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Abstract

This paper introduces real-time dividend forecasts using machine learning. We present evidence

that our forecasts are associated with lower forecast errors compared to predictions produced with

alternative methods. We also show that while analysts produce less accurate forecasts when deal-

ing with firms with more complex information environments, our forecasts are not impacted by

firm complexity, underscoring the effectiveness of machine-driven models in handling informa-

tionally challenging structures. Finally, we employ machine learning-based dividend forecasts

to calculate firm-level expected returns and document that our measures outperform alternative

proxies, both in-sample and out-of-sample.

Keywords: Dividend Forecast; Machine Learning; Expected Return; Payout Policy; Firm Com-
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1. Introduction

Recent advancements in financial technology and machine learning, together with access to large

volumes of data (known as big data), have fundamentally reshaped information production dynamics,

thereby influencing economic decision-making and economic growth (Chalfin et al., 2016; Dugast and

Foucault, 2023; Dessaint et al., 2023). In this study, we examine how these advancements affect the

demand and accuracy of dividend forecasts. One possibility is that these innovations enhance the

precision of dividend forecasts by leveraging richer firm-level information production dynamics. Yet,

another possibility is that modern machine learning methods accessing large-and-diverse data may

add more noise and distortions (Dugast and Foucault, 2018), potentially deteriorating the dividend

forecasting accuracy.

Determining which of these opposing effects dominates remains an important empirical question

that has broad implications for the efficient allocation of resources and risk. First, Allen et al. (2000)

demonstrate that certain institutional investors, such as pension funds, consider dividend-paying

firms as more valuable due to tax-related benefits accrued to investors. Therefore, the amount of

dividends a firm distributes to its shareholders can directly influence the capital allocation and risk

management decisions of both investors and portfolio managers. Anecdotal evidence strengthens the

economic importance of this phenomenon is the recent surge in the demand for dividend forecasts.

Figure 1 illustrates that the proportion of all dividend-paying firms, whose dividends forecasts are

produced by analysts, increased from 3% in 2001 to roughly 90% in 2021. Similarly, the average

number of analysts generating dividend forecasts has increased from 1 to 5 during the same period.

This rise in demand for dividend forecasts is further highlighted with the significant holdings of

dividend-paying stocks, suggesting that information demand preceding important events can act as a

proxy for investor uncertainty and influence the impact of these events in financial markets (Benamar

et al., 2021).

[Figure 1 about here.]

Second, accurate dividend forecasts have important implications for asset pricing. The expected

dividend is an essential input for stock valuation methods such as Dividend Discount Models, hence

more accurate dividend forecasts can enhance the precision of stock price estimations. Moreover,

Kane et al. (1984) and Ely and Mande (1996) suggest that investors use information on earnings and

dividends in tandem, impacting stock prices through their interaction. Thus, information originating
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from dividend forecasts remains a significant input to asset pricing models, even after considering

earnings forecasts.

Third, investigating the usefulness of machine learning to produce dividend forecasts can shed

light on market efficiency. If machine learning approaches consistently provide more accurate div-

idend forecasts compared to what is already reflected in security prices, it suggests that the market

may not be perfectly efficient in incorporating all available dividend-related information in stock

prices. Along these lines, the ability of machine learning models to consistently outperform mar-

ket prices in dividend forecasting may imply that there is room for improvement in how the market

processes and responds to dividend-related information.

Motivated by these important considerations, we make a contribution to the existing literature on

dividend forecasting. Specifically, we explore the potential of machine learning techniques to produce

dividend forecasts with reduced biases and increased accuracy. Along theses studies, prior studies

propose three main approaches to dividend forecasting: (i) historical realized dividend payouts, (ii)

earnings forecasts multiplied by the payout ratio and, (iii) analysts’ dividend forecasts.

The first two approaches that are discussed by Lintner (1956) and Brav et al. (2005) are based on

three assumptions that are unlikely to hold in most situations. Historical dividends, expected earn-

ings, and the payout ratio are assumed to contain sufficient information to predict future dividends

accurately. In addition, a linear relationship between expected dividends and their determinants is

assumed. Lastly, these methods rely on a stable, long-term payout ratio. However, there is limited

empirical support for these assumptions and, by relying solely on them for dividend forecasting can

introduce several biases, especially when considering that payout ratios are often estimated rather

than directly observed. As the Figure (2a) demonstrates, over the period from 2001 to 2021, approx-

imately 50% of dividend-paying firms maintained a constant Dividend-Per-Share (DPS) compared

to the previous fiscal year. Additionally, a rather significant fraction of firms either increased or de-

creased their dividend payouts relative to the preceding year. Moreover, Figure (2b) also suggests that

dividend payout ratio is also non-stable for a substantial fraction of firms. Therefore, this empirical

evidence highlights the substantial bias of dividend forecast produced from purely sticky dividend

assumption or previous target payout ratios.

[Figure 2 about here.]

The third approach, which is relying on analysts’ dividend forecasts, has received significant at-

tention in recent years. De La O and Myers (2021) use dividend forecasts from I/B/E/S to highlight
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the relative importance of subjective cash flow news compared to discount rate news. Bilinski and

Bradshaw (2022) further investigate the informativeness and accuracy of analyst forecasts for divi-

dends, and show that they are indeed informative (Francis and Philbrick, 1993; Bartov et al., 2002).

However, Hoitash et al. (2021) and Barinov et al. (2022) show that the accuracy and information con-

tent of analyst forecasts decline when analysts provide forecasts for firms that operate in opaque

and complex information environments. As a result, a natural question that emerges is whether it is

possible to obtain more accurate dividend forecasts by relying on a broader set of information and

leveraging advanced machine learning techniques?

Our answer to this question is, in short, yes. Based on the Mean Squared Error (MSE) decompo-

sition framework developed by de Silva and Thesmar (2021), we begin by theoretically showing that

combining dividend forecasts using both analyst consensus and forecasts generated from publicly

available general information, can outperform dividend forecasts solely based on Lintner’s model

and analyst consensus. Then, we leverage a comprehensive dataset that includes analyst predic-

tions, financial statements, stock market data, and macroeconomic indicators, by employing three

tree-based supervised learning regression models: (i) random forest, (ii) gradient boost trees, and (iii)

extreme-gradient boost trees to generate dividend forecasts. Our approach uses a rolling-window

estimation to construct the conditional dividend expectations. This permits data-driven determina-

tion of variable influences on dividend payouts and the evolution of these relationships over time

without the need for predefined implicit assumptions in forecasting models. Tree-based ensemble

algorithms offer two key advantages, compared to traditional methods, similar to linear forecasting

when constructing dividend forecasts.

One of the advantages of machine learning algorithms is that they allow for a nonlinear relation-

ship between explanatory and forecasted variables, a feature often overlooked by traditional econo-

metric forecasting models (Gu et al., 2020; van Binsbergen et al., 2022). Moreover, the tree-based

ensemble algorithm ensures an unbiased forecast, even with a large number of explanatory variables.

This is simply achieved by leveraging all available (relevant) information to estimate the expected

dividend. This aspect addresses a common challenge in econometric modeling, as noted by Kelly

et al. (2022), where traditional OLS estimators are likley to become unreliable with an abundance of

explanatory variables.1

1While non-parametric random forest regression approaches facilitate data-driven forecasting and allow us to include
as many variables as possible, our selection of relevant variables is grounded in both theoretical and empirical studies that
provide insights into dividend payout determinants. This intentional selection, rather than arbitrary feature inclusion, is
guided by the recognition that dividend payout is fundamentally influenced by the payout policy established by a firm’s
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We show that our machine-learning dividend forecasts outperform those made by analysts, as

well as forecasts based solely on historical dividends or those derived from the products of earnings

forecasts and payout ratios in terms of forecasting-accuracy. The superiority of machine learning

forecasts is particularly evident in long-term horizons. These results indicate that machine learning

techniques effectively analyze a broader set of information compared to alternative methods. Con-

sistent with this insight, we find that analysts produce less accurate dividend forecasts for firms with

more complex information structures, whereas machine learning maintains its high level of accuracy.

This underscores the economic advantages of using machine learning in forecasting, especially for

firms with complex information structures.

As an application, we use our machine learning-based dividend forecasts to calculate expected

returns based on the Dividend Discount Model, commonly referred to as the implied cost of capital

(ICC) in the literature. Subsequently, we conduct a “horse race” to compare our expected returns

against benchmark measures. These benchmarks are derived from forecasts of earnings, both from

analysts and machine learning models, multiplied by one minus an estimated plowback rate (Pástor

et al., 2008; Li et al., 2013).

During the period from January 2005 to December 2021, we assess the time-series predictability of

equal-weighted and value-weighted monthly returns on the overall market, represented by the S&P

500 index. Our results suggest that our dividend-based expected return outperforms those produced

using earnings multiplied by the estimated payout ratio. The higher predictability of returns remains

robust when compared to other, widely used valuation ratios and business cycle indicators, both in-

and out-of-sample, as well as when employing a portfolio-based approach.

We contribute to two strands of studies in the literature. First, our study aligns with the prevail-

ing trend of employing machine learning techniques to shape expectations regarding a firm’s future

fundamentals, with a particular emphasis on earnings. van Binsbergen et al. (2022) employ random

forests to address nonlinearity in earnings forecasts, thereby establishing a real-time, statistically op-

timal benchmark for firm-level earnings expectations. Moreover, de Silva and Thesmar (2021) offer

a detailed analysis of earnings forecast accuracy, highlighting how machine learning techniques can

mitigate the bias and noise often associated with analyst forecasts or traditional econometric methods.

management. Therefore, forming accurate expectations necessitates tracking the dynamics of relevant information mir-
roring managerial decision-making. For example, we incorporate specific firm actions such as mergers and acquisitions
(Zwiebel, 1996), tax payouts (Yagan, 2015), share repurchases (Floyd et al., 2015), and the valuation of investment projects
(Miller and Rock, 1985) into our predictors (please refer to the Internet Appendix Table B.1 for a comprehensive list of input
predictors). Consequently, the feature importance derived from the tree-based regression models also serves to validate the
significance of these firm actions in determining dividend payouts.
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While the application of machine learning approaches to estimate earnings expectations has gained

substantial attention in recent financial economics research, the domain of dividends has been rela-

tively underexplored. Our research seeks to bridge this gap, by also emphasizing the importance

of dividend forecasting. This emphasis is particularly relevant nowadays as Michaely and Moin

(2022) demonstrate that since the early 2000s, the proportion of dividend-paying firms has notably

increased. This trend suggests that investors are increasingly interested in cash dividend payments

as a return on their asset holdings, underscoring an increased demand for dividend forecasts (Bilin-

ski and Bradshaw, 2022). The real-time and statistically optimal dividend payout forecast that we

provide in this study, using a machine-learning approach, can serve as a valuable benchmark for in-

vestors to consider, complementing predictions derived from analyst forecasts or traditional linear

models.

Our study also contributes to the aforementioned papers by shedding light on one of the under-

lying reasons that enable machine learning to produce more accurate forecasts. Specifically, we find

that machine learning-based dividend forecasts are less influenced by firm complexity compared to

analysts’ forecasts, showcasing the capacity of machines to handle more comprehensive information.

This result implies that the economic advantages of employing machine learning algorithms in fore-

casting fundamentals are more pronounced in dealing with complex information environments. As

the data generated by various business stakeholders continues to expand exponentially, expected to

reach 175 zetabytes by 2025,2 we anticipate an increasing role for machine learning techniques in the

future.

Lastly, developing a forward-looking return measure has long been a central theme in finan-

cial economics. In our second contribution to the financial economics literature, we propose an ex-

pected return measure derived from the Dividend Discount Model, which incorporates our machine

learning-based dividend forecasts as a critical input. Through a comparison with traditional bench-

marks (Pástor et al., 2008; Li et al., 2013; Lee et al., 2020), we demonstrate that our expected return

measure provides superior predictive ability about future realized returns. It is worth highlighting

that while calculating the new expected return is a valuable application of our machine learning-

based dividend forecasts, the primary focus of our contribution lies in the dividend forecast measure

itself.

The remaining of the paper is structured as follows: Section (2) offers theoretical insights into

the challenges posed by arbitrarily estimated payout ratios in calculating dividend forecasts. Sec-
2https://www2.deloitte.com/cy/en/pages/technology/articles/data-grown-big-value.html
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tion (3) provides an overview of the data and empirical methodology used to construct our machine

learning dividend expectations and presents the corresponding results. Section (4) explores how firm

complexity impacts the accuracy of dividend forecasts. Section (5) discusses the calculation of our

expected return measure and examines its empirical performance. Finally, Section (6) provides the

paper’s conclusion.

2. Mean Square Error decomposition of dividend expectations

We begin by revisiting the theoretical foundation underpinning existing dividend expectations. We

then expand upon the decomposition of the forecast mean squared error (MSE) as formulated by

de Silva and Thesmar (2021). Through this, we aim to illustrate how an optimal forecast, which inte-

grates both analyst predictions and forecasts grounded in publicly available information, can enhance

forecast efficiency.

2.1. Dividend expectation based on Lintner’s model

Lintner (1956) proposes the following data generation process (DGP) that characterizes a firm’s pay-

out policy:

∆Dt+1 = γ(D∗
t+1 − Dt), (1)

where ∆Dt+1 represents the change in dividends from time t to t + 1, with Dt denoting the dividend

at time t. D∗
t+1 represents the target dividend payout, calculated as the product of earnings Et+1 and

a long-term target payout ratio θt+1.3 The parameter γ represents the estimated speed of adjustment

(SoA), a value varying from 0 to 1.

We rewrite Eq. (1) by taking conditional expectations on both sides:

Et(Dt+1) = (1 − γ)Dt + γEt(Et+1)Et(θt+1). (2)

Equation (2) provides several valuable insights. It reveals that the expectation of future dividends

is a linear function of (i) the current dividend level, (ii) expected future earnings, (iii) the expected

payout ratio and, (iv) the SoA that is implicit in the payout policy. This equation sheds light on

firms’ dividend payout policies from two distinct perspectives. First, it suggests that firms tend to

3In Lintner’s original model, θ is typically considered a constant. However, in practice, θ is often estimated using
historical payout ratios to mitigate small-sample bias, as discussed by Leary and Michaely (2011). Hence, we treat θ as
time-varying in this context.
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maintain a consistent dividend payout level over time. Second, it highlights that a firm’s dividend

payout is closely linked to its expected earnings and payout ratio. When γ = 0, dividend smoothing

is maximized, and the firm is expected to maintain a stable dividend equivalent to its current payout

level. By contrast, with γ approaching 1 the firm is expected to adjust its dividend solely based on

expected earnings and the payout ratio, allowing for greater flexibility in dividend adjustments.

Estimating the SoA at the firm (-time) level can be challenging. To address this, one can arbitrarily

assume either component in Eq. (2) to approximate the level of expected dividends by setting the

SoA to either 0 or 1. Notably, SoA = 0 implies that dividend payouts follow a simple random walk

process, a special case of the AR(1) process commonly assumed in the dividend growth literature. For

instance, Lacerda and Santa-Clara (2010) and Yin and Nie (2021) derive expected dividend growth

time-series data based on historical averages.

Overall, the straightforward structure of Lintner’s payout model facilitates the forecasting of fu-

ture dividends. It operates under the assumption that past dividends, expected earnings, and esti-

mated payout ratios collectively provide sufficient information for inferring future dividend expecta-

tions. In the subsequent subsection, we present a more comprehensive model for dividend generation

and explore the impact of different conditional information sets on forecast accuracy.

