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1 Introduction

Academic research on the cross-section of equity returns has been extremely successful, and has

fundamentally changed the way practitioners invest in stocks. Against this backdrop, there is a

growing trend in the literature to apply identical portfolio formation methods originally developed

for stocks to less liquid, infrequently traded assets such as corporate bonds. Does the verbatim

application of these portfolio construction methodologies lead to an accurate description of the

performance of corporate bond investment strategies and factors? Our answer is no.

With illiquid assets, an investor cannot immediately execute buy and sell orders to build a

portfolio of securities after observing a set of investment signals. Instead, she must wait for her

order to be executed due to search costs, dealer inventory constraints and bargaining frictions.

This creates delays and drags down the performance of her portfolio as the investment signal

becomes outdated. Even worse, the order may not be executed over the period for which the signal

was intended (and valid) for, in which case she misses the investment opportunity and incurs the

opportunity cost of capital. In addition, the delay in one leg of a long-short strategy relative to

another creates basis risk and reduces the intended hedging benefit. Therefore, ignoring these costs

severely distorts the assessment of the profitability of factor investing in illiquid assets. In essence,

the immediate order execution assumption implicit in equity-based portfolio construction does not

apply to corporate bonds or any asset which is infrequently traded. This key friction has been

overlooked within the context of forming realistic corporate bond factors and portfolios.

In this paper, we impose empirical realism to the construction of corporate bond portfolios

by explicitly taking into account the nuanced relationship between trading costs and delays. Our

strategy considers an investor’s preference for early order execution. An impatient investor is willing

to pay higher bid-ask spreads in exchange for quick execution, while a patient investor waits for a

trading opportunity with a tight bid-ask spread. To implement this idea, we exploit a key feature

of corporate bonds pointed out by Edwards, Harris, and Piwowar (2007), where observed bid-ask

spreads are a decreasing function of trade size. While we do not attempt to explain why bid-ask

spreads depend negatively on size, we take this empirical fact as given and describe the key trade-off
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between delays and bid-ask spreads.

Consider an investor who receives a buy signal in a month. Given her portfolio size, she needs

to buy $2 million of the bond. She has the choice of placing a large $2 million order and waiting for

the execution, which could take a month or more. Or she can break the order into smaller pieces

and execute it more quickly. In the latter case, unlike in the equity market, she will have to pay

a higher price because of the costs charged by a dealer.1 This fundamental tension, between trade

size and the cost of delaying the trade has yet to be explored within the context of corporate bonds

or other assets that trade infrequently.

To render this idea operational, we deviate from the classical method of portfolio construction

of Fama and French (1992) and compute the exact return of a bond from the day it is bought to

the day it is sold. For each date, we compute transaction prices using only transactions above the

investor’s size threshold. As the threshold increases, the bid-ask spreads tighten while the number

of eligible transactions declines, delaying the trade. In this way, we no longer assume that the trade

occurs at the end of the month, right after the investor receives the signal.

The key to our method is to allow a monthly return to exist even if there is no transaction for

a bond in that month. Instead of treating such an observation as missing, our method treats it as

a trade execution failure. Since the investor does not know when or if her order will be executed,

the capital tied up in this long position cannot be used to buy other bonds and thus earns the

risk-free rate of return. The difference between the corporate bond returns she would have earned

by buying other bonds and the risk-free rate contributes to the cost of delay.

We also take into account real-world frictions that an investor would face. If she wants to unwind

the existing position but is unable to do so due to delays or lack of volume, she will have to pay

the cost of carry to finance the additional unwanted positions in her inventory. In our framework,

she may end up holding the existing position for several months after the signal suggests that she

1This analysis is reminiscent of the trade-off in the stock market. When trading stocks, a trader must consider the
benefit of breaking large trades into smaller pieces that are executed over a longer period of time. The key question
there is how to reduce the price impact by swallowing longer delays. Since equity trades are anonymous, a liquidity
provider learns the informativeness of the order by its size and charges a high spread for a large trade. The key
problem for the investor is how to overcome this adverse selection problem. Therefore, even though the size-cost
relationship is the opposite in the equity market, there is still a trade-off. Jacobsen and Venkataraman (2023) argues
that in the bond market, investors do not necessarily split a large trade because dealers knows their identity and thus
splitting does not help hide private information.
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Figure 1: Effect of Transaction Costs: Example of Credit Spread-Sorted Portfolio
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This figure plots the bond CAPM alphas of the long-short strategies based on corporate bonds’ credit spreads

before and after accounting for transaction costs (left panel). The transaction costs are decomposed into

the bid-ask spread costs and delay costs (right panel). Values on the x-axis are the trade size in thousand

dollars.

needs to unwind the position. As such, our empirical framework imposes a rich structure to provide

a more realistic estimate of the actual returns of actively managed corporate bond portfolios.

We show that the cost of delay is substantial. Consider a simple example in which the investor

purchases bonds with the top 20% highest credit spreads and sells short those with the bottom

20% lowest spreads. The left panel of Figure 1 plots the bond CAPM alpha on this long-short

strategy before and after transaction costs as a function of trade size. We observe a hump-shaped

pattern in net returns, implying our cost estimates are a U-shaped function of transaction size.

This transaction cost can be decomposed into half spreads and delay costs.

The right panel plots the cost of half spreads, capturing both the portfolio turnover rate and

the difference between bid and ask prices, for each trade size. Consistent with Edwards, Harris, and

Piwowar (2007), there is a strong negative relationship between half spreads and size, indicating a

significant benefit to being patient and trading in large volumes. However, insisting on trading in

large volumes causes delays in order execution. As a result, the cost of execution delays increases

as the trade size increases. In this example, as the trade size becomes larger than $2 million, the

increased cost of the trade delay outweighs the reduced half-spread. Therefore, the optimal trade

size that maximizes net profit is $2 million.
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To quantify the importance of delay costs, we use the latest machine learning (ML) algorithms

to generate trading signals. We use ML-based strategies for two reasons: First, the cost of delay

becomes more important the more valuable the signal is. Thus, to emphasize our point about the

importance of delay, it is appropriate to use strategies that perform optimally before transaction

costs are taken into account. Second, there is a growing literature on how to assess the profitability

of factor investing in corporate bonds. By using ML-based strategies, we can directly provide a

method to adjust for realistic transaction costs for the most popular strategies today.

Our ML algorithms reflect the state-of-the-art models developed in the recent literature (e.g.,

Gu, Kelly, and Xiu 2020). We estimate a large set of models using a wide array of bond and stock

characteristics.2 These encompass linear regression, generalized linear models with penalization,

dimension reduction via principal components regression (PCR), partial least squares (PLS) and

instrumented principal components (IPCA), and regression trees (including boosted and extreme

trees and random forests). We use the machine learning implied model predictions of bond re-

turns to form long-short portfolios that purchases bonds with high expected returns and short-sells

bonds with low expected returns. Most of the long-short ML strategy portfolios generate out-of-

sample gross returns that are economically large and statistically significant (Newey-West adjusted

t-statistics greater than 3). Importantly, the alphas of these strategies computed with the single-

factor bond CAPM (CAPMB) remain large and significant. Individually, only a handful of the stock

and bond characteristics generate meaningful high-low gross return spreads, which highlights the

importance of combining the characteristics to form predictions through the various ML methods

we employ.

Our methodology allows us to calculate transaction costs under optimal execution. We choose

the trade size that maximizes the net CAPM alpha of each strategy and find that the optimum is

reached at about $2 million per trade for all strategies with an interior solution. For example, the

‘COMBO’ strategy which averages the expected returns of all ML strategies generates an alpha of

0.25% before transaction costs and 0.01% after costs at the optimum. Of the 0.24% cost, 0.11%

is due to delay, while 0.13% is due to bid-ask spreads paid to the dealer. Thus, quantitatively,

2The characteristics comprise the 29 stock and bond characteristics used in Kelly, Palhares, and Pruitt (2021).
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the cost of delay is substantial, and ignoring it leads to an incorrect assessment of the profitability

of ML strategies and other corporate bond anomalies. Importantly, the techniques that have high

predictive power tend to move swiftly and thus incur high transaction costs. Net of costs, even when

trading at the optimal volume threshold, which captures the trade-off between reduced half-spreads

and trading delays, all of the strategies generate a single-factor alpha of close to zero.

To guide future research, and in the spirit of Harvey, Liu, and Zhu (2016), we provide a set

of gross alpha “cut-offs” at various levels of portfolio turnover rates that represent the level of

alpha the factor should achieve to remain profitable after costs. For example, for a strategy with a

monthly turnover rate of 20%, a gross alpha of around 0.1% is sufficient to break even. However,

if the turnover rate is 35%, the break-even gross alpha doubles to 0.2%. These cutoffs serve as

a simple heuristic, allowing researchers to quickly check whether their gross factor alpha would

remain significant at various levels of turnover after accounting for transaction costs. Because we

compute transaction costs under the assumption of optimal trade size, the researcher no longer has

the freedom to choose the trade size to achieve the desired results. Instead, the net profit of the

strategy we compute is disciplined by the realized trade size and frequency in the data.

One potential concern about our negative findings on the performance of ML strategies is that

the particular algorithms and bond characteristics we use may not be the best available in practice.

To address this criticism, we turn to an analysis of mutual fund returns. We obtain the actual

returns earned by corporate bond mutual funds over our sample period. We show that, on average,

only 8.5% of all “corporate bond” classified mutual funds (42 funds) generated an after-tax alpha

that is statistically significant at the 5% nominal level. The magnitude of the statistically significant

alpha is small at 0.18% per month.

Even more discouraging, from the perspective of an active bond mutual fund investor, is the

dollar “value-add” of investing in active funds relative to a passive benchmark bond market port-

folio. On average, bond mutual fund investors are worse off to the value of $396,000 per month

relative to simply holding a corporate bond ETF that tracks the market. These results support

the validity of our assessment of ML-based corporate bond strategies and other corporate bond

anomaly portfolios.
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In summary, this paper contributes to the literature on two fronts: First, we introduce a novel

methodology for computing portfolio returns that explicitly conditions on realized trade sizes and

accounts for trading delays induced by attempting to transact in large volumes. These methods can

be applied to any infrequently traded asset and allow researchers to identify the optimal execution,

striking a balance between bid-ask spreads and delays. Second, we contribute to the assessment of

market efficiency and the profitability of factor investing in the corporate bond market. Overall, our

results suggest that, even when using state-of-the-art portfolio construction techniques, generating

alpha from systematic bond strategies is an extremely challenging task once market frictions are

properly accounted for.

Our paper contributes to the rapidly growing literature that evaluates (and re-evaluates) the

performance of factor investing in the corporate bond market (e.g., Bali et al. 2020; Kelly et al. 2021;

Binsbergen et al. 2023; Dickerson et al. 2023a; Dick-Nielsen et al. 2023). The paper closest to ours

is Ivashchenko and Kosowski (2023), who study the performance of nine factors after accounting for

transaction costs. Our paper differs from Ivashchenko and Kosowski (2023) in that we highlight the

novel trade-off between half spreads and delays faced by investors and employ the latest machine

learning techniques in testing the performance of factor models.

This paper also relates to the extensive literature measuring illiquidity and transaction costs

in the corporate bond market (e.g., Edwards et al. 2007; Chen et al. 2007; Feldhütter 2010; Bao

et al. 2011; Schestag et al. 2016; Dick-Nielsen and Rossi 2018; Pinter et al. 2021; Choi et al. 2023).

In particular, Bao et al. (2018), Bessembinder et al. (2018), and Wu (2022) examine the role of

post-crisis regulations on the liquidity of corporate bonds.3 More closely related papers include

O’Hara et al. (2018), who examine the market power in determining corporate bonds’ half spreads,

as well as Goldstein and Hotchkiss (2020) and Reichenbacher and Schuster (2022), who argue that

observed transaction costs strongly depends on transaction size and dealers’ strategic inventory

management. However, none of these papers quantify the impact of trading delays in evaluating

trading strategies.4

3More broadly, there is a strand of literature that studies the role of liquidity and dealer inventory in explaining
credit spreads and bond risk premiums. This body of research includes Lin et al. (2011); Friewald and Nagler (2019);
He et al. (2019); Goldberg and Nozawa (2021); Eisfeldt et al. (2023).

4Goldstein and Hotchkiss (2020) note the trade-off similar to the one we propose in the paper. In particular,
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Our paper aims to provide the best practice in accounting for transaction costs in the study of

the cross-section of corporate bond returns. Table 1 lists recent papers on this topic. The papers are

classified into two groups: the first group of papers does not consider net returns after transaction

costs and the second group does so. However, even among the papers in the second group, there is

substantial heterogeneity in the transaction cost estimates. For example, Bali et al. (2020), Jostova

et al. (2013), and Kelly et al. (2021) report significant trading profits arising from anomalies after

accounting for transaction costs while Chordia et al. (2017), Bartram et al. (2021), and Nozawa

et al. (2023) report anomalous returns largely disappear net of costs.

The discrepancy arises because there is substantial room for researchers to make judgments on

how to estimate half spreads. For example, Cao et al. (2023) reports the profit from their trading

strategy is significant if they assume each transaction is of size $1 million but not significant if the

transaction size is smaller. To avoid the subjective selection of trade size, one needs an exogenously

specified size that captures the reality to discipline the estimated transaction costs.

The remainder of the paper is organized as follows: Section 2 provides detailed methods for

calculating portfolio returns net of transaction costs; Section 3 describes our data set; Section 4

provides the evaluation of the ML-based strategies; Section 5 examines the performance of corporate

bond mutual funds; and Section 6 provides concluding remarks.

2 Methodology

We develop a methodology to compute net returns for bonds that explicitly accounts for half

spreads and execution delays. The core idea behind this method is that, when trade executions are

delayed, an investor may end up with unintended positions or may not initiate the trade at all. We

carefully treat each case by studying which positions must be financed through risk-free lending

and borrowing and by keeping track of inventory positions each month.

At the end of month t, an investor receives signals and decides which bonds to go long on

they write “dealers will offer customers a trade-off between pricing and immediacy (liquidity). However, ... Dealers
provide little immediacy when there are few trading opportunities. For example, for a bond that trades at best
once a month, investors retain price risk while dealers search for a counterparty to offset their trade,...”. Our results
empirically support the significance of their statement from the perspective of factor investing.
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and which bonds to short. She tries to execute the trade as soon as a trade opportunity with her

target volume arrives. At the earliest, she executes at the end of month t, but more typically she

would trade in month t+1 or later. For notational simplicity, we separately consider delays within

a month and delays beyond a month. The delay beyond a month is considered as a part of her

inventory, and this affects her action at the end of t+ 1.

Delays directly affect the return computation. If she executes the trade, she pays the half

spreads and starts earning returns from the position. Before she does so, her position earns the

risk-free rate of returns. Our method below explicitly accounts for the delay using daily transaction

prices.

2.1 Returns with Execution Delays

This section explains our return construction. Suppose an action is taken at the end of month

t and we want to measure the monthly return of a strategy from month t to t+ 1. The investor’s

possible actions in month t for each bond are buy, hold, or sell. If she buys, then she trades on the

ask side and if she sells, then she trades on the bid side. If she holds, her position is marked to

market using quotes. In such cases, a return on the bonds in her long positions can be described

by one of the following patterns:

• Hold-Hold (hh): Rhh

• Buy-Hold (bh): Rb(v)h

• Hold-Sell (hs): Rhs(v)

• Buy-Sell (bs): Rb(v)s(v)

where b(v) is the buy order with a minimum volume v, s(v) is the sell order with a minimum

volume v, and h indicates that she holds the position. The first of two superscripts for R describes

the investor’s action in month t and the second one describes her intended action in month t+ 1.

These actions are taken when an opportunity with the minimum volume v arrives.
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If an investor already holds a bond and maintains her position throughout month t + 1, then

her return can be measured using a standard formula,

Rhh
t+1 =

(
P h
t+1 +AIt+1 + Ct+1

P h
t +AIt

)
− 1, (1)

where P h
t+1 and P h

t are the end-of-month quotes in months t + 1 and t, respectively. AIt is the

accrued interest at the end of month t and Ct+1 is any coupon paid in month t+ 1. Since there is

no trade, it does not take half spreads into account when measuring the return. When we compute

gross returns and alphas of a strategy, we use this return for all bonds in all months.

If an investor initiates a new long position, then she has to pay an ask price. In addition, if

there is a delay in a buy order, then she earns a risk-free rate on cash while waiting for her order

to be executed. Suppose she wants to buy a bond in month t and hold it until month t + 1, and

she buys the bond on the d-th day in month t+ 1, then her return is

R
b(v)h
t+1 =

(
1 +Rf

t+1 ×
d

Dayst+1

)P h
t+1 +AIt+1 + Ct+1,d

P
b(v)
t+1,d +AIt+1,d

− 1, (2)

where P
b(v)
t+1,d is the ask price on either the last business day of month t or day d in month t + 1.

Dayst+1 is the number of days in month t+ 1 and Ct+1,d is any coupon paid after day d in month

t + 1. We use subscript d for the observation on a specific day in a month. If a variable does not

have a d subscript, then the variable is measured at the end of a month. If there are multiple daily

prices for Pt+1,d, we use the first available day, capturing the idea that an investor is trying to

implement the strategy as soon as possible.

