priori independent. As a final point, note that we specify the same

prior distribution for θs across the nine categories (parameters governing investors’ prior

beliefs about strategy-level DRS being an exception). We simply let the data speak for any

heterogeneity in the investors’priors across categories in our estimation procedure.
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We still need to specify σw,s and ρw,s in θw,s (i.e., parameters governing the distribution

of belief shocks). Conditional on the values of all other model parameters, we solve for the

values of σw,s and ρw,s to maximize the likelihood function (Section 2.1.5), treating these

parameters as “nuisance”parameters.

We end by tying down the model parameters that can be estimated directly from the

data. For each category s we specify the volatility of the common factor (σx,s) roughly equal

to the month-level standard deviation from fitting a random-effects model of the form (2)

to the residuals uist (from the regression (21)) across all funds belonging to that category;

similarly, we specify the volatility of idiosyncratic shocks (σε,s) roughly equal to the standard

deviation of the idiosyncratic errors from the same random-effects model.

4 Estimation Results

The results shown below are based on two chains of 85,000 draws each from the Random

Walk metropolis algorithm (see Appendix B). For each chain, the first 35,000 draws are

discarded as burn-in and of the remaining 50,000 draws, one of every 20 draws is retained.27

4.1 Parameter Estimates

The last four columns of Table 3 summarize the posterior distribution of the model pa-

rameters, reporting posterior medians, standard deviations, and 5th and 95th percentiles

computed with the draws of our posterior simulator. All parameters estimates, except for

the skill correlation parameters (ρ̂s0), are fairly tight. Importantly, they are strongly at odds

with our priors for these parameters, which were specified using empirical estimates of the

parameters governing fund alphas. The parameter estimates indicate that investors believed

at the beginning of 1991 in average skill levels considerably higher than the data support

27See Appendix B.2 for evidence on the convergence of our posterior simulators.
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and in decreasing returns to scale much steeper than warranted.28

Interestingly, while investors’ priors are strongly at odds with empirical estimates of

the parameters, they are considerably disperse as well. Investors’prior uncertainty about

skills (σ̂a,s0) are about half their prior skill expectations (âs0) for large-cap funds; σ̂a,s0’s

are even larger than âs0’s for mid-cap and small-cap funds. Thus, investors perceive a

priori substantial uncertainty about skills. Investors’ prior uncertainty about fund-level

DRS (σ̂a,s0) are about one-eighth of their prior fund-level DRS expectations (̂bs0): investors

do perceive high uncertainty about fund-level DRS (as they should), but their priors for

fund-level DRS are relatively tighter than they are for skill levels or for strategy-level DRS.

Investors’prior uncertainty about strategy-level DRS (σ̂c,s0) are roughly 5 times larger than

their prior strategy-level DRS expectations (ĉs0): investors perceive a priori very substantial

uncertainty about strategy-level DRS.

Finally, the fact that ρ̂s0 < 1 is not tightly estimated implies that investors who perceive

a priori different degrees of skill heterogeneity make similar capital allocation decisions. We

show in Section 4.4.2 that investors who believe a priori that ρ̂s0 = 1 (i.e., all funds in the

same category are created equal) make very different allocation decisions because they learn

about only one common skill parameter at the strategy level: what is important is that

investors understand the presence (or absence) of skill heterogeneity, which involves learning

about as many skill parameters as there are funds all the same regardless of how much skill

heterogeneity investors perceive.

28Specifically, investors’prior expectations about skills (âs0) are almost 330 times larger than the average
estimated fund fixed effects for large-cap funds, while they are roughly 66 times larger than the average
estimated fund fixed effects for mid-cap and small-cap funds. In addition, investors’ prior expectations
about fund-level DRS (̂bs0) are 8 times the estimate of ψ1 in the regression (21). Moreover, investors’prior
expectations about strategy-level DRS (ĉs0) are much steeper than warranted for large-cap funds, whereas
they are relatively consistent with the empirical estimates for mid-cap and small-cap funds.
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4.1.1 Estimated Investors’Beliefs as of March 1993

Recall that we estimate the parameters governing investors’prior beliefs at the beginning

of 1991 by comparing the aggregate allocation of capital across categories from the model

against the data for each month over the period from March 1993 to the end of 2014.

We do not use the first few years for comparing the model against the data because the

model-implied investors’ posteriors in the early years of the sample are unduly sensitive

to the specification of investors’priors, so they generally differ from the actual investors’

posteriors: as time goes by, the actual investors’posteriors are well approximated by the

model-implied investors’posteriors, which are increasingly driven by the data. Naturally,

the more interesting objects are the estimated investors’beliefs as of March 1993.

The first two columns of Table 4 report the posterior estimates (i.e., medians) of investor

expectations and uncertainty about the key parameters as of March 1993.29 The reported

numbers for ais, i ∈Mst are respectively the average of investor expectations and uncertainty

about ais across all incumbent funds belonging to category s in March 1993.

Having actively learned about actively managed funds in their early years, investors as

of March 1993 already held beliefs quite different from their beliefs at the beginning of 1991.

While investors continue to believe in skills of large-cap funds higher than the data support,

their expectations are much more in line with what the data show.30 In addition, investors’

expectations about skills of mid-cap and small-cap funds are consistent with the data, i.e.,

they are comparable in magnitude to the average estimated fund fixed effects. Overall, our

estimates indicate that the skill expectations as of March 1993 are broadly unbiased.

In contrast, investors’ expectations about decreasing returns to scale are still biased,

though not as severely as before. They continue to believe in fund-level DRS much steeper

29The posterior standard deviations associated with these estimates are in parentheses.
30Specifically, investors believe as of March 1993 in skills of large-cap funds roughly 3 times larger than

the average estimated fund fixed effects, whereas they believed in skills of large-cap funds almost 330 times
larger than the average estimated fund fixed effects at the beginning of 1991.
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than warranted.31 On the other hand, investors now believe in strategy-level DRS that

are smaller in magnitude compared to the empirical estimates of strategy-level DRS.32 More

crucially, our estimates indicate that investors as of March 1993 believe in decreasing returns

driven mainly by fund size and not by competition with other funds.

Moreover, the last four columns of Table 4 report the posterior estimates (i.e., medians)

of the off-diagonal elements of the correlation matrix of the key parameters, perceived by

investors in March 1993. Our estimates indicate that investors as of March 1993 perceive

(i) with high skills come steep decreasing returns to scale (i.e., {ais} are weakly positively

correlated with bs and cs) and (ii) fund-level DRS and strategy-level DRS are competing

hypotheses on the nature of returns to scale (i.e., bs and cs are weakly negatively correlated).

4.2 Accounting for the Aggregate Size Dynamics

We now use our model to decompose the aggregate size dynamics into fluctuations in in-

vestors’perceptions of various parameters governing fund alphas. Recall from Proposition 1

that the equilibrium value of Qst is:

Qst =
âst

b̂st/Mst + ĉst
=

ãst + wst

b̂st/Mst + ĉst
,

where ãst = 1
Mst

∑
i∈Mst

ãist and wst = 1
Mst

∑
i∈Mst

wist denote the average perceived skill

of all incumbent funds belonging to category s based on investor beliefs at time t just

after Bayesian updating and the average value of realized belief shocks across those funds,

respectively. In other words, the size of a category is given by the ratio of the average fund’s

perceived skill to the perceived total strategy-level decreasing returns to scale the fund faces.

31Specifically, investors believe as of March 1993 in fund-level DRS roughly 6 times larger than the estimate
of ψ1 in the regression (21).
32Specifically, investors believe as of March 1993 in strategy-level DRS less than half the empirical estimates

of strategy-level DRS– the sum of the estimates ψ2, ψ3 for the three large-cap categories and the estimate
of ψ3 for all other categories (all from the regression (21)).
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4.2.1 Evolution of the Average Perceived Skill

Figure 2 shows the evolution of the average perceived skill over time for each fund category.