2.2. MSE decomposition

Assume a two-period-economy that contains the current time, denoted by t, and the future or fore-

casted period that is denoted by t + h. At the current time, there are two information sources relevant

to forecast the firm i’s dividend: Xi, which is public information available to everyone, and Pi, the

analyst’s private information that is unobservable to the public. In general, the private information

can originate either from analyst’s personal source of information (e.g., private communication with

management (Brown et al., 2015)), or generated by her own skills used in understanding the firm’s

payout policy (So, 2013). Since the dividend payout for each fiscal period is fundamentally deter-

mined by the firm’s management broad, the input of private information is important for analysts

to generate accurate forecasts. To simplify notations, we eliminate the following time subscripts and

state the first lemma:

Lemma 1 For either linear or nonlinear information structure embedded in Xi and Pi, the true payout for firm
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i follows the true DGP without loss of generality

yi = xi + pi + ε i. (3)

where:

• xi = E(yi|Xi) is the conditional forecast based on public available Xi.

• pi = E(yi|Xi, Pi)−E(yi|Xi) is the separate component forecast generated by private information set Pi.

• ε i is the zero mean i.i.d. error term.

We adopt the framework proposed by de Silva and Thesmar (2021), where the three parts are as-

sumed to be orthogonal to each other. pi is defined differentially to capture the variations in the fore-

cast when additional private-information is introduced. Essentially, Eq. (3) signifies that the forecast

of yi relies on information from three distinct components: publicly available data xi (e.g., earnings

and historical dividends, as previously mentioned), private information pi exclusive to analysts, and

an i.i.d. error term ε i.

Expanding upon the insights from Section (2.1), investors adhering to Lintner’s model can gener-

ate dividend forecasts through two distinct approaches: (a) based on past dividends, expected earn-

ings, and the payout ratio and, (b) by relying entirely on consensus analyst forecasts. With respect to

the first approach, we do not specify the method practitioners use to arrive at their expected earnings.

They may employ a firm characteristic model outlined by So (2013) or directly utilize analyst earnings

forecasts. However, it is worth noting that we assume the entire set of this information to be publicly

available and reflected in Xi.

In the case of the second approach, which relies exclusively on the consensus analyst forecast, it

is presumed to incorporate all accessible public and private information to produce the consensus

dividend forecast. Nevertheless, the biases and inherent unpredictability in individual forecasts may

not necessarily be fully mitigated when combined. This leads us to Lemma 2, which delineates the

structure of these two forecasting methods.

Lemma 2 Dividend forecasts that are constructed solely rely on Lintner’s model FL
i or the analyst consensus
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4 of dividend can be respectively decomposed as:

FL
i = xi + ηi, (4)

FAL
i = xi + pi + bi, (5)

where:

• ηi is the desperation generated by only utilizing a subset of public information in Lintner’s forecast.

• bi = E(FAL
i − yi|Xi, Pi) is the component distorted by analyst subjective bias.

For the first Lintner’s forecast, denoted as FL
i , we introduce a random noise term ηi to account for

potential distortions arising from utilizing a limited information set—namely, historical dividends

and expected earnings. In the case of the analyst forecast, denoted as FAL
i , we include a bias term bi

to characterize the component responsible for deviations between the analyst forecast and the true

values, capturing the analyst forecast error. This structural framework implies that, despite analysts

having access to both public and private information, inherent biases may cause their expectations

to deviate from the true values. In practice, such biases can stem from various factors, including

analysts’ subjective reactions to external shocks, a tendency to maintain consistent forecast levels

(as discussed by So (2013) and Hilary and Hsu (2013)), and the complexity of firms’ information

environments (Brown et al., 2015; Hoitash et al., 2021).

As argued by de Silva and Thesmar (2021), the framework’s flexibility has a notable strength: it

does not adhere to the concept of full-information rational expectations but rather accommodates de-

viations arising from both private information and biases. We can then formulate a forecast approach

that incorporates both publicly available information and analyst forecasts following their announce-

ments. At the end of each forecast period, two dividend forecasts become available: one is based

on all historical public information Xt, while the other relies on the consensus analyst forecast. The

combined forecast is derived by assigning weights to each component, as outlined in Lemma 3.

Lemma 3 Assume the consensus forecast of dividend and all public information is available, the combined

forecast (donated as FCom
i ) can be regarded to be formed by choosing a weight β where 0 ≤ β ≤ 1.

FCom
i = (1 − β)xi + β(xi + pi + bi) = xi + β(pi + bi). (6)

4To simplify, we examine the forecasting structure at an aggregate level, focusing on a representative investor and the
analyst consensus, rather than delving into individual forecasts.
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Under Bayesian expectations, the optimal weight is determined by the relative precision (inverse

of variance) for each component of the forecast and can be calculated when the distribution of each

forecast is observable (Chen and Jiang, 2006; So, 2013). However, our goal is to describe a more general

framework for optimal forecasting that goes beyond the constraints of the Bayesian approach. In this

broader context, we do not fix the value of the weight parameter β. Instead, our aim is to investigate

how variations in this weight parameter can impact the overall Mean Squared Error (MSE) of the

combined forecast. It is worth noting that when β = 0, the combined forecast corresponds to a special

case of the econometric forecast as discussed in de Silva and Thesmar (2021), which relies exclusively

on publicly accessible information Xi.

Based on the Eq. (4), (5), and (6), we can calculate the Mean Squared Error (MSE) for the forecasts

of all the firms’ future dividends using the three strategies: FL, FAL, and FCom, as the evaluation of

overall forecast accuracy. The cross-sectional MSE is defined as: MSE = E[(Fi − yi)
2]. We assume

that the chosen weight β is neither 0 nor 1, meaning that the combined forecast does not solely rely

on either analyst forecasts or general forecasts based on public information.

With a large forecasting sample size, we assume that the private information component’s ex-

pected value averages out across different companies, i.e., E(p) = E[E(yi|Xi, Pi) − E(yi|Xi)] = 0.

Put it simply, we acknowledge that private information can influence dividend forecasts for individ-

ual firms, such as when analysts interact with managers to gain insights into their attitudes toward

dividend payouts for the next fiscal period. However, when the sample size is fairly large, we as-

sume that the collective effect of this private information on the forecast is distributed symmetrically.

Consequently, the difference in MSE can be computed as:

MSECom − MSEL = β2E(b2
i )− E(η2

i )− β(2 − β)E(p2
i ), (7)

MSECom − MSEAL = (β − 1)2E(p2
i )− (1 − β2)E(b2

i ). (8)

with β ∈ (0, 1), Eq. (7) illustrates that the combined forecast outperforms Lintner’s forecast when it is

less affected by the biases in analyst forecasts, as represented by the first positive term. Additionally,

it benefits more from the analyst’s private information and other publicly available information that

Lintner’s model overlooks, as indicated by the last two negative terms. Moreover, when earnings and

past dividends can only capture a small proportion of future dividends (i.e., when E(η2
i ) is large),

the combined forecast tends to generate a lower MSE. Thus, Eq. (8) suggests that the combined
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forecast outperforms analyst forecasts when the advantage gained from private information cannot

compensate for the increase in errors caused by bias.

Moreover, we can explore the sign of the MSE difference based on certain additional assumptions.

Detailed derivations can be found in Internet Appendix Section A. We thus propose the following

Lemma 4 to address this aspect:

Lemma 4 Given the weight β ∈ (0, 1), assume the second moment of each component exists and is finite, the

sufficient condition for MSECom < MSEL is:

β <
2E(p2

i )

E(p2
i ) + E(b2

i )
, (a)

and for MSECom < MSEAL is:

β >
E(p2

i )− E(b2
i )

E(p2
i ) + E(b2

i )
. (b)

Let’s consider the two conditions under this framework. In the first condition, we can reasonably

assume that for short-term horizon forecasts, such as one-quarter, two-quarters, and one-year-ahead

forecasts, private information is relatively reliable, and analysts do not have significant subjective

bias. Assuming that all the second-moment terms in (a) and (b) have comparable magnitudes, E(p2
i )

tends to be higher than E(b2
i ) in short-term forecasts. Therefore, the right-hand side of (a) is higher

than 1, which naturally satisfies the first condition since β has been set to be lower than 1.

Similarly, for longer horizon forecasts (two years ahead, or beyond), private information might

be sparse, and subjective bias or noise tends to be more significant. In this case, the left-hand side of

(b) tends to be negative, naturally satisfying the second condition since β > 0. Therefore, for short-

term forecasts, the combined forecast tends to outperform Lintner’s forecast due to the advantages

of private information. As the forecast horizon extends, the combined forecast naturally outperforms

the analyst forecast as analysts’ subjective biases increase.

Overall, we extend the MSE decomposition framework introduced by de Silva and Thesmar (2021)

to demonstrate how dividend forecast accuracy benefits from combining information from both pub-

lic sources and analysts. We also explain why forecasts based solely on Lintner’s model or analysts

may have a large MSE. Importantly, our findings do not rely on strict assumptions regarding the form

of analyst beliefs or the true DGP for dividends, and they do not necessarily suggest that Lintner’s

or analyst forecasts underperform in all situations. Rather, our goal is to demonstrate how dividend

forecasts can potentially benefit from richer information. This perspective aligns with the findings of
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van Binsbergen et al. (2022), which suggest that incorporating additional features in the optimal es-

timator reduces errors because irrelevant information is automatically filtered out. To better capture

potential nonlinear relationships and the large number of estimators contained in public information,

we employ a tree-based machine learning method to construct this statistically optimal estimator.

More details of our machine learning forecast formation process and the empirical results are pro-

vided in Section (3).

3. Dividend Forecast via Machine Learning

In this section, we outline our approach for constructing real-time dividend forecasts using machine-

learning-based predictive regression. We employ three nonlinear and non-parametric tree-based

models: Random Forest (RF), Gradient Boost Trees (GB), and Extreme Gradient Boosting Trees (XGB).

Subsequently, we provide summary statistics and conduct a comparative analysis of the accuracy

of our one- two- and three-quarter-ahead quarter and one- two- and three-year-ahead annual div-

idend forecasts against those based on Lintner’s model (i.e., lagged actual dividends or expected

earnings multiplied by the estimated payout ratio) and analyst forecasts of dividends. We find that

our machine-learning dividend forecasts consistently outperform alternative methods.

3.1. Data for DPS forecast

We gather data from four primary sources. For the period spanning January 2002 to December 2022,

we collect monthly analyst forecasts of dividend per share (DPS) data for all U.S. firms available in

I/B/E/S summary file. To mitigate the influence of extreme forecasts, we use the median values as the

consensus forecast. Additionally, we obtain realized DPS and earnings per share (EPS) data from the

I/B/E/S actuals file. It is worth noting that we opt for I/B/E/S data instead of Compustat for actual

DPS and EPS values due to differences in accounting standards used by I/B/E/S, as suggested by van

Binsbergen et al. (2022). We also obtain quarterly firm fundamentals from Compustat, monthly stock

prices and returns from CRSP, and monthly macro-economic indicators from the Federal Reserve

Economic Data (FRED).

To optimize the utilization of available information in forecasting DPS while preserving a maximal

number of observations, we focus on fundamental variables with minimal missing values that have

been shown to correlate with corporate payout policy in prior studies (Allen and Michaely, 2003;

Farre-Mensa et al., 2014). We also compute several financial ratios using the selected variables. A
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comprehensive list of all variables used in our analysis can be found in Internet Appendix Table B.1.

For a firm to be included in our sample, it is required to have non-missing analyst forecasts of DPS,

future realized DPS, and stock prices for each forecasting month. We also winsorize at the 1% and

99% level and standardize all variables, following the guidance of James et al. (2013). In cases where

firm quarterly fundamentals have missing values (constituting up to 5% of the total sample), we

impute these values using industry medians. Industries are classified according to the Fama-French

30 industry portfolios 5.

3.2. Forecast formation

Following the approach used by van Binsbergen et al. (2022), we employ a rolling window strategy to

partition the data chronologically into training and test sets. Besides, it is also essential to ensure that

the dependent variables included in the training set are accessible at the time of forecasting to prevent

any look-ahead bias. To achieve this, we introduce gap years with the same duration as the forecast

horizon between the training and testing periods. Consequently, each window comprises three sub-

periods: the model formation year, the gap year(s), and the forecast formation year.6 For example,

suppose we are in 2004 and aim to predict one-year-ahead (2005) DPS. In this case, we would train our

model using independent variables from 2002 and a dependent variable from 2003 to fit the model.

We then set 2003 as the gap year, and input the independent variables of 2004 to generate the forecasts

of DPS for 2005. The forecast formation for two-year and three-year-ahead forecasts follows a similar

pattern.

As analysts typically provide their forecasts on a monthly basis, often before the end of each

month, we ensure that our forecast is built after the announcement of the analyst forecast. For other

predictors updated quarterly or annually, we use their lagged values and ensure that this information

is available at each forecast time point.

To optimize our model, we employ a 5-fold cross-validation procedure and fine-tune the hyper-

parameters within each rolling window estimation using the parameter ranges suggested by de Silva

and Thesmar (2021).7 The Internet Appendix Section B.3 contains detailed information about the se-

5The sample at certain time points may not encompass all industry categories when using more complex classification
methods, such as those involving 48 or 49 industries, due to a limited number of observations. Note that the different
classification methods do not generate significant effects on our forecast results

6We opted for a one-year training set to maximize the forecast’s time horizon coverage. The overall forecast results
remain stable when we experiment with two or three-year training periods.

7We also select optimal hyperparameters using a split-sample approach, similar to the method employed by van Bins-
bergen et al. (2022). The forecast results are similar.
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lected hyperparameter ranges and categories for each supervised learning method. Eventually, each

rolling window is constructed independently, and all forecasts are conditional and out-of-sample by

design:

EML
t (DPSi,t+τ) = ML[XAL

i,t , XFin
i,t , XMacro

t ],

where XFin
i,t and XMacro

t refer to firm fundamental and macro market variables, respectively. ML en-

compasses our three nonlinear supervised learning methods: random forest (RF), gradient-boost trees

(GB), and extreme gradient-boost trees (XGB).

Table 1 provides a brief overview of the three sets of predictors that we employ. We utilize a total

of 80 explanatory variables with varying frequencies to generate DPS forecasts across different time

horizons. Our data sources include annual and quarterly firm fundamentals from CRSP/Compustat

Merged database. Additionally, we manually calculate several financial ratios using the methodology

outlined in the Financial Ratios Suite by WRDS. For a comprehensive list of all the variables and

dataset details, please refer to Internet Appendix Section B.1.

[Table 1 about here.]

As mentioned above, we employ three ensemble tree-based regression methods, namely RF, GB,

XGB to build a comprehensive forecast and assess enhancements in forecast accuracy. In essence, the

ensemble regression models are constructed to mitigate overfitting by aggregating predictions from

multiple independently generated trees. For the baseline model RF, each tree in the forest is built from

a random sample of the data, and it makes a prediction by averaging the outputs of all the individual

trees. This approach combines the simplicity of decision trees with flexibility, reducing the risk of

overfitting and improving accuracy by averaging multiple deep decision trees.