Since we explicitly take into account which side of the market the investor is trading, the return

in (2) measures the net return after transaction costs. This return is not only influenced by a half

spread (i.e. the difference between ask price P
b(v)
t+1,d and mid quote P h

t ) but also by when the trade

to initiate the position is executed. Until the corporate bond is bought, the cash is invested in

risk-free asset, incurring an opportunity cost. If the delay becomes extreme and no transaction

price is available in month t+ 1, then she cannot execute the trade and her return is the risk-free
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rate (i.e., R
b(v)h
t+1 = Rf

t+1).

To illustrate the idea, consider an example where an investor receives a buy signal for a bond on

September 30. At this point, she commits cash to the position and waits for a trading opportunity

to arrive. Suppose that an opportunity of the size $100,000 arrives on September 30, that of

$500,000 arrives on October 10, and that of $1 million arrives on November 10. If her target trade

volume v is $100,000, then she buys the bond on September 30 and the bond’s October return is

the one-month return on the bond less the half spread paid to enter the position.

If, instead, her target trade size is $500,000, then she waits for her order to be executed until

October 10. Her October return is the product of the risk-free rate of return for the first ten

days and the 21-day returns on the corporate bond. If her target size is $1 million, she does not

execute the trade and the October return is the risk-free rate. If the updated signal on October

31 is still a buy signal, then she would buy the bond on November 10, which contributes to the

November return. If, on the other hand, the October signal is ‘not buy’, then she misses this buying

opportunity entirely.

Similarly, when the investor unwinds the long position she already has, she executes the sell

order on the d-th day of month t+ 2 or the end of month t+ 1, if possible. Then, the return is

R
hs(v)
t+1 =

P
s(v)
t+2,d +AIt+2,d + Ct+1 + Ct+2,d

P h
t +AIt

÷
(
1 +Rf

t+2 ×
d

Dayst+2

)
− 1, (3)

where P
s(v)
t+2,d is the bid price on either the last business day of month t+1 or day d in month t+2,

and Ct+2,d is any coupon paid before day d in month t + 2. We divide this return by the month

t + 2 risk-free rate because the investor must finance her extra long position by borrowing cash

until she unloads it. If the sales does not occur, then her return is R
hs(v)
t+1 = Rhh

t+1 and the bond is

added to month t+ 1 inventory.

Continuing on the example, consider that the investor bought a bond in October and the

October signal is ‘buy’ and thus she keeps the long position. Suppose further that the November

signal is ‘not buy’. The sell opportunity with a size of $100,000 arrives on November 30, but that

of $500,000 arrives on December 10, and that of $1 million arrives on January 10 next year. Then,
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for an investor with a target size of $100,000, the bond’s November return is a one-month return on

the bond adjusted for a half spread. If her target size is $500,000, then she earns a 40-day return

on the corporate bond minus the 10-day risk-free rate in December. If her target is $1 million, her

November return is the buy-and-hold one-month return on the bond, creating an extra inventory

influencing her portfolio choice at the end of December.

Finally, if an investor buys a bond in month t and sells it in month t+1, then her net return is

R
b(v)s(v)
t+1 =

(
1 +Rf

t+1 ×
d1

Dayst+1

)P
s(v)
t+2,d2

+AIt+2,d2 + Ct+1,d1 + Ct+2,d2

P
b(v)
t+1,d1

+AIt+1,d1

÷
(
1 +Rf

t+2 ×
d2

Dayst+2

)
− 1.

(4)

If the purchase does not occur in month t+1 (i.e., a delay of more than a month), then R
b(v)s(v)
t+1 =

Rf
t+1. If the purchase occurs but the sales is delayed by more than a month, then R

b(v)s(v)
t+1 = R

b(v)h
t+1 .

In our main results, we allow an investor to short bonds. Her net return for short positions can

be described similarly using −Rhh
t+1, −R

s(v)h
t+1 , −R

hb(v)
t+1 , and −R

s(v)b(v)
t+1 .

Our method avoids the two problems that have plagued the literature studying corporate bond

returns. The first is the martingale approximation of bond prices, as pointed out by Bartram et al.

(2021). Previous research using TRACE data treats a transaction price near the end of a month as

the month-end price. Since this is an approximation, there is no guarantee that real-time investors

can trade a bond at this month-end price. Furthermore, the noise in prices tends to inflate the

average returns due to Jensen’s inequality (Blume and Stambaugh 1983).

Second is the censoring of returns. Typically, if there is no month t+ 1 return in TRACE due

to a lack of transactions, one assumes that investors do not consider these bonds as trading targets

and do not include the observation in the analysis. This creates a look-ahead bias because the

real-time investor receiving the time-t signal does not know whether the bond will be traded in the

next month or not. In addition, this censoring biases the sample towards liquid bonds by omitting

illiquid bonds from the computation. In our framework, all bonds with a valid signal are considered

for trading and the investor commits capital to take positions. If the trade does not occur, she

earns or pays the risk-free rate or return, which allows us to closely replicate the real-time investor’s
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trading profits.

2.2 Inventory and Round-Trip Transactions Over Months

In this section, we introduce inventory to account for the delays beyond one month. If there

is no eligible trade in a month, an investor cannot execute the intended trade as suggested by a

signal, creating a gap between the signal and the position. This gap, in turn, affects her actions in

the next month. To illustrate the idea, we continue with the previous example of buying a bond at

the end of September and selling it at the end of December. In Appendix A, we perform a formal

analysis and provide a complete set of scenarios for both long and short positions.

Panel A of Figure 2 illustrates a base case with no delays. The investor earns the returns over

the three consecutive months (October, November, and December), and the month-end inventory

changes accordingly. The key here is that at the end of October, the investor has a bond in her

inventory (the ‘Y’ sign for ‘Inventory’). Thus, if she receives a buy signal, she can hold the bond

and earn a mark-to-market return (Rhh) in November. Therefore, the half spread is charged only

in October (when she buys) and in December (when she sells).

Now consider the case where the investor cannot buy the bond in October due to the trade

failure, as shown in Panel B. Then her end-of-month inventory is ‘No’ (inventory), and she must buy

a new bond in November. Due to the change in her action, her return in November is Rbh, incurring

a half spread. Comparing Panels A (no delay) and B (purchase delay), there is no difference in the

signals. The difference is the inventory dynamics due to the delay, and this changes the November

return of the strategy.

Finally, Panel C of Figure 2 explains the case of delayed sales. In this example, the intended

sale does not occur in December, creating an unwanted inventory at the end of December (the ‘Y’

sign). Since the signal at the end of December is still ‘N’, the investor sells the bond at the end of

January. In this case, her return is Rhs −Rf . She pays not only a half spread to execute the sale,

but also the risk-free rate to finance the additional position.

In our algorithm, we keep track of the inventory of each bond, decide the investor’s action in

the next month, and select the appropriate type of return. This method allows us to calculate the
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returns of a trading strategy without approximation.

2.3 Portfolio Formation

To measure the performance of a trading strategy net of costs, we must explicitly account

for changing compositions in a portfolio. This is a challenging task because a standard portfolio

construction prescribes a constantly changing portfolio weight for each security. To see this, consider

three bonds as potential buy targets: A, B, and C. They have market values of $80 million, $40

million, and $20 million, respectively. Suppose in a month a signal suggests that an investor should

buy A and B. Then her portfolio weight is 66.7% for A and 33.3% for B. Suppose also that the next

month, the signal suggests that she should instead buy B and C. Then the weight for B increases

to 66.7% from 33.3% the previous month. Thus, even though the signal for B has not changed,

she must buy a fraction of B to increase its weight, incurring a transaction cost. This adjustment

results in different cost-adjusted returns for the same bond in the same month, because some of

the positions in B incur zero transaction costs, while others require her to pay a half spread when

she enters a new position.

One way to overcome this problem is to set a constant fraction of the market value, rather

than a constant number of bonds, for the long and short positions in each month. Typically, one

would divide N bonds into P portfolios so that each portfolio has approximately the same number

of bonds, N/P . This is achieved by categorizing bonds based on their signal percentile rankings.

To avoid trading a fraction of bonds, one can instead define a strategy by dividing bonds into P

portfolios so that each portfolio has the same total market value. In this case, the cutoff is set

by the value-weighted percentile rankings. In this way, each bond in the long position always has

the same weight as long as it is in the portfolio. For example, if the total market value of the

long position is set to $1 billion and the investor receives a buy signal for Bond A, then the bond

will always have a portfolio weight of 8% in the long position, regardless of the other bonds in the

portfolio. This method allows us to describe a position on each bond as a simple binary choice

between ‘Y’ and ‘N’, obviating the need to adjust the existing position by a small amount. It not

only reduces the complexity in portfolio return computation but matches the reality that bond
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investors won’t adjust their positions from, say, $1 million to $1.05 million simply because it is too

costly to make such adjustments.

3 Data

3.1 Data for the Machine Learning Return Predictions

Our datasets include daily bond data from Enhanced TRACE (TRACE) and the constituent

bonds from the Bank of America (BAML) Investment Grade and High Yield indices as made avail-

able via the Intercontinental Exchange (ICE). We source equity and accounting data from CRSP

and COMPUSTAT. We filter the data using standard approaches as prescribed by the literature

which is explicitly described in Internet Appendix A. To train the machine learning models, we

construct the 29 bond and equity characteristics (otherwise known as model features) used by

Kelly et al. (2021), henceforth KPP. This data combines several monthly bond and stock-based

characteristics that have been shown the predict one-month ahead future corporate bond excess

returns. The database includes 15 bond-based characteristics and 14 equity-based characteristics.

Detailed descriptions of the construction of these variables are provided in the Appendix Table A3.

All characteristics are cross-sectionally rank demeaned to lie in the interval [−0.50,0.50]. In robust-

ness, we use the publicly available dataset made available by KPP which includes pre-computed

bond returns and the 29 characteristics. Our results are close to identical.5 Overall, the data used

to train the ML models with non-missing data for the 29 stock and bond characteristics comprises

15,483 bonds issued by 1,492 firms over the sample period from January 1998 to December 2022

(T = 288).

3.2 Data for Net Returns

To compute the net returns of the strategies, we combine daily data from both the TRACE and

ICE data sets. We use dealer-customer trades in the TRACE data, filtered as described in Internet

Appendix A. We then compute the simple average of transaction prices separately for bids (P
s(v)
t,d )

5We thank Bryan Kelly and Seth Pruitt for making this data publicly available on their websites.

14



and asks (P
b(v)
t,d ) on a day, using only transactions with volume above the cutoff, v. We use the size

cutoff of $5,000, $10,000, $20,000, $50,000, $100,000, $200,000, $500,000, $1 million, $2 million, $5

million, $10 million, and $20 million. The first eleven cutoff values are set following Edwards et al.

(2007) and we add another large value of $20 million as the maximum. Since v is a lower bound,

a higher value of v leads to a smaller number of transactions included in the averages.

We then merge the daily transaction prices in TRACE to the quote prices in ICE. If there

is no observation for a bond in a month in TRACE but there is one in ICE, then we treat

it as the trade not happening in that month and still compute returns as described in Sec-

tion 2.1. In the end, by combining TRACE and ICE, we calculate six types of net returns

(Rb(v)h,Rhs(v),Rb(v)s(v),Rs(v)h,Rhb(v),Rs(v)b(v) ) and gross returns (Rhh).

Using both TRACE and ICE databases allows us to pin down the effect of half spreads and

delays, but forces us to use a smaller sample to compute the net returns on the strategies than

estimating the ML models. Focusing on this intersection between the two databases, we have

746,464 bond-month observations from August 2002 to November 2022 (T = 244).

Table 2 reports the summary statistics of the panel data for selected transaction sizes of

$100,000, $1 million, and $10 million. The average returns on the six types of net returns and

gross returns are quite different from each other. For example, for the volume of $100,000, the

average returns for the long positions are -0.10%, 0.50%, and -0.13% for Rbh, Rhs, and Rbs, respec-

tively. The average for short positions are higher and 0.35%, 0.95%, and 0.85% for Rsh, Rhb, and

Rsb, respectively.6 The difference among various net returns reflects bid-ask spreads and delays.

ICE provides bid quotes for all prices, not mid-prices. However, when we mark to market, we

use these quotes. As a result, Rbh, where the investor pays an ask price and marks the bond at

bids, tends to be low on average. In contrast, Rhb tends to be high because the position starts at

a bid quote and ends at an ask, with Rhs and Rsh in between. The gap in average returns is more

pronounced for small transactions, as their bid-ask spreads are larger.

To understand the sample across trade sizes, we plot the mean and median returns for by trade

size in Panel A, Figure 3. As the volume threshold increases, Rbh, Rbs, Rsh, and Rsb converge to

6The returns for short positions are higher as the trade starts from a bid price (as an investor sells) and concludes
with an ask price (as an investor buys).
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the risk-free rate because if there is no trade, investors do not initiate the position and earn the

risk-free rate. In contrast, Rhs and Rhb converge to the mark-to-market return, Rhh, because delays

prevent investors from unwinding the existing positions. Panel B shows that the percentage of the

observations with no trade increases significantly with trade size. As size increases, the bid-ask

spreads shrink, but the proportion of unexecuted trades increases. This explains the net return’s

convergence to either the gross return or the risk-free rate.

Table 3 reports the same statistics using duration-adjusted corporate bond returns. We later

study the model performance using these alternative measures of excess returns.

Figure 4 shows the distribution of trade sizes in the corporate bond market over time. Through-

out the sample period, more than 50% of realized transactions are $50,000 or less, and trades above

$1 million account for less than 20% of the number of trades. Interestingly, the share of small trades

increases during the 2008 financial crisis, suggesting the increasing importance of adverse selection.

In the post-Volcker periods, dealers use their inventory capacity less frequently and increase the

share of pre-arranged trades (Bessembinder et al. 2018; Wu 2022), leading to the declining share of

small trades in the 2020 pandemic crisis. This pattern confirms the increasing importance of trade

delays.7

4 Performance of the Machine Learning Models

4.1 Estimating the Machine Learning Models

Following the notation in Gu, Kelly, and Xiu (2020), we describe a corporate bond’s return in

excess of T-bill rates as an additive prediction error model:

Ri,t+1 = Et(Ri,t+1) + ϵi,t+1, (5)

7In Internet Appendix C, we study institutional investors’ quarterly position changes in eMAXX to confirm the
validity of trade size estimates. In addition, in the Internet Appendix Figure A.3, we plot the distribution of insurance
company trade sizes using NAIC data. As expected, their trade size is generally larger than that shown in Figure
4, with a cross-sectional median of around $1 million throughout the sample period. More than 10% of trades are
above $5 million.
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where,

Et(Ri,t+1) = g∗(zi,τ ). (6)

Bonds are indexed as i = 1, . . . , N and months by t = 1, . . . , T . Our objective is to isolate a

representation of Et(Ri,t+1) as a function of predictor variables that maximizes the out-of-sample

explanatory power for realized Ri,t+1. We denote those predictors as the K-dimensional vector zi,t,

and assume the conditional expected return g∗(·) is a flexible function of these predictors. With one

exception, all of our model estimates minimize the mean squared prediction errors (MSE). In total,

we consider eleven linear and non-linear machine learning models including ordinary least squares

(OLS), OLS with the Huber loss function (OLS-Huber); penalized linear regression techniques:

LASSO, Ridge and Elastic Net (ENET); dimension reduction methods including principal compo-

nent analysis (PCA), partial least squares (PLS) and instrumented principal component analysis

(IPCA); and non-linear regression tree based methods including random forests (RF), gradient

boosted trees (GB) and extreme trees (XTREE). In addition, we form the combination model

(COMBO), which is the equally-weighted average across all of the eleven models one-month ahead

predictions (Rapach, Strauss, and Zhou, 2010).

For the first estimation as of July 2002, we source the last 55 months of data back to January

1998, and estimate the respective ML model. We measure excess returns at t and the 29-dimensional

vector of bond characteristics at t−1. We perform cross-validation using a 70:30 training-validation

split which preserves the temporal ordering of the panel data. We then use the vector of charac-

teristics available at time t to produce a forecast of bond excess returns for t+ 1. These forecasts

(expected returns) are available to the bond portfolio manager at time t, meaning they can trade

on them at the end of the month. Thereafter, all models are re-trained every 12-months and cross-

validated every 5-years with an expanding window.8 We provide additional details related to the

cross-validation and training of the respective models in Section B of the Internet Appendix.

8This gives the models an advantage in that they are re-trained and re-cross-validated multiple times over our
sample.
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4.2 Portfolio Performance Before Transaction Costs

Before considering the machine learning-based long-short portfolios, we pin down which anomaly

characteristics are individually useful in forming profitable long-short bond portfolios. For each one

of the 29 characteristics, we form quintile portfolios and initiate a long position in the fifth quintile

and a short position in the first quintile. We use the ICE data and perform a preliminary analysis

to create value-weighted quintiles to see if the long-short strategy has positive or negative returns.