Panels A and B plot percentiles of the posterior distribution of the average perceived skill

ãst (just after Bayesian updating) and âst (after accounting for belief shocks), respectively.

There is virtually no difference between Panels A and B, indicating that belief shocks are very

small in magnitude, which in turn suggests the Bayesian learning-and-allocating problem in

our model does a great job of capturing key forces that affect the aggregate size dynamics.

Recall that the skill expectations as of March 1993 are broadly unbiased, except that

investors believe large-cap funds have skills higher than the data support. As a result, the

average perceived skill of large-cap funds generally trends downward over time, whereas the

average perceived skill of all other funds remains roughly the same over time.33

Figure 2 also shows that learning about the skill of large-cap funds is slow. The posterior

estimates (i.e., medians) of their average perceived skill decline only modestly from 1.5%

per month in 1993 to 1.1% per month in 2014 over a period of more than 20 years. Such

posteriors are still optimistic compared to the average estimated fund fixed effects of 0.5% per

month. This result can be explained by the entry and exit patterns. First, it is well known

that poor performance of a fund increases its exit probability:34 past outperformance is more

informative of the average skill across future incumbent funds than past underperformance.

Second, fund entry has far exeeded exit over time (Figure 1): investors’beliefs about the

average skill are persistent because they get refreshed regularly by the newly-entering funds.

Now, how much variation in aggregate size dynamics can be ascribed to fluctuations in

perceived skill? To answer this question, we run a panel regression of log (Qst) on log
(
âst

)
for

each draw of the model parameters.35 Across posterior draws of the model parameters, the

median and standard deviation of the R2 from the regression are 0.63 and 0.09, respectively.

33The only exception is that investors as of March 1993 believe mid-cap blend funds have skills higher than
the data support (just like large-cap funds), so the average perceived skill of such funds trend downward.
34See Brown and Goetzmann (1995) and Elton, Gruber, and Blake (1996).
35Using log

(
ãst

)
instead of log

(
âst

)
leads to the same conclusions.
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This evidence is consistent with the important role of learning about managerial skill. But

it is typically not enough: 37% of variation in aggregate size dynamics is attributable to

fluctuations in the perceived total strategy-level decreasing returns– the denominator in (8).

In sum, we find that the skill expectations are broadly unbiased, except that investors

were initially more optimistic about large-cap funds’skill. Such optimism is largely brought

to an end by learning about managerial skill toward the end of the sample. We also find that

investors’perceptions of skill play an important role in determining aggregate allocation,

but just as important are their perceptions of the nature of returns to scale, which we turn

to next.

4.2.2 Evolution of the Perceived Total Strategy-Level Decreasing Returns

Figure 3 shows the evolution of the perceived total strategy-level decreasing returns to scale,

b̂st/Mst + ĉst, over time for each fund category. It plots posterior medians (solid blue line)

and 5th and 95th percentiles (dashed red lines) of the perceived total strategy-level DRS.

It also plots empirical estimates of the total strategy-level DRS– 0.799/Mst + 0.013 for the

three large-cap categories and 0.799/Mst + 0.053 for all other categories (all numbers from

estimating the regression (21))– using a solid black line.

Comparing the black and blue lines, we see that investors as of March 1993 perceived total

strategy-level decreasing returns that are much steeper than the empirical estimates indicate.

But by the end of 2000, the perceived total strategy-level decreasing returns are in line with

the empirical estimates. There are exceptions to this pattern: for the mid-cap growth and

mid-cap value categories, investors tend to perceive even milder total strategy-level DRS

than the empirical estimates indicate, although the bias is typically small. Importantly, we

see that, for all categories, the perceived total strategy-level decreasing returns have declined

substantially over time, which helps explain the observed steady growth in aggregate size.

To understand this trend, Panels A and B of Figure 4 show the evolution of the perceived

fund-level DRS, b̂st, and the perceived direct strategy-level DRS, ĉst, respectively, over time
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for each fund category. Recall that investors as of March 1993 believe in decreasing returns

driven mainly by fund size and not by competition with other funds. Panel A of Figure 4

shows that not only do investors continue to believe in fund-level DRS much steeper than

warranted, b̂st remains virtually constant over time, highlighting that learning about fund-

level DRS is unusually slow. Panel B of Figure 4 shows that investors continue to believe in

milder strategy-level DRS than the empirical estimates indicate,36 although the bias is small

compared to the bias in b̂st. Moreover, ĉst fluctuates much more over time, highlighting that

there is more learning about strategy-level DRS, albeit still slow.

Why is learning about the nature of returns to scale (in particular, the fund-level DRS)

slow? Bayesian learning implies the % change in investors’perception of each parameter

upon observing fund alphas is proportional to the product of investors’uncertainty about

the parameter– its perceived variance over its perceived value– and alphas’weight on the

parameter.37 Now, the alpha of fund i at time t + 1 has a weight of one on fund skill ais,

whereas it has weights equal to qist and Qst on fund-level DRS bs and strategy-level DRS

cs, respectively. Recall from Proposition 1 that Qst = âst
b̂st/Mst+ĉst

and qist = âst/Mst

b̂st/Mst+ĉst
on

average. Then, it is easy to see that, even if investors’uncertainty about each parameter were

proportional to the magnitude of the perceived value of the parameter, their perception of bs

and cs fluctuate by âst
b̂st/Mst

b̂st/Mst+ĉst
and âst ĉst

b̂st/Mst+ĉst
, respectively, compared to their perception

of ais that fluctuates by âst × 1 on average. Learning about the nature of returns to scale

is generally slower than learning about managerial skill because investors first decompose

performance into skill and the total effects of scale, which they then decompose to analyze

the nature of returns to scale (fund-level vs strategy-level). Such learning process interacts

with and amplifies the initial beliefs that are relatively more biased about fund-level DRS

than they are about skill levels or about strategy-level DRS (Tables 3 and 4), resulting in a

very slow learning about fund-level decreasing returns.

36Specifically, the empirical estimates of strategy-level DRS are 0.013 for the three large-cap categories
and 0.053 for all other categories.
37This statement is ignoring the off-diagonal elements of the covariance matrix of the key parameters

(perceived by investors before observing fund alphas), but they tend to be small in magnitude.

31



Such beliefs translate the sustained entry of new funds into declines in the perceived total

strategy-level DRS because the perceived total strategy-level decreasing returns have a weight

equal to 1/Mst on fund-level DRS b̂st. Since there are fewer funds in the early years (high

1/Mst), the positive bias in b̂st imparts a substantial positive bias in the perceived strategy-

level DRS. As fund entry has far exceeded exit over time (declining 1/Mst), persistence of the

positive bias in b̂st leads investors to perceive that the total strategy-level decreasing returns

decline much more sharply than warranted. Interestingly, declining 1/Mst also means that

the bias in b̂st imparts a smaller bias in the perceived strategy-level DRS over time. Indeed,

by the end of 2000, there are suffi ciently many funds (low enough 1/Mst) that the perceived

total strategy-level decreasing returns are in line with the empirical estimates, despite the

enduring bias in their perceptions of the nature of returns to scale.

In sum, we find that learning about the nature of returns to scale is generally slower than

learning about skill because fund alphas are less informative about the parameters governing

returns to scale. We also find that learning about fund-level DRS is unusually slow precisely

because investors begin with beliefs that the fund-level DRS are steeper than warranted.

Such beliefs translate the sustained entry of new funds into declines in the perceived total

strategy-level DRS, which helps explain the observed steady growth in aggregate size.