By contrast, GB follows a boosting approach, where decision trees are added one at a time, and

each tree attempts to correct the mistakes of the previous ones. Unlike RF, which builds trees indepen-

dently, GB builds trees sequentially, with each tree designed to correct errors made by its predecessor,

focusing on minimizing residuals. This iterative process continues until a predefined number of trees

is reached, or a specified level of performance is achieved. XGB, an enhanced version of GB, extends

the principles of gradient boosting by incorporating advanced regularization (L1 and L2), which pre-

vents overfitting by penalizing complex models. Furthermore, XGB improves upon traditional GB by

optimizing computational resources, effectively handling sparse data, and allowing for the weighting

of misclassified instances, thus refining the model’s accuracy and execution speed.
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In summary, both GB and XGB use boosting techniques with a focus on sequential tree construc-

tion to enhance forecast accuracy. However, XGB sets itself apart by incorporating regularization and

weighted sampling, making its optimization process more stable and robust. The flowchart in Fig-

ure 3 below provides a brief comparison of the working processes of the three tree-based regression

models. For a more detailed explanation of the algorithms, please refer to Internet Appendix Section

B.2.

[Figure 3 about here.]

3.3. Forecast results and evaluation

We train the machine learning regression model starting in January 2002, following the formation

process mentioned above. Eventually, we collect a dataset containing 534,255 monthly one-year-

ahead DPS forecasts for 7,213 unique firms and 316,083 monthly three-year-ahead forecasts for 5,047

unique firms.

Figure 3 illustrates an example of a regression decision tree used to extract one-year-ahead DPS

forecasts from the RF Regression model. To simplify the structure, we limited the tree’s depth to

3 levels. Starting from the root node, the initial selected feature is the analyst forecast of DPS, and

the splitting is based on a threshold value of 1.0. The data then proceeds to subsequent nodes, each

representing a further branch of the feature space, guided by additional feature thresholds. This

sequential partitioning continues until a terminal leaf node is reached.

[Figure 4 about here.]

Table 2 presents a summary of statistics and accuracy evaluations for all the forecasts. In the top

panel, we observe that the analyst forecast (AF) closely approximates the actual value (Actual) for

short-term forecasts (quarters ahead) but tends to deviate as the forecast horizon extends to 3 years.

The forecasts generated based on the dividend target on earnings using the long-term payout ratio

are denoted as EPS ∗ payout. To calculate a valid payout ratio, we replace the negative earnings with

0.06 × total assets as Hou et al. (2012) and Guay et al. (2011) do. The payout ratio is estimated as the

sum of past DPS and repurchases divided by EPS, with this ratio constrained to fall within the range

of 0 to 1. Interestingly, forecasts produced by this approach consistently diverge the most from the

actual values across various forecasting horizons.
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Compared to these two commonly used approaches, dividend forecasts generated using three ma-

chine learning methods, namely RF, GB, and XGB, exhibit more consistent mean values that closely

match the actual values and are less influenced by the forecast horizon’s length.

[Table 2 about here.]

We assess the overall quality of our forecasts by considering two key metrics: Mean Squared Error

(MSE) and the percentage of improvement compared to a naive forecast based on the assumption of

complete dividend smoothing, where future DPS is assumed to be equal to the lagged period of

realized DPS (Yagan, 2015). Based on these two metrics, forecasts derived from earnings multiplied

by an estimated payout ratio yield the highest MSE and fail to surpass the benchmark based on lagged

DPS at any forecast horizon. This result sheds light on two limitations within the existing literature.

First, it suggests that actual dividend payouts by firms may not consistently follow historical payout

ratios, which aligns with the reduced significance of the target payout ratio, as indicated by survey

results (Brav et al., 2005). Second, we employ the common practice of substituting negative EPS and

abnormal DPS (e.g., for firms with a history of negative EPS but maintaining a high level of dividend

payment) in line with existing literature (Li et al., 2013; Bilinski and Bradshaw, 2015). However, our

results indicate that this approach may further introduce errors.

By contrast, analyst forecasts exhibit a lower MSE when compared to forecasts derived from earn-

ings. However, it is essential to note that analyst forecasts demonstrate increasing MSE as the forecast

horizon extends. For instance, the MSE increases from 0.008 for one quarter ahead to 0.400 for three

years ahead. More importantly, at the three-year-ahead forecast horizon, analyst forecasts fail to

surpass the performance of the naive benchmark, resulting in a 39.2% higher MSE compared to the

benchmark.

Our machine learning forecasts (RF, GB, and XGB) consistently yield the lowest MSE values, out-

performing both the lagged DPS benchmark and the analyst forecasts across all forecasting horizons.

As analyst forecasts serve as critical input predictors in generating ML forecasts, the accuracy of ML

forecasts also tends to decrease as the forecasting horizon increases. However, because our input pre-

dictor sets include other essential variables such as EPS, lagged DPS, and stock price, our forecasts

can maintain a robust and superior performance compared to those relying on limited information,

such as analyst forecasts.

Among the three machine learning methods, XGB appears to perform the least effectively, produc-

ing a higher MSE of 0.113 at the one-year-ahead forecast horizon, even exceeding that of the analyst
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forecast. Hence, we create a composite machine learning forecast, denoted as Comp, by averaging the

predictions from RF and GB. Our findings indicate that this composite approach consistently delivers

relatively more accurate forecasts compared to relying solely on either of the two individual machine

learning methods. The detailed performance comparison of our composite machine learning forecast

and the analyst forecast at different forecasting horizons is also illustrated in Figure 5.

[Figure 5 about here.]

Overall, our findings indicate that machine learning forecasts, which incorporate analyst forecasts

alongside other publicly available information, consistently outperform all other forecasting methods

across a range of forecasting horizons. While analyst forecasts demonstrate strong performance in the

short term, their informational value diminishes as the forecast horizon extends. Additionally, the

product of earnings forecasts and payout ratios does not prove to be an effective method for dividend

forecasting.

Having established the superior performance of machine learning forecasts over alternative meth-

ods, it is crucial to examine the key contributors to the construction of dividend forecasts. Figure

6 presents the feature importance analysis for one and two-year-ahead DPS using the RF forecast

method. 8

[Figure 6 about here.]

Impurity importance is a measure defined by the extent of the decrease in the sum of squared

errors when a specific feature is used to split within each tree individually and then averaged across

the entire forecasting model. The analyst forecast of dividends, as well as the realized dividends from

the past year and quarter, emerge as the most critical features, collectively accounting for over 90% of

the impurity importance. Interestingly, for the two-year-ahead forecast, the significance of past DPS

surpasses that of the analyst forecast. Additionally, analyst forecasts of earnings and realized earn-

ings are found to contain valuable information for predicting future dividends. Other fundamental

variables related to the firm, such as stock price, operational EPS, debt levels, and tax payments, also

contribute significantly to the forecasting outcomes. These results reinforce the rationale of using

realized dividends or expected earnings as indicators for inferring future dividend payouts. How-

ever, they also emphasize the importance of incorporating a broader range of features to enhance the

accuracy and comprehensiveness of dividend forecasts.

8The feature importance results obtained from GB and XGB exhibit similar patterns.
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In addition, we employ Partial Dependence Plots (PDPs) to provide further insights into the

marginal contributions of key features to the output forecast. PDPs help us gain a deeper understand-

ing of the relationship between the response variable and specific features of interest while taking into

account the average effect across the distribution of other variables in the dataset.

We select four key variables based on the previously determined feature importance: analyst fore-

casts of DPS and EPS, past realized DPS, and stock price. As illustrated in Figure 7, the PDPs reveal

significant nonlinearity in the relationship between future DPS and these four key features. This

empirical evidence, highlighting non-linear patterns in the relationships between features and the

outcome variable, may underpin one of the primary reasons for the enhanced forecasting accuracy

achieved through the utilization of machine learning and provides further support for the application

of nonparametric tree-based models in forecasting dividends.

[Figure 7 about here.]

4. Why Does Machine Learning Outperform Traditional Methods? Evidence from Firm

Complexity.

So far, our results indicate that machine learning-based dividend forecasts outperform traditional

approaches, such as analyst forecasts. In the theoretical framework described in Section 2, we propose

an economic mechanism to explain this outcome. The core concept is that machine learning models

have the capacity to leverage more comprehensive information for forecasting compared to humans.

In this section, we empirically test this hypothesis.

Prior research demonstrates that analysts often incur larger EPS forecast errors when they pro-

duce forecasts for more complex firms, such as conglomerates or multi-segment companies, possibly

due to a lack of industry-specific expertise (Barinov et al., 2022). Studies by Lehavy et al. (2011) and

Loughran and McDonald (2020) also indicate that various measures of analyst forecast imprecision

are inversely related to firm complexity. This discussion implies that firm complexity serves as an

ideal setting to test our main hypothesis regarding the superior ability of machine learning to process

complex information. To be precise, if machine learning does indeed possess the capacity to effec-

tively utilize more comprehensive information compared to humans, then the accuracy of machine-

generated forecasts should be less affected by the complexity of firms’ information environments

when compared to forecasts produced by humans. This is the main hypothesis that we examine in

this section.
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Firm complexity is commonly measured using proxies such as firm size and the number of seg-

ments. However, Hoitash and Hoitash (2018) introduce a novel metric called account reported com-

plexity (ARC), which is based on the count of monetary items disclosed in eXtensible Business Re-

porting Language (XBRL) within company filings. ARC is derived from disclosures that encompass

a wide array of items, including investments, R&D expenses, and acquisitions and it effectively cap-

tures the overall complexity of a firm’s structure. We employ this measure in our study because it

more directly captures economically significant information disclosed in company filings.

We collect annual ARC data from the Hoitash & Hoitash website.9 The ARC dataset covers the

period starting from 2009 and includes multiple measures derived from public data available on the

SEC’s website. For our analysis, we take the main measure ARC, to proxy firm complexity. Subse-

quently, we calculate annual squared forecast errors for three-year-ahead DPS forecasts for each firm

in our sample by averaging the available monthly squared forecast errors. We choose to assess the

accuracy of three-year-ahead DPS forecasts because our earlier findings suggest that analysts face

challenges in providing accurate forecasts at longer horizons. This may be attributed to the require-

ment of analyzing a more extensive dataset when forecasting dividends over longer time horizons;

indeed, this is the concept we aim to test. To link our sample with the ARC dataset, we use firms’

fiscal year and CIK code, which the ARC data uses as identifiers. This matching process results in a

dataset comprising 24,234 firm-year observations spanning from 2009 to 2021.

We conduct two tests. In the first univariate test, we sort the firms by ARC and split them into five

portfolios, indicating rising complexity from the first to the fifth group. As shown in Table 3, Panel

A, we observe a clear, monotonically increasing trend in analyst forecast errors along with increasing

firm complexity. Notably, there is a significant difference of 0.088 in the time-series Mean Squared

Error (MSE) for analyst forecasts between the most complex and simplest groups, as indicated in

Column C-S of the table. This observation aligns with our expectation, suggesting that analysts face

challenges in producing dividend forecasts for firms with more complex information environments.

We do not observe the same pattern when we examine the machine learning forecasts. First, we

find that machine learning forecast errors consistently remain lower for each complexity group and

exhibit smoother changes across different groups. Furthermore, for machine learning forecasts, the

difference in MSE between the most complex and simplest firms is not statistically significant and it

is also about 63% lower than the difference observed for analyst forecasts.

As a more comprehensive test, we construct annual cross-sectional regressions of the two squared
9https://www.xbrlresearch.com/firm-complexity/
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errors on ARC for each year, similar to the approach used by Fama and MacBeth (1973) in the Fama-

MacBeth regression. In Table 3, Panel B, Column (A) presents the regression results on ARC without

control variables, while Column (B) includes controls. In addition to firm fundamentals, we incor-

porate two dummy variables, Conglo and GeoMulti. Following Barinov et al. (2022), Conglo takes

a value of one if the firm is a conglomerate with multiple business segments in the same year, and

GeoMulti is one if the firm generates sales from multiple geographic segments.

Our findings reveal that, regardless of whether controls are included or not, machine learning

forecast errors do not exhibit a significant slope with respect to ARC or other complexity measures.

In contrast, analyst forecast errors show a significant positive association with firm complexity, and

this relationship remains consistent after controlling for other variables such as firm size and book-

to-market ratio. The estimated slope suggests that, holding other variables constant, a hundred-unit

increase in monetary items disclosed in XBRL results in a 0.035 increase in analyst forecast squared

errors of DPS. As for the other two dummy measures, neither of them exhibits significance in fore-

casting errors.

[Table 3 about here.]

In summary, the findings in this section suggest that the advantages of employing machine learn-

ing for dividend forecasts stem from the machine learning algorithms’ ability to effectively analyze

more comprehensive information. Therefore, the benefit of using machine learning in dividend fore-

casting is particularly pronounced for firms with more complex information environments.

5. Application: Estimating the Expected Return

Our results thus far indicate that machine learning forecasts of dividends exhibit lower forecast er-

rors, primarily attributed to machines’ superior ability to process more comprehensive information

compared to humans. This finding holds significant potential for various economic applications. In

this section, we focus on one such application: estimating expected returns.

Expected return is a fundamental concept in finance and a crucial input in investment decision-

making. However, estimating expected returns is a challenging task. One of the main difficulties

arises from the forward-looking nature of expected returns, while many finance models, such as the

Capital Asset Pricing Model (CAPM), heavily rely on historical data. To address this challenge, a

strand of literature proposes an approach to estimate forward-looking expected returns based on

forecasts, commonly referred to as the implied cost of capital (ICC) in the literature. This approach
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has been shown to measure expected returns effectively (Lee et al., 2009; Hou et al., 2012; Li et al.,

2013).

Dividend forecasts are a crucial input in forecast-based expected return models. Given that our

machine learning models can generate dividend forecasts with reduced errors, this may also allow

us to obtain a more accurate expected return. Therefore, in this section, we incorporate our machine

learning-generated dividend forecasts into the computation of forecast-based expected returns. First,

we revisit the rationale behind forecast-based expected returns as a suitable proxy for expected re-

turns. We then compare our expected return measure against the traditional method of computing

ICC, which relies on forecasts of EPS and the payout ratio. Our findings demonstrate that expected

returns calculated using our DPS forecasts outperform the alternatives as a proxy for expected re-

turns.

5.1. Expected Return Imputed from Free Cash Flow Discount Models

Conceptually, the implied cost of capital (ICC) is defined as the value of the internal return, denoted

as rICC, that solves the infinite Gordon dividend discount model:

Pt =
∞

∑
k=1

Et[DPSt+k]

(1 + rICC)k , (9)

which indicates that the present value of equity price Pt equals the sum of all the discounted future

expected dividend payouts Et[DPSt+k]. Combining this with the log-linear approximation demon-

strated in Campbell and Shiller (1988), Pástor et al. (2008) shows that under the assumption that both

dividend growth and expected returns follow a stationary AR(1) process, rICC is perfectly correlated

with the expected return µt:

rICC =
κ

1 − λ
+ (µt −

κ

1 − λ
)

1 − ρ

1 − ρλ
, (10)

where κ and λ are constants determined by the AR(1) process of µ, and ρ = 1/(1 + ¯exp(d − p)).

Therefore, ICC is considered a natural proxy for expected return, as it encapsulates information about

future returns without relying on the noisy realized returns (Gebhardt et al., 2001; Easton and Mona-

han, 2005).