We then sign the raw characteristics so that, on average, the long position has higher returns than

the short position. We compute the average gross/net returns of the high-minus-low portfolio and

the turnover rate.

In addition, we estimate the bond CAPM alpha by running time series regressions of the strate-

gies’ returns on the corporate bond market factor:

Re
t = α+ βMKTBNet,t + εt, (7)

where MKTBNet,t is the excess returns of BlackRock’s corporate bond exchange-traded funds

(ETFs), averaged between the investment-grade ETF (Ticker: LQD) and the high-yield ETF

(Ticker: HYG) using the total market value of corporate bonds in each respective rating category as

the weights. We use the ETF returns because they reflect the cost of buying and holding the bond

market portfolios. Therefore, ETF returns provide a fair benchmark to evaluate the performance of

trading strategies net of costs. The detailed construction method of the market factor is provided in

Appendix B. We find that the average excess returns on our ETF-based market factor is 0.32% per

month, while the corresponding value for the value-weighted market bond portfolio of Dickerson

et al. (2023a) is 0.36% over the same period. The lower value of the ETF returns suggests that

even holding the market portfolio is somewhat costly for investors. To account for autocorrelation

in the returns, we adjust the standard errors using Newey and West (1987) 12 lags.

We first examine the average excess returns and CAPMB alphas before transaction costs, shown

in Table 4. Of the 29 characteristics, four generate significantly positive average returns. These are

credit spreads (0.44%), six-month changes in credit spreads (6mspread, 0.52%), the ratio of spreads
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to distance-to-default (sprtod2d, 0.37%), and volatility (0.40%). Many of the variables are related

to credit spreads, a finding consistent with Nozawa (2017), who show that credit spreads predict

bond returns. Looking at the CAPM alphas, equity momentum (0.14%), 6mspread (0.45%), and

sprtod2d (0.24%) generate significant returns after adjusting for market risk. Figure 5 plots the

gross average excess returns (Panel A) and the CAPM alphas (Panel B), visualizing the information

in Table 4. Overall, these results seem to support the observation of Dick-Nielsen et al. (2023) that

many bond characteristics, when used individually, do not predict bond returns.

Next, we combine the information in each signal and examine the performance of the machine

learning algorithms. Each month, we sort corporate bonds into value-weighted quintiles based on

the month-end expected returns generated by the machine learning algorithms. We then take a

long position on the top quintile and a short position on the bottom quintile, calculate the excess

return of the long-short strategy, and estimate the CAPM alphas.

The second column of Table 5 reports the average excess returns of the machine learning-

based strategies. We find that ML algorithms significantly improve the return predictability of the

underlying signals. Ten of the twelve strategies deliver significantly positive average excess returns.

Somewhat surprisingly, relatively simple methods, including OLS and OLS-Huber, generate high

average excess returns of 0.37% (t=3.34) and 0.50% (t=3.15), respectively. These results show that

the ML techniques we use do indeed extract useful information in predicting bond returns. They

are also consistent with Bali et al. (2020), who find that most ML techniques perform equally well

in predicting corporate bond returns. Looking at the CAPM alphas, five of the twelve strategies

generate significant alphas before transaction costs. These strategies include OLS (0.28%), LASSO

(0.23%), Ridge (0.28%), RF (0.22%), and GB (0.24%).

Binsbergen et al. (2023) find that adjusting for corporate bond duration significantly affects the

test of asset pricing models. Thus, we replace corporate bond returns with the difference between

corporate bond returns and duration-matched Treasury returns (computed by ICE) and compute

the duration-adjusted returns of the strategies. Table 6 shows the average duration-adjusted returns

and the CAPM alphas. Using duration-adjusted returns improves the performance of the model

after adjusting for market exposure. Ten of the twelve algorithms now generate significant CAPM
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alphas, confirming the value of combining multiple signals to generate reliable return forecasts.

4.3 Impact of Transaction Costs

In this section, we evaluate the impact of transaction costs on the performance of the ML

strategies. Since transaction costs depend on trade size, we first use two sizes: $100,000 and the

optimal value that maximizes the net CAPM alpha. We contrast the optimal size with $100,000 as a

reference point because this is the value used in the prior literature to represent typical institutional

trades (e.g., Bessembinder et al. 2008).

The third and sixth columns of Table 5 show the average excess returns and CAPM alphas net

of transaction costs, assuming a trade size of $100,000. After taking costs into account, ten of the

twelve algorithms generate negative average excess returns, and all of them have negative CAPM

alphas. Figure 7 shows the gross and net returns and alphas for the long-short strategies based on

ML algorithms with the $100,000 threshold. Clearly, the net alphas are negative for all strategies

and three of them have significantly negative net alphas.

These costs can be reduced by choosing the optimal trade size. The eighth column of Table 5

reports the optimal trade size for each ML algorithm. We find that all but PCA and IPCA have

an optimal trade size of $2 million. Since the large trade size reduces the half spreads charged on

each trade, the net returns and alphas improve from the case of $100,000.

The fourth and seventh columns of Table 5 show the net returns and alphas at the optimal

trade size. At the optimum, the CAPM alpha ranges from -0.09% to 0.04%. While six algorithms

produce positive net alphas, none are statistically or economically significant. Figure 8 visualizes

these estimates. While the net alphas are less negative than Figure 7, it is a challenge for the

ML algorithm to generate significantly above market returns net of costs. Using duration-adjusted

returns, reported in Table 6, leads to a similar conclusion.

The key to the above results is the inclusion of delay costs in the calculation of transaction costs.

Without it, the half-spreads shrink to zero as trade size increases, and we would incorrectly conclude

that the ML algorithm generates profitable strategies after costs. To illustrate the key mechanism,

Figure 9 shows the average returns of the long-short strategies before and after transaction costs.
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For example, the left panel of Panel A plots gross and net CAPM alphas using OLS. Before costs,

this signal generates an average alpha of 0.28%. The net alphas, on the other hand, are a hump-

shaped function of the target trading volume, with a maximum at $2 million.

We decompose the difference between gross and net alphas into the part explained by half

spreads and the part explained by delays. To do this, we compute alternative net returns using

ICE’s quotes on the transaction dates provided by TRACE. Thus, this alternative reflects the cost

of delays but not half spreads. The difference between gross returns and these alternative net

returns gives us the pure effect of delays, and the remainder is accounted for by the half spreads

that drive a wedge between ICE quotes and TRACE transaction prices.

The right panels of Figure 9 show the decomposition of costs. Continuing with the OLS example,

the effect of half-spreads falls from 0.6% at the volume of $5,000 to near zero at the maximum

trade size of $20 million, reflecting the standard spread-volume relationship. Note that our half-

spread cost takes into account the wedge between transaction prices and quotes as well as portfolio

turnover. For example, if the price wedge is 1% and portfolio turnover is 30%, then our half-spread

cost is approximately 0.3%.

On the other hand, the delay effect increases as the target volume increases from near zero at

the $5,000 volume to 0.30% at $2 million, reflecting the cost of missing trading opportunities. As a

result, the sum of the two costs exhibits a U-shaped pattern with volume. As trade size increases

beyond $2 million, the increase in delay costs dominates the decrease in half-spread costs. Thus, it

is impossible to argue that ML strategies provide profitable trading opportunities when investors

trade with very large volumes.

We observe the U-shaped transaction costs for other ML strategies in other panels of Figure

9. However, this pattern does not hold for an uninformative signal. In Panel F, we repeat this

decomposition for PCA, which produces a negative alpha even before transaction costs. In this case,

the cost of delay does not increase significantly as size increases. For a size greater than $10 million,

the cost of delay decreases. This is because if a signal is unprofitable, it is better not to execute

the trade and avoid incurring bid-ask spreads. Therefore, a longer delay makes the net return

less negative, which is interpreted as a benefit of delay. In this case, the total cost monotonically
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declines with trade size and therefore we cannot find an optimal trade size. In practice, such cases

are not relevant in evaluating the role of delays: A more interesting case is strategies with positive

alphas before costs. Looking at all panels in Figure 9, ten out of twelve strategies exhibit positive

gross alphas and thus we observe U-shaped functions with an interior solution for the optimal trade

size.

Table 7 reports the decomposition of the trading costs for a trade size of $100,000 and the

optimal size for each ML strategy. With the transaction size of $100,000, the cost due to half

spread ranges from 0.24% to 0.35% while the delay cost ranges from 0.01% to 0.05%. With the

optimal trade size, the half-spread cost is lower, ranging from 0.02% to 0.16%, reflecting the cost

savings for large transactions. On the other hand, the delay cost is now higher, ranging from 0.04%

to 0.13%. This pattern highlights the key trade-off between half spreads and delays.

Internet Appendix Table A.1 reports the same decomposition for individual signals. Since the

profitability and portfolio turnover rates differ greatly among the signals, we observe a greater

variation in transaction costs.

One might ask whether it is realistic to always trade in the fixed dollar amount or whether the

optimal trade size is constant over time. To take a first look at the importance of time-varying trade

size, we split our sample in half, one period from August 2002 to December 2012 and the other

from January 2013 to November 2022. Figure 10 shows the cost decomposition for the COMBO

strategy for these two subperiods. In this case, the optimal trade size remains unchanged at $2

million. This is because two forces cancel each other out. On the one hand, the lower average gross

returns in the second period make it optimal to wait longer, thus increasing the optimal trade size.

On the other hand, the lower bid-ask spreads in the second period make it less costly to trade a

small quantity. As a result, investors would not benefit from changing the target trade size between

these two periods.

In the Internet Appendix Section E, we investigate the prospect of dividing large target trade

sizes into smaller portions to determine if this strategy can help minimize transaction costs. Our

findings indicate that splitting a large trade does not reduce trading costs because the bid-ask

spreads increase, offsetting any benefits from faster execution.
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4.4 Are Our Cost Estimates Biased?

We compute the cost of delay by assuming that if we do not observe trades of size at least v in a

month on TRACE, the investor’s order remains unfilled. Although this estimate shows the actual

return net of cost for a real-time investor, it is still an equilibrium outcome. The interpretation of

our cost estimates varies depending on how one views off-equilibrium trades. Our perspective is

that liquidity supply is reflected in the observed trade size and frequency. However, an alternative

viewpoint is that liquidity demand drives them.

For example, one could argue that very large investors always enjoy near-zero half spreads but

choose not to trade often because they do not need to. According to this argument, the rarity of

large trades in TRACE reflects the lack of liquidity demand rather than liquidity supply (i.e., the

need for dealers to pre-arrange a round trip). However, the evidence in the prior literature favors

the liquidity supply-based explanation. Goldstein and Hotchkiss (2020) find that for bonds rated

BBB and below, large client orders tend to have a shorter time in dealer inventory.9 This provides

direct evidence that dealers pre-arrange trades for larger trades to avoid inventory risk. If they

do not do this, then large trades should remain in their inventory longer, not shorter, than small

trades. Consistent with this finding, Kargar et al. (2023) presents direct evidence that customers

experience delays using the order-level data on the electronic trading platform.10

Furthermore, the explanation based on liquidity demand suggests that large investors have a

clear advantage in terms of costs compared to small investors, which leads to their outperformance

and faster growth. However, our analysis of corporate bond mutual funds in Internet Appendix

Figure A.4 and Table A.2 shows no evidence supporting this idea.

4.5 Determinants of Optimal Trade Size

The optimal trade size for individual signals significantly varies. The ninth column of Table

4 shows that the optimal size ranges from $500,000 to $20 million (i.e., the corner solution). In

9See their Table 7.
10O’Hara and Zhou (2021) show that the dependence of transaction costs on trade size is weaker on the electronic

platform. However, in Kargar et al. (2023), the market share of the electronic platform is less than 20% of the total
volume and lower for bonds with high transaction costs: i.e., those with large size and higher credit risk.
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this section, we take advantage of the observed difference across strategies and investigate the

determinants of optimal trade size. As we have seen in the previous section, the optimal size

depends on how profitable the strategy is, as measured by gross alpha. In addition, it may depend

on how frequently an investor must trade, which is measured by the average turnover rate of

strategy s:

Turnp =
1

T

T∑
t=1

∑
i∈Nt

|wi,p,t+1 − (1 +Rhh
i,t+1)wi,p,t| where p ∈ {long, short}, (8)

Turns = 0.5(Turnlong + Turnshort). (9)

In this exercise, we use the turnover rate when the trade size is the smallest ($5,000) so that

it captures the persistence of the signal. A higher size would artificially reduce turnover due to

implementation delays.

To describe optimal v, we classify 41 strategies (29 based on single signals and 12 based on ML)

into three categories based independently on their turnover rate and gross CAPM alpha, creating

nine bins. For each of the nine categories, we compute the average across strategies within a bin

for optimal trading volume, total transaction cost (at optimal volume), half-spread cost, and delay

cost.

Table 8 shows the averages for nine bins. The value for the high gross alpha/low turnover bin

and that for the low gross alpha/high turnover bin are missing because no strategy falls into these

two categories. In Panel A, we report the average of the optimal trade size. The optimal trade size

is strongly decreasing in gross alpha. For the low alpha category, the optimal volume is $1.4 million,

while for the high alpha category it is $0.2 million. This is because when the signal is profitable, it

is better to execute trades as soon as possible and avoid missing the trading opportunity generated

by the signal. In such a case, it is optimal to choose a small trade size and reduce the cost of delays.

On the other hand, the turnover rate does not significantly affect the optimal size. For strategies

with the medium gross alpha, the optimal size is $0.92 million, $1.00 million, and $0.84 million for

low, middle, and high turnover rates, respectively.

Turning to half spread costs (Panel C), they increase in both turnover rate and gross alpha.
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The positive relationship between half spread cost and turnover rate is somewhat mechanical, as

the cost increases as investors trade more frequently. The cost is also positively correlated with

gross alpha because a highly profitable signal optimally sets a small trade size, leading to higher

bid-ask spreads.

The pattern for delay costs is more nuanced. Delay costs are highest when both gross alpha and

turnover are high. When gross alpha is high, it is costly to miss a trading opportunity, and thus

delay costs are high. This cost is mitigated by the fact that trading volume is optimally chosen

to reduce delay when gross alpha is high. However, when the turnover rate is also high (i.e., the

signal is moving quickly), this cost mitigation is not as effective, resulting in the high delay cost.

For example, for the bin with the highest gross alpha and turnover rate, the delay cost is 0.13% on

average, higher than other bins (ranging from 0.00% to 0.06%). The total cost, shown in Panel B,

is the sum of the half-spread cost and the delay cost.

4.6 How Much Gross Alpha Do We Need?

We have emphasized the role of transaction costs in evaluating the performance of trading

strategies. In this section, we provide a guide for future research that explores the new signals

that predict corporate bond returns. The goal of this exercise is to present the target level of gross

alpha that achieves the desired level of net alpha under the assumption that trade size is optimally

chosen. This will allow other researchers to calculate the gross alpha of their strategies and quickly

check whether they also generate a positive alpha net of costs.

Since the relationship between gross and net alpha is affected by the persistence of the signal,

we use the 41 strategies and estimate multivariate regressions of net alpha and the associated

t-statistics on the turnover rate and gross alpha:

αNet,s = 0.013− 0.002Turns + 0.472αGross,s − 0.001Turns × αGross,s + εs, (10)

t(αNet,s) = 0.177− 0.017Turns + 5.809αGross,s − 0.040Turns × αGross,s + εs. (11)

Let α̂Net(Turn, αGross), t(α̂Net)(Turn, αGross) be the fitted value of the regression evaluated at
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(Turn, αGross). Then, we plot the combination of Turn and αGross that satisfies the minimum

level of αNet or t(αNet).

The left panel of Figure 11 shows the combination of Turn and αGross required to achieve net

alpha of 0%, 0.1%, and 0.2% per month. In the figure, a strategy in the northwest region of the

graph generates higher net alpha, while a strategy in the southeast region generates lower net alpha.

The dashed line is the break-even point needed to match the passive ETF returns. To outperform

the ETF by a modest 0.1% per month, a strategy must be above the dotted line. As we can see in

the chart, none of the ML strategies achieve this goal.

The right panel plots the bound using the t statistic of the net alpha. To achieve the t value

above the 10% level, a strategy must be above the red dotted line, while the 5% significance requires

being above the yellow solid line.

Achieving statistically significant net CAPM alpha requires relatively high values of gross alpha.

For example, consider a hypothetical strategy with a turnover rate of 20%. Then, it must generate

gross alpha of 0.36% and 0.43% to achieve a t-statistic of 1.65 and 1.96, respectively. If the

turnover rate is 30%, the corresponding required gross alpha’s are 0.43% and 0.50%, respectively.

If a strategy’s turnover is higher, then it requires higher levels of gross alpha to be useful in practice.

For future reference, we tabulate the net CAPM alpha as a function of gross alpha and turnover

rate in Table A4 in Appendix.

4.7 Robustness

In this section, we perform several robustness checks. First, we consider long-only strategies

instead of the long-short strategies used in the main analysis. This analysis is important because

shorting corporate bonds can be quite costly for some investors although Asquith et al. (2013) show

that the cost of borrowing corporate bonds is comparable to that of stocks.