4.3 The Aggregate Size Dynamics with Truly Bayesian Investors

In this subsection, we present counterfactual paths of aggregate allocation were investors

truly Bayesian. Recall that we add so-called belief shocks to capture forces that affect

investors’capital allocation decisions beyond aspects of learning in our model. Technically,

belief shocks are 1-step ahead forecast errors assuming investors update their posterior beliefs

at time t based on the cross-section of observed returns at time t as Bayesians. As noted

earlier, Figure 2 shows that belief shocks tend to be small. But since investors’posterior

beliefs at time t themselves are a product of Bayesian learning and belief shocks, we need to

be cautious in appealing to the magnitude of the belief shocks to conclude that the aggregate
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size dynamics can largely be explained by Bayesian learning.

To assess the extent to which a purist learning model can reproduce the size dynamics

in the data, we first specify investors’beliefs as of March 1993 (computed with the draws of

our posterior simulator), updating their beliefs with actual data on observed returns as truly

Bayesian investors would by fixing wst (an Mst-vector of belief shocks) to zero. We then

compute counterfactual fund sizes {q∗ist}i∈Mst
by invoking (6), or that the expected alpha on

any fund receiving positive investment ought to be zero with respect to the counterfactual

investors’beliefs. Note that shutting down belief shocks, which would maintain consistency

of investors’beliefs with actual fund sizes {qist}i∈Mst
, means that {q∗ist}i∈Mst

and {qist}i∈Mst

generally differ, and that these differences will tend to amplify over time.

Figure 5 shows the evolution of the counterfactual size Q∗st of each fund category over

time were investors not subject to belief shocks, plotting posterior median (the solid blue

line) and 5th and 95th percentiles (the dashed red lines), computed with the draws of our

posterior simulator. For comparison, the solid black line in Figure 5 shows the actual size

Qst of each fund category over time.

Comparing the black line against the blue and red lines, we see that Q∗st and Qst indeed

tend to be closely related. More formally, for each draw from the posterior of the model

parameters, we calculate the R2 from a panel regression of log (Qst) on log (Q∗st). Across the

posterior draws, the average R2 from this regression is 0.96, and the 5th and 95th percentiles

are 0.94 and 0.98, respectively. This evidence is consistent with the aspects of learning in

our model doing a great job of capturing aggregate size dynamics in the data.

Panel A of Figure 6 shows how the counterfactual industry size continues to be closely

related to the actual industry size. While not “targeted”in our estimation, Panel B of Figure

6 shows the evolution of the counterfactual effective number of funds– the reciprocal of the

Herfindahl index. Recall that the larger the cross-sectional variation in fund size, the smaller

the effective number of funds compared to the number of incumbent funds.
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We find an upward trend in the counterfactual effective number of funds that is much

steeper than in the data, suggesting that investors in our model perceive smaller heterogene-

ity in skill than perceived by the investors in reality and, consequently, the cross-sectional

variation in fund size in our model is smaller than that observed in the data. Importantly,

this result does not imply a rejection of Bayesian rational learning. Instead, it simply sug-

gests that we ought to explore additional aspects of learning about the parameters governing

alphas of funds. For example, investors in our model assume that funds in the same category

draw their skills from the same distribution, regardless of when they enter, but Pástor, Stam-

baugh, and Taylor (2015) provide suggestive evidence that active funds have become more

skilled over time. Modeling investor awareness of such additional source of heterogeneity is

likely to quantitatively reproduce the empirical fund size distribution on top of reproducing

the aggregate size dynamics as in our model.

To summarize, the aspects of learning in our model does surprisingly well in accounting

for the aggregate size dynamics in the data: Even if investors in our model were not subject

to belief shocks, their aggregate allocation of capital in response to the history of observed

returns closely approximates the observed equilibrium aggregate allocation.

4.4 Model Fit and Relation to the Literature

This section has two objectives. First, we relate our model to those of Berk and Green (2004)

and Pástor and Stambaugh (2012), which motivates a number of alternative specifications

as natural benchmarks for assessing our model. Second, we evaluate the fit of our model

relative to these alternative specifications. As for the assessment of fit, we find that our

baseline model substantially outperforms all alternative specifications.

4.4.1 Relation to the Literature

Central features of our model are that (i) active managers have differential abilities to gen-

erate alpha but they face decreasing returns to scale in deploying these abilities and (ii)
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investors learn not only about managerial ability but also about the nature of returns to

scale from past data. Thus, our approach builds on the seminal works of Berk and Green

(2004) and Pástor and Stambaugh (2012). But there are important differences. First, Berk

and Green assume that decreasing returns apply at the fund level (i.e., cs = ĉs0 = 0), while

Pástor and Stambaugh assume that they apply to the active management industry as a

whole (i.e., bs = b̂s0 = 0). In contrast, we assume that decreasing returns apply both at the

fund level and at an aggregate level.

A second difference in our treatment of prior beliefs is that our investors learn not only

about managerial ability but also about both fund-level and industry-level decreasing returns

to scale from panel data on mutual funds. In our parameterization of prior beliefs in (14),

σ̂b,s0, σ̂c,s0 > 0 and ρ̂s0 ∈ (0, 1). In contrast, Berk and Green’s investors learn only about

managerial ability (i.e., σ̂b,s0 = σ̂c,s0 = 0) fund by fund (i.e., ρ̂s0 = 0 and σx,s = 0), while

Pástor and Stambaugh’s investors learn also about industry-level decreasing returns to scale

(i.e., σ̂b,s0 = 0), although they learn everything only from the mutual fund industry’s time

series (i.e., ρ̂s0 = 1). As discussed earlier, when ρ̂s0 ∈ (0, 1), investors face a cross-fund

learning problem which cannot be handled fund by fund or only using aggregate time series.

Another difference from Berk and Green (2004) and Pástor and Stambaugh (2012) is

that we use the entry and exit patterns in the data to help identify the investors’learning

problem. When funds enter and exit, not only the average perceived skill of incumbent funds,

but also the number of incumbent funds change, both of which affect equilibrium aggregate

allocations {Qst}– the “target”in our estimation. Berk and Green do model entry and exit

of funds, but they focus on the stationary equilibrium, in which the distribution of skills

across incumbent funds and the number of incumbent funds stay constant. In contrast,

Pástor and Stambaugh do not model entry and exit of funds, and focus primarily on a

perfectly competitive setting with infinite number of funds that have the same level of skill.

To summarize, our framework builds upon the models of Berk and Green (2004) and

Pástor and Stambaugh (2012), amended to allow for learning about the nature of returns
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to scale and for the effect of entry and exit dynamics on aggregate fluctuations in capital

allocation. In turn, we find that rational learning from past data is a quantitatively significant

driver of aggregate capital allocation dynamics in the data.

4.4.2 Model Fit

Our previous discussion motivates a number of alternative specifications as natural bench-

marks for assessing our model. First, to the extent that our focus on aggregate capital

allocation follows Pástor and Stambaugh (2015), the learning problem faced by Pástor and

Stambaugh’s investors provides a natural benchmark, which corresponds to a specification

in which b̂s0 = σ̂b,s0 = 0 and ρ̂s0 = 1 (hereafter, “PS model”). Amending this specification to

allow for learning about fund-level DRS or learning about skill heterogeneity provides two

additional benchmark specifications: (i) the PS model with b̂s0 > 0, σ̂b,s0 > 0 and (ii) the PS

model with ρ̂s0 ∈ (0, 1). In this respect, note that our model can be thought of as the PS

model with b̂s0 > 0, σ̂b,s0 > 0 and ρ̂s0 ∈ (0, 1).

We assess the fit of our model relative to these alternative specifications using the mar-

ginal likelihood (or marginal data density), which is just the posterior density with the model

parameters integrated out. In a Bayesian framework, the marginal likelihood is the most

comprehensive and accurate measure of fit, as it can be used to construct posterior prob-

abilities on competing models. To this end, we use the modified harmonic mean method

of Geweke (1999), which requires the user to specify a tuning parameter τ ∈ (0, 1).38 The

first four rows of Table 5 reports the log-marginal data density for our model, and the three

alternative specifications with τ = 0.5; the last four rows repeat this exercise with τ = 0.9.