In practice, rICC can be empirically determined by solving the transformed finite Gordon model,

which decomposes the original Eq. (9) into a sum of discounted expected free cash flow terms
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EFCFt+k (i.e., firm payouts) and a discounted terminal value term TVt+T.

Pt =
T

∑
k=1

Et[EFCFt+k]

(1 + rICC)k +
TVt+T

(1 + rICC)T . (11)

We initially employ the finite Gordon model to calculate two ICCs (denoted as re) as the bench-

mark expected returns for comparison with our forecasted dividend-based expected return. The first

ICC is generated using the analyst forecasts of earnings times the payout ratio as EFCF (Pástor et al.,

2008; Lee et al., 2009; Li et al., 2013). This computation is based on three main assumptions related to

the growth process of earnings and the payout ratio, as well as the imputation of abnormal values,

as discussed in Table 4. For the calculation of the second ICC, we replace the analyst forecasts of EPS

with random forest forecasts using the methods outlined in van Binsbergen et al. (2022). The sub-

stitution of EFCF is driven by the aim of mitigating the subjective bias that may arise from analyst

forecasts of earnings, which has been identified as a key factor distorting the effectiveness of ICC as a

proxy for expected return (Lee et al., 2020). We follow the approach introduced in Pástor et al. (2008)

to obtain the two baselines re, and the detailed computation process is contained in Internet Appendix

Section C.

For the calculation of our dividend-based ICC (denoted as rd), we utilize the composite machine

learning forecasts of one, two, and three-year-ahead dividends as a proxy for EFCF. In this case, we

assume that dividend grows perpetually at the average GDP growth rate. Therefore, the computation

of our ICC relies solely on available information without the need for imputation of long-term cash

flow expectations.

[Table 4 about here.]

The calculation details of rd are provided in Table 4. We first require the input of one-year-

ahead and two-year-ahead machine learning forecasts of DPS to be non-missing and non-zero. To

address the issue of missing and zero forecasts, which represent approximately 7% of the total sam-

ple, we employ an imputation technique. Specifically, we replace these missing or zero forecasts

with a value equivalent to four times the one and two-quarter-ahead forecasts, assuming that these

firms will make annual dividend payments consisting of four identical quarterly dividends. For the

firms without effective forecasts of three-year-ahead DPS, which comprises 14.5% of the total sam-

ple, we substitute them with the the two-year-ahead DPS forecasts times the last gross growth rate

((Et[DPSt+2])2/Et[DPSt+1]), assuming they maintain the same growth rate from the second to the
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third year. This approach is in line with Pástor et al. (2008). We employ the 30-year rolling average of

the real GDP growth rate as a proxy for the perpetual growth rate of DPS.

We then compute rd using the constant dividend growth model with the three-year DPS forecasts.

The resulting ICC values are constrained within the range of 0 to 0.3, following Hommel et al. (2023),

and approximately 3.9% of observations are removed due to this trimming process.10 This restriction

is applied to ensure that the ICC values are meaningful and do not include negative values, as a

negative ICC is not interpretable as a discount rate, and excessively high ICC values may indicate

unreliable high reinvestment rates. In total, we obtain 446,696 DPS-based ICC values for 6,426 unique

companies spanning from January 2005 to December 2021.

5.2. Testing Our Expected Return: In-Sample Analysis

In the first test, we investigate the predictability of future realized returns in the aggregate market,

as represented by the S&P 500 index, using the aggregate expected return measures. To construct

the aggregate expected return, we consider all available constituents of the S&P 500 index for each

month spanning from January 2005 to December 2021. We employ both equally-weighted and value-

weighted aggregation approaches. After aligning our sample with the S&P 500 companies listed in

the CRSP index constitution data file, we find that, on average, our sample comprises 469 firms each

month. This sample coverage represents approximately 92% of the total market capitalization.

Prior to examining the relationship between the aggregate expected return and future realized

returns, we present a time-series of the S&P 500 value-weighted expected return derived from ma-

chine learning forecasts of DPS in Figure 8, from January 2005 to December 2021. Of particular note

is the peak of our expected return, which occurs at 7.4% in April 2009, coinciding with the near end

of the 2008 financial crisis. During the two NBER recession periods that fall within our study’s time

frame, the expected return measure demonstrates a significant increase, consistent with the counter-

cyclical behaviour of expected returns as suggested by existing studies (e.g., Li et al. (2012), Li et al.

(2013)). Following the first recession, the expected return gradually decreases until the outbreak of

the COVID-19 pandemic in February 2020.

[Figure 8 about here.]

Next, we run the following univariate predictive regression framework for different expected re-

10Other methods of handling extreme values, such as winsorization at the 1% level, do not significantly affect the subse-
quent application results.
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turn proxies as suggested by Fama and French (1988):

H

∑
h=1

rt+h

H
= β0 + β1 × Mt + ϵt+h, (12)

where rt+h represents the continuously compounded monthly realized returns, either equal-weighted

or value-weighted, in excess of the compounded three-month T-bill rate. We present the results for

three different monthly prediction horizons, namely H = 1, 6, 12, in the interest of brevity, although

the results hold at longer horizons as well.

Mt donates the vector of expected return proxies. Our primary expected return proxy relies on

machine learning-generated dividend forecasts, and we assess its performance in comparison to ex-

pected returns computed using earnings forecasts and various widely-used valuation ratios, consis-

tent with the methodology detailed in Welch and Goyal (2008). Specifically, we include dividend-

price ratio (dp), earnings-price ratio (ep), payout ratio (py), default spread (De f ault), and term spread

(Term). We compute the aggregate market ratios dp, ep, and py using the aggregate dividend and

earnings data obtained from Michael R. Roberts’ website.11 De f ault is determined as the difference

between BAA and AAA-rated corporate bond yields, while the Term is calculated as the difference

between the 10-year Treasury yield and the three-month bill rate. We source all macroeconomic data

from the Federal Reserve Economic Data (FRED) database.

Table 5 presents summary statistics for the relevant variables. The two benchmark expected re-

turn measures are calculated using an EPS-based model, as listed in Table 4. These calculations in-

volve machine learning techniques and analyst forecasts of EPS. Overall, the DPS-based expected

return has a lower mean and standard deviation compared to both the equally-weighted and value-

weighted EPS-based expected returns. Specifically, the DPS-based equally-weighted expected return

has a mean and standard deviation of approximately 5.2% and 0.003, respectively, which is relatively

lower than the EPS-based equally-weighted expected return, with a mean and standard deviation of

8.8% and 0.014.

All expected return measures exhibit persistence, with a first-order autocorrelation exceeding 0.92,

consistent with the expected characteristics of a robust expected return proxy, as suggested by Lee

et al. (2010). This autocorrelation remains significant even at 12 lags. The ADF statistics and corre-

sponding p-values indicate that we can reject the null hypothesis of a unit root for rd, De f ault, D/P,

and payout at least at 10% level. However, we fail to reject the null hypothesis for all the EPS-based

11http://www.econ.yale.edu/~shiller/data.htm
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expected return measures, Term, and the E/P ratio.

[Table 5 about here.]

Table 6 tabulates the results of univariate predictive regressions using Eq.(12) to forecast aggre-

gate realized market returns. The left panel presents the outcomes of regressing equally-weighted

returns (ewrett+h) on predictors, while the right panel uses value-weighted returns (vwrett+h) as the

dependent variable. We report the Newey and West (1987) t-statistic with lag numbers equal to the

forecasting horizon length.

In general, our findings indicate that short-term return predictions are relatively modest. How-

ever, even in the short term, the machine learning-forecasted DPS-based expected return (rd) con-

sistently outperforms other proxies. Specifically, for the one-month-ahead forecasting of ewrett+1

(vwrett+1), rd demonstrates a weakly significant coefficient of 3.145 (2.191), with corresponding t-

statistics of 1.822 (1.654) and the highest R-squared of 4.34% (2.66%). In contrast, the EPS-based ex-

pected return measures (re,AL and re,ML) do not predict one-month-ahead returns effectively. Similarly,

the three valuation ratios and two business cycle indicators also fail to forecast one-month returns.

For longer horizons, such as 6 and 12 months ahead, we generally observe higher R-squared and

t-statistics for all predictors. However, at these extended forecast horizons, rd continues to outperform

other expected return measures and other predictors. They consistently exhibit the highest t-statistics

and R-squared values. This outcome underscores the clear advantage of using expected returns calcu-

lated through machine learning-generated dividend forecasts over other benchmark expected return

measures in predicting future realized returns.

[Table 6 about here.]

It is also crucial to assess whether rd retains predictive power for future returns when considered

alongside other predictors. To examine this, we conduct bivariate regressions of realized returns on

rd in conjunction with another predictor. Specifically, we perform the following bivariate predictive

regression:12

rt+1 = β0 + β1 × rd,t + β2 × Nt + ϵt+h, (13)

where Nt takes values from the set re,AL, re,ML, D/P, Term. As Table 7 illustrates, the coefficient of rd

consistently maintains its statistical significance, with the lowest recorded t-statistic being 1.78 when

12For the sake of brevity, we present results for one-month-ahead forecasts, as results for longer horizons align with our
conclusions.
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another predictor is included in the regression. Interestingly, when we include re,AL alongside rd, it

becomes statistically significant at the 10% level. However, the sign also changes to negative, indi-

cating that future realized returns exhibit a negative covariance with the expected return calculated

by using earnings forecasts, contrary to the theoretical assumption discussed in Section 4.1. These

changes may be attributed to the high correlation between rd and re. In summary, the results in this

section reinforce the argument that rd possesses relatively robust predictive power for future returns

compared to its competitors.

[Table 7 about here.]

5.3. Testing Our Expected Return: Out-of-Sample Analysis

Having established the superiority of our machine learning forecasted DPS-based expected return

through in-sample regression and time-series measurement error variance analyses, the next step is to

assess its performance in out-of-sample predictions. This evaluation focuses on the model’s ability to

make predictions based solely on historical information available at each forecasting time point. This

test holds significance because previous studies, such as Welch and Goyal (2008), show that while

expected return predictors work well in in-sample, they tend to perform poorly in out-of-sample. In

this test, we use a forecast period from January 2010 to December 2021, with a 60-month estimation

window, as well as an forecast period from January 2015 to December 2021, employing a 120-month

estimation window.

The out-of-sample R2 using a length of m estimation window is expressed as (Campbell and

Thompson, 2008):

R2
OS = 1 − ∑T−m

k=1 (rm+k − r̂m+k)
2

∑T−m
k=1 (rm+k − r̄m+k)2

. (14)

We employ both rolling and expanding window methods to fit the model and predict future re-

turns, a technique also employed by Huang and Kilic (2019). In the rolling window method, the first

out-of-sample forecast r̂m+1 is obtained using parameters estimated from estimation using the initial

m observations. Subsequently, the second forecast is obtained with the estimation using the next m

observations start from the second time point, and so on. Concurrently, the historical average r̄m+k

is computed as the average excess return over the most recent m periods. In the expanding window

method, we modify the approach by using all available past information for estimating both r̂m+k and

r̄m+k. As an evaluation criterion, a positive R2
OS indicates that the predictor results in a lower Mean
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Squared Error (MSE) compared to predictions based on a simple historical average.

We also conduct a test to examine the null hypothesis, where R2
OS < 0, as opposed to the alter-

native hypothesis, where R2
OS > 0. This test employs the adjusted Mean Squared Prediction Error

(MSPE) statistic introduced by Clark and West (2007):

ft+1 = (rt+1 − r̄t+1)
2 − [(rt+1 − r̂t+1)

2 − (r̄t+1 − r̂t+1)
2]. (15)

ft+1 is subsequently regressed on a constant term, and the test relies on the p-value obtained from a

one-sided t-statistic.

[Table 8 about here.]

Table 8 presents the R2
OS values and their corresponding p-values for a one-sided test applied to

one-month-ahead equal and value-weighted returns. When employing a 60-month rolling window

and 120-month rolling window for out-of-sample forecasts of equal-weighted returns, rd delivers the

highest positive R2
OS values, reaching 5.54% and 6.41%, respectively. Importantly, all of these R2

OS

values are statistically significant, with a minimum significance level of 5%, as determined by the

adjusted-MSPE statistic’s p-values. In the case of forecasting value-weighted returns, rd continues

to produce positive and statistically significant R2
OS values when using a rolling window approach.

Transitioning to the expanding window approach, rd remains positive but does not attain statistical

significance.

On the other hand, both re variables fail to produce positive and statistically significant R2
OS val-

ues in all instances. Interestingly, in out-of-sample forecasting, re,AL generally outperforms re,ML,

suggesting that a more accurate measure of EPS expectations may not necessarily enhance the ability

to capture the out-of-sample dynamics in forecasting realized returns. Among the other predictors, it

is observed that De f ault, D/P, and payout occasionally produce positive and significant ROS values.

However, none of them consistently achieve positive and statistically significant R2
OS values across all

cases.

One limitation of the out-of-sample tests, as highlighted by Welch and Goyal (2008) and Huang

and Kilic (2019), is its sensitivity to the choice of estimation method and forecast period, a point that

our results also confirm. To address this limitation and ensure the consistency of superior out-of-

sample performance, we examine the differences between the cumulative squared forecast errors ob-

tained using the historical average return and those obtained using the tested expected return proxy.
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In this test, a positive slope indicates a sustained advantage in out-of-sample forecasting compared

to the historical average.

Figure 9 illustrates the findings. Our expected return measure maintains a consistently posi-

tive slope in the forecast period spanning from January 2010 to December 2021. In contrast, the

expected return imputed from analyst forecasts of earnings displays a negative difference in cumu-

lative squared error from 2013 to 2020, while the expected return imputed from machine learning

forecasts of earnings exhibits an increasing error in recent years. Among the other expected return

proxies, only D/P surpasses the historical average return during the tested period, but the difference

remains consistently close to zero. Consequently, we confirm that the machine learning-forecasted

DPS-based expected return demonstrates relatively robust out-of-sample return predictability.

[Figure 9 about here.]

5.4. Testing Our Expected Return: Variance of Measurement Errors

In the preceding section, we demonstrate the superiority of our DPS-based expected return by show-

casing its strong track record and superior predictability of future realized returns via regression tests.

In this section, we further evaluate its performance using a novel metric, namely the variance of mea-

surement errors. Lee et al. (2020) introduce a parsimonious framework based on treatment effect

studies, suggesting that minimizing measurement error variance (MEV) is necessary and sufficient

for unbiased expected return proxies. The authors argue that relying solely on general evaluations

derived from predictive regression, such as mean squared error and the significance of slope coeffi-

cients, is inadequate and can potentially lead to misleading conclusions. While our paper does not

specifically assign a treatment effect, we employ this MEV-based evaluation as a valuable comple-

mentary assessment for our expected return proxy, derived from machine learning-based dividend

forecasts.

Lee et al. (2020) define that if there is lack of correlation between the news of treatment effect and

expected return, the time-series MEV for firm i takes the form of Equation (16):

MEVi = vari(êri,t)− 2covi(ri,t+1, êri,t) + vari(eri,t), (16)

where vari(êri,t) donates the time-series variance of the tested expected return measure, covi(ri,t+1, êri,t)

is the time-series covariance between the tested expected return measure and future realized return,

29



vari(eri,t) is the variance of the true unobservable expected return. Expected return proxy with lower

MEV is considered more informative about time-series variations in expected return and leads to less

biased estimates of treatment effects.13

The rationale for constructing MEVi is straightforward. It posits that the variance of the measure-

ment error of any expected return proxy rises with the proxy’s volatility while declining with the

correlation between the expected return proxy and future realized returns. When the expected re-

turn proxy closely aligns with future realized returns, the time-series variation in the expected return

proxy is more likely to capture the fluctuations in the firm’s true expected return. Offering an alterna-

tive mathematical perspective, the construction of MEVi implies that if the volatility of the expected

return proxy fails to translate into a higher covariance between the expected return proxy and the

true future return (i.e., when the correlation is low or even negative), the measurement error for this

proxy is higher.