Using the expected returns generated by the ML models, we take a long position in the top 20%

bonds and calculate their gross and net returns over T-bill rates. Table 9 reports the performance

of the long-only strategies. We find that the average gross and net excess returns are higher than

those of the long-short strategies in Table 5. This is to be expected because corporate bond returns
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are generally higher than T-bill rates. Once we account for market risk, the CAPM alphas of the

long-only strategies are similar to those of the long-short strategies. For example, using COMBO,

the gross and net alphas for the long-short strategy are 0.25% and 0.01%, respectively, while the

corresponding values for the long-only strategy are 0.13% and 0.02%. None of the twelve long-only

strategies generate significant alphas after transaction costs even at the optimal trade size.

Second, we investigate whether our results are driven by our choice of data, sample period and

our construction of the 29 bond and stock characteristics. To verify all three of these potential

concerns, we source the publicly available 29 KPP stock and bond characteristics and bond returns

based on the WRDS TRACE database from Seth Pruitt’s website, and replicate the estimates of net

returns and alphas. This exercise not only uses a publicly available data source, but encompasses a

different sample period and data source (TRACE is based on bond transactions, not quotes). Due

to the signals’ availability, the sample for this exercise is from July 2006 to July 2020 (T=169).

Table 10 reports the gross and net returns and alphas. We confirm that the ML strategies are

profitable before costs and market risk adjustment. However, the net alphas are still insignificantly

different from zero in all cases, corroborating our main results.

Third, we consider a potential boost for the ML strategies by selecting a smaller number of

bonds for the long and short positions instead of buying and selling all the bonds in the top and

bottom 20%. In our main results, the average number of bonds in the long and short positions for

the OLS strategy is 745 and 663, respectively. In practice, investors may sample a smaller number

of bonds for ease of implementation. In line with this approach, we construct long-short strategies

by selecting the top 2% and bottom 2% of the cross-section of corporate bonds, thereby narrowing

the number of bonds in each position.

Table 11 shows the gross and net returns/alphas for each ML strategy. By construction, the

number of bonds in the long and short positions is smaller. Since we are using the bonds with

extreme signal values, the average gross excess returns are higher than the main results in Table 5.

For example, for OLS, the gross returns are now 0.68% (t=3.97), higher than the main result using

quintile portfolios (0.37%, t=3.34). The benefit of higher average returns is partly offset by the cost

of higher volatility, which attenuates the statistical significance (and the Sharpe ratio). In addition,
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the monthly turnover of all strategies is almost doubled relative to holding a larger allocation of

bonds in the long and short leg of the position. The high turnover inflates the transaction costs,

which leads to an insignificant net CAPM alpha for OLS (0.12%, t=0.71). Looking across strategies,

eleven of the twelve ML strategies have insignificant net alphas. The only exception is GB with an

optimal trade size: it generates a significant net alpha of 0.46% (t=2.88).

5 Do Corporate Bond Mutual Funds ‘Beat the Market’?

In order to identify whether our net of cost machine learning strategy returns are ‘underper-

forming’ what is being achieved in reality, we investigate the performance of corporate bond mutual

funds over an identical sample period. If many bond mutual funds are indeed beating the market

across a wide variety of fund styles, it would indicate that our strategies could be refined. However,

if most funds underperform relative to a simple passive benchmark, it would corroborate our main

findings showing that generating net of cost alpha is an immensely challenging task.

5.1 Distribution of Corporate Bond Mutual Fund Alphas

We examine the CRSP mutual fund database. The sample is from July 2002 to November 2022

where the start and end date is set to be the same as our main results. We identify corporate bond

mutual funds by CRSP’s fund classification. In particular, we choose the subcategory ‘Corporate’

among ‘Fixed Income’ funds. Funds with less than 36 monthly observations and total net assets

(TNA) less than $10 million are removed from the sample. We also remove all funds that track an

index or are passively managed, i.e., we focus on actively managed bond funds.

After filtering, we are left with a sample of 485 mutual funds that invest in corporate bonds.

To pin down which funds exhibit alpha, for each fund we estimate a single-factor model of each

fund’s net return in excess of the one-month risk-free rate on the MKTBNet factor.

We present summary statistics in Table 12. Panel A presents fund summary statistics and

B reports cross-sectional fund performance statistics. On average a representative mutual fund

remains in the sample for 109 months, with TNA of US$ 575 million, average annual expense ratios
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of 0.90% and annual turnover of 119%. In the cross-section, gross (net) fund alphas are 0.05%

(0.03%) on average, with an average gross (net) return of 0.33% (0.26%) per month. The passive

net of costs bond market factor explains over 70% of the time-series variation of fund returns with

a beta of close to 0.70.

We present the distribution of the funds monthly net alphas and associated t-statistics in Panels

A and B of Figure 12. Of the 485 mutual funds we consider, only 42 of them (8.65% of the sample)

generate risk-adjusted net returns relative to the passive net of costs MKTBNet benchmark. The

average net alpha of these funds is economically small at 0.18% per month. Of the 42 funds that

do generate alpha, 33% invest in investment grade bonds with higher yields (bonds rated closer to

BBB-) and 17% invest in high rated investment grade bonds.11 Noninvestment grade bond funds do

not generate any alpha. For active corporate bond mutual fund investors, these preliminary results

are somewhat discouraging, but are supportive of our findings related to the poor net of cost alphas

generated by our machine learning strategies. Relative to the average gross alpha generated by the

mutual funds (0.05%), the machine learning based portfolios perform admirably (average alpha

across the strategies is 0.20%).

Very few mutual funds offer incremental risk-adjusted performance in excess of simply holding

the passive net of cost bond market portfolio. Of funds that do outperform, the economic magnitude

of the outperformance is small. What is perhaps more disheartening, is that 37% of the funds (over

one third of the sample) generate net of cost alphas that are less than zero. The distribution of

the corporate bond mutual fund alphas is not unsurprising given that active portfolio management

is considered a zero (or negative) sum game (Fama and French 2010 and Sharpe 1991). If some

active bond bonds generate alpha, it comes at the expense of other bond funds. However, relying

on alpha as a measurement of skill can be misleading. We now turn to identifying whether active

bond mutual funds ‘add value’ through skillful management to further corroborate our findings

that outperforming a simple passive bond benchmark is a tall order.

11The remaining funds cannot be classified due to a lack of information.
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5.2 Skill and Manager Value Added

Berk and Van Binsbergen (2015) show that gross alpha does not measure mutual fund manager

skill, and it also need not be positively correlated with skill. We examine a proxy for skill which

directly measures the ability of the fund manager to extract money from the markets. To do this

we compute the value that the fund offers to an investor over and above a gross return passive

benchmark. Following Berk and Van Binsbergen (2015), we measure a funds added value (Vi,t) by

multiplying the benchmark adjusted realized gross mutual fund return, Rg
i,t−Rg

MKTB,t, by the real

size of the fund (assets under management scaled by inflation) at the end of the previous month,

Vi,t = TNAi,t−1 · (Rg
i,t −Rg

MKTB,t),

where TNAi,t−1 is the total assets of the fund in the prior month, Rg
i,t is the gross return of fund

i in month t computed as the funds net return plus the monthly management fee, and Rg
MKTB,t is

the gross return of the bond market factor. In this equation, Vi,t represents the monthly ‘value-add’

from fund manager skill in US$ millions.

The measure of ‘skill’, Si for each fund is the time-series average of each funds value-add. We

then compute the cross-sectional average of Si, using (i) equal-weights (the weights are equal for

each fund in the cross-section), (ii) time-weights (the weights are the number of months each fund

is present in the sample) and (iii) expense ratio weights (the weights are the average fund expense

ratios).

We report the respective cross-sectional averages of Vi in Panel A Table 13 and cross-sectional

percentiles in Panel B. Strikingly, the equally-weighted average monthly value-add of a given fund is

negative $396,000 per month, or negative $4.75 million annually. This value is economically large in

absolute value, and highly statistically significant at the 1% nominal level. The time weighted and

expense weighted estimates are similar in magnitude (negative) and also statistically significant.

In contrast to results presented in Berk and Van Binsbergen (2015), as opposed to adding value

on average, we show that bond mutual fund managers are value extractors, implying active bond

investors are paying for relatively adverse performance with respect to the passive benchmark. In
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Panel B, the variation in value-add is large. Bond funds at the 1st (99th) percentile generated a

negative (positive) value-add of $9.12 ($2.63) million per month. The median fund lost investors

an average of $60,000 per month relative to the passive benchmark, and only 75% of the mutual

funds we consider generated a positive value-add.

5.3 Luck vs. Skill?

Given that a few mutual funds do generate net of costs alpha, we follow the methodology of

Barras, Scaillet, and Wermers (2010) to partition the proportion of funds that exhibit significant

alphas by luck and skill. We first estimate mutual fund alphas and their associated p-values

individually, using net of fee returns and the MKTBNet passive benchmark portfolio. Funds can

be classified as either ‘Unskilled’, implying they have a net alpha shortfall (α < 0), ‘Zero-alpha’,

which means managers have enough skill which is just sufficient to recover trading costs (α = 0),

and ‘Skilled funds’ meaning managers are skilled enough to generate an alpha surplus after costs

(α > 0). Given we cannot observe the true alphas of each fund in the population, we infer the

prevalence of each of the above skill groups by using the false discovery rate (FDR) as a methodology

for separating skill from luck (See Benjamini and Hochberg 1995 and Barras et al. 2010 for the

estimation details).

We present the results in Panel A and B of Table 14. Of the 485 corporate bond specific mutual

funds we consider, 76.45% (371 funds) are estimated to be zero-alpha funds.12 This implies that,

confirming prior results in the literature, the majority of the funds we consider are run by managers

with enough ability to generate a net alpha that roughly covers their management fees. In other

words, the economic rents extracted from these managers from their clients are about enough to

cover their fees and trading costs. Funds that generate a non-zero alpha amount to 23.55% of our

mutual fund sample (114 funds). Of these funds, and in contrast to results for all mutual funds as

in Barras, Scaillet, and Wermers (2010) and others, only 8.07% of these funds are truly unskilled

with a true alpha less than zero. Skilled funds with true alpha greater than zero comprise 15.48% of

12Given the critique of the FDR method when applied to mutual funds by Andrikogiannopoulou and Papakon-
stantinou (2019), our results are robust to changing the FDR parameters which generates the ‘Zero-alpha’ fund
percentage.
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the proportion of non-zero alpha funds.13 In Panel B, we present the proportion of the significant

alphas in the left and right tails of the distribution (denoted as Ŝ−
γ and Ŝ+

γ ) at four significance

levels (γ = 0.05, 0.10, 0.15, 0.20). Focusing first on the right tail, when γ = 0.20, 14.02% (68)

funds generate a positive alpha with a two-sided p-value below 20%. However, of these funds, more

than half (37) of the funds are merely lucky, i.e., the positive alpha is not due to manager skill in a

statistical sense. As we decrease the level of γ (increase the level of significance), this phenomenon

reverses, i.e., fund alphas that have a greater degree of statistical significance are earned by a

greater proportion of skilled managers. The proportion of corporate bond mutual fund managers

who generate statistically significant alpha in the right tail at the 5% nominal level is 6.39% (31

funds). Of these managers, 4.48% (1.91%) are skilled (lucky). Unfortunately (for active bond

mutual fund investors), this result broadly confirms those presented in the prior section on value.

Of the 31 funds that generate positive alpha, only 22 funds (out of 485) generate the positive alpha

through skillful management. Only a tiny fraction of very top performing mutual funds appear to

outperform a passive bond market ETF net of costs.

Overall, when synthesizing the results from both of the methods we use to analyze corporate

bond mutual fund returns, two salient results are worth emphasizing. First, a representative investor

is, on average, better off simply purchasing a portfolio of low cost, passive bond market ETFs.

Second, the probability of selecting an active bond portfolio manager who is able to generate

statistically significant net of fees alpha through skill is extremely unlikely.

6 Conclusion

In this paper, we present delayed trade execution as a key cost in the evaluation of trading

strategies using illiquid assets. When transactions are infrequent, the standard portfolio approach of

Fama and French (1992) no longer provides a realistic performance benchmark for trading strategies,

even after adjusting for bid-ask spreads. The cost of missing trading opportunities is particularly

severe when the signal contains valuable information and moves quickly.

13This is in contrast to estimates from the CRSP Mutual Fund database that uses all funds. In Barras et al. (2010)
the percentage of skilled funds is estimated to be 0.60% (statistically indifferent to zero).
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In our framework, investors face a trade-off between tighter bid-ask spreads and execution

speeds. As a result, total transaction costs are a U-shaped function of trade size, as opposed to the

monotonically decreasing function described in Edwards et al. (2007). This allows us to identify

an optimal trade size and ties our hands in selecting a trade size for net return calculations. We

show that the optimal size decreases as the gross alpha of the strategy increases.

Our methodology applies to a broader set of illiquid assets other than corporate bonds. The

key is to find a proxy for the bid-ask spreads on which investors can condition their orders. In the

stock market, the relationship between trade size and bid-ask spreads is positive. However, the

basic tension remains: the trading opportunity at tight bid-ask spreads is limited, and thus one has

to wait longer for order execution if one insists on a tight spread. In the corporate bond market,

trade size is negatively correlated with bid-ask spreads and serves as an excellent proxy for trading

opportunity, but we can use different proxies in different markets.

To underscore the importance of delay costs, we estimate the ML models to generate out-

of-sample forecasts of corporate bond returns. Consistent with previous research, the long-short

strategy based on these forecasts generates significant CAPM alphas before transaction costs. How-

ever, after adjusting for transaction costs and trading delays, the net alphas are essentially zero.

We confirm the difficulty of developing profitable strategies after transaction costs by examining

the returns of corporate bond mutual funds. Consistent with the unimpressive performance of ML

strategies, most corporate bond mutual funds have insignificant alphas relative to passive net of

cost ETF returns. Taken together, these results suggest that generating factor investing strategies

in corporate bonds is a challenge for researchers and practitioners alike.
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Figure 2: Delays and Inventory Dynamics

Signal Y Y Y N N

Panel A. No Delays Over A Month

Sep Oct Nov Dec Jan

Rbh Rhh Rhs

Inventory N Y Y N N

Panel B. Purchase Delays

Sep Oct Nov Dec Jan

Rbh = Rf Rbh Rhs

Inventory N N Y N N

Panel C. Sales Delays

Sep Oct Nov Dec Jan

Rbh Rhh Rhh Rhs −Rf

Inventory N Y Y Y N

This figure illustrates a sequence of trades based on a trading signal. Panel A shows the types of returns

used for a long position when there is no trading beyond one month. The two superscripts of a return R

denote the action taken at the beginning and end of a month, respectively. The superscripts b indicate that

the investor buys, s that the investor sells, and h that the investor holds the existing position. For inventory,

Y indicates that the investor has a bond in inventory and N indicates that he does not. Panel B shows the

case where there is a delay in purchasing a bond. Panel C shows the case where there is a delay in selling a

bond.
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Figure 3: Summary Statistics For Different Trade Size

Panel A. Mean and Median Returns By Size
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Panel B. Percentage of Observations with No Trade
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Panel A plots the mean and median net returns for different trade sizes. Panel B plots the percentage of

observations where there is no trade to calculate a return in the month. Values on the x-axis are in thousand

dollars. 40



Figure 4: Distribution of Trade Size in TRACE: July 2002-December 2022
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This figure plots the cumulative frequency of trade size in TRACE. For example, the area below 10K

represents the number of transactions with a size below $10,000. The sample is from July 2002 to December

2022 and includes only dealer-customer trades.
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Figure 5: Gross and Net Returns For Each Characteristic at $100,000 Volume Thresh-
old

Panel A. Gross and Net Returns
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Panel B. Gross and Net Alphas
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These figures plot the gross/net returns and CAPM α for each underlying signal that forms the basis of

machine-learning algorithm. To compute net returns and α, we use the fixed trade size of $100,000.
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Figure 6: Gross and Net Returns For Each Characteristic at the Optimal Volume
Threshold

Panel A. Gross and Net Returns
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Panel B. Gross and Net Alphas
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These figures plot the gross/net returns and CAPM α for each underlying signal that forms the basis of

machine-learning algorithm. To compute net returns and α, we use the optimal value that maximizes the

net α.
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Figure 7: Average Excess Returns and CAPM Alphas of the ML Strategies: Volume
of $100K
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This figure shows the point estimate and associated two standard error bars for the long-short portfolios

based on the expected returns generated by the machine learning algorithms. Gross returns and alphas are

before transaction costs, and net returns and alphas are after costs. Transaction costs are calculated using

the minimum volume threshold of $100,000.
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Figure 8: Average Excess Returns and CAPM Alphas of the ML Strategies: Optimal
Volume
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This figure shows the point estimate and associated two standard error bars for the long-short portfolios

based on the expected returns generated by the machine learning algorithms. Gross returns and alphas are

before transaction costs, and net returns and alphas are after costs. Transaction costs are calculated using

the optimal threshold that maximizes the net alpha.
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Figure 9: Effect of Transaction Costs: ML Strategies

Panel A. OLS
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Panel B. OLSHUBER
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Panel C. LASSO
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This figure plots the bond CAPM alphas on the long-short strategies before and after accounting for transac-

tion costs (left panels). The transaction costs are decomposed into bid-ask spreads and delays (right panels).