As is evident, the values of the marginal likelihood are overwhelmingly in favor of our model,

regardless of a particular value of τ .

Note that the two alternative specifications that amend the PS model to allow for learning

about fund-level DRS (which requires estimating 6 parameters for each of 9 fund categories,

38Technical details about Geweke’s modified harmonic mean estimator are presented in Appendix B.1.
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or a total of 54 parameters) or learning about skill heterogeneity (which requires estimat-

ing a total of 45 parameters) are more complex than the PS model itself (which requires

estimating a total of 36 parameters), but they have lower log marginal likelihoods than the

PS model. This stems from the fact that Bayesian model comparison penalizes more richly

parameterized models, and thus guards against overfitting. Such penalty is particularly

pronounced in our application because the likelihood function peaks at a value that is at

odds with the prior distribution of the model parameters: Recall that we constructed the

priors by presuming that the investors’initial beliefs are in line with the true values of the

parameters governing alphas, whereas our estimates suggest otherwise. Only our model that

amends the PS model to allow for both learning about fund-level DRS and learning about

skill heterogeneity (which requires estimating 63 parameters in total) delivers a substantially

better fit to the data, enough to overcome the penalty for model complexity.

To see intuitively why these alternative specifications perform poorly in terms of fit, we

plot the evolutions of the counterfactual industry size and the counterfactual effective number

of funds under the PS model in Figure 7.39 Panel A shows that, while the industry size

generated from the PS model generally does vary over time, its fluctuations are significantly

muted, compared to those of the actual industry size. This result underlines the fact that

a Bayesian investor learning based solely on aggregate time series of active mutual funds is

generally fast enough that it cannot quantitatively reproduce the aggregate size dynamics

in the data. Consistent with this interpretation, we find that amending the PS model to

allow for only learning about fund-level DRS, which still posits investor learning only using

aggregate time series, generates very similar results. Less important but also noteworthy is

the result (e.g., in Panel B) that, under these alternative specifications, there is a one-to-one

correspondence between the effective number of funds and the number of incumbent funds

39Specifically, we estimate the PS model using Bayesian methods. We then specify investors’beliefs as of
March 1993 (computed with the posterior draws of the PS model’s parameters), updating their beliefs with
actual data on observed returns as truly Bayesian investors who believe in the return generating process
under the PS model would by shutting down belief shocks. As before, we derive the model’s implications for
the equilibrium size by invoking (6).
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because investors perceive no heterogeneity across funds. This is clearly counterfactual,

reinforcing the importance of allowing for skill heterogeneity. On the other hand, amending

the PS model to allow for only learning about skill heterogeneity yields a poor fit for a

different reason: Only a few funds with the highest perceived skill receive positive investment

because investors perceive heterogeneity across funds, but perceive no fund-level decreasing

returns to scale, which play a key role in equilibrating at the fund level.

To summarize, we find that both learning about skill heterogeneity and learning about

fund-level DRS play quantitatively important roles in determining the aggregate capital

allocation. Doing away with one or the other leads to a substantially worse fit to the data by

rendering the speed of learning unrealistically fast or the market structure of the industry

unrealistically concentrated.

5 Conclusion

In this paper, we investigate whether a model of capital allocation based solely on Bayesian

learning can quantitatively capture the historical fluctuations in capital allocation to mutual

funds. To this end, we estimate a model in which Bayesian investors learn not only about

fund skill but also about the nature of returns to scale in real time and competitively allocate

capital to funds, conditional on their current beliefs. We find that the model-implied aggre-

gate allocation of capital in response to the history of observed returns closely approximates

the observed equilibrium aggregate allocation. Key to this result is that investors start with

biased beliefs that fund-level decreasing returns to scale are much steeper than warranted by

the data, and investors continue to believe this despite rational learning because fund returns

are not informative enough about the parameters governing returns to scale. Nevertheless,

we also find that, in the new millennium, the number of funds competing for investors grows

large enough to ensure that such beliefs about steeper-than-warranted fund-level DRS have

little influence on the aggregate allocations, which in turn are rendered broadly rational.
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Overall, our results support that, as a group, mutual fund investors are not naive.
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A Empirical Evidence on Returns to Scale

We empirically analyze the nature of returns to scale in active mutual fund management

following Zhu (2018). Pástor, Stambaugh, and Taylor (2015) (PST) analyze the nature

of returns to scale by developing a recursive demeaning procedure. While their estimates

indicate decreasing returns to scale both at the fund level and at the industry level, they

find that only the latter is statistically significant. Zhu (2018) improves upon their empirical

strategy in PST (by including an intercept in the first-stage regression) and establishes

decreasing returns to scale at the fund level with compelling statistical significance.

A fund’s performance should be more closely related to the size of the fund’s sector than

to the size of the entire industry if decreasing returns to scale at an aggregate level are driven

by competition with funds that follow similar investment strategies. To evaluate this idea, we

check whether sector size exhibits a negative and significant relation with fund performance,

as well as whether our finding is affected by including industry size as a control.40

To investigate returns to scale at the fund level, we run panel regressions of fund i’s net

alpha in month t, α̂ijt, on the fund’s size at the end of the previous month, qijt−1. We test

the null hypothesis that the slope on the lagged fund size is zero. We use the recursive

demeaning (RD) approach taken in Zhu (2018). We refer the readers to Section 4 of that

papers for the details. We report the results both before and after controlling for industry

size in the first two columns of Table 2. Panel A reports the results from the full sample

(1991—2014); Panel B focuses on our estimation sample (1993—2014).

The estimated effect of fund size on performance is highly statistically significant, with

t-statistics of −3.7 (column 1 of Table 2). The estimates from Panel A indicates that a $100

million increase in fund size (which represents movement of about 10% of the interquartile

range) depresses performance by 0.0099% per month, or 12 bp per year. In Panel B, the

40We measure the industry size in the same way as Pástor, Stambaugh, and Taylor (2015) by adding up
the fund AUM across all funds in the sample and then dividing by the stock market capitalization (i.e., the
sum of lagged size, qijt−1, across all sample funds, up to a constant).
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same increase in fund size depresses performance by only 11 bp per year. These effects are

economically significant. When industry size is included in the regression together with fund

size (column 2), the coeffi cient on fund size is significantly negative, just like in column 1,

whereas the coeffi cient on industry size is negative but insignificant.

To explore potential returns to scale at the sector level, we run panel regressions of α̂ijt

on the lagged sector size, Qjt−1. We consider the same bias-free RD approach. The results

before and after controlling for industry size are in column 3 through 4 of Table 2.

The evidence of decreasing returns to scale at the sector level is strong: the estimated

coeffi cients on sector size are negative and highly significant, with t-statistics around −5

whether or not industry size is included in the regression. The effect is both economically

and statistically significant. For example, a $10 billion increase in sector size is associated

with a sizable decrease in fund performance: 0.0105% per month, or almost 13 bp per year.41

In our estimation sample, the effect is even stronger, about 14 bp per year.

In columns 5 through 6 of Table 2, we run the multiple regressions of α̂ijt on both qijt−1

and Qjt−1 before and after controlling for industry size. We consider two null hypotheses:

that the slope coeffi cient on fund size is zero, and that the slope on sector size is zero. We find

that the slope on fund size remains negative and significant, and it is only slightly smaller

in magnitude compared to column 1. The slope on sector size also remains negative and

significant. Even though its magnitude is smaller than in column 3, it is still substantial.