The third term, vari(eri,t), remains constant across different expected return measures. Therefore,

our focus can be directed towards comparing the first two terms of different expected return measures

and utilizing the scaled measurement error variance for assessment:

SMEVi = vari(êri,t)− 2covi(ri,t+1, êri,t) = σ2
i (êri,t)− 2corri(ri,t+1, êri,t)σi(êri,t)σi(r̂i,t). (17)

[Table 9 about here.]

Table 9 presents the time-series variance of different expected return proxies, denoted as Var(êrt)

14, along with the covariance between expected return proxy and realized returns at various future

horizons, Cov(rt+h, êrt). Additionally, it displays the calculated scaled measurement error variance,

SMEVi, using Eq. (17). It is worth noting that for a constant expected return, equivalent to predicting

future returns based on a mean-reversion process, the SMEV will be zero. As a result, an expected

return measure with a more negative SMEV is considered a superior expected return proxy.

In the left panel, when using the tested variable to proxy the equal-weighted return, we observe

that rd and D/P exhibit negative SMEV values across all horizons. Particularly, for one-month-ahead

ewret, rd displays the most negative SMEV value, amounting to -0.0059. In contrast, both EPS-based

expected return measures exhibit positive SMEV values across all horizons, indicating their poor

13For a detailed derivation establishing the link between MEV and treatment effect, see Lee et al. (2020).
14Note that the variances of expected return proxies at different horizons are not exactly the same due to decreasing

sample sizes with longer horizons. However, the magnitudes of the variances do not vary significantly.
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performance of these measures in the time-series dimension. When we use value-weighted returns,

rd again consistently exhibits the most negative SMEV. Among other predictors, only D/P manages

to attain a negative SMEV, particularly when proxying returns at 6 and 12 months ahead.15

In summary, the expected return proxy calculated from machine learning-based dividend fore-

casts stands out as the top-performing expected return measure, exhibiting the lowest time-series

SMEV. This result remains robust across various horizons and applies to both equal-weighted and

value-weighted returns. On the other hand, several other expected return proxies, including re, E/P,

and payout, tend to display higher variances. However, this high variance does not translate into

a stronger covariance with realized future returns. This result can be attributed to various factors.

For instance, in the case of re, the volatility may stem from the noise in analyst forecasts of earnings

and the challenges associated with accurately estimating the plowback rate (payout ratio). Our ma-

chine learning-based DPS forecast offers an advantage by directly bypassing the need to estimate the

plowback rate, thereby reducing errors in the expected return proxy.

5.5. Testing Our Expected Return: Portfolio Analysis

Thus far, we have established the superiority of our expected return proxy derived from machine

learning-based DPS forecasts as a time-series expected return proxy. However, all these results are at

the aggregate market level. Existing literature also underscores the importance of conducting similar

tests at the portfolio level (Li et al., 2013; Easton and Monahan, 2005; Guay et al., 2011; Lee et al.,

2020). Therefore, it is crucial to demonstrate that the superior performance of our expected return

proxy persists when we conduct our analysis at a portfolio level.

In this test, we initially rank all the stocks traded on the NYSE, NYSE American, and Nasdaq based

on their size and book-to-market ratio each June from 2005 to 2021 in line with Li et al. (2013). We then

create three size categories (small, medium, and large) and three value categories (low, medium, and

high) using the NYSE breakpoints for market capitalization and book-to-market ratio. Specifically, a

stock is assigned to the small size portfolio (S) if its firm capitalization is equal to or lower than the

bottom 30% breakpoint, to the medium size portfolio (M) if it falls within the middle 40%, and to the

large size portfolio (L) if it falls within the top 30%. The assignment for the high (H), medium (M),

and low (L) value portfolios follows the same methodology.

Next, we align these categorized samples with our DPS and EPS forecast samples, ensuring that

15 payout displays a much larger variance and SMEV compared to the other predictors. This discrepancy arises from the
substantially higher magnitude of payout originally, as evident in the summary statistics presented in Table 5.
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we include only firms with valid expected return estimations. This process results in an average

of approximately 2,100 firms for each size or value portfolio when testing the DPS-based expected

return and around 3,000 firms for each portfolio when testing the two EPS-based expected return

measures. To conduct the predictive regression test, we calculate the portfolio expected returns and

excess returns by applying value-weighting to the individual firm-level data.

[Table 10 about here.]

The top panel of Table 10 presents regression results for portfolios categorized by value, while

the bottom panel focuses on portfolios categorized by size. In most cases, we observe that rd exhibits

statistically significant predictive power across all six portfolios and forecasting horizons, with the

exception of the one-month ahead returns for the small size, medium value, and high-value portfolios.

Both re measures also exhibit overall good predictive performance, but their performances are less

effective in forecasting short-horizon returns for large portfolios and low-value portfolios. To provide

a comprehensive evaluation of their performance, we calculate the average estimated coefficient β1

and R2 for different horizon forecasts within each group. These calculations reveal that when rd is

used as the predictor, it achieves much higher average R2 values, with the exception of the small

portfolios. These results underscore the superior predictive capabilities of rd compared to re across

various portfolio groups and forecasting horizons.

5.6. “Horse race” between various expected return proxies

In this subsection, we summarize the key findings from all the tests conducted to compare our ex-

pected return proxy calculated using machine learning-based DPS forecasts against other benchmark

expected return measures. For the aggregate market return represented by the S&P 500 index, the

evaluation metrics are three-fold: in-sample predictive power, in-sample variance of measurement

error under the treatment effect framework, and out-of-sample predictive power. We show that our

expected return proxy exhibits strong in-sample predictive power for both equal and value-weighted

aggregate returns across various forecasting horizons, outperforming other tested proxies. Bivariate

regression tests and the in-sample measurement error variance analysis support this result.

Furthermore, the out-of-sample forecasting results consistently demonstrate the overall superi-

ority of our expected return measure. This superiority is evident through positive out-of-sample

R-squares and significant MSPE statistics, and it holds across different estimation windows. Addi-

tionally, we expand our analysis to assess the predictive power of our expected return measure for
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portfolio returns, categorized by market cap and book-to-market ratio. We find that it maintains

strong predictive performance in these portfolio-based tests as well. Lastly, we also test the pre-

dictability of the aggregate market return conducted by the CRSP index using the aggregate expected

return measures constructed from the entire sample. This approach enables us to assess the robust

performance of our expected return proxy without being constrained by the S&P 500 universe. We

demonstrate that our expected return measure remains the top performer in both in-sample and out-

of-sample tests, as shown in Internet Appendix Section D.

These results suggest that using machine learning forecasts of dividends as an input in forward-

looking expected return measure estimations is a useful approach that can potentially yield more

accurate expected returns. We believe this approach addresses two limitations of the traditional

earnings-based methods. First, in the earnings-based methods, calculating dividends from earnings

forecasts involves multiplying earnings forecasts by the payout ratio. However, payout ratios are

often estimated based on past realized values, making them less forward-looking and potentially in-

troducing bias and noise. Additionally, some studies (e.g., (Pástor et al., 2008; Li et al., 2013; Hou

et al., 2012)) replace negative earnings forecasts and select constant payout ratios arbitrarily, further

introducing bias. In contrast, our machine learning-based dividend forecast, which leverages a wider

range of information, avoids these issues and reduces noise in the data.

6. Conclusion

Accurate dividend forecasts are crucial for informed decision-making in capital allocation and risk

management, as well as for asset valuation. The existing literature employs three common dividend

forecasting measures: (i) past dividends, (ii) the products of earnings forecasts and payout ratios and,

(iii) analysts’ dividend forecasts. While each of these methods offers valuable insights into future

dividend payments, the first two approaches are contingent on assumptions that may not hold true

in most situations. Moreover, analysts tend to generate less informative and more biased forecasts for

firms with complex information structures.

To overcome these limitations, this study adopts an approach by integrating the information ex-

tracted from these three measures, along with other relevant data not encompassed within these

measures, into a single forecast generation process. We achieve this by employing a non-parametric

tree-based machine learning approach to forecast dividends. We demonstrate that our machine learn-

ing algorithm produces more accurate forecasts and outperforms the alternative methods commonly
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used in the literature. Furthermore, we highlight that machine learning-generated dividend forecasts

remain unaffected by firm complexity, while analysts produce less accurate dividend forecasts for

firms with complex structures. As a practical application, we use our machine learning-generated

dividend forecasts as input in the Dividend Discount Model to compute a forward-looking expected

return, often referred to as the implied cost of capital. Our new expected return proxy contains more

predictive power about future realized returns compared to traditional methods. This superiority

holds true both in-sample and out-of-sample.

Our results have academic and practical implications. For practical applications, our findings sug-

gest that the economic advantages of using machine learning are more pronounced in complex infor-

mation environments. Given the ongoing exponential growth in big data,16 this result implies that

investors should increasingly rely on machine learning for more accurate forecasts. On the academic

front, our study suggests that expected return measures derived from machine learning forecasts can

encompass richer information about future realized returns, further emphasizing the importance of

exploring machine learning applications to better understand the dynamics of the risk-return rela-

tionship in the asset pricing literature.

16McKinsey Global Institute: Big data: The next frontier for innovation, competition, and productivity.
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Pástor, L., Sinha, M., and Swaminathan, B. (2008). Estimating the intertemporal risk–return tradeoff

using the implied cost of capital. The Journal of Finance, 63(6):2859–2897.

So, E. C. (2013). A new approach to predicting analyst forecast errors: Do investors overweight analyst

forecasts? Journal of Financial Economics, 108(3):615–640.

van Binsbergen, J. H., Han, X., and Lopez-Lira, A. (2022). Man versus Machine Learning: The

Term Structure of Earnings Expectations and Conditional Biases. The Review of Financial Studies,

36(6):2361–2396.

Welch, I. and Goyal, A. (2008). A Comprehensive Look at The Empirical Performance of Equity

Premium Prediction. Review of Financial Studies, 21(4):1455–1508.

Yagan, D. (2015). Capital Tax Reform and the Real Economy: The Effects of the 2003 Dividend Tax

Cut. American Economic Review, 105(12):3531–3563.

Yin, L. and Nie, J. (2021). Adjusted dividend-price ratios and stock return predictability: Evidence

from china. International Review of Financial Analysis, 73:101618.

Zwiebel, J. (1996). Dynamic capital structure under managerial entrenchment. The American Economic

Review, 86(5):1197–1215.

39



Figure 1: Analyst forecast of DPS coverage

(a) analyst forecast quarterly coverage (b) analyst forecast annually coverage

Note: This figure displays the proportion of quarterly (a) and annually (b) dividend payers covered by analyst forecasts for
the US companies from 2001 to 2022. The blue line with circular markers represents the dividend payers covered fraction,
while the red line with square markers represents the average number of analysts report for each firm-level forecast. The
data of actual and analyst forecast of fiscal annual and fiscal quarter dividend is from I/B/E/S.
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Figure 2: Non-sticky dividend payout

(a) Fractions of dividend payout behaviors (b) Fractions of dividend payout ratio behaviors

Note: This figure shows the proportion of dividend paying firms that increase, maintain, and decrease their dividend
payout ratio [Panel (a)], and dividend payout ratio [Panel (b)], compared to the previous fiscal year. The payout ratio is
calculated by the actual fiscal annual dividend per share (DPS) divided by earnings per share (EPS). The actual fiscal annual
data is obtained from I/B/E/S.
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Figure 3: Flowchart of three tree-based regression models

Note: This flowchart illustrates the methodologies employed by three advanced regression algorithms: Random Forest
(RF) Regression, Gradient Boosting (GB) Regression, and Extreme Gradient Boosting (XGB) Regression. It provides a visual
representation of the key procedural steps involved in the model-building process, leading to the final prediction output.
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Figure 4: Example of single regression decision tree

Note: The figure illustrates an example of a regression tree extracted from the Random Forest Regression model for one-
year-ahead DPS forecasts. Each node in the tree contains the splitting condition, splitting criteria measured by Mean
Squared Error (MSE), the number of observations, and the final output forecast value. The darker-colored nodes indi-
cate areas of the tree with low impurity, signifying that the samples within these nodes have similar target values, resulting
in more homogeneous predictions for these samples. AL 1y DPS and AL 1y EPS donate the analyst forecast of DPS and
EPS, and L1Y DPS represents the lagged actual DPS payout.
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Figure 5: Forecast error of composite machine learning and analyst forecasts

Note: This figure presents a comparison of forecast accuracy between the composite machine learning and analyst forecasts
for DPS across various forecasting horizons. Accuracy is assessed using both Mean Squared Error (MSE) and the improve-
ment in MSE relative to the naive forecast, which relies on lagged actual DPS values.
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Figure 6: Feature Importance from Random Forest Forecast

Note: This figure showcases the top 10 most influential features in one and two-year ahead forecasts, as determined by the
RF method. The significance of each feature is measured by the reduction in impurity as the feature is incorporated into the
forecasting model. All importance scores have been normalized to ensure a cumulative sum of one. The prefix ’AL’ implies
analyst forecasts, ’L1Y’ denotes variables realized during the last fiscal year, and ’L’ represents variables realized during the
last fiscal quarter.
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Figure 7: Nonlinearity between future actual DPS and key features.

Note: This figure presents Partial Dependence Plots (PDPs) derived from a two-year-ahead DPS forecast using RF regres-
sion. The forecasting model utilizes the standardized predictors described earlier. The time period covered in the analysis
spans from 2003 to 2022.
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Figure 8: Time-series of the S&P 500 aggregate ICC

Note: The figure plots the aggregate ICC computed as the value-weighted average of ICC values for all included S&P 500
constituents. The data covers the period from January 2005 to December 2021, with ICC expressed in an annualized format.
These ICC values are derived from our machine learning forecasts of DPS, encompassing predictions up to three years
ahead. The shaded regions on the graph correspond to NBER recession periods, which include the 2008 financial crisis and
the 2020 COVID-19 outbreak.
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Figure 9: Difference of cumulative squared error between historical average and ERP.

Note: The figure displays the difference of cumulative forecast squared error of value-weighted S&P 500 return between the
benchmark forecast using the historical average return and forecasts using the tested ERP, including: EPS and DPS-based
ICC, default spread (De f ault), term spread (Term), dividend-price ratio (D/P), earnings-price ratio (E/P), and log payout
ratio (py). The compare time period spans from January 2010 to December 2021. The out-of-sample forecasts are obtained
with a 60-month rolling window method.
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Table 1: Variables Utilized in Constructing Machine Learning Forecasts for DPS.
The table presents an overview of the three information sets utilized in constructing the machine learning
forecast. Analyst forecasts, as well as realized DPS and EPS data, are sourced from I/B/E/S. Quarterly and
annual firm fundamentals data are extracted from the WRDS CRSP/Compustat Merged database. Monthly
stock price, return, and trading volume data are obtained from CRSP, while macroeconomic indicators are
sourced from FRED.