Values on the x-axis are in thousand dollars.
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Figure 9, Continued
Panel D. RIDGE
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Panel E. ENET
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Panel F. PCA
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Figure 9, Continued
Panel G. IPCA
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Panel H. PLS
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Panel I. RF
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Figure 9, Continued
Panel J. GB
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Panel K. XTREE
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Panel L. COMBO
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Figure 10: Subperiod Analysis for COMBO
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This figure shows the decomposition of transaction costs for COMBO strategies using the two subperiods.

In this figure, total costs are the difference between gross and net average returns. The bid-ask spread cost

is the difference between the gross average return and an alternative net average return in which transaction

prices are replaced by quotes on the day of the transaction. Values on the x-axis are in thousand dollars.
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Figure 11: Turnover Rate, Gross and Net CAPM α
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The figures plot the combination of gross CAPM α and portfolio turnover rate that matches the target values

of net CAPM α and the associated t-statistics. The boundaries are estimated by regressing the net CAPM

α’s and t-statistics on gross α, portfolio turnover rate, and the product of the two. The regression uses 41

strategies including 29 individual signals and 12 machine learning algorithms.
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Figure 12: Mutual Fund Alphas

This figure plots the cross-sectional distribution of the corporate bond net of costs single-factor MKTBNet

alphas and associated t-statistics. The dashed red lines indicate the mean values for the alphas (t-statistics).

The dashed blue line represents the cut-off value for the 95% level of significance (t = 1.96). The sample

includes 540 corporate bond mutual funds over the sample period 2002:07–2022:11.
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Table 1: List of Papers on the Cross-Section of Corporate Bonds

Article Cost Estimates

Panel A. Papers Without Transaction Costs
Bai, Bali, and Wen (2019)
Bai, Bali, and Wen (2021)
Bali, Subrahmanyam, and Wen (2021a)
Bali, Subrahmanyam, and Wen (2021b)
Ceballos (2023)
Chen, Wang, and Wu (2022)
Chung, Wang, and Wu (2019)
Dang, Hollstein, and Prokopczuk (2023)
Duan, Li, and Wen (2021)
Friewald and Nagler (2016)
Gebhardt, Hvidkjaer, and Swaminathan (2005a)
Gebhardt, Hvidkjaer, and Swaminathan (2005b)
Haesen, Houweling, and van Zundert (2017)
Huang, Qin, and Wang (2013)
Li, Yuan, and Zhou (2023)
Lin, Wang, and Wu (2011)
Tao, Wang, Wang, and Wu (2022)

Panel B. Papers Incorporating Transaction Costs
Bali et al. (2020) Roll measure of Bao et al. (2011)
Bartram, Grinblatt, and Nozawa (2021) Portfolio-level bid-ask spreads
Bredendiek, Ottonello, and Valkanov (2023) Round-trip transaction costs
Cao et al. (2023) Estimates following Edwards et al. (2007)
Choi and Kim (2018) Considers transaction costs as characteristics
Chordia et al. (2017) Portfolio-level bid-ask spreads
He, Feng, Wang, and Wu (2021) Fixed at 20 to 80bps
Houweling and Van Zundert (2017) Maturity-rating, following Chen et al. (2007)
Israel, Palhares, and Richardson (2017) Maturity-rating, following Chen et al. (2007)
Ivashchenko (2023) Average 12m moving average of bond bid-ask spreads
Ivashchenko and Kosowski (2023) Estimates following Kyle and Obizhaeva (2016)
Jostova et al. (2013) Estimates following Edwards et al. (2007)
Kelly, Palhares, and Pruitt (2021) Fixed at 19bps
Lin, Wu, and Zhou (2017) Break-even transaction costs
Nozawa, Qiu, and Xiong (2023) Bond-level bid-ask spreads
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Table 2: Summary Statistics for Returns: Volume of $100K, $1M, and $10M

Variable N Mean Std. p1 p10 p50 p90 p99 NoTrade(%)

Rhh 746,498 0.30 3.65 -9.54 -2.36 0.29 2.91 9.32

Panel A. $100K
Rbh 746,498 -0.10 3.82 -8.73 -2.36 0.01 1.94 7.23 12.82
Rhs 746,498 0.50 4.20 -10.45 -2.59 0.40 3.67 11.14 12.38
Rbs 746,498 -0.13 4.13 -9.72 -2.68 0.01 2.14 8.19 19.77
Rsh 746,498 0.35 4.32 -7.88 -1.80 0.18 2.60 8.53 11.78
Rhb 746,498 0.95 4.40 -9.52 -2.10 0.69 4.23 12.33 13.42
Rsb 746,498 0.85 4.83 -7.83 -1.54 0.50 3.54 10.79 19.33

Panel B. $1M
Rbh 746,498 0.06 3.07 -7.00 -1.48 0.03 1.58 6.61 32.46
Rhs 746,498 0.49 4.25 -10.70 -2.57 0.40 3.64 11.33 32.06
Rbs 746,498 0.09 3.48 -8.11 -1.75 0.06 1.90 7.91 46.50
Rsh 746,498 0.23 3.44 -6.69 -1.24 0.09 1.88 7.12 31.48
Rhb 746,498 0.68 4.40 -10.16 -2.36 0.51 3.86 11.81 33.08
Rsb 746,498 0.48 3.99 -7.31 -1.20 0.15 2.59 8.98 45.51

Panel C. $10M
Rbh 746,498 0.10 1.75 -2.84 0.00 0.02 0.37 3.24 84.25
Rhs 746,498 0.33 3.98 -10.23 -2.47 0.30 3.11 10.05 82.15
Rbs 746,498 0.11 1.98 -3.28 0.00 0.02 0.37 3.65 93.48
Rsh 746,498 0.14 2.09 -2.75 0.00 0.03 0.40 3.63 82.07
Rhb 746,498 0.36 3.98 -10.08 -2.43 0.32 3.14 10.12 84.36
Rsb 746,498 0.17 2.34 -3.04 0.00 0.03 0.41 4.26 93.06

This table shows the summary statistics of the panel data used in the study. The sample spans from August

2002 to November 2022. Panels A, B, and C correspond to the statistics with volume thresholds of $100K,

$1M, and $10M, respectively. NoTrade(%) is the percentage of monthly observations in which there is no

trade in TRACE above the volume threshold.
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Table 3: Summary Statistics for Returns: Volume of $100K, $1M, and $10M:
Duration-Adjusted Returns

Variable N Mean Std. p1 p10 p50 p90 p99 NoTrade(%)

Rhh 746,464 0.20 3.42 -9.33 -1.47 0.13 2.04 8.68

Panel A. $100K
Rbh 746,464 -0.28 3.83 -8.77 -2.46 -0.05 1.55 7.38 12.82
Rhs 746,464 0.32 4.26 -12.18 -2.42 0.24 3.33 10.64 12.38
Rbs 746,464 -0.31 4.29 -11.15 -2.94 -0.01 2.04 8.51 19.77
Rsh 746,464 0.16 4.32 -8.01 -1.87 0.08 2.17 8.71 11.78
Rhb 746,464 0.77 4.42 -10.78 -1.96 0.52 3.86 11.84 13.42
Rsb 746,464 0.53 4.94 -9.25 -1.96 0.25 3.21 10.88 19.34

Panel B. $1M
Rbh 746,464 -0.10 3.05 -7.08 -1.52 0.00 1.02 6.49 32.46
Rhs 746,464 0.38 4.22 -11.31 -2.32 0.27 3.26 10.86 32.07
Rbs 746,464 -0.05 3.52 -8.58 -1.80 0.01 1.47 7.95 46.50
Rsh 746,464 0.06 3.42 -6.85 -1.24 0.03 1.30 7.05 31.48
Rhb 746,464 0.57 4.37 -10.77 -2.11 0.39 3.50 11.34 33.08
Rsb 746,464 0.25 4.02 -8.04 -1.33 0.09 2.02 8.93 45.51

Panel C. $10M
Rbh 746,464 0.06 1.73 -2.81 0.00 0.02 0.32 2.64 84.25
Rhs 746,464 0.30 3.98 -10.25 -2.37 0.27 2.99 9.93 82.15
Rbs 746,464 0.06 1.97 -3.13 0.00 0.02 0.32 3.10 93.48
Rsh 746,464 0.09 2.06 -2.68 0.00 0.02 0.34 3.05 82.07
Rhb 746,464 0.34 3.97 -10.09 -2.34 0.29 3.03 10.02 84.36
Rsb 746,464 0.11 2.31 -2.92 0.00 0.02 0.36 3.57 93.06

This table reports the summary statistics of the panel data used for the study. The sample is from August

2002 to November 2022. Panels A, B, and C corresponds to the statistics with the volume threshold of

$100K, $1M, and $10M, respectively. NoTrade(%) is the percentage of monthly observations where there is

no trade in TRACE that is above the volume threshold.
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Table 4: Performance of Underlying Signals

Excess Returns CAPM α

Signal Sign Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

age + -0.021 -0.105 -0.013 -0.003 -0.085 0.024 20000 6.84
(-0.98) (-4.50) (-0.46) (-0.09) (-3.09) (1.13)

coupon + 0.125 0.091 0.022 -0.026 -0.058 -0.029 20000 5.57
(1.29) (0.95) (0.49) (-0.38) (-0.83) (-0.72)

faceval - -0.032 -0.073 -0.162 -0.006 -0.043 0.008 20000 4.96
(-0.74) (-1.64) (-1.99) (-0.10) (-0.77) (0.21)

bookprc + 0.082 0.030 0.101 0.043 -0.008 0.089 20000 7.72
(0.91) (0.34) (2.10) (0.47) (-0.09) (1.65)

debtebitda + -0.002 -0.066 -0.061 -0.004 -0.069 -0.018 20000 7.76
(-0.03) (-1.21) (-1.37) (-0.07) (-1.09) (-0.36)

duration + 0.179 0.121 0.066 -0.165 -0.218 -0.107 20000 6.78
(1.07) (0.73) (0.70) (-1.73) (-2.22) (-1.66)

ret61 + 0.082 -0.282 -0.020 0.143 -0.219 0.039 10000 29.11
(1.21) (-3.06) (-0.39) (1.98) (-2.53) (0.86)

nime - 0.148 0.007 0.095 0.093 -0.050 0.043 5000 14.11
(1.89) (0.08) (1.33) (1.30) (-0.56) (0.61)

me - 0.043 -0.012 0.031 0.010 -0.042 0.014 5000 7.62
(0.36) (-0.10) (0.31) (0.08) (-0.33) (0.13)

eqtyvol + 0.208 0.110 0.182 0.152 0.047 0.128 2000 12.17
(1.48) (0.78) (1.40) (1.06) (0.32) (1.00)

totaldebt - -0.003 -0.043 -0.036 0.013 -0.027 -0.020 500 5.86
(-0.04) (-0.65) (-0.55) (0.16) (-0.34) (-0.25)

mom6 - 0.055 -0.315 0.028 -0.012 -0.379 0.014 10000 29.99
(0.40) (-3.06) (0.41) (-0.09) (-3.50) (0.22)

mom6ind + 0.073 -0.227 0.004 0.112 -0.180 0.044 10000 28.14
(1.31) (-2.87) (0.12) (1.74) (-2.21) (1.12)

mom6xrtg - 0.065 -0.262 0.041 0.009 -0.313 0.023 10000 28.01
(0.54) (-2.89) (0.61) (0.07) (-3.12) (0.37)

booklev - 0.007 -0.052 -0.023 0.051 -0.013 0.031 20000 7.27
(0.20) (-1.35) (-0.66) (1.37) (-0.33) (1.17)

mktlev + 0.033 -0.008 0.013 -0.050 -0.086 -0.019 20000 7.41
(0.37) (-0.10) (0.23) (-0.59) (-1.01) (-0.32)

turnvol + 0.061 0.034 0.042 0.041 0.014 0.020 2000 5.34
(1.23) (0.67) (0.83) (0.76) (0.25) (0.38)
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Table 4, Continued

Excess Returns CAPM α

Signal Sign Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

spread + 0.437 0.252 0.323 0.215 0.028 0.105 2000 13.67
(2.37) (1.38) (1.88) (1.72) (0.23) (0.92)

operlvg + 0.030 -0.027 0.009 0.038 -0.016 0.014 2000 8.63
(0.73) (-0.59) (0.22) (0.85) (-0.32) (0.32)

gpat + -0.006 -0.053 -0.039 0.013 -0.033 -0.020 1000 6.80
(-0.08) (-0.75) (-0.55) (0.17) (-0.45) (-0.27)

chggpat - 0.024 -0.057 0.025 0.007 -0.072 0.030 20000 9.10
(0.54) (-1.34) (1.24) (0.17) (-1.76) (1.58)

rating + 0.188 0.153 0.171 0.115 0.084 0.097 2000 6.30
(1.32) (1.07) (1.22) (0.77) (0.56) (0.66)

D2D - 0.059 -0.017 0.103 -0.021 -0.099 0.029 5000 12.14
(0.45) (-0.13) (0.90) (-0.15) (-0.70) (0.25)

skew - 0.200 0.031 0.112 0.211 0.031 0.112 2000 13.03
(1.79) (0.42) (1.42) (1.67) (0.38) (1.29)

6mspread - 0.516 -0.006 0.235 0.449 -0.077 0.184 5000 37.03
(3.68) (-0.06) (2.35) (3.00) (-0.78) (1.69)

sprtod2d + 0.371 0.140 0.195 0.240 0.018 0.078 2000 16.57
(3.30) (1.39) (2.00) (2.01) (0.18) (0.77)

volatility + 0.398 0.304 0.315 0.066 -0.031 0.021 5000 10.51
(2.05) (1.56) (1.87) (0.86) (-0.43) (0.33)

VaR + 0.346 0.261 0.290 0.025 -0.054 0.005 5000 9.48
(1.82) (1.36) (1.70) (0.28) (-0.56) (0.06)

vixbeta - 0.032 -0.131 -0.045 0.084 -0.089 0.005 20000 11.10
(0.46) (-2.02) (-1.16) (1.12) (-1.39) (0.16)

This table reports the average excess returns and CAPM alphas of the long-short portfolios built on bond

characteristics. Bond characteristics are defined in Table A3. If ‘Sign’ is ’-’, then we use the negative of the

characteristic. Each month, we select the top and bottom 20% of bonds in terms of bond characteristics

and form a long-short strategy. Gross returns and alphas are before transaction costs and net returns are

after costs. Net costs are calculated using both a transaction volume of at least $100,000 and the optimal

values reported in the “Optimal Volume (thousand dollars)” column. Turnover is the monthly turnover rate

averaged over the two legs of the strategy. Values in parentheses are t-statistics adjusted for Newey and

West (1987) 12 lags. The sample period is August 2002 through November 2022.
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Table 5: Performance of ML Strategies

Excess Returns CAPM α

Signal Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

OLS 0.374 -0.006 0.102 0.282 -0.088 0.027 2000 27.43
(3.34) (-0.06) (1.05) (1.99) (-0.79) (0.23)

OLSHUBER 0.500 0.094 0.219 0.310 -0.091 0.044 2000 25.75
(3.15) (0.71) (1.73) (1.95) (-0.88) (0.40)

LASSO 0.349 -0.010 0.084 0.228 -0.117 -0.016 2000 25.65
(3.32) (-0.09) (0.87) (2.01) (-1.22) (-0.17)

RIDGE 0.375 -0.006 0.103 0.283 -0.088 0.027 2000 27.44
(3.35) (-0.07) (1.06) (2.00) (-0.79) (0.23)

ENET 0.313 -0.031 0.062 0.175 -0.156 -0.054 2000 24.91
(2.67) (-0.27) (0.58) (1.45) (-1.49) (-0.52)

PCA 0.130 -0.136 -0.029 -0.039 -0.297 -0.092 20000 16.58
(0.84) (-0.90) (-0.44) (-0.34) (-2.47) (-1.74)

IPCA 0.202 -0.066 -0.030 0.055 -0.201 -0.094 20000 16.19
(1.66) (-0.55) (-0.49) (0.42) (-1.65) (-1.61)

PLS 0.318 -0.009 0.081 0.190 -0.127 -0.030 2000 23.27
(2.46) (-0.08) (0.74) (1.17) (-1.02) (-0.23)

RF 0.361 -0.034 0.122 0.219 -0.166 -0.005 2000 29.26
(3.87) (-0.36) (1.39) (2.59) (-2.29) (-0.08)

GB 0.346 -0.097 0.113 0.243 -0.193 0.018 2000 33.83
(3.54) (-1.03) (1.44) (2.28) (-2.46) (0.23)

XTREE 0.362 -0.021 0.118 0.229 -0.133 0.016 2000 27.03
(3.23) (-0.20) (1.21) (1.81) (-1.26) (0.15)

COMBO 0.383 0.017 0.124 0.251 -0.104 0.013 2000 25.53
(3.12) (0.16) (1.16) (1.77) (-0.92) (0.11)

This table reports the average excess returns and CAPM alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

20% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are before

transaction costs and net returns are after costs. Net costs are calculated using both a transaction volume

of at least $100,000 and the optimal values reported in the “Optimal Volume (thousand dollars)” column.