The results after controlling for industry size, which are reported in column 6 of Table

2, are quite similar to those from column 5. Even though the coeffi cients on fund size are

slightly smaller in magnitude compared to column 5, they remain statistically significant

in both panels. Interestingly, the addition of industry size makes both the slope coeffi cient

on sector size and its t-statistic even more negative compared to column 5. As before, the

coeffi cients on industry size are never statistically significant.

41According to Table 1, changing sector size by $10 billion represents movement of about one thirtieth of
the interquartile range.
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To summarize, we find a strong negative relation between fund performance and fund

size, and another between fund performance and sector size. These relations, which are

both economically and statistically significant, are consistent with the presence of decreasing

returns to scale both at the fund level and at an aggregate level. In addition, we find that

industry size exhibits neither a consistent nor a significant relation with fund performance.

These results suggest that our proxy for sector size does a good job of capturing the size of

a fund’s competition. Motivated by these findings, we focus on prior beliefs in which returns

are decreasing in both fund scale and sector scale at uncertain rates.

B Estimation Algorithm

The estimation algorithm is a random walk Metropolis (RWM) MCMC procedure:

Algorithm 2 For i = 1 to N :

1. Draw ϑ = θi−1 + η, where η is mean zero with variance c2Σ̂.

2. Set θi = ϑ with probability

α = min

{
p (ϑ |Y )

p
(
θi−1 |Y

) , 1}

and θi = θi−1 otherwise.

The algorithm constructs a Markov chain so that it converges to a unique stationary dis-

tribution that equals the posterior distribution of the model coeffi cients. Detailed textbook

treatments can be found, for instance, in Robert and Casella (2004) or Gelman et al. (2013).

We first use a numerical optimization routine to find the posterior mode. This is done

for 100 widely dispersed start points drawn at random around the prior mean to ensure

convergence of this initial search to a global mode. We run two independent Markov chains.
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Parameters for one chain are initialized at the global mode, while those for the other chain

are initialized at a local mode with the next highest posterior density.

For each chain, we use a (partially) adaptive approach to set Σ̂: First, generate a set of

posterior draws based on a diagonal matrix for Σ̂, i.e., the prior covariance matrix that is

scaled to attain an acceptance rate close to 0.25. Second, compute the sample covariance

matrix from the first sequence of posterior draws and use it as Σ̂ in a second run of the RWM

algorithm. We then adjust this variance-covariance matrix to ensure an acceptance rate of

about 0.25, as it is usually suggested. Appendix B.2 discusses convergence diagnostics which

we apply to this posterior simulator.

B.1 Marginal Likelihood

To compute the marginal likelihood both for our baseline model and for competing models,

we use the modified harmonic mean method of Geweke (1999).

Harmonic mean estimators are based on the identity

1

p (Y )
=

∫
f (θ)

L (Y |θ ) p (θ)
p (θ |Y ) dθ,

where f (θ) has the property that
∫
f (θ) dθ = 1. Given the choice of f (θ), a natural

estimator of the marginal data density is

p̂ (Y ) =

 1

nsim

nsim∑
s=1

f
(
θ(s)
)

L
(
Y
∣∣∣θ(s)) p(θ(s))

−1 ,
where θ(s) is drawn from the posterior p (θ |Y ). Geweke (1999) proposed to use the density

of a truncated multivariate normal distribution,

f (θ) = τ−1 (2π)−d/2 |Vθ|−1/2 exp
[
−0.5

(
θ − θ

)′
V −1θ

(
θ − θ

)]
×I
{(
θ − θ

)′
V −1θ

(
θ − θ

)
≤ F−1

χ2d
(τ)
}
.
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Here θ and Vθ are the posterior mean and covariance matrix computed from the output of

the posterior simulator, d is the dimension of the parameter vector, Fχ2d is the cumulative

density function of χ2 random variable with d degrees of freedom, and τ ∈ (0, 1). We refer

the reader for a more detailed treatment to the book by Herbst and Schorfheide (2015).

B.2 Convergence Diagnostics

We assess the convergence of our posterior simulators using a battery of diagnostics. Recall

that we launch two chains of our Metropolis simulator from different starting values (one at

the global mode, the other at a local mode with the next highest posterior density). To check

that these two chains agree in their characterization of the posterior distribution, we look

at various sample moments within and across chains. We split each chain in half and check

that all the resulting half-sequences delivered roughly identical results for means, medians,

and posterior percentiles, as well as when looking at trace plots (available upon request).42

More formally, for the two chains used to generate the results in the paper, Table 6 reports

potential scale reduction factors as defined in Gelman et al. (2013) (the first column). These

numbers are very close to one and therefore well below the 1.1 benchmark widely used

in practice as a threshold for convergence. In addition, the second column computes the

effective sample size using Gelman et al.’s (2013) estimator for each coeffi cient. The average

ESS across all parameters governing prior beliefs within a given sector ranges from 200 in

small blend to 1998 in mid-cap growth. Gelman et al. (2013) suggest running the simulation

until ESS is at least 5m, where m is the number of chains (after splitting). We simulate

two sequences, each of which we split into two parts, so that m is equal to 4; thus the

reference suggests a “safe”threshold value of ESS > 20, which is completely met by all of

our parameters. Therefore, we consider these simulations suffi ciently converged.
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Table 1: Summary Statistics

This table shows summary statistics for our sample of active equity mutual funds from 1991—2014.
The unit of observation is the fund/month. All returns are in units of % per month. Net alpha
(αist) equals the fund’s net excess return (i.e., the fund’s excess return to investors) minus the
CAPM risk adjustment, which is the product of the fund’s market beta (βis) and the market
excess return. We estimate βis by regressing the fund’s net excess return onto the market portfolio
over the fund’s lifetime. Fund size (qist−1) is the fund’s AUM at the end of the previous month,
inflated to December 2011 dollars by using the ratio of the total stock market capitalization in
December 2011 to its value at the end of the previous month. Category size (Qst−1) is the sum
of AUM across all funds within a given category at the end of the previous month, divided by the
total stock market capitalization in the same month, then multiplied by the total stock market
capitalization at the end of 2011. We use the nine categories in Morningstar’s 3 × 3 StyleBox.
Mst−1 is the number of funds belonging to category s at time t− 1.

Panel A: Fund-Level Variables

Morningstar Percentiles
Category Mean Stdev. 1% 25% 50% 75% 99%

Large αist −0.0463 1.6452 −5.0078 −0.8531 −0.0509 0.7569 4.9472
qist−1 1, 643 3, 683 17 91 325 1, 224 20, 549

Mid-Cap αist 0.0649 2.2672 −6.3158 −1.1959 0.0684 1.3097 6.5549
qist−1 1, 009 2, 223 16 80 266 936 11, 885

Small αist 0.0939 2.7084 −6.3158 −1.5707 0.0617 1.7734 6.5549
qist−1 530 1, 179 17 73 193 508 6, 113

Panel B: Category-Level Variables

Morningstar Percentiles
Category Mean Stdev. 1% 25% 50% 75% 99%

Large Qst−1 355, 420 111, 540 103, 560 301, 710 388, 900 418, 450 554, 110
Mst−1 216 94 27 137 244 284 353

Mid-Cap Qst−1 99, 580 44, 610 22, 280 70, 950 84, 050 139, 890 194, 850
Mst−1 99 47 22 70 84 117 201

Small Qst−1 50, 110 28, 560 7, 410 24, 290 41, 650 77, 280 107, 880
Mst−1 95 51 11 59 82 135 192
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Table 2: Relation Between Size and Fund Performance

The dependent variable in each regression model is αist, the fund’s net alpha. Fund size (qist−1)
is the fund’s AUM at the end of the previous month, inflated to December 2011 dollars by using
the ratio of the total stock market capitalization in December 2011 to its value at the end of
the previous month. Category size (Qst−1) is the sum of AUM across all funds within a given
category at the end of the previous month, divided by the total stock market capitalization in the
same month, then multiplied by the total stock market capitalization at the end of 2011. We use
the nine categories in Morningstar’s 3 × 3 StyleBox. IndustrySize is the total AUM of all active
equity mutual funds divided by the total market cap of all stocks in CRSP. The RD2 estimator
recursively forward-demeans all variables and instruments for forward-demeaned qist−1 using qist−1.
We multiply the slopes on qist−1 and Qst−1 by 106 to make them easier to read. The reported
slopes on qist−1 and Qst−1 thus equal the change in αist, in units of bp per month, associated with
a $100 million increase in qist−1 and Qst−1. Heteroskedasticity-robust t-statistics clustered by fund
and by month are in parentheses.