Predictors Category Description

XAL
i,t Analyst forecasts 1. Analyst forecast of DPS and EPS

2. Analyst forecast of long-run EPS growth rate aver-
aged by industries.

XFin
i,t Firm fundamentals 1. Realized last annually and quarterly DPS and EPS.

2. 58 quarterly financial fundamentals and calculated
financial ratios.
3. Monthly stock price, return, and number of shares.

XMacro
t Macroeconomic indicators GDP Growth, industrial production index (IPT)

growth,
consumption expenditure growth, and unemploy-
ment rate.
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Table 3: Firm Complexity and Forecast Errors.
Panel A of this table presents the time-series averages of squared errors for analyst forecasts and machine
learning forecasts within five portfolios sorted by firm complexity. Firm complexity is quantified by ARC/100,
representing one hundred units of monetary items disclosed. The Mean Squared Error (MSE) for each group
is calculated as the value-weighted average of all individuals’ three-year-ahead DPS forecast errors within the
respective year. Panel B provides time-series average results for annual cross-sectional regression tests that ex-
amine the relationship between forecast errors and complexity. In Column (A), the regression includes ARC as
the sole explanatory variable, while Column (B) introduces additional controls, encompassing firm fundamen-
tals such as the logarithms of size and book-to-market ratio, return on assets (ROA), debt-equity ratio (d/e),
dividend payout ratio (payout), number of employees (emp), and return volatility (ret vol). Furthermore, two
other firm complexity measures, Conglo and GeoMulti, are included. Conglo is a dummy variable that takes a
value of one if a firm has multiple business segments in the same year, while GeoMulti is one if a firm gener-
ates sales from multiple geographic segments in the same year. Ind FE indicates the including of industry fixed
effects. The t-statistics are computed using the Fama-Macbeth method for the average slopes. The data spans
from 2009 to 2021. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Panel A: portfolio sort 1 2 3 4 5 C-S

AL MSE 0.202 0.219 0.239 0.246 0.290 0.088*
t-stat 1.920
ML MSE 0.143 0.133 0.153 0.171 0.175 0.032
t-stat 1.204

Panel B: Regression test Analyst forecast Machine learning forecast

(A) (B) (A) (B)

ARC 0.039*** 0.035*** 0.004 -0.003
t-stat 4.865 3.772 0.754 -0.507
Conglo -0.028 -0.024
t-stat -1.140 -1.323
GeoMulti -0.057** -0.022
t-stat -2.095 -1.162
Size 0.039*** 0.033***
t-stat 4.140 4.769
b/m -0.004 0.000
t-stat -0.293 -0.030
ROA 0.324*** 0.206***
t-stat 10.29 7.921
d/e 0.001*** 0.000**
t-stat 3.665 1.718
payout 0.004*** 0.002
t-stat 11.28 6.109
emp 0.000 0.000
t-stat -0.594 -0.166
ret vol 0.364*** 0.121
t-stat 2.434 1.218
Intercept 0.311*** -0.243* 0.280*** -0.177*
t-stat 9.475 -1.899 11.005 -1.931
Ind FE Y Y Y Y
R2̂ 3.618% 5.217% 2.798% 4.342%
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Table 4: ICC calculation approaches.
The table presents a comparison between the ICC imputed from the conventional EPS-based method (denoted
as re) and the DPS-based ICC obtained from a simplified Gordon growth model (denoted as rd).

ICC Assumption Computation model

re 1. The growth of earnings after year 2
mean-reverts exponentially to GDP
growth rate g.
2. The plowback rate follows the iterated
process of bt+k = bt+k−1 − (b1 − b)/T.
3. In steady-state plowback rate b times
the return on new investment equals
the steady-state earnings growth rate.

Pt =
T=15

∑
k=1

Et[EPSt+k]× (1 − bt+k)

(1 + re,t)k

+
Et[EPSt+16]

re,t(1 + re,t)T

rd Dividend after year 2 will grow
perpetually at the average GDP
growth rate.

Pt =
T=2

∑
k=1

Et[DPSt+k]

(1 + rd,t)k

+
Et[DPSt+3]

(rd,t − g)(1 + rd,t)T
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Table 5: Summary statistics of S&P 500 return and predictors.
This table presents summary statistics for various variables used in our in-sample prediction tests covering
the period from January 2005 to December 2021, including S&P 500 returns. The predictors encompass EPS
(both re,AL and re,ML), DPS-based ICC (rd), calculated using both equal and value-weighted methods, default
spread (De f ault), term spread (Term), dividend-price ratio (D/P), earnings-price ratio (E/P), and the natural
logarithm of the payout ratio (py). All variables, except for payout, are expressed as annualized percentages.
The table also includes columns for AR(1) and AR(12), indicating the autocorrelation coefficients at one and
twelve lags, respectively. Additionally, ADF represents the augmented Dickey-Fuller test statistic, and the
accompanying p-value is provided.

Variable mean std Min. Max. AR(1) AR(12) ADF p-value

ewret 0.121 0.595 −2.491 2.218 0.076 0.029 −13.115 0.000
ew rd 0.052 0.003 0.046 0.071 0.922 0.179 −3.542 0.007
ew re,AL 0.088 0.011 0.072 0.128 0.957 0.548 −2.155 0.223
ew re,ML 0.088 0.014 0.068 0.136 0.964 0.361 −2.565 0.100
vwret 0.901 0.509 −2.199 1.453 0.078 0.036 −13.111 0.000
vw rd 0.053 0.004 0.046 0.069 0.938 0.423 −2.769 0.063
vw re,AL 0.088 0.011 0.071 0.126 0.960 0.630 −2.049 0.265
vw re,ML 0.086 0.014 0.065 0.137 0.961 0.383 −2.430 0.133
De f ault 0.126 0.055 0.066 0.406 0.953 0.081 −3.743 0.004
Term 0.012 0.009 −0.001 0.028 0.985 0.682 −1.727 0.417
D/P 0.020 0.003 0.013 0.036 0.950 0.124 −3.305 0.015
E/P 0.048 0.013 0.008 0.074 0.982 0.315 −2.462 0.125
py −0.362 0.210 −0.540 0.599 0.980 0.083 −4.113 0.001
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Table 6: Predicting future realized returns by using expected returns: univariate anaysis.
This table presents the results of predictive regression analysis for equal (left panel) and value-weighted (right
panel) S&P 500 returns, covering the period from January 2005 to December 2021. The analysis is conducted at
forecast horizons of 1, 6, and 12 months.
The regression is: ∑H

h=1(rt+h)/H = β0 + β1 × Mt + ϵt+h.
where rt+h represents the continuously compounded monthly returns, either equal-weighted or value-
weighted, in excess of the compounded three-month T-bill rate. Mt donates the vector of predictors, including
EPS (re,AL, re,ML) and DPS-based ICC (rd), computed using equal or value-weighted methods, default spread
(De f ault), term spread (Term), dividend-price ratio (D/P), earnings-price ratio (E/P), and log payout ratio
(payout). The reported values under “t-stat” represent the Newey and West (1987) t-statistic, calculated with
the number of lags equal to the forecast horizon length. *, **, and *** indicate significance at 10%, 5%, and 1%
levels, respectively.

Equal-weighted Value-weighted

variable Horizon β1 t-stat R-sq (%) β1 t-stat R-sq (%)

rd 1 3.145* 1.822 4.34 2.191* 1.654 2.66
6 3.328*** 7.479 23.76 2.389*** 5.373 16.01

12 2.822*** 6.748 36.02 2.018*** 3.801 22.51

re,AL 1 0.270 0.490 0.35 0.074 0.175 0.04
6 0.401 1.129 3.80 0.106 0.340 0.37

12 0.503*** 3.540 12.28 0.204 1.569 2.65

re,ML 1 0.293 0.731 0.66 0.159 0.521 0.26
6 0.445* 1.888 7.46 0.206 1.004 2.26

12 0.422*** 3.536 13.86 0.159 1.529 2.63

De f ault 1 0.029 0.018 0.00 -0.505 -0.417 0.29
6 1.021 1.359 4.11 0.331 0.490 0.63

12 1.162*** 4.030 11.01 0.549** 2.054 3.38

Term 1 0.283 0.706 0.23 0.090 0.267 0.03
6 0.273 0.987 1.06 0.088 0.414 0.16

12 0.339 1.549 3.44 0.160 0.926 1.05

D/P 1 1.106 0.526 0.53 0.241 0.151 0.04
6 1.876* 1.860 6.72 0.907 1.030 2.30

12 2.102** 5.419 16.12 1.228*** 3.578 7.57

E/P 1 -0.101 -0.250 0.07 0.023 0.073 0.00
6 -0.281 -0.999 2.54 -0.140 -0.641 0.93

12 -0.258 -1.379 4.32 -0.121 -0.875 1.32

py 1 0.022 0.776 0.84 0.009 0.393 0.18
6 0.031*** 2.713 7.90 0.017* 1.821 3.74

12 0.025*** 3.983 11.05 0.014*** 2.843 4.58
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Table 7: Predicting future realized returns by using expected returns: bivariate anaysis.
This table presents bivariate predictive regression results for one-month-ahead S&P 500 returns, covering the
period from January 2005 to December 2021. The top and bottom panels display results for equal-weighted and
value-weighted returns, respectively. The predictors considered include re,AL, re,ML, and rd. We also include
two additional predictors: D/P and Term. The first and second column reports the estimated coefficient and
corresponding Newey and West (1987) t-statistic with one-lag for the fixed explanatory variable rd in different
regressions.
The regression is: rt+1 = β0 + β1 × rd,t + β2 × Nt + ϵt+h, where Nt ∈ {re,AL, re,ML, D/P, E/P, payout}. *, **, and
*** indicate significance at 10%, 5%, and 1% levels, respectively.

Equal-Weighted return prediction

rd re,AL re,ML D/P Term

β1 t-stat β2 t-stat β2 t-stat β2 t-stat β2 t-stat R-sq

7.326*** 2.653 -1.536* -1.853 7.18
5.514** 2.216 -0.729 -1.358 5.01
5.404*** 3.310 -3.006 -1.380 5.08
4.002* 1.805 -0.591 -1.043 4.12

Value-Weighted return prediction

6.047*** 2.641 -1.373** -2.045 5.76
3.593** 2.030 -0.442 -1.142 2.67
4.573*** 3.057 3.033 -1.604 4.20
3.455* 1.778 -0.726 -1.371 2.98
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Table 8: Out-of-sample predictability test.
This table presents out-of-sample predictive test results for one-month-ahead S&P 500 returns, covering the
period from January 2005 to December 2021. The forecast period spans from January 2010 (2015) for a 60 (120)
months estimation window and ends at December 2021. The top and bottom panels display results for equal-
weighted and value-weighted returns, respectively. The left and right panels indicate an estimation strategy
with a rolling window and expanding window, respectively. Definitions of the tested ERP are the same as in the

above tables. The first column reports out-of-sample R square R2
OS calculated by: R2

OS = 1 − ∑T−m
k=1 (rm+k−r̂m+k)

2

∑T−m
k=1 (rm+k−r̄m+k)2 .

The second column p-val stands for the p-value from the one-side test results using the adjusted-MSPE statistic
regress on a constant, calculated as: ft+1 = (rt+1 − r̄t+1)

2 − [(rt+1 − r̂t+1)
2 − (r̄t+1 − r̂t+1)

2]. *, **, and ***
indicate significance at 10%, 5%, and 1% levels, respectively.

Equal-weighted Rolling window Expanding window

60 months 120 months 60 months 120 months

R2
OS(%) p-val R2

OS(%) p-val R2
OS(%) p-val R2

OS(%) p-val

rd 5.54** 0.013 6.41** 0.020 4.73*** 0.008 5.41** 0.024
re,AL −0.08 1.21 0.159 0.36 0.248 0.28 0.314
re,ML −6.92 −1.95 0.39 0.261 0.16 0.360
De f ault −0.88 1.52* 0.091 0.04 0.410 −0.13
Term −2.86 −2.07 −0.34 −0.83
D/P −3.46 −6.17 0.04 0.340 −0.44
E/P −7.13 −2.33 −1.44 −0.14
payout −4.34 −0.41 −0.98 0.72 0.163

Value-weighted Rolling window Expanding window

60 months 120 months 60 months 120 months

R2
OS(%) p-val R2

OS(%) p-val R2
OS(%) p-val R2

OS(%) p-val

rd 4.36*** 0.010 1.06 0.106 3.00** 0.024 1.75 0.129
re,AL 0.03 0.141 −0.03 0.356 −0.23 −0.37
re,ML −3.84 −1.91 −0.21 −0.35
De f ault −3.23 −6.37 0.16 0.289 −0.30
Term −4.92 −1.87 −0.68 −0.89
D/P −3.55 −0.38 −0.01 −0.33
E/P −0.75 1.61 0.207 −0.64 −0.86
py −2.67 −1.97 −0.58 0.33 0.223
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Table 9: Evaluation of expected return proxy by variance of measurement errors.
This table presents the measurement error tests for one, six, and twelve-month-ahead S&P 500 returns, covering
the period from January 2005 to December 2021. The left and right panels display results for equal-weighted
and value-weighted returns, respectively. Definitions of the tested ERP are the same as in the above tables.
The first and second column, Var(êrt) and Cov(rt+h, êrt),indicates time-series variance and covariance between
ERP and realized return, respectively. The third column represents the calculated scaled measurement error
variance SMEVi using: SMEVi = vari(êri,t)− 2covi(ri,t+h, êri,t). All the values are reported after multiplying
100 as suggested by Lee et al. (2020).