Turnover is the monthly turnover rate averaged over the two legs of the strategy. Values in parentheses

are t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is August 2002 through

November 2022.
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Table 6: Performance of ML Strategies: Duration-Adjusted Returns

Duration-Adjusted Returns CAPM α

Signal Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

OLS 0.365 -0.013 0.080 0.344 -0.026 0.061 2000 27.43
(3.65) (-0.15) (0.90) (2.79) (-0.24) (0.55)

OLSHUBER 0.490 0.089 0.193 0.392 -0.007 0.096 2000 25.75
(3.24) (0.76) (1.69) (2.48) (-0.05) (0.80)

LASSO 0.363 0.002 0.084 0.316 -0.037 0.038 2000 25.65
(3.84) (0.02) (0.94) (2.88) (-0.34) (0.37)

RIDGE 0.365 -0.014 0.080 0.344 -0.027 0.061 2000 27.44
(3.65) (-0.16) (0.90) (2.79) (-0.25) (0.56)

ENET 0.334 -0.015 0.067 0.280 -0.060 0.015 2000 24.91
(3.30) (-0.14) (0.71) (2.47) (-0.53) (0.14)

PCA 0.170 -0.119 0.004 0.077 -0.208 -0.035 20000 16.58
(1.21) (-0.85) (0.06) (0.58) (-1.46) (-0.60)

IPCA 0.136 -0.134 -0.041 0.101 -0.161 -0.063 20000 16.19
(1.69) (-1.51) (-0.93) (1.11) (-1.74) (-1.42)

PLS 0.314 -0.024 0.059 0.272 -0.058 0.018 2000 23.27
(2.81) (-0.25) (0.62) (1.96) (-0.50) (0.15)

RF 0.396 0.021 0.130 0.318 -0.050 0.057 2000 29.26
(4.40) (0.23) (1.57) (3.09) (-0.46) (0.61)

GB 0.381 -0.053 0.118 0.339 -0.091 0.073 2000 33.83
(4.52) (-0.65) (1.67) (3.39) (-1.00) (0.89)

XTREE 0.358 -0.030 0.096 0.307 -0.065 0.056 2000 27.03
(3.50) (-0.29) (1.03) (2.49) (-0.54) (0.49)

COMBO 0.384 0.014 0.102 0.339 -0.022 0.061 2000 25.53
(3.64) (0.14) (1.09) (2.71) (-0.20) (0.54)

This table reports the average excess returns and CAPM alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

20% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are before

transaction costs and net returns are after costs. Net costs are calculated using both a transaction volume

of at least $100,000 and the optimal values reported in the “Optimal Volume (thousand dollars)” column.

Turnover is the monthly turnover rate averaged over the two legs of the strategy. Values in parentheses

are t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is August 2002 through

November 2022.
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Table 7: Decomposition of Transaction Costs

$100K Optimal Volume

Signal Total BidAsk Delay Total BidAsk Delay

OLS 0.370 0.320 0.051 0.255 0.134 0.121
OLSHUBER 0.401 0.346 0.055 0.266 0.134 0.131
LASSO 0.345 0.303 0.042 0.244 0.124 0.120
RIDGE 0.371 0.320 0.051 0.255 0.134 0.121
ENET 0.331 0.293 0.038 0.229 0.118 0.111
PCA 0.259 0.254 0.005 0.053 0.017 0.036
IPCA 0.256 0.238 0.018 0.149 0.018 0.131
PLS 0.317 0.282 0.036 0.220 0.116 0.104
RF 0.385 0.332 0.054 0.225 0.138 0.087
GB 0.436 0.395 0.042 0.225 0.159 0.066
XTREE 0.362 0.320 0.042 0.212 0.130 0.083
COMBO 0.355 0.310 0.045 0.237 0.126 0.112

This table reports the two components of transaction costs, which are the difference between gross α and

net α. To measure delay costs, we compute an alternative version of net returns using quote prices on

TRACE transaction dates to compute all returns. Delay costs are the difference between gross returns and

the alternative net returns. Bid-ask costs are the difference between the alternative net returns and the

(original) net returns.

60



Table 8: Optimal Volume and Transaction Costs

Gross α Gross α Avg.

Low Middle High Low Middle High Turnover

Panel A. Optimal Vol. ($ mil.) Panel B. Total Cost (%)
Turnover Low 1.41 0.92 0.06 0.01 7.97

Middle 1.40 1.00 0.20 0.08 0.07 0.13 16.28
High 0.84 0.23 0.09 0.26 34.22

Panel C. Half-Spread Cost (%) Panel D. Delay Cost (%)
Turnover Low 0.01 0.01 0.04 0.00 7.97

Middle 0.02 0.03 0.08 0.06 0.04 0.05 16.28
High 0.07 0.13 0.03 0.13 34.22

Average α -0.02 0.07 0.21 -0.02 0.07 0.21

This table reports the average of optimal transaction volume (Panel A), the total cost at the optimum (Panel

B), the half-spread cost (Panel C), and the delay cost (Panel D) using the 41 strategies based on individual

signals and ML. The signals/strategies are classified into three groups based independently on their turnover

rate (calculated using threshold = $5K) and gross CAPM α. The empty cells do not have any signal/strategy

that falls into the category.
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Table 9: Robustness: Long-Only Strategies

Excess Returns CAPM α

Signal Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

OLS 0.451 0.291 0.320 0.129 -0.015 0.026 500 29.67
(2.69) (1.86) (2.08) (1.99) (-0.29) (0.48)

OLSHUBER 0.530 0.342 0.381 0.173 0.004 0.060 1000 27.16
(2.64) (1.87) (2.13) (1.74) (0.05) (0.76)

LASSO 0.440 0.283 0.300 0.115 -0.023 0.011 1000 26.98
(2.56) (1.75) (1.93) (2.01) (-0.44) (0.21)

RIDGE 0.452 0.292 0.320 0.129 -0.015 0.026 500 29.67
(2.69) (1.86) (2.08) (2.01) (-0.28) (0.49)

ENET 0.429 0.277 0.306 0.094 -0.039 0.000 500 26.88
(2.39) (1.65) (1.85) (1.49) (-0.71) (-0.00)

PCA 0.306 0.193 0.218 -0.035 -0.134 -0.086 2000 22.60
(1.54) (1.03) (1.24) (-0.44) (-1.70) (-1.14)

IPCA 0.374 0.262 0.273 0.016 -0.080 -0.041 2000 21.84
(2.17) (1.60) (1.78) (0.28) (-1.46) (-0.75)

PLS 0.399 0.259 0.268 0.065 -0.060 -0.021 2000 23.27
(2.24) (1.56) (1.73) (0.85) (-0.96) (-0.31)

RF 0.453 0.299 0.342 0.102 -0.035 0.040 2000 29.26
(2.36) (1.63) (2.03) (1.62) (-0.57) (0.71)

GB 0.434 0.251 0.322 0.096 -0.071 0.032 2000 33.83
(2.36) (1.45) (2.01) (1.55) (-1.29) (0.62)

XTREE 0.465 0.286 0.323 0.120 -0.039 0.029 2000 27.03
(2.53) (1.66) (2.02) (1.79) (-0.63) (0.49)

COMBO 0.472 0.311 0.318 0.130 -0.015 0.024 2000 25.53
(2.62) (1.85) (2.04) (1.89) (-0.27) (0.42)

This table reports the average excess returns (in excess of T-bills) and CAPM alphas of the long-only

portfolios built on the expected returns generated by the machine learning algorithms. Each month, we

select the top 20% of bonds in terms of expected returns and form a long-only strategy. Gross returns and

alphas are before transaction costs and net returns are after costs. Net costs are calculated using both a

transaction volume of at least $100,000 and the optimal values reported in the ”Optimal Volume (thousand

dollars)” column. Turnover is the monthly turnover rate averaged over the two legs of the strategy. Values

in parentheses are t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is August

2002 through November 2022 (244 Months).
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Table 10: Robustness: WRDS Data for Signals

Excess Returns CAPM α

Signal Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

OLS 0.252 -0.096 0.141 0.259 -0.113 0.133 5000 34.19
(3.47) (-0.97) (2.31) (2.20) (-1.38) (1.55)

OLSHUBER 0.262 -0.028 0.130 0.181 -0.126 0.022 5000 26.11
(2.95) (-0.23) (1.42) (1.57) (-1.33) (0.27)

LASSO 0.303 -0.045 0.188 0.299 -0.072 0.176 5000 34.55
(3.49) (-0.45) (2.70) (1.71) (-0.58) (1.33)

RIDGE 0.251 -0.098 0.143 0.259 -0.114 0.135 5000 34.29
(3.45) (-1.01) (2.38) (2.17) (-1.35) (1.56)

ENET 0.306 -0.031 0.195 0.302 -0.059 0.183 5000 33.19
(3.54) (-0.29) (2.71) (1.79) (-0.50) (1.38)

PCA 0.306 0.023 0.175 0.216 -0.088 0.081 5000 29.11
(3.36) (0.23) (2.34) (1.12) (-0.67) (0.70)

IPCA 0.076 -0.238 -0.081 0.161 -0.165 -0.020 5000 30.49
(0.69) (-2.19) (-1.03) (1.69) (-2.03) (-0.40)

PLS 0.310 0.011 0.195 0.257 -0.067 0.144 5000 30.08
(3.67) (0.10) (2.85) (1.34) (-0.50) (1.11)

RF 0.245 -0.157 0.099 0.273 -0.149 0.100 5000 35.29
(2.85) (-1.86) (1.41) (1.78) (-1.31) (0.77)

GB 0.134 -0.341 0.003 0.169 -0.336 0.007 10000 35.12
(1.64) (-3.85) (0.05) (1.38) (-3.89) (0.09)

XTREE 0.245 -0.123 0.115 0.261 -0.125 0.105 5000 34.55
(2.85) (-1.17) (1.48) (1.56) (-0.97) (0.85)

COMBO 0.305 -0.029 0.181 0.292 -0.065 0.150 5000 31.69
(3.58) (-0.31) (2.67) (1.69) (-0.52) (1.18)

This table reports the average excess returns and CAPM alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

20% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are before

transaction costs and net returns are after costs. Net costs are calculated using both a transaction volume

of at least $100,000 and the optimal values reported in the “Optimal Volume (thousand dollars)” column.

Turnover is the monthly turnover rate averaged over the two legs of the strategy. Values in parentheses are

t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is July 2006 through July 2020

(169 Months).
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Table 11: Robustness: Smaller Number of Bonds

Excess Returns CAPM α

Signal Gross Net Gross Net Optimal Turnover
$100K Optimal $100K Optimal Volume (%)

OLS 0.679 -0.077 0.201 0.566 -0.169 0.120 2000 46.15
(3.97) (-0.45) (1.38) (3.03) (-1.04) (0.71)

OLSHUBER 0.789 -0.016 0.252 0.555 -0.225 0.091 5000 42.38
(3.50) (-0.08) (1.80) (2.77) (-1.62) (0.74)

LASSO 0.694 0.012 0.235 0.545 -0.125 0.116 2000 47.53
(3.95) (0.06) (1.52) (3.29) (-0.72) (0.80)

RIDGE 0.680 -0.076 0.201 0.566 -0.170 0.119 2000 46.13
(3.94) (-0.45) (1.37) (3.01) (-1.04) (0.70)

ENET 0.566 -0.114 0.132 0.399 -0.268 -0.005 2000 46.47
(2.90) (-0.52) (0.74) (2.31) (-1.39) (-0.03)

PCA 0.012 -0.485 -0.071 -0.197 -0.684 -0.147 20000 25.47
(0.04) (-1.82) (-0.74) (-0.84) (-2.78) (-1.76)

IPCA 0.483 0.071 0.192 0.365 -0.027 0.087 1000 36.75
(2.24) (0.29) (0.84) (1.38) (-0.10) (0.35)

PLS 0.463 -0.184 0.089 0.312 -0.306 -0.018 2000 44.48
(2.35) (-1.07) (0.54) (1.40) (-1.75) (-0.09)

RF 0.657 -0.114 0.290 0.587 -0.165 0.227 2000 45.88
(4.56) (-0.88) (2.40) (3.91) (-1.29) (1.70)

GB 0.889 -0.043 0.433 0.924 -0.008 0.459 2000 52.64
(4.21) (-0.27) (3.02) (3.81) (-0.05) (2.88)

XTREE 0.579 -0.170 0.177 0.471 -0.278 0.060 2000 45.00
(3.22) (-0.84) (1.11) (2.60) (-1.40) (0.37)

COMBO 0.654 -0.078 0.200 0.565 -0.150 0.128 1000 47.70
(3.19) (-0.42) (1.15) (2.35) (-0.81) (0.65)

This table reports the average excess returns and CAPM alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

2% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are before

transaction costs and net returns are after costs. Net costs are calculated using both a transaction volume

of at least $100,000 and the optimal values reported in the “Optimal Volume (thousand dollars)” column.

Turnover is the monthly turnover rate averaged over the two legs of the strategy. Values in parentheses

are t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is August 2002 through

November 2022 (244 Months).
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Table 12: Summary Statistics for Corporate Bond Mutual Funds

N Mean Std. p1 p10 p50 p90 p99

Panel A: Fund Characteristics

Fund TNA ($ millions) 53,213 574.6 1574 11.15 19.17 125.1 1283 6525
Fund NAV ($ millions) 53,213 11.17 5.483 3.396 6.658 10.46 14.57 32.80
(Annual) expense ratio (%) 44,684 0.903 0.434 0.200 0.455 0.807 1.590 1.903
(Annual) turnover (%) 44,695 119.0 116.6 10.73 21.92 79.96 255.4 530.3

Panel B: Cross-Section of Fund Performance

(Monthly) Excess gross return (%) 485 0.33 0.26 -0.17 0.06 0.31 0.57 1.18
(Monthly) Excess net return (%) 485 0.26 0.26 -0.24 0.01 0.24 0.50 1.06
(Monthly) Gross alpha (%) 485 0.05 0.25 -0.31 -0.11 0.04 0.16 1.23
(Monthly) Net alpha (%) 485 0.03 0.24 -0.33 -0.14 0.02 0.15 1.14
MKTBNet beta 485 0.67 0.30 -0.23 0.39 0.64 0.97 1.47
MKTBNet R

2 485 0.76 0.19 0.00 0.51 0.80 0.94 0.98

This table reports time-series averages of cross-sectional summary statistics for various fund characteristics in
Panel A. Panel B reports average fund performance statistics for the cross-section of corporate bond mutual
funds. The monthly gross (net) alpha is computed from time-series regressions of each funds excess gross
(net) return on the gross and net of fees bond market factor, MKTGross (MKTNet). The sample period is
August 2002 through to December 2022 (245 Months) consisting of 485 bond mutual funds.

Table 13: Corporate Bond Value Added (Ŝi)

Panel A: Cross-Sectional Weighted Value-Add

Equal weights Time weights Expense weights

Value-add (Ŝi) -0.396 -0.300 -0.341
Standard error 0.104 0.113 0.077
t-statistic (-3.83 ) ( -2.66) (-4.44)

Panel B: Cross-Sectional Percentiles

p1 p10 p50 p90 p99 % Ŝi < 0

Value-add (Ŝi) -9.122 -1.125 -0.060 0.141 2.634 75.05

This table reports the average monthly value-add, Ŝi, defined as the total lagged inflation adjusted assets

of each fund multiplied by the difference between the funds gross return and the gross return of the passive

benchmark. The average cross-sectional mean of the value-add is computed with equal weights (Column

1), time weights (Column 2) and expense ratio weights (Column 3). We report standard errors and the

associated t-statistic below the mean. Panel B reports the percentiles of the cross-sectional distribution of

Ŝi and the percentage of funds that generate a negative value-add. Numbers are reported in US$ millions

per month. The sample period is August 2002 through to December 2022 (245 Months) consisting of 485

bond mutual funds.
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Table 14: Impact of Luck on Performance

Panel A. Proportion of Unskilled and Skilled Funds

Zero alpha (π̂0) Non-zero alpha Unskilled (π̂−
A) Skilled (π̂+

A)

Proportion (%) 76.45 [3.49] 23.55 8.07 [2.49] 15.48 [2.24]
Number 371 114 39 75

Panel B. Impact of Luck in the Left and Right Tails

Left tail Right tail

Signif. level (γ) 0.05 0.10 0.15 0.20 0.20 0.15 0.10 0.05 Signif. level (γ)

Signif. Ŝ−
γ (%) 7.01 7.84 9.07 10.93 14.02 12.37 9.90 6.39 Signif. Ŝ+

γ (%)

[1.16] [1.22] [1.30] [1.42] [1.58] [1.50] [1.36] [1.11]

Unlucky F̂−
γ (%) 1.91 3.82 5.73 7.64 7.64 5.73 3.82 1.91 Lucky F̂+

γ (%)

[0.09] [0.17] [0.26] [0.35] [0.35] [0.26] [0.17] [0.09]

Unskilled T̂−
γ (%) 5.10 4.01 3.34 3.28 6.38 6.64 6.07 4.48 Skilled T̂+

γ (%)

[1.19] [1.28] [1.41] [1.57] [1.61] [1.57] [1.46] [1.25]

Alpha (% year) -1.99 -1.94 -1.96 -1.97 2.03 2.06 2.17 2.30 Alpha (% year)

This table reports the estimated proportions of zero-alpha, unskilled and skilled funds (π̂0,π̂
−
A,π̂

+
A) for the

population of our ‘Corporate Bond’ specific mutual funds (N = 485) from August 2002 through to December

2022 (245 Months). The fund alphas are computed for each fund using net of fees excess returns and the

single-factor MKTBNet bond market factor. Panel B counts the proportions of significant funds in the left

and right tails of the cross-sectional distribution of fund alphas (Ŝ−
γ ,Ŝ+

γ ) at four pre-defined significance levels

(γ = 0.05, 0.10, 0.15, 0.20). The columns on the left decompose the proportion of significantly negative fund

alphas into unlucky and unskilled funds (F̂−
γ ,T̂−

γ ). The columns on the right decompose the proportion of

significantly positive fund alphas into lucky and skilled funds (F̂+
γ ,T̂+

γ ). The final row of the table present

the average alpha in the left and right tail of the cross-sectional distribution of fund alphas. Standard errors

are presented in square brackets.
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A Inventory and Dynamic Portfolio Choice

Because the choice of a return depends on the investor’s past bond holdings, we must keep track

of her inventory. To do this, introducing some notation is useful. A month t+ 1 return on a bond

is characterized by the investor’s actions at the end of months t and t+ 1. Let It be the inventory

(or existing short position) at the end of month t, xt be the signal which is either Y (i.e., take a

position on the bond) or N (i.e., do not take a position), f(It, xt) = {b, h, s} be an action function

at the end of month t to start the trade, and g(xt+1) = {b, h, s} be the function in t+1 to close it.