Panel A: Full Sample (January 1991 —December 2014)

qist−1 −0.992
(−3.65)

−0.660
(−3.55)

−0.850
(−4.15)

−0.710
(−3.76)

Qst−1 −0.0105
(−5.04)

−0.0119
(−5.02)

−0.00860
(−4.07)

−0.0110
(−4.57)

IndustrySize −0.0102
(−0.94)

0.00887
(0.70)

0.0135
(1.05)

Observations 351041 351041 353438 353438 351041 351041
Estimator RD2 RD2 RD2 RD2 RD2 RD2

Panel B: Main Sample (March 1993 —December 2014)

qist−1 −0.879
(−3.63)

−0.674
(−3.50)

−0.811
(−3.99)

−0.714
(−3.68)

Qst−1 −0.0112
(−4.83)

−0.0125
(−5.10)

−0.00973
(−4.19)

−0.0116
(−4.68)

IndustrySize −0.0108
(−0.73)

0.0111
(0.66)

0.0142
(0.84)

Observations 341895 341895 344150 344150 341895 341895
Estimator RD2 RD2 RD2 RD2 RD2 RD2
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Table 3: Prior Densities and Posterior Estimates for the Model Parameters

The first three columns summarize marginal prior distributions for the model parameters θs (i.e.,
parameters governing investors’prior beliefs). Conditional on the values of these model parameters,
we solve for the values of the model parameters θw,s (i.e., parameters governing the distribution of
belief shocks) to maximize the likelihood function (Section 2.1.5). In the column marked “Density,”
LN stands for Log Normal, IG Inverse Gamma, and B Beta distribution. The last four columns
summarize the posterior distribution of the model coeffi cients, reporting median, standard devi-
ations and posterior percentiles from two chains of 85,000 draws each from the Random Walk
metropolis algorithm, one initialized at the global mode, the other initialized at a local mode with
the next highest posterior density. We discard the initial 35,000 draws and retain 1 in every 20
simulations from the remaining 50,000 draws. Notes: All âs0 and σ̂a,s0 are in units of fraction

per month, and all b̂s0, ĉs0 and σ̂b,s0, σ̂c,s0 are in units of fraction per month, associated with a $1
trillion increase in qist−1 and Qst−1 (equivalently, in units of bp per month, associated with a $100
million increase in qist−1 and Qst−1).

Morningstar Prior Posterior
Category Density Mean Std Median Std 5% 95%

Large Blend â0 LN 0.005 0.007 2.270 0.566 1.596 3.406

b̂0 LN 0.799 1.048 8.047 2.155 5.444 12.37
ĉ0 LN 0.013 0.017 0.712 0.293 0.328 1.311
σ̂a,0 IG 0.003 ∞ 0.532 0.309 0.298 1.170
σ̂b,0 IG 0.400 ∞ 0.690 1.369 0.331 3.912
σ̂c,0 IG 0.006 ∞ 0.658 0.739 0.317 2.308
ρ̂0 B 0.500 0.224 0.529 0.228 0.138 0.880

Large Growth â0 LN 0.005 0.007 1.293 0.239 0.956 1.747

b̂0 LN 0.799 1.048 5.410 1.162 3.729 7.521
ĉ0 LN 0.013 0.017 0.183 0.087 0.075 0.354
σ̂a,0 IG 0.003 ∞ 0.953 0.324 0.497 1.533
σ̂b,0 IG 0.400 ∞ 0.661 0.859 0.317 2.576
σ̂c,0 IG 0.006 ∞ 0.573 0.129 0.392 0.820
ρ̂0 B 0.500 0.224 0.359 0.198 0.103 0.745

Large Value â0 LN 0.005 0.007 1.334 0.364 0.822 2.012

b̂0 LN 0.799 1.048 6.949 1.965 4.001 10.39
ĉ0 LN 0.013 0.017 0.230 0.125 0.087 0.478
σ̂a,0 IG 0.003 ∞ 0.729 0.406 0.391 1.442
σ̂b,0 IG 0.400 ∞ 0.688 0.700 0.339 2.070
σ̂c,0 IG 0.006 ∞ 0.685 0.373 0.344 1.504
ρ̂0 B 0.500 0.224 0.519 0.235 0.120 0.890
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Morningstar Prior Posterior
Category Density Mean Std Median Std 5% 95%

Mid-Cap Blend â0 LN 0.005 0.007 0.422 0.140 0.262 0.701

b̂0 LN 0.799 1.048 6.566 2.154 4.270 10.84
ĉ0 LN 0.053 0.070 0.060 0.033 0.025 0.128
σ̂a,0 IG 0.003 ∞ 0.531 0.215 0.338 0.945
σ̂b,0 IG 0.400 ∞ 0.833 1.077 0.378 2.897
σ̂c,0 IG 0.027 ∞ 0.280 0.071 0.202 0.422
ρ̂0 B 0.500 0.224 0.511 0.200 0.201 0.850

Mid-Cap Growth â0 LN 0.005 0.007 0.471 0.106 0.325 0.667

b̂0 LN 0.799 1.048 3.782 0.751 2.692 5.156
ĉ0 LN 0.053 0.070 0.067 0.029 0.030 0.123
σ̂a,0 IG 0.003 ∞ 0.566 0.150 0.358 0.847
σ̂b,0 IG 0.400 ∞ 0.507 0.413 0.281 1.417
σ̂c,0 IG 0.027 ∞ 0.300 0.054 0.228 0.401
ρ̂0 B 0.500 0.224 0.622 0.190 0.278 0.901

Mid-Cap Value â0 LN 0.005 0.007 0.193 0.080 0.102 0.361

b̂0 LN 0.799 1.048 2.441 0.930 1.312 4.310
ĉ0 LN 0.053 0.070 0.182 0.072 0.097 0.330
σ̂a,0 IG 0.003 ∞ 0.430 0.111 0.288 0.648
σ̂b,0 IG 0.400 ∞ 0.893 1.048 0.388 3.134
σ̂c,0 IG 0.027 ∞ 0.356 0.101 0.243 0.575
ρ̂0 B 0.500 0.224 0.460 0.204 0.171 0.842

Small Blend â0 LN 0.005 0.007 0.515 0.168 0.289 0.837

b̂0 LN 0.799 1.048 9.112 3.269 5.174 15.85
ĉ0 LN 0.053 0.070 0.145 0.079 0.057 0.301
σ̂a,0 IG 0.003 ∞ 0.772 0.226 0.506 1.221
σ̂b,0 IG 0.400 ∞ 0.397 0.154 0.249 0.749
σ̂c,0 IG 0.027 ∞ 0.334 0.083 0.236 0.508
ρ̂0 B 0.500 0.224 0.676 0.167 0.350 0.904

Small Growth â0 LN 0.005 0.007 0.321 0.086 0.211 0.484

b̂0 LN 0.799 1.048 6.893 1.857 4.519 10.48
ĉ0 LN 0.053 0.070 0.123 0.043 0.064 0.203
σ̂a,0 IG 0.003 ∞ 1.106 0.218 0.797 1.511
σ̂b,0 IG 0.400 ∞ 0.597 0.324 0.320 1.306
σ̂c,0 IG 0.027 ∞ 0.405 0.139 0.268 0.693
ρ̂0 B 0.500 0.224 0.524 0.163 0.278 0.810