Equal-weighted Value-weighted

ERP Horizon Var(êrt) Cov(rt+h, êrt) SMEVi Var(êrt) Cov(rt+h, êrt) SMEVi

rd 1 0.0011 0.0035 -0.0059 0.0010 0.0022 -0.0034
6 0.0011 0.0038 -0.0064 0.0010 0.0024 -0.0038
12 0.0012 0.0033 -0.0054 0.0010 0.0021 -0.0032

re,AL 1 0.0122 0.0033 0.0056 0.0117 0.0009 0.0100
6 0.0125 0.0050 0.0025 0.0120 0.0013 0.0095
12 0.0126 0.0063 -0.0001 0.0120 0.0024 0.0071

re,ML 1 0.0195 0.0057 0.0081 0.0189 0.0030 0.0129
6 0.0199 0.0089 0.0022 0.0194 0.0040 0.0114
12 0.0201 0.0085 0.0031 0.0195 0.0031 0.0133

De f ault 1 0.0021 0.0001 0.0020 0.0021 -0.0010 0.0042
6 0.0021 0.0021 -0.0022 0.0021 0.0007 0.0007
12 0.0021 0.0025 -0.0028 0.0021 0.0012 -0.0002

Term 1 0.0074 0.0021 0.0032 0.0074 0.0007 0.0060
6 0.0075 0.0021 0.0034 0.0075 0.0007 0.0062
12 0.0078 0.0026 0.0025 0.0078 0.0012 0.0053

D/P 1 0.0011 0.0012 -0.0013 0.0011 0.0003 0.0006
6 0.0010 0.0019 -0.0028 0.0010 0.0009 -0.0008
12 0.0009 0.0020 -0.0030 0.0009 0.0012 -0.0014

E/P 1 0.0168 -0.0017 0.0202 0.0168 0.0004 0.0161
6 0.0171 -0.0048 0.0267 0.0171 -0.0024 0.0219
12 0.0169 -0.0043 0.0255 0.0169 -0.0020 0.0209

py 1 4.4096 0.0970 4.2157 4.4096 0.0375 4.3346
6 4.4878 0.1371 4.2136 4.4878 0.0779 4.3320
12 4.6172 0.1149 4.3874 4.6172 0.0631 4.4911
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Table 10: Univariate predictive regression for value and size portfolios
This table reports the univariate predictive regression test results for three value sorted portfolios: low (L),
medium (M), and high (H) on the first panel, and three size sorted portfolios: small (S), medium (M), and
big (B) on the second panel. The tested period spans from January 2005 to December 2021 and portfolios are
formed in June of each year.
The regression is: ∑H

h=1(rt+h)/H = β0 + β1 × rt + ϵt+h.
We focus on comparing the performance of three ICC re,AL, re,ML, and rd, computed by value-weighting the
individual constituents by capitalization. Columns ‘t-stat’ represents Newey and West (1987) t-statistic with
the number of lags equal to the forecast length; ‘R-sq(%)’ is the prediction R2 reported in percentage. Rows
‘average’ stands for the average of estimated beta β1 and R-sq(%) by different forecast horizons. *, **, and ***
indicate significance at 10%, 5%, and 1% levels, respectively.

rd re,AL re,ML

Horizon β1 t-stat R-sq (%) β1 t-stat R-sq (%) β1 t-stat R-sq (%)

Value

L

1 2.17** 2.09 2.44 0.08 0.18 0.03 0.17 0.56 0.27
6 2.22*** 3.55 12.80 0.07 0.22 0.13 0.18 0.82 1.57
12 1.95*** 2.91 20.32 0.16 0.77 1.33 0.15 1.14 1.97

average 2.11 11.85 0.10 0.50 0.17 1.27

M

1 2.36 1.45 2.91 0.09 0.20 0.05 0.30 1.01 0.84
6 3.19*** 5.06 24.64 0.28 0.87 2.49 0.51*** 3.37 11.93
12 2.78*** 4.27 38.98 0.38*** 2.60 9.84 0.44*** 4.83 18.53

average 2.78 22.18 0.25 4.13 0.41 10.43

H

1 1.39 1.22 1.40 0.28 1.09 0.74 0.02 0.07 0.00
6 2.11*** 3.52 15.54 0.46*** 2.52 8.76 0.32** 2.16 5.22
12 1.96*** 4.08 28.45 0.54*** 4.00 26.18 0.48*** 3.84 25.06

average 1.82 15.13 0.43 11.89 0.27 10.09

Size

S

1 1.43 1.17 1.26 0.82 1.53 1.42 0.84* 1.90 2.33
6 1.70* 1.91 8.51 0.92*** 2.66 9.14 1.15*** 4.52 22.06
12 1.68*** 2.87 16.93 0.94*** 3.47 19.81 1.07*** 5.88 39.39

average 1.60 8.90 0.89 10.12 1.02 21.26

M

1 2.36* 1.69 2.42 0.44 0.76 0.54 0.46 1.09 0.99
6 2.65*** 4.61 15.72 0.64* 1.85 6.23 0.79*** 3.88 15.73
12 2.30*** 6.16 25.52 0.73*** 3.95 17.73 0.70*** 5.06 27.35

average 2.44 14.55 0.61 8.17 0.65 14.69

B

1 2.56* 1.91 3.20 0.06 0.15 0.02 0.21 0.69 0.43
6 2.99*** 5.04 21.13 0.13 0.43 0.56 0.28 1.35 3.60
12 2.52*** 3.92 30.89 0.24 1.79*** 3.62 0.23** 2.33 4.97

average 2.69 18.41 0.15 1.40 0.24 3.00
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Appendix A. Proofs for Forecast Structure and MSE Decomposition

In this appendix section, we present supplementary proofs for the MSE decomposition results and

the proof for Lemma 4. Throughout the proofs, we omit indices that indicate time points and forecast

horizons, and we use i to represent the firm i. The proofs for Lemma 1 and Lemma 2 can be found in

de Silva and Thesmar (2021).

To evaluate the overall forecast accuracy for all the companies, we calculate the Mean Squared

Error (MSE) as the average of squared errors generated by each forecast. The cross-sectional MSE

is defined as: MSE = E[(Fi − yi)
2]. Next, we introduce Assumption 1, which serves as the most

fundamental assumption.

Assumption 1 All the conditional forecast component [xi, pi, ε i, ηi, bi] are orthogonal to each other, e.g., E(pi|xi) =

0. The unpredictable residual ε i has a mean of zero.

1



Combining the structures of three forecasts, denoted as FL
i , FAL

i , and FCom
i as shown in Section 2:

FL
i = xi + ηi,

FAL
i = xi + pi + bi,

FCom
i = xi + β(pi + bi),

and operating under the assumption of orthogonality, we calculate the Mean Squared Error (MSE) for

each forecast as follows:

MSEL = E[(ηi − pi − ε i)
2]

= E(η2
i ) + E(p2

i )− 2E[ηi]E[pi] + var(ε i)

MSEAL = E[(bi − ε i)
2]

= E(b2
i ) + var(ε i)

MSECom = E[((β − 1)pi + βbi − ε i)
2]

= (β − 1)2E(p2) + β2E(b2
i ) + var(ε i)− 2β(1 − β)E(pi)E(bi)

Assumption 2 With a large forecasting sample size and applying the central limit theorem, we assume that

the expected value of the private information component averages out across different companies, such that

E(p) = E[E(yi|Xi, Pi)− E(yi|Xi)] = 0.

2



With E(p) = 0 as specified in Assumption 2, the difference in MSE can be calculated as follows:

MSECom − MSEL = β(β − 2)E(p2
i ) + β2E(b2

i )− E(η2
i ) + 2β(β − 1)E(pi)E(bi) + 2E(pi)E(ηi)

= β(β − 2)E(p2
i ) + β2E(b2

i )− E(η2
i ), (i)

MSECom − MSEAL = (1 − β)2E(p2
i )− (1 − β2)E(b2

i ) + 2β(β − 1)E(pi)E(bi)

= (1 − β)2E(p2
i )− (1 − β2)E(b2

i ). (ii)

To determine the solution for the weight parameter β that ensures the first difference (i) is less than

zero, indicating that the combined forecast outperforms Lintner’s forecast, we can equivalently seek

solutions for the inequality β(β − 2)E(p2
i ) + β2E(b2

i ) < 0. Since the expectation of a squared term,

E(η2
i ), is non-negative, solutions to this simplified inequality satisfy the original inequality (i). Addi-

tionally, considering that β ranges from 0 to 1, the sufficient condition for making (i) negative is:

β <
2E(p2

i )

E(p2
i ) + E(b2

i )
.

The sufficient condition to make (ii) negative can also be determined as:

β >
E(p2

i )− E(b2
i )

E(p2
i ) + E(b2

i )
.

Therefore, Lemma 4 is proven.
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Appendix B. Details on machine learning forecast formation

Appendix B.1. Lists of input variables

Table B1 presents our data sources and the variables used to construct the machine learning forecast

of DPS. We obtain quarterly financial ratios from WRDS through the CRSP/Compustat Merged quar-

terly fundamentals dataset. The calculation of financial ratios follows the method recommended by

the Financial Ratios Suite available on WRDS. To ensure data availability at the forecast time points,

all variables are based on one-quarter lagged values. We match the I/B/E/S actual file with the sum-

mary file containing analysts’ consensus forecasts, using Ticker and forecast fiscal period as matching

criteria. To facilitate the merging of I/B/E/S with other datasets, we use the link table provided by

WRDS, ensuring that the firm’s historical CUSIP matches in both I/B/E/S and CRSP datasets.

Table B1: Variable Definitions and Categories

Variable labels Definition Category

AL h DPS analyst forecast of h-period-ahead DPS Analysis forecasts
AL h EPS analyst forecast of h-period-ahead EPS Analysis forecasts
L h DPS past period of actual DPS Historical actual
L h EPS past period of actual EPS Historical actual
prc monthly price Stock information
ret monthly total return Stock information
shrout monthly shares outstanding Stock information
de ratio Total Debt/Equity Solvency
debt assets Total Debt/Total Assets Solvency
capital ratio Capitalization Ratio Capitalization
totdebt invcap Total Debt/Invested Capital Capitalization
equity invcap Common Equity/Invested Capital Capitalization
debt invcap Long-term Debt/Invested Capital Capitalization
sale invcap Sales/Invested Capital Efficiency
at turn Asset Turnover Efficiency
sale equity Sales/Stockholders Equity Efficiency
lt debt Long-term Debt/Total Liabilities Financial Soundness
cash lt Cash Balance/Total Liabilities Financial Soundness
npm Net Profit Margin Profitability
opmad Operating Profit Margin After Depreciation Profitability

4



Table B1 continued from previous page

Variables labels Definition Category

aftret equity After-tax Return on Total Stockholders’ Equity Profitability
roa Return on Assets Profitability
roe Return on Equity Profitability
pe op basic Price/Operating Earnings (Basic, Excl. EI) Valuation
bm book-to-market ratio Valuation
ptb Price/Book Valuation
ps Price/Sales Valuation
retain eps retained earnings per share Fundamentals
txtq income taxes Fundamentals
oancfy Operating Activities - Net Cash Flow Fundamentals
ivncfy Investing Activities - Net Cash Flow Fundamentals
fincfy Financing Activities - Net Cash Flow Fundamentals
chechy Cash and Cash Equivalents Increase (Decrease) Fundamentals
capxy Capital Expenditures Fundamentals
fopoy Funds from Operations Fundamentals
ppentq Property Plant and Equipment Fundamentals
txditcq Deferred Taxes and Investment Tax Credit Fundamentals
nopiq Non-Operating Income (Expense) Fundamentals
apq Account Payable/Creditors Fundamentals
xoprq Operating Expense Fundamentals
mibtq Noncontrolling Interests Fundamentals
capsq Capital Surplus/Share Premium Reserve Fundamentals
xsgaq Selling, General and Administrative Expenses Fundamentals
dpq Depreciation and Amortization Fundamentals
size Capitalization Fundamentals
niq Net Income Fundamentals
ibq Income Before Extraordinary Items Fundamentals
cstkeq Common Stock Equivalents Fundamentals
ivchy Increase in Investments Fundamentals
sivy Sale of Investments Fundamentals
dltisy Long-Term Debt - Issuance Fundamentals
dltry Long-Term Debt - Reduction Fundamentals
opepsy Earnings Per Share from Operations Fundamentals
aqcy Acquisitions Fundamentals
tstkq Treasury Stock Fundamentals
dlcq Debt in Current Liabilities Fundamentals
revtq Revenue Fundamentals
capsq Capital Surplus/Share Premium Reserve Fundamentals
cstkq Common/Ordinary Stock (Capital) Fundamentals
rectq Receivables Fundamentals
invtq Inventories Fundamentals
pstkrq Preferred/Preference Stock Fundamentals
atq total asset Fundamentals
seqq Stockholders Equity Fundamentals
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Table B1 continued from previous page

Variables labels Definition Category

repurch repurchases scaled by shares: (prstkc-pstkrv)/shares Fundamentals
gdp GDP gross Macro economics
cg consumption growth Macro economics
indg Growth of industrial production Macro economics
unemp Unemployment rate Macro economics

Appendix B.2. Description of three tree-based techniques

We apply three ensemble tree-based regression methods: random forest (RF), gradient-boost (GB)

trees, and extreme gradient-boosting (XGB) trees to make more accurate, robust and stable predic-

tions.

In RF, the fundamental idea revolves around bootstrapping samples of the training dataset and

constructing a decision tree for each of these samples. Specifically, given a training dataset D of

size N, for each of the k trees to be grown, a sample of size N is drawn from D with replacement.

For each decision tree split, a random subset of m predictors (features) is selected from the total p

predictors, and the best split on these m is used to split the node. The typical choice for m is
√

p for

regression problems. The final prediction of the RF regressor is an average of the predictions from all

the individual decision trees. Mathematically, for a new data point x, the RF regression prediction ŷ

can be expressed as: ŷ(x) = 1
k ∑k

i=1 hi(x). Where hi(x) represents the prediction of the ith decision tree

for the data point x.

GB focuses on minimizing the residuals left by the previous trees. The algorithm begins by ini-

tializing with a simple model, often the mean or another straightforward statistic, and computes the

residuals. For each subsequent step, a decision tree is trained to predict the negative gradient (or,

essentially, the residuals) of the loss function with respect to the previous cumulative prediction. The

output for this tree is then scaled by a factor known as the learning rate and added to the previous
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predictions. Mathematically, given a loss function L(y, F(x)), where y is the true value and F(x) is

our predicted value, the negative gradient (or pseudo-residual) r at step m for every data point i

can be expressed as: .rim = −
[

∂L(yi ,F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

. A tree is then fit to these residuals, and the

resulting predictions are scaled by a factor ν (the learning rate) and added to the previous model:

Fm(x) = Fm−1(x) + ν ∑J
j=1 γjm I(x ∈ Rjm) where J is the number of terminal nodes, Rjm is the region

of the jth terminal node for the mth tree, and γjm is the value predicted for region Rjm.

XGB is a sophisticated optimization of the traditional gradient boosting framework. Distinct from

GB, XGB aims to minimize a regularized objective function:

Obj(Θ) = ∑
i

l(yi, ŷi) + ∑
j

Ω( f j)

where l(yi, ŷi) denotes the training loss, capturing the discrepancy between the predicted ŷi and ac-

tual yi values, while Ω( f j) signifies a regularization term, penalizing model complexity to mitigate

overfitting. This regularization integrates both L1 and L2 forms, offering a robust mechanism against

potential overfitting. An important feature of XGB is its capability to handle missing data, intuitively

imputing values during tree construction. Additionally, unlike traditional gradient boosting, which

grows trees depth-first, XGB employs a depth-first strategy, subsequently pruning trees using the

”max depth” parameter, leading to optimized tree architectures. Integrated cross-validation during

each boosting iteration facilitates pinpointing the optimal number of boosting rounds.

Appendix B.3. Forecast formation process for DPS

We construct our real-time forecasts for from one to three-quarters-ahead and one to three-years-

ahead DPS using a rolling-window approach, split by time. This process involves six steps, starting

from the original dataset:

7



1. The original dataset contains monthly firm-level values of predictor Xi,t, and includes realized

future values of one and two-year-ahead DPS from 2003 to 2022.

2. We replace missing values in all variables, except for the realized DPS and the analyst forecast

of DPS, with industry-time medians. Industries are classified according to the Fama-French 49

industry classification.

3. We create the first training dataset using the data from the year 2003. We winsorize all the

variables at a 1% level and standardize all the predictors in the training set to have a mean of

zero and a unit variance.

4. We set the year 2004 as the gap year for the one-year-ahead forecast and years 2004 and 2005

as the two gap years for the two-year-ahead forecast. We create the first test dataset using the

data from the years 2005 (for the one-year-ahead forecast) and 2006 (for the two-year-ahead

forecast). Similar to the training data, in the test data, we winsorize all the variables at a 1%

level and standardize all the predictors using the mean and variance obtained from the training

dataset

5. We fit the model using the training set data with one of the three tree-based methods. We apply

a 5-fold cross-validation to tune the hyperparameters for each algorithm at first and then choose

the top 10 most important features to fit the forecast model.