Thus, the selected returns based on these actions are expressed as Rf ·g
t+1.

The trading process is shown in Figure 13. It can be summarized as follows:

1. At the end of month t, the investor receives the signal xt and receives the inventory It. She

then decides whether to take a position on a bond (Y) or not (N) using the function f(xt, It).

2. Her order is sent to the dealers and executed if possible.

3. At the end of the month t + 1, she receives the signal xt+1. After observing it, she decides

whether or not to keep the existing position, as encoded by the function g(xt+1).

4. Her order is sent to the dealers and executed if possible. The result determines her return for

month t+ 1, Rf ·g
t+1.

5. The result of the previous two order executions determines her inventory level It+1. Given

xt+1 and It+1, we return to step 1 to compute a return in month t+ 2.

This procedure explicitly accounts for delays in order execution. The action f(xt, It) is executed

either at the end of month t or sometime in month t + 1. If the trade does not occur, the return

and inventory are adjusted accordingly at the end of t+1. Similarly, the action g(xt+1) is executed

either at the end of month t+1 or sometime in month t+2. As long as the execution occurs during

this period, the bond is recorded in the inventory record It+1 as if the transaction were executed at

the end of month t+ 1. We adjust for any excess holding costs by charging the risk-free rate until

the action in month t+ 2 is taken. If the trade is not executed in month t+ 2, it is added to It+1
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as unintended inventory. Therefore, the result of the order execution in both months t and t + 1

together determines the inventory level in t + 1. This in turn influences the next month’s action

f(xt+1, It+1).

Figure 13: Flow Chart To Compute Net Returns

Signal xt Inventory It

Action f(xt, It) End of Month t

Execution P
f(xt,It)
t

Signal xt+1 Inventory It+1

Action g(xt+1)

Execution P
g(xt+1)
t+1

Action f(xt+1, It+1) End of Month t+ 1

Execution P
f(xt+1,It+1)
t+1

Rf ·g
t+1

To concretely describe the set of actions in each month, we consider seven bonds as shown

in Table A1. Panel A describes the action function f(It, xt) and g(xt+1) for a long position. In

this case, a possible action in month t is either to maintain the previous long position (h) or to

buy a bond (b). The action depends not only on the month-t signal, but also on the inventory of

bonds held from the previous months. If the signal is ‘Y’ and the inventory is also ‘Y’ (bonds A
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and B), the action is to maintain the existing position (h). On the other hand, if the signal and

the inventory pair is (Y, N), as for bonds D and E, the action is to buy the bond (b). There are

cases (bonds F and G) where the signal is ‘N’ but the inventory is ‘Y’ because the sales were not

executed in month t. In this case, the investor’s initial action is to hold the long position (h). It

is important to realize that month-t action depends only on the signal at that time and inventory,

not how the investor ended up with the inventory (intentional or unintentional). The distinction

between intentional and unintentional inventory only affects the return calculation at the end,

because unintended inventory must be financed individually by risk-free lending and borrowings.

Table A1: Return Computation

Panel A: Long Position

Time (end of month) A B C D E F G

Inventory It Y Y N N N Y Y
Unintended inventry? Yes Yes

t Buy signal xt Y Y N Y Y N N
Action f(It, xt) h h - b b h h

t+ 1 Buy signal xt+1 Y N Y N N Y
Action g(xt+1) h s h s s h

Return in t+ 1 Rhh Rhs 0 Rbh Rbs Rhs −Rf Rhh −Rf

Panel B: Short Position

Time (end of month) A B C D E F G

Existing position It Y Y N N N Y Y
Unintended position? Yes Yes

t Sell signal xt Y Y N Y Y N N
Action f(It, xt) h h - s s h h

t+ 1 Sell signal xt+1 Y N Y N N Y
Action g(xt+1) h b h b b h

Return in t+ 1 −Rhh −Rhb 0 −Rsh −Rsb −Rhb +Rf −Rhh +Rf

At the end of month t+ 1, the investor tries to either close the long position (s) or hold it (h).

This intended action function g(xt+1) is simple in that it depends only on the signal of month t+1.
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For a long position, signal Y corresponds to no action (h), while signal N corresponds to intended

sales (s). If the intended purchases and sales did not materialize due to excessive delays, they are

reflected in the month t+ 1 inventory, It+1, and influence the next month’s action.

Panel B of Table A1 describes the same descriptions for short positions. These actions can be

obtained by simply replacing b in Panel A with s.

B Net of Fees Corporate Bond Market Factor

We risk-adjust our net of cost strategies with a realistic corporate bond market factor that com-

bines tradable passively managed investment grade and high yield exchange traded funds (ETFs).

We source the BlackRock iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker:

HYG) ETF net returns from the CRSP Mutual Funds database as provided by WRDS. The LQD

ETF has an inception date of 2002:06 which spans the full length of our out-of-sample period. The

HYG inception date is 2007:03. To address the shorter sample period for HYG, we source high

yield gross return data from the Bloomberg-Barclays (BB) High-Yield bond index. Thereafter, we

estimate a simple OLS regression of the HYG net returns on the BB gross returns such that we

can extrapolate values for HYG before 2007:03,

RHY G,t = β0 + βBB ·RBB,t + εt,

R̂HY G,t = −0.095
(−2.010)

+ 0.883
(60.13)

·RBB,t,

where RHY G,t and RBB,t are the net of cost and gross returns of the HYG ETF and BB High-Yield

bond index over the sample period 2007:03–2023:06 (T = 251). The intercept, β0 is estimated at

−9.5 basis points (statistically significant from zero at the 5% nominal level), which captures the

fact that HYG is adversely impacted by trading costs and ETF fees. From the OLS estimation

above, we set the net return value of the HYG index to R̂HY G before 2007:03 and to the actual net

return of the HYG index thereafter. We denote this return RHY G.

To generate the MKTBNet factor, we require appropriate weights for the representative in-

vestor to apportion their funds between HYG and LQD. To do this, we source all bonds that are

70



included in the Bank of America Merrill Lynch Investment Grade (C0A0) and High Yield (H0A0)

corporate indices and compute their respective market capitalizations (Clean Price × Units Out-

standing). The weight for each index for each month is simply the sum of the respective index

market capitalization at month t divided by the total market capitalization. On average, over the

sample period, the investor apportions 19.90% to the high yield index and 80.10% to the investment

grade index. Finally, the MKTBNet factor is computed as,

RNet
MKTB,t+1 = (RHY G,t+1 · ωHY G,t +RLQD,t+1 · ωLQD,t)−Rf,t+1,

where ωHY G,t is the weight in the HYG ETF, ωLQD,t is the weight in the LQD ETF and Rf,t+1 is

the one-month risk-free rate of return from Kenneth French’s webpage.

We report summary statistics for the MKTBNet, MKTBGross (computed using the same

weights as above with the Bloomberg-Barclays Investment Grade and High Yield index gross re-

turns) and MKTB available from openbondassetpricing.com.
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Table A2: Summary statistics for the corporate bond market factor.

Panel A: Corporate bond market factor statistics

MKTBNet MKTBGross MKTB

Mean 0.316 0.367 0.364
(2.14) (2.36) (2.32)

SD 2.06 1.95 1.91
SR 0.53 0.65 0.66

Panel B: Pairwise correlations

MKTBNet MKTBGross MKTB

MKTBNet 1
MKTBGross 0.982 1
MKTB 0.973 0.992 1

Panel A reports the monthly factor means (Mean), the monthly factor standard deviations (SD), and the

annualized Sharpe ratios. The MKTBNet factor is constructed as the weighted-average of the BlackRock

iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker: HYG) ETF net returns from the

CRSP Mutual Funds database. The MKTBGross factor is constructed as the weighted-average of the

Bloomberg-Barclays Investment Grade and High Yield index gross returns. The MKTB factor is the value-

weighted bond market factor publicly available from openbondassetpricing.com. Panels A and B are based

on the sample period 2002:08 to 2022:12 (245 months). t-statistics are in round brackets computed with the

Newey-West adjustment with 12-lags.
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C Variable Definitions

Table A3: List of the stock and corporate bond characteristics.

Num. ID Characteristic name and description Reference Source

Bond characteristics

1. age Bond age. The number of years the bond has been in
issuance.

Israel et al. (2018) BAML/ICE

2. coupon Bond coupon. The annualised bond coupon payment in
percent (%).

Chung et al. (2019) BAML/ICE

3. faceval Face value. The bond amount outstanding in units. Israel et al. (2018) BAML/ICE

4. bookprc Book-to-price. Firm Book-to-price is the sum of share-
holder’s equity and preferred stock divided by equity
market capitalization for the issuing firm.

Kelly et al. (2021) CRSP/COMPUSTAT

5. debtebitda Debt-to-EBITDA. Total debt (DLTTQ + DLCQ) divided
by EBITDA (SALEQ − COGSQ − XSGAQ).

Kelly et al. (2021) CRSP/COMPUSTAT

6. duration Duration. The derivative of the bond value to the credit
spread divided by the bond value, and is calculated by
ICE.

Israel et al. (2018) BAML/ICE

7. ret61 Equity momentum. The sum of the last 6-months of
equity returns minus the prior month.

Gebhardt et al.
(2005b)

CRSP

8. nime Earnings-to-price. Net income (NIQ) divided by market
equity.

Correia et al. (2012) CRSP/COMPUSTAT

9. me Equity market capitalization. Choi and Kim (2018) CRSP

10. eqtyvol Equity volatility defined as the month-end value from a
180-day rolling-period.

Campbell and Tak-
sler (2003)

CRSP

11. totaldebt Total firm debt (DLTTQ + DLCQ). Kelly et al. (2021) COMPUSTAT

12. mom6 Corporate bond momentum. The sum of the last 6-
months of bond returns minus the prior month.

Gebhardt et al.
(2005b)

BAML/ICE

13. mom6ind Corporate bond portfolio industry momentum. The
sum of the last 6-months of bond portfolio returns mi-
nus the prior month. Portfolios are formed based on the
Fama-French Industry 17 classification.

Kelly et al. (2021) BAML/ICE

14. mom6xrtg Corporate bond momentum multiplied by bond rating.
The sum of the last 6-months of bond returns minus the
prior month multiplied by the bond’s numerical rating
AAA = 1, ... , D = 22.

Kelly et al. (2021) BAML/ICE

15. booklev Book leverage. Shareholder’s equity and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
minus cash and inventories (CHEQ), divided by share-
holder’s equity minus preferred stock.

Kelly et al. (2021) COMPUSTAT

16. mktlev Market leverage. Market capitalization and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
and preferred stock minus cash and inventories (CHEQ),
divided by market capitalization.

Kelly et al. (2021) CRSP/COMPUSTAT

17. turnvol Turnover volatility. Turnover volatility is the quarterly
standard deviation of sales (SALEQ) divided by assets
(ATQ). The volatility is computed over 80 quarters, with
a minimum required period of 10 quarters. Thereafter,
the volatility is averaged (smoothed) over the preceding
4-quarters in a rolling fashion.

Kelly et al. (2021) CRSP/COMPUSTAT

18. spread Bond option adjusted credit spread. The option ad-
justed spread of the bond provided by ICE.

Kelly et al. (2021) BAML/ICE

19. operlvg Operating leverage. Sales (SALEQ) minus EBITDA
(SALEQ − COGSQ − XSGAQ), divided by EBITDA.

Gamba and Saretto
(2013)

COMPUSTAT

20. gpat Profitability. Sales (REVTQ) minus cost-of-goods-sold
(COGSQ), divided by assets (ATQ).

Choi and Kim (2018) COMPUSTAT

21. chggpat Profitability change. The 5-year change in gross prof-
itability.

Asness et al. (2019) COMPUSTAT

22. rating Bond S&P rating. Bond numerical rating. AAA = 1,
... , D = 22.

Kelly et al. (2021) BAML/ICE

23. D2D Distance-to-default. Computed as ... . Bharath and
Shumway (2008)

CRSP/COMPUSTAT

24. skew Bond skewness. The rolling 60-month skewness of bond
total returns. We require a minimum of 12 observations,
once this threshold is hit, the rolling window expands
upward to 60-months.

Kelly et al. (2021) CRSP/COMPUSTAT
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25. 6mspread Mom. 6m log(Spread). The log of the spread 6 months
earlier minus current log spread.

Kelly et al. (2021) CRSP/COMPUSTAT

26. sprtod2d Spread-to-Distance-to-Default. Spread-to-D2D is the
option-adjusted spread, divided by one minus the CDF
of the distance-to-default.

Kelly et al. (2021) CRSP/COMPUSTAT

27. volatility Bond return volatility. Rolling 36-month bond total
return volatility. We require a minimum of 12 obser-
vations, once this threshold is hit, the rolling window
expands upward to 36-months.

Kelly et al. (2021) BAML/ICE

28. VaR Historical 95% value-at-risk. Rolling 36-month bond to-
tal 95% value-at-risk. We require a minimum of 12 ob-
servations, once this threshold is hit, the rolling window
expands upward to 36-months.

Bai et al. (2019) BAML/ICE

29. vixbeta VIX beta. Rolling 60-month regression of bond returns
on the Fama French 3-factors (Mkt-RF ,SMB,HML,
the default risk factor DEF , and the interest rate risk
factor, TERM and the first difference in the CBOE VIX
and lagged VIX. The VIX beta in month t is the sum
of the coefficient on VIX and lagged VIX. We require a
minimum of 12 observations, once this threshold is hit,
the rolling window expands upward to 60-months.

Chung et al. (2019) BAML/ICE

This table presents information on the 29 characteristics we use to form our predictions from the various

machine learning (ML) models we employ. All bond related variables are computed using the BAML/ICE

database. The equity characteristics use CRSP and COMPUSTAT.
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Table A4: Net CAPM α

Turnover Gross α (%)

Rate (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5 0.004 0.051 0.098 0.145 0.191 0.238 0.285 0.331 0.378 0.425 0.472
10 -0.004 0.042 0.089 0.135 0.181 0.227 0.274 0.320 0.366 0.412 0.459
15 -0.012 0.034 0.079 0.125 0.171 0.217 0.262 0.308 0.354 0.400 0.446
20 -0.021 0.025 0.070 0.115 0.161 0.206 0.251 0.297 0.342 0.387 0.432
25 -0.029 0.016 0.061 0.106 0.151 0.195 0.240 0.285 0.330 0.375 0.419
30 -0.037 0.007 0.052 0.096 0.140 0.185 0.229 0.273 0.318 0.362 0.406
35 -0.045 -0.002 0.042 0.086 0.130 0.174 0.218 0.262 0.306 0.349 0.393
40 -0.054 -0.010 0.033 0.077 0.120 0.163 0.207 0.250 0.293 0.337 0.380
45 -0.062 -0.019 0.024 0.067 0.110 0.153 0.196 0.238 0.281 0.324 0.367
50 -0.070 -0.028 0.015 0.057 0.100 0.142 0.184 0.227 0.269 0.312 0.354
55 -0.078 -0.037 0.006 0.047 0.089 0.131 0.173 0.215 0.257 0.299 0.341
60 -0.087 -0.045 -0.004 0.038 0.079 0.121 0.162 0.204 0.245 0.286 0.328
65 -0.095 -0.054 -0.013 0.028 0.069 0.110 0.151 0.192 0.233 0.274 0.315
70 -0.103 -0.063 -0.022 0.018 0.059 0.099 0.140 0.180 0.221 0.261 0.302
75 -0.111 -0.071 -0.031 0.009 0.049 0.089 0.129 0.169 0.209 0.249 0.289
80 -0.120 -0.080 -0.041 -0.001 0.038 0.078 0.117 0.157 0.197 0.236 0.276
85 -0.128 -0.089 -0.050 -0.011 0.028 0.067 0.106 0.145 0.184 0.223 0.263
90 -0.136 -0.098 -0.059 -0.021 0.018 0.057 0.095 0.134 0.172 0.211 0.249
95 -0.145 -0.106 -0.068 -0.030 0.008 0.046 0.084 0.122 0.160 0.198 0.236
100 -0.153 -0.115 -0.078 -0.040 -0.002 0.035 0.073 0.111 0.148 0.186 0.223

The table reports the net CAPM α as a function of gross α and portfolio turnover rate. The values are

estimated by regressing the net CAPM α’s on gross α, portfolio turnover rate, and the product of the two.