Small Value â0 LN 0.005 0.007 0.057 0.024 0.025 0.104

b̂0 LN 0.799 1.048 5.506 1.141 3.817 7.556
ĉ0 LN 0.053 0.070 0.026 0.013 0.011 0.052
σ̂a,0 IG 0.003 ∞ 0.546 0.080 0.426 0.690
σ̂b,0 IG 0.400 ∞ 0.582 0.374 0.331 1.300
σ̂c,0 IG 0.027 ∞ 0.557 0.101 0.409 0.741
ρ̂0 B 0.500 0.224 0.722 0.135 0.482 0.924
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Table 4: Posterior Estimates of Investors’Initial Beliefs as of March 1993

The first two columns report the posterior estimates (i.e., medians) of investor expectations and un-
certainty about the key parameters as of March 1993. The posterior standard deviations associated
with these estimates are in parentheses. The reported numbers for ais, i ∈Mst are respectively the
average of investor expectations and uncertainty about ais across all incumbent funds belonging
to category s in March 1993. Moreover, the last four columns report the posterior estimates (i.e.,
medians) of the off-diagonal elements of the correlation matrix of the key parameters, perceived
by investors in March 1993. Notes: In the first two columns, all reported numbers for ais, i ∈Mst

and a∞s are in units of fraction per month, and all reported numbers for bs and cs are in units of
fraction per month, associated with a $1 trillion increase in qist−1 and Qst−1 (equivalently, in units
of bp per month, associated with a $100 million increase in qist−1 and Qst−1).

Morningstar Inv Inv Inv Correlation Matrix
Category Mean Std

ais, i ∈Mst a∞s bs cs
Large Blend ais, i ∈Mst 0.016

(0.004)
0.001
(0.000)

0.215
(0.100)

a∞s 0.011
(0.003)

0.001
(0.001)

0.420
(0.206)

1

bs 6.219
(1.707)

0.072
(0.007)

0.044
(0.025)

0.042
(0.024)

1

cs 0.011
(0.004)

0.003
(0.002)

0.316
(0.163)

0.302
(0.161)

−0.074
(0.032)

1

Large Growth ais, i ∈Mst 0.016
(0.003)

0.002
(0.001)

0.163
(0.079)

a∞s 0.006
(0.001)

0.002
(0.001)

0.303
(0.169)

1

bs 4.698
(0.916)

0.119
(0.017)

0.061
(0.025)

0.053
(0.024)

1

cs 0.003
(0.001)

0.004
(0.001)

0.056
(0.031)

0.048
(0.029)

−0.025
(0.007)

1

Large Value ais, i ∈Mst 0.013
(0.004)

0.002
(0.001)

0.243
(0.099)

a∞s 0.007
(0.002)

0.002
(0.001)

0.466
(0.206)

1

bs 5.630
(1.567)

0.069
(0.007)

0.023
(0.013)

0.022
(0.012)

1

cs 0.002
(0.001)

0.004
(0.002)

0.088
(0.084)

0.082
(0.080)

−0.016
(0.007)

1
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Morningstar Inv Inv Inv Correlation Matrix
Category Mean Std

ais, i ∈Mst a∞s bs cs
Mid-Cap Blend ais, i ∈Mst 0.009

(0.003)
0.001
(0.000)

0.235
(0.093)

a∞s 0.002
(0.001)

0.001
(0.000)

0.471
(0.193)

1

bs 5.287
(1.722)

0.141
(0.015)

0.030
(0.011)

0.029
(0.011)

1

cs 0.002
(0.002)

0.007
(0.002)

0.070
(0.039)

0.067
(0.038)

−0.025
(0.006)

1

Mid-Cap Growth ais, i ∈Mst 0.004
(0.001)

0.001
(0.000)

0.300
(0.090)

a∞s 0.003
(0.001)

0.001
(0.000)

0.603
(0.187)

1

bs 3.110
(0.611)

0.181
(0.066)

0.014
(0.008)

0.014
(0.008)

1

cs 0.003
(0.002)

0.008
(0.001)

0.033
(0.013)

0.033
(0.013)

−0.008
(0.004)

1

Mid-Cap Value ais, i ∈Mst 0.003
(0.001)

0.001
(0.000)

0.220
(0.096)

a∞s 0.001
(0.000)

0.001
(0.000)

0.446
(0.199)

1

bs 2.173
(0.722)

0.155
(0.018)

0.012
(0.005)

0.012
(0.005)

1

cs 0.009
(0.004)

0.009
(0.003)

0.018
(0.014)

0.017
(0.014)

−0.007
(0.002)

1

Small Blend ais, i ∈Mst 0.005
(0.002)

0.002
(0.000)

0.305
(0.073)

a∞s 0.003
(0.001)

0.002
(0.001)

0.640
(0.164)

1

bs 7.277
(2.612)

0.158
(0.060)

0.009
(0.005)

0.008
(0.005)

1

cs 0.008
(0.004)

0.009
(0.002)

0.006
(0.003)

0.005
(0.003)

−0.001
(0.000)

1

Small Growth ais, i ∈Mst 0.004
(0.001)

0.003
(0.000)

0.254
(0.069)

a∞s 0.002
(0.001)

0.003
(0.001)

0.501
(0.152)

1

bs 5.480
(1.485)

0.229
(0.098)

0.010
(0.006)

0.009
(0.005)

1

cs 0.006
(0.002)

0.011
(0.004)

0.010
(0.007)

0.009
(0.006)

−0.001
(0.001)

1

Small Value ais, i ∈Mst 0.003
(0.001)

0.001
(0.000)

0.344
(0.064)

a∞s 0.001
(0.000)

0.001
(0.000)

0.709
(0.135)

1

bs 4.461
(0.933)

0.221
(0.093)

0.006
(0.003)

0.006
(0.003)

1

cs 0.001
(0.001)

0.015
(0.003)

0.009
(0.003)

0.009
(0.003)

−0.001
(0.001)

1
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42This jointly tests mixing (if the chains have mixed well, the separate parts of the different chains will also
mix) and stationarity (at stationarity, the two half-parts of each sequence will traverse the same distribution).
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Table 5: Log-Marginal Data Densities for Baseline Model and Alternative Specifications

This table reports the log-marginal data density computed using the output of the MCMC simu-
lators as described in Appendix B. Model favored by the data attains the highest marginal data
density. The Bayes factor is the ratio of marginal data densities of our baseline model vs. an al-
ternative specification. Assuming that all models are regarded as equally likely a priori, the Bayes
factor is all we need to conduct model comparison. Parameter estimates for our baseline model is
shown in Table 3. Full set of parameter estimates for the remaining models is available from the
author upon request. Notes: The threshold τ is a tuning parameter for the modified harmonic
mean method of Geweke (1999). We try different values of τ to assess the stability of Geweke’s
estimator.