6. We use the fitted model to generate forecasts based on three algorithms on the test set. Moving

time forward, we repeat Steps 3-5 until the last test set within the year of 2022.

We implement the RF and GB three regressions, along with their cross-validation program, using

the scikit-learn package in Python. The XGB regression program is also supported by a dedicated
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package xgboost in Python 1. For the tree-based algorithms, we apply 5-fold cross-validation to select

the optimal combination of hyperparameters from a specified range.

• RF. We employ a Grid Search methodology over a predefined parameter space supported by

the GridSearchCV function. We set the number of trees, n estimators, to be 1000. We choose

the maximum depth of the trees, max depth, between 4 and 8, controlling how deep each tree

can grow and consequently its complexity. The minimum number of samples required to split

an internal node, min samples split, is chosen from 2 and 8. We consider the proportion of

features for the best split, max features, from 0.5 (indicating half of the features) to 1 (using all

features). The minimum number of samples required to be at a leaf node, min samples leaf,

has values of 1 and 4.

• GB. We use the GridSearchCV function to choose parameters for the Gradient-Boost tree re-

gression method. First, we select the number of trees, n estimators, from 500 to 10,000. The

maximum depth of the trees, max depth, has possible values of 1 and 3. We consider the

learning rate, which determines the step size at each iteration while moving towards a mini-

mum of the loss function, with values of 0.001 and 0.1.

• XGB. The xgboost program in Python supports the GridSearchCV function. Since xgboost al-

lows the calibration of a large number of hyperparameters, we select critical ones following

Chen et al. (2024) to avoid overcomplexity. We choose the number of trees, n estimators, from

100 to 500. The maximum depth of the trees, max depth, takes values of 4 and 8. Learning rate

is selected from 0.001 and 0.1. min child weight, selected from values 1 or 3, affects the sen-

sitivity of the model to specific data patterns. The portion of data used for building each tree,

subsample, is either 80% or 100%. Finally, for the data sampling method, sampling method, we

1see https://xgboost.readthedocs.io/en/stable/python/python intro.html for more information
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experiment with both uniform and gradient-based approaches.

Appendix B.4. Computation hardware

For the tree-based regression methods, the rolling window prediction with 5-fold cross-validation is

highly computationally intensive. To save computation time, we split the entire dataset by time and

perform parallel computing using the cloud computing service provided by the Edinburgh Compute

and Data Facility (ECDF 2). Each estimation uses 20 cores, each with 4GB of RAM, resulting in a total

of 40 CPUs, and takes around 8 hours.

Appendix C. The EPS-based expected return calculations

In this section, we describe how we calculate the conventional EPS-based expected return measures,

following the approach used by Pástor et al. (2008), Lee et al. (2009), and Li et al. (2013). We denote

the EPS-based expected return as re. We obtain EPS expectations, Et[EPSt+k], up to three years ahead

from either machine learning forecasts or analyst forecasts of EPS. If the machine learning forecast of

EPS is unavailable or negative, we replace it with the available and positive analyst forecast values.

To generate machine learning forecasts of EPS, we follow the approach outlined by van Binsbergen

et al. (2022). This approach employs a random forest regression model that considers predictors such

as analyst forecasts, firm financial ratios from WRDS, and macroeconomic variables. This machine

learning forecast serves as a statistical benchmark expectation, helping to isolate substantial subjective

bias in analyst forecasts of earnings.

Similar to our DPS forecast, the machine learning forecast of EPS is generated using a rolling win-

dow approach and is designed to be out-of-sample. We select hyperparameters for the model based

on the values suggested by van Binsbergen et al. (2022): n estimators is set to be 2000, max depth is

2www.ecdf.ed.ac.uk
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7, min samples split is 1%, and min samples leaf is 5.

For missing values and negative forecasts of EPS, we use the most recent available realized val-

ues, following the approach suggested by Li et al. (2013). For instance, if Et[EPSt+2] is missing or

negative and Et[EPSt+1] > 0, and the most recent realized EPSt > 0, then Et[EPSt+2] is replaced

by Et[EPSt+1] × (Et[EPSt+1]/EPSt). Similarly, the negative Et[EPSt+1] is replaced by EPSt × (1 +

(Et[EPSt+2]/EPSt − 1)1/2). If Et[EPSt+3] is missing or negative, we use Et[EPSt+2] times the analyst

forecast of long-term EPS growth rate. Eventually, re is obtained by solving the following nonlinear

finite Gordon growth model:

Pt =
T=15

∑
k=1

Et[EPSt+k]× (1 − bt+k)

(1 + re,t)k +
Et[EPSt+k]

re,t(1 + re,t)T ,

where bt+k is the estimated plowback rate. The terminal value term is calculated using the no-growth

perpetuity theory for the long run, with the formula TVt+T = Et[EPSt+T+1]/rICC (Damodaran, 2012).

Plowback rate estimates that fall outside the range [0, 1] are adjusted to 0 and 1 accordingly.

To generate EPS forecast for t + 4 to t + T + 1, we assume that the earnings growth rate for year

t + 3, g3 = Et[EPSt+3]/Et[EPSt+2]− 1, exponentially reverts to a long-run steady value represented

by the long-run nominal gross domestic product (GDP) growth rate. In cases where the growth rate

g3 is negative, we replace it with the year t + 2 earnings growth rate, denoted as g2. Consequently,

for k = 4, ..., T + 1, we calculate the earnings growth and earnings expectations using the following

iterative process:

gt+k = gt+k−1 × exp[log(g/g3)/T],

Et[EPSt+k] = Et[EPSt+k−1]× (1 + gt+k).
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The initial one-year ahead plowback rate, denoted as b1, for year t + 1 is estimated as one minus

the most recent year’s total payout ratio, which is available from the Financial Ratios Suite by WRDS.

We assume that the plowback rates revert linearly to a steady-state plowback rate, denoted as b, fol-

lowing the formula: bt+k = bt+k−1 − (b1 − b)/T. According to the sustainable growth rate formula, in

the steady state, the earnings growth rate equals the return on new investment (ROI) multiplied by the

plowback rate. We further assume that ROI is the same as the expected return for new investments.

Therefore, the plowback rates for years t + 3 to t + T can be computed as bt+k = bt+k−1 − (b1 − b)/T

for k = 3, ..., T.

Appendix D. Additional Predictive Regression Tests for expected return proxies)

In this section, we perform a robustness check on our expected return by assessing its ability to pre-

dict the aggregate market return represented by the CRSP index. We use expected return proxies

aggregated across the entire available sample, allowing us to evaluate the effectiveness of all the ex-

pected return measures without the restriction of the S&P 500 stock universe. The three samples,

each containing ICC values (rd, re,AL, re,ML) within the range of 0 to 0.3 suggested by Hommel et al.

(2023), span from January 2005 to December 2021 and consist of approximately 500,000 firm-month

observations. We construct the aggregate ERP by either equal-weighted or value-weighted methods

to predict the corresponding CRSP NYSE/NYSE American/NASDAQ/ARCA returns obtained from

WRDS. Table D1 summarizes the results of the predictive regression and also the scaled measurement

errors variance (SMEV).

In terms of the performance of rd, its predictive power for one-month-ahead equal-weighted CRSP

return is somewhat weaker compared to the equal-weighted S&P 500 return. However, it still stands

out as the best performing expected return proxy among the alternatives, as also indicated by its most

negative scaled measurement error variance. On the other hand, both re measures continue to exhibit

12



Table D1: Predictive regression for equal and value-weighted CRSP market return.
This table reports predictive regression results and the scaled measurement error variance in the prediction of
CRSP market excess returns from January 2005 to December 2021. The left and right panels display results for
equal-weighted and value-weighted returns, respectively. The first three columns display the estimated coef-
ficient, Newey and West (1987) t-statistic with the number of lags equal to the forecast length, and R squared
obtained from the predictive regression as defined above: ∑H

h=1(rt+h)/H = β0 + β1 × Mt + ϵt+h.
where rt+h represents h-periods-ahead compounded CRSP excess return. The vector of predictors Mt are de-
fined the same as above tables. The fourth column SMEV represents the scaled measurement error variance
calculated by SMEVi = vari(êri,t)− 2covi(ri,t+h, êri,t).

Equal-weighted Value-weighted

variable Horizon β1 t-stat R-sq (%) SMEV β1 t-stat R-sq (%) SMEV

rd 1 2.736 1.603 3.85 -0.0063 3.989 2.332 5.93 -0.0069
6 3.331 4.851 24.61 -0.0082 4.488 6.275 32.87 -0.0081

12 2.783 7.929 36.14 -0.0068 3.444 5.668 41.13 -0.0062

re,AL 1 0.452 0.729 0.69 0.0009 0.297 0.484 0.34 0.0042
6 0.721 1.769 7.60 -0.0042 0.462 1.027 3.59 0.0008

12 0.748 3.563 16.80 -0.0047 0.524 2.201 9.33 -0.0005

re,ML 1 0.755 1.538 2.44 -0.0060 0.536 1.186 1.72 -0.0012
6 1.078 4.268 21.44 -0.0139 0.698 2.559 12.73 -0.0065

12 0.938 5.926 33.23 -0.0105 0.562 3.662 16.83 -0.0020

De f ault 1 0.909 0.574 0.63 -0.0017 1.087 0.677 0.92 -0.0024
6 1.735 2.342 9.65 -0.0052 1.861 2.612 11.58 -0.0057

12 1.637 6.316 17.75 -0.0048 1.685 7.044 19.79 -0.0050

Term 1 0.211 0.485 0.12 0.0043 0.110 0.257 0.03 0.0057
6 0.183 0.547 0.39 0.0048 0.081 0.241 0.08 0.0063

12 0.252 0.844 1.54 0.0039 0.146 0.480 0.55 0.0055

D/P 1 2.043 0.976 1.67 -0.0034 2.235 1.049 2.05 -0.0038
6 2.735 2.673 11.64 -0.0045 2.817 2.743 12.86 -0.0047

12 2.685 6.334 21.35 -0.0041 2.647 6.086 21.86 -0.0041

E/P 1 -0.317 -0.761 0.62 0.0275 -0.355 -0.838 0.79 0.0288
6 -0.453 -1.447 5.39 0.0326 -0.482 -1.548 6.35 0.0335

12 -0.417 -2.106 9.21 0.0309 -0.440 -2.325 10.80 0.0317

payout 1 0.040 1.458 2.52 4.0607 0.043 1.523 2.99 4.0347
6 0.043 3.407 12.58 4.1045 0.044 3.410 13.99 4.0919

12 0.034 4.684 16.79 4.3029 0.034 4.608 18.10 4.2992

limited predictive power for CRSP return across various horizons, with re,ML showing relatively bet-

ter performance compared to re,AL. The performance of other valuation ratios and business cycle

variables remains consistent with previous findings.

Table D2 presents the results of the out-of-sample prediction tests for CRSP returns. rd maintains
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robust and significant predictive power for CRSP returns in all cases. Interestingly, the EPS-based

expected return proxy, derived from the machine learning forecast of EPS, also demonstrates positive

predictive performance with a 2.51% R2
OS when using a 60-month expanding window estimation for

the equal-weighted CRSP return. Additionally, the business cycle variable default spread exhibits

significant and positive R2
OS for equal-weighted CRSP returns.

Table D2: Out-of-sample predictive regression test for CRSP market return.
This table presents out-of-sample predictive test results for one-month-ahead CRSP excess returns, covering the
period from January 2005 to December 2021. The forecast period spans from January 2010 (2015) for a 60 (120)
months estimation window and ends at December 2021. The top and bottom panels display results for equal-
weighted and value-weighted returns, respectively. The left and right panels indicate an estimation strategy
with a rolling window and expanding window, respectively. Definitions of the tested ERP are the same as in the

above tables. The first column reports out-of-sample R square R2
OS calculated by: R2

OS = 1 − ∑T−m
k=1 (rm+k−r̂m+k)

2

∑T−m
k=1 (rm+k−r̄m+k)2 .

The second column p-val stands for the p-value from the one-side test results using the adjusted-MSPE statistic
regress on a constant, calculated as: ft+1 = (rt+1 − r̄t+1)

2 − [(rt+1 − r̂t+1)
2 − (r̄t+1 − r̂t+1)

2]. *, **, and ***
indicate significance at 10%, 5%, and 1% levels, respectively.

Equal-weighted Rolling window Expanding window

60 months 120 months 60 months 120 months

R2
OS(%) p-val R2

OS(%) p-val R2
OS(%) p-val R2

OS(%) p-val

rd 6.64** 0.029 12.35** 0.019 5.05** 0.010 6.80** 0.016
re,AL −3.78 0.67 0.226 0.70 0.185 0.37 0.305
re,ML −13.19 −1.36 2.51 0.099 1.52 0.217
De f ault 1.40** 0.048 3.45** 0.015 0.50 0.132 0.81 0.106
Term −4.44 −1.62 −0.65 −0.85
D/P −2.03 −3.14 0.77 0.135 0.52 0.212
E/P −7.72 −2.15 −1.75 0.55 0.291
payout −0.65 2.60* 0.082 −0.08 2.38** 0.031

Value-weighted Rolling window Expanding window

60 months 120 months 60 months 120 months

R2
OS(%) p-val R2

OS(%) p-val R2
OS(%) p-val R2

OS(%) p-val

rd 2.81** 0.021 2.03* 0.068 3.42** 0.016 3.13* 0.059
re,AL −1.24 −0.25 −0.39 −0.39
re,ML −5.16 −2.54 −0.24 −0.43
De f ault −2.82 −5.68 −0.03 −0.33
Term −5.63 −1.89 −0.74 −0.77
D/P −3.13 0.04 0.337 0.10 0.351 −0.20
E/P −0.36 2.26 0.201 −0.76 −0.58
payout −2.96 −1.86 −0.51 0.53 0.171
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Pástor, L., Sinha, M., and Swaminathan, B. (2008). Estimating the intertemporal risk–return tradeoff

using the implied cost of capital. The Journal of Finance, 63(6):2859–2897.

van Binsbergen, J. H., Han, X., and Lopez-Lira, A. (2022). Man versus Machine Learning: The

Term Structure of Earnings Expectations and Conditional Biases. The Review of Financial Studies,

36(6):2361–2396.

15


	Xuesi_s_Paper1_Dividend_Forecasts_via_Machine_Learning (1)
	Introduction
	Mean Square Error decomposition of dividend expectations
	Dividend expectation based on Lintner's model
	MSE decomposition

	Dividend Forecast via Machine Learning
	Data for DPS forecast
	Forecast formation
	Forecast results and evaluation

	Why Does Machine Learning Outperform Traditional Methods? Evidence from Firm Complexity.
	Application: Estimating the Expected Return
	Expected Return Imputed from Free Cash Flow Discount Models
	Testing Our Expected Return: In-Sample Analysis
	Testing Our Expected Return: Out-of-Sample Analysis
	Testing Our Expected Return: Variance of Measurement Errors
	Testing Our Expected Return: Portfolio Analysis
	``Horse race" between various expected return proxies

	Conclusion

	Internet Appendix
	Appendix
	Proofs for Forecast Structure and MSE Decomposition
	Details on machine learning forecast formation
	Lists of input variables
	Description of three tree-based techniques
	Forecast formation process for DPS
	Computation hardware

	The EPS-based expected return calculations
	Additional Predictive Regression Tests for expected return proxies)