The regression uses 41 strategies including 29 individual signals and 12 machine learning algorithms. All

variables are in percentage per month.
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A Data and variable construction

The following sections describe the various databases that we use in the paper. Across all

databases, we filter out bonds which have a time-to-maturity of less than 1-year. Furthermore, for

consistency, across all databases, we define bond ratings as those provided by Standard & Poors

(S&P). We include the full spectrum of ratings (AAA to D), but exclude bonds which are unrated.

For each database that we consider, we (the authors) do not winsorize or trim bond returns in any

way.

A.1 Corporate bond databases

Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive database

of publicly offered U.S. bonds. Research market trends, deal structures, issuer capital structures,

and other areas of fixed income debt research.

We apply the standard filters to the FISD data as they relate to empirical asset pricing in

corporate bonds,

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE 144A == ‘N’.

5. Remove all asset-backed bonds, ASSET BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds with a

floating (variable) coupon, COUPON TYPE != ‘V’.
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8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-backed,

based on their BOND TYPE.

9. Remove bonds that have a “non-standard” interest payment structure or bonds not caught by

the variable coupon filter (COUPON TYPE). We remove bonds that have an INTEREST FREQUENCY

equal to −1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and 15 and 16 (undocumented

by FISD). Additional information on INTEREST FREQUENCY is available on Page 60 of 67 of

the FISD Data Dictionary 2012 document.

Bank of America Merrill Lynch (BAML) database

The BAML data is provided by the Intercontinental Exchange (ICE) and provides daily bond

price quotes, accrued interest, and a host of pre-computed corporate bond characteristics such as

the bond option-adjusted credit spread (OAS), the asset swap spread, duration, convexity, and

bond returns in excess of a portfolio of duration-matched Treasuries. The ICE sample spans the

time period 1997:01 to 2022:12 and includes constituent bonds from the ICE Bank of America High

Yield (H0A0) and Investment Grade (C0A0) Corporate Bond Indices.

ICE bond filters. We follow Binsbergen, Nozawa, and Schwert (2023) and take the last quote

of each month to form the bond-month panel. We then merge the ICE data to the filtered Mergent

FISD database.

The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind Lvl 1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE bond returns. Total bond returns are computed in a standard manner in ICE,

and no assumptions about the timing of the last trading day of the month are made because the

ii



data is quote based, i.e., there is always a valid quote at month-end to compute a bond return. This

means that each bond return is computed using a price quote at exactly the end of the month, each

and every month. This introduces homogeneity into the bond returns because prices are sampled

at exactly the same time each month. ICE only provides bid-side pricing, meaning bid-ask bias is

inherently not present in the monthly sampled prices, returns and credit spreads. The monthly ICE

return variable is (as denoted in the original database), is trr mtd loc, which is the month-to-date

return on the last business day of month t.

WRDS Bond Database

The Wharton Research Data Services (WRDS) Bond Database is a pre-processed monthly bond

database that uses the Enhanced Trade Reporting and Compliance Engine (TRACE) and Mergent

FISD bond databases. It was introduced by WRDS in April 2017. The data is publicly available

(requires a valid subscription to WRDS). After logging in to WRDS, the data is available here. We

use the version of the WRDS dataset that has a sample end date of 2022:09.

WRDS bond returns. The WRDS data team provides us with three different bond return

variables: RET EOM (returns are computed using bond prices that land on any day of the month),

RET L5M (a bond must trade on the last five days of the month), and RET LDM (a bond must trade

on the last day of the month). For the results based on the WRDS Bond Database, we always

use RET L5M, i.e., a return is valid if the bond trades on the last five days of month t and month

t−1. However, the publicly available data we use from WRDS, imposes a data filter which sets any

bond return that is greater than 100% to 100%, i.e., the data is truncated/trimmed at this level.

Although this does not make any material difference whatsoever to the main results, we carefully

address the issue below.

WRDS bond returns truncation correction. We carefully adjust for the truncation of bonds

with returns greater than +100% imposed by WRDS, by setting any bond return which is truncated

to the return observed in the ICE database, i.e., if the WRDS bond return is equal to 100%

(truncated), we set this value to the bond return from ICE as the ‘true’ bond return. If the ICE
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return is missing, we set the value to the return computed from the TRACE data itself. These

adjustments do not make any material difference to the robustness results. In total we identify

only 94 cases where the truncation occurs, and we are able to address 91 of them. The remaining

3 cases are removed.

WRDS bond filters. To align the data to the Bank of America Merrill Lynch (BAML) corporate

bond database provided by the Intercontinental Exchange (ICE), we follow Andreani, Palhares, and

Richardson (2023) and use the following filters (all using data provided by WRDS),

1. Remove investment (IG) rated bonds that have less than USD 150 million outstanding prior

to, and including, November 2004, and less than USD 250 million after November 2004.

2. Remove non-investment grade (HY) rated bonds that have less than USD 100 million out-

standing prior to, and including, September 2016, and less than USD 250 million after Septem-

ber 2016.

3. Remove bonds which are classified as zero-coupon, bond type == ‘CMTZ’.

4. Remove bonds which are classified as convertible, conv == ‘N’.

We merge the WRDS data to the Mergent FISD database (also publicly available via the WRDS

data platform) and apply the following filters already discussed above. This procedure delivers a

transaction-based TRACE dataset that closely aligns to the quote-based ICE data.

A.2 Correcting price-based TRACE characteristics for microstructure noise

As first emphasized by Bartram, Grinblatt, and Nozawa (2021), BGN, price measurement error

shared by a month-end transaction ‘price-based’ signal and the subsequent return generates corre-

lation between the two. This affects, for example signals based on bond credit spreads, yields and

size (market capitalization) for the TRACE (WRDS) database. We follow the methodology of BGN

and Dickerson, Robotti, and Rossetti (2023b), DRR, and define the ‘month-end’ price-based signal

to use a transaction-price at least one-business day before the price used to compute a month-end
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ex ante return. This methodology dampens the transmission mechanism of market microstructure

noise (MMN) inherent in the price-based TRACE price signals. DRR show that by accounting for

the transmission of the measurement error in this manner, the out-of-sample TRACE price-based

anomalies are aligned to those observed when using the ICE dataset.

A.3 Kelly, Palhares, and Pruitt 2021 (KPP) data library

For robustness purposes, we utilize the publicly available KPP data library available for down-

load on Seth Pruitt’s personal website here. The KPP data is based on the WRDS TRACE dataset

and contains bond excess returns and the 29 stock and bond characteristics required to train the

ML models. For the price-based variables, we apply the market microstructure adjustments as

described above.

B Machine learning model estimation and cross-validation

For all of our machine learning models, we cross-validate the model hyperparameters every five-

years and re-train the model every 12-months with an expanding window. Within each window we

perform the cross-validation with a 70:30 training-validation split. For example, if we have window

of 1,000 temporally ordered observations, 1-700 are used to train the model and the remaining 300

are used for validation. We graphically depict the sample splitting strategy for the training and

cross-validation in Figure A.1. For all models we utilize the sklearn Python package (Pedregosa

et al., 2011).

C eMAXX Net Quarterly Changes

TRACE does not provide the identity of end-users and thus it is a challenge to identify who is

likely to enjoy lower transaction costs with large trades. As an alternative, we investigate eMAXX

institutional holding data which provides the institutional ownership of corporate bonds at the

quarter end from 1998Q2 to 2021Q2.
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If we assume institutions trade each bond only once in a quarter, then the absolute value of

quarterly changes in positions provides information about the transaction size. Clearly, this is a

strong assumption as institutions can trade multiple times spreading trades within a quarter. With

this caveat in mind, we examine quarterly absolute changes in the positions of financial institutions.

In doing so, we discard observations with no changes and treat non-zero changes as transactions.

We also discard any position changes in the quarter in which the bond is issued or matures because

such changes do not incur transaction costs. For each investor and each quarter, we compute the

average transaction sizes across bonds. Then, we calculate the mean and median across institutions

to arrive at the trade-size statistics.

Panel A of Figure A.2 plots the average and median transaction sizes over time in eMAXX data.

The average spikes in some quarters with no obvious events and are likely to reflect measurement

errors. The median has a downward trend in the period from 1998 to 2004 and remains stable since

then.

Panel B presents the median within institution types, including insurance firms, mutual funds,

and others. After 2004, the median transaction size is nearly unchanged at around $500,000 dollars.

In TRACE data (Figure 4), a transaction with size $500,000 is at roughly the 80 percentile of the

size distribution. Thus, the median eMAXX investors are relatively large and likely to pay lower

transaction costs than the average TRACE investors.

Panel C shows the breakdown by portfolio sizes. Every quarter, we classify investors based on

the total size (in face value) of their corporate bond portfolios at the end of the previous quarter.

We then compute the median transaction size within each size quintile and plot it in Panel C.

The figure shows that, naturally, investors with a large portfolio size tend to have large quarterly

changes in positions. If these position changes are implemented in one trade, then the eMAXX

investors in the top quintile (whose transaction size is around $1.5 million after 2004) enjoy lower

transaction costs than smaller investors.
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D CRSP Corporate Mutual Fund Size

In this section, we study summary statistics of the corporate bond mutual funds. In Figure

A.4, we plot the number of corporate bond mutual funds and the Herfindhal index for total net

assets. Neither figure shows a clear trend.

E Order Splitting

In this section, we depart from the main findings of an investor placing an order with a fixed

trade size. It can be argued, based on intuition in the stock market, that an investor can break

down a large order into smaller pieces to minimize costs. When dealing with bonds, it may be

feasible to decrease the cost of delays by rapidly executing a portion of the order through dividing

a large order, despite higher bid-ask spreads.

In this section, we allow the investor to execute a portion of their trades by following the order

of opportunities that arise within a given month. To achieve this, we sort TRACE transactions

in ascending order according to their trade date and time, grouped by bond, and calculate the

cumulative volume for each month. When the cumulative volume for a particular bond reaches the

target size (for example, $2 million), we utilize all trades conducted up to that point to compute

the net returns. We classify eligible trades into 12 size groups following the same procedure as in

the main analysis. For instance, suppose the target is $2 million. In that case, trades eligible in

a month may include two orders of $500,000 and five orders of $200,000. We then calculate the

volume-weighted average of the net return corresponding to each trade size in that month. For

this example, we take 50% weight on the net return for $500,000 trades and 50% weight on the net

return for $200,000 trades. This method allows us to determine the net return with order splitting.

If the total monthly volume fails to reach the targeted trade size, the observation is considered

a trade failure. While this creates a look-ahead bias, it is a necessary assumption to avoid the

complexity of tracking partial inventory.

Figure A.5 compares the total cost before (x-axis) and after (y-axis) order splitting. We find

that splitting a large order slightly increases transaction costs. As an investor deviates from the
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optimal trade size, she pays higher bid-ask spreads and this outweighs the benefit of executing a

part of her order quickly. In summary, our main results are not impacted by order splitting.
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Figure A.1: Sample splitting strategy for cross-validation.

This figure shows the sample splitting used for cross-validation of the hyper-parameters of the penalized regressions,
i.e., lasso, elastic net, ridge, and the regression tree ensembles for a given window. The forecasting exercise involves
an expanding window that starts in January 1998. The initial window spans 1998:01–2002:07 (T = 55), and then
expands forward each and every month until the sample end on 2022:12. The first (last) out-of-sample forecast is
made in 2002:07 (2022:11) for the following month 2002:08 (2022:12). Hence, the out-of-sample ML portfolio returns
commence in 2002:08 and end in 2022:12, T = 245. For each window, the blue area represents the training sample
and the grey area represents the validation sample. The former consists of the first 85% of the observations while the
latter consists of the final 15% of observations. The training and the validation samples are contiguous in time and
not randomly selected in order to preserve the time series dependence of the data.

Training Sample Validation Sample

Time
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Figure A.2: Mean and Median Quarterly Changes in Positions
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Figure A.3: Distribution of Transaction Volume in NAIC: July 2002-December 2022
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This figure plots the cumulative frequency of insurance companies’ transaction size in NAICs. For example,

the area below 10K represents transactions with a size below $10,000. The sample is from July 2002 to

December 2022.
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Figure A.4: Number of Corporate Bond Mutual Funds
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This figure plots the number of corporate bond mutual funds (top panel) and the Herfindahl index of the

total net assets (bottom panel).
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Figure A.5: Comparison of Total Transaction Costs: Order Splitting
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This chart displays the total cost, which is the disparity between the gross alpha with an order size of $5,000
and the net alpha with the most efficient trade size. The x-axis represents the fixed trade size’s total cost,

while the y-axis portrays the total cost when a trade is broken into pieces for quicker execution.
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Table A.1: Decomposition of Transaction Costs: Individual Signals

$100K Optimal Volume

Signal Total BidAsk Delay Total BidAsk Delay

age 0.082 0.053 0.030 -0.027 0.011 -0.037
coupon 0.032 0.029 0.004 0.003 0.006 -0.004
faceval 0.037 0.029 0.008 -0.014 0.004 -0.018
bookprc 0.051 0.069 -0.018 -0.047 0.006 -0.053
debtebitda 0.065 0.064 0.001 0.014 0.008 0.006
duration 0.053 0.056 -0.004 -0.058 0.011 -0.068
ret61 0.362 0.349 0.013 0.104 0.050 0.054
nime 0.143 0.134 0.008 0.050 0.047 0.003
me 0.052 0.056 -0.004 -0.005 0.020 -0.025
eqtyvol 0.105 0.102 0.003 0.024 0.052 -0.028
totaldebt 0.040 0.036 0.004 0.033 0.026 0.008
mom6 0.367 0.385 -0.018 -0.026 0.064 -0.090
mom6ind 0.292 0.280 0.012 0.068 0.049 0.019
mom6xrtg 0.322 0.349 -0.026 -0.014 0.062 -0.076
booklev 0.064 0.062 0.001 0.020 0.007 0.013
mktlev 0.036 0.049 -0.013 -0.031 0.007 -0.038
turnvol 0.028 0.024 0.004 0.021 0.013 0.008
spread 0.186 0.157 0.029 0.110 0.067 0.042
operlvg 0.054 0.057 -0.003 0.024 0.028 -0.004
gpat 0.046 0.040 0.006 0.033 0.024 0.010
chggpat 0.079 0.081 -0.002 -0.023 0.010 -0.033
rating 0.031 0.034 -0.002 0.018 0.017 0.001
D2D 0.078 0.099 -0.021 -0.050 0.028 -0.079
skew 0.180 0.151 0.029 0.099 0.060 0.039
6mspread 0.526 0.458 0.068 0.265 0.112 0.154
sprtod2d 0.222 0.191 0.031 0.162 0.081 0.081
volatility 0.097 0.096 0.001 0.045 0.033 0.012
VaR 0.079 0.081 -0.003 0.020 0.028 -0.008
vixbeta 0.173 0.150 0.023 0.079 0.009 0.071

This table reports the two components of transaction costs, which are the difference between gross α and

net α. To measure delay costs, we compute an alternative version of net returns using quote prices on

TRACE transaction dates to compute all returns. Delay costs are the difference between gross returns and

the alternative net returns. Bid-ask costs are the difference between the alternative net returns and the

(original) net returns.
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Table A.2: Average Slope Coefficients of Monthly Risk-Adjusted Returns on Bond
Mutual Funds on Size Decile Dummies

Parameter Estimate (s.e.)

TNA Dummy 1 0.039 (0.07)
2 -0.012 (0.02)
3 0.028 (0.04)
4 -0.007 (0.02)
5 0.052 (0.07)
6 0.070 (0.07)
7 0.021 (0.02)
8 0.026 (0.04)
9 -0.010 (0.02)

Intercept 0.034 (0.03)
Number of Bond 239
R-Squared 0.044

This table reports the average slope coefficients of the regression of mutual fund returns adjusted for the

market risk on ten dummy variables based on the fund TNA in the previous month. The sample is from

August 2002 to November 2022. Values in parentheses are standard errors.
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