Panel A: Geweke (τ = 0.5)

Specification Log marginal Bayes factor

Baseline model 12807 1.00
Berk-Green model, amended to permit ĉs0, σ̂c,s0 > 0 12268 exp (539)

Pastor-Stambaugh model (i.e., b̂s0 = σ̂b,s0 = 0 and ρ̂s0 = 1) 11756 exp (1051)

Pastor-Stambaugh model, amended to permit b̂s0, σ̂b,s0 > 0 11754 exp (1053)
Pastor-Stambaugh model, amended to permit ρ̂s0 < 1 11678 exp (1129)

Panel B: Geweke (τ = 0.9)

Specification Log marginal Bayes factor

Baseline model 12797 1.00
Berk-Green model, amended to permit ĉs0, σ̂c,s0 > 0 12268 exp (539)

Pastor-Stambaugh model (i.e., b̂s0 = σ̂b,s0 = 0 and ρ̂s0 = 1) 11756 exp (1040)

Pastor-Stambaugh model, amended to permit b̂s0, σ̂b,s0 > 0 11755 exp (1042)
Pastor-Stambaugh model, amended to permit ρ̂s0 < 1 11678 exp (1119)
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Table 6: Convergence Diagnostics for the Model Parameters

This table reports the Gelman et al. (2013) potential scale reduction factor (PSRF) and the Gelman
et al. (2013) effective sample size (ESS), computed for each element of the model parameter θs (i.e.,
parameters governing investors’prior beliefs) with the draws of our posterior simulator. Gelman
et al. (2013) suggest running the simulation until PSRF is below 1.1 and ESS is at least 5m, that
is, until there are the equivalent of at least 10 independent draws per sequence (recall that m is
twice the number of sequences, as we have split each sequence into two parts so that PSRF can
assess stationarity as well as mixing). Note that m = 4, as we have simulated two sequences. The
first column reports PSRF. The second column reports ESS. Both of these alternative measures of
convergence suggest that there is an overall approximate convergence.

Morningstar
Category

Potential scale reduction
factor (PSRF)

Effective sample size
(ESS)

Large Blend â0 1.00 782
b̂0 1.00 788
ĉ0 1.00 829
σ̂a,0 1.00 634
σ̂b,0 1.05 55
σ̂c,0 1.01 185
ρ̂0 1.00 2831

Large Growth â0 1.00 688
b̂0 1.00 475
ĉ0 1.00 2099
σ̂a,0 1.00 1415
σ̂b,0 1.03 113
σ̂c,0 1.00 698
ρ̂0 1.00 1256

Large Value â0 1.04 90
b̂0 1.05 84
ĉ0 1.01 452
σ̂a,0 1.02 167
σ̂b,0 1.01 384
σ̂c,0 1.03 184
ρ̂0 1.01 287
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Morningstar
Category

Potential scale reduction
factor (PSRF)

Effective sample size
(ESS)

Mid-Cap Blend â0 1.00 1186
b̂0 1.00 657
ĉ0 1.00 1375
σ̂a,0 1.00 513
σ̂b,0 1.00 88
σ̂c,0 1.00 1297
ρ̂0 1.00 1605

Mid-Cap Growth â0 1.00 2052
b̂0 1.00 2034
ĉ0 1.00 2976
σ̂a,0 1.00 2282
σ̂b,0 1.00 573
σ̂c,0 1.00 2049
ρ̂0 1.00 2020

Mid-Cap Value â0 1.00 582
b̂0 1.00 235
ĉ0 1.00 446
σ̂a,0 1.00 591
σ̂b,0 1.02 101
σ̂c,0 1.00 329
ρ̂0 1.00 308

Small Blend â0 1.01 73
b̂0 1.01 62
ĉ0 1.00 326
σ̂a,0 1.01 69
σ̂b,0 1.01 140
σ̂c,0 1.00 290
ρ̂0 1.00 440

Small Growth â0 1.01 613
b̂0 1.02 193
ĉ0 1.01 1049
σ̂a,0 1.01 472
σ̂b,0 1.00 1095
σ̂c,0 1.01 336
ρ̂0 1.00 484

Small Value â0 1.00 2487
b̂0 1.00 1606
ĉ0 1.00 2626
σ̂a,0 1.00 1728
σ̂b,0 1.00 641
σ̂c,0 1.00 1893
ρ̂0 1.00 1917
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Figure 1: Sample properties. The top panel shows the number of funds in our sample over
time in sum (solid black line), as well as across the three size-based categories: large-cap (dashed
blue line), mid-cap (dotted green line), and small-cap (dash-dotted red line). The middle panel
shows the reciprocal of the Herfindahl index– the so-called “effective number of funds”– over time.
The bottom panel plots the industry size, as well as the aggregate sizes at the level of the three
Morningstar size categories. Notes: In the bottom panel, we scale the time series such that they
represent the fraction of total stock market capitalization that the sample’s mutual funds own at
each point in time.
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Panel A: Perceived Skill of the Average Fund Net of Belief Shocks (fraction per m onth)
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Panel B: Perceived Skill of the Average Fund (fraction per m onth)
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Figure 2: Evolution of the Perceived Skill of an Average Fund. This figure shows the
evolution of the average perceived skill over time (March 1993—December 2014) for each fund
category. Panels A and B plot percentiles of the posterior distribution of the average perceived
skill ãst (just after Bayesian updating) and âst (after accounting for belief shocks), respectively.
Notes: All ãst and âst are in units of fraction per month.
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Figure 3: Evolution of the Perceived Total Impact of Strategy-Scale. This figure shows the
evolution of the perceived total strategy-level decreasing returns to scale, b̂st/Mst + ĉst, over time
(March 1993—December 2014) for each fund category. It plots posterior medians (solid blue line)
and 5th and 95th percentiles (dashed red lines) of the perceived total strategy-level DRS. It also
plots empirical estimates of the total strategy-level DRS– 0.799/Mst + 0.013 for the three large-
cap categories and 0.799/Mst+0.053 for all other categories– using a solid black line. Notes: All
numbers are in units of fraction per month, associated with a $1 trillion increase inQst (equivalently,
in units of bp per month, associated with a $100 million increase in Qst−1).
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Panel A: Perceived Im pact of Fund Size on Fund Perform ance (bp per m onth/$100 m illion)
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Panel B: Perceived Im pact of Strategy Size on Fund Perform ance (bp per m onth/$100 m illion)
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Figure 4: Evolution of the Perceived Nature of Returns to Scale. Panels A and B of this
figure show the evolution of the perceived fund-level DRS, b̂st, and the perceived direct strategy-
level DRS, ĉst, respectively, over time (March 1993—December 2014) for each fund category. Notes:
All b̂st and ĉst are in units of fraction per month, associated with a $1 trillion increase in qist−1 and
Qst−1 (equivalently, in units of bp per month, associated with a $100 million increase in qist−1 and
Qst−1).
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Figure 5: The Aggregate Size Dynamics with Truly Bayesian Investors. This figure
shows the evolution of the counterfactual size Q∗st of each fund category over time were investors not
subject to belief shocks, plotting posterior median (the solid blue line) and 5th and 95th percentiles
(the dashed red lines), computed with the draws of our posterior simulator. For comparison, the
solid black line shows the actual size Qst of each fund category over time. Notes: All Q∗st−1 and
Qst−1 are in units of 2011 $billions.
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Panel A: Equilibrium  Aggregate Size at the Size­Based Category Level (% of total stock m arket cap)
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Panel B: Equilibrium  Effective Num ber of Funds
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Figure 6: The Aggregate Size Dynamics at the Size-Based Category Level. Panel A shows
the model-implied industry size at the size-based category level. Panel B shows the evolution of
the model-implied effective number of funds– the reciprocal of the Herfindahl index. Notes: In
the top panel, we scale the time series such that they represent the fraction of total stock market
capitlization that the sample’s mutual funds own at each point in time.
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Panel A: Equilibrium  Aggregate Size at the Size­Based Category Level (% of total stock m arket cap)
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Panel B: Equilibrium  Effective Num ber of Funds
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Figure 7: The Aggregate Size Dynamics under the Simplest Alternative Specification.
This figure shows the the aggregate size dynamics for a special case of the model with b̂s0 = σ̂b,s0 =
0 and ρ̂s0 = 1. Panel A shows the model-implied industry size at the size-based category level.
Panel B shows the evolution of the model-implied effective number of funds– the reciprocal of the
Herfindahl index. Notes: In the top panel, we scale the time series such that they represent the
fraction of total stock market capitlization that the sample’s mutual funds own at each point in
time.
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