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Abstract

This paper proposes a new nonparametric test for detecting short-lived locally explosive

trends (drift bursts) in pure-jump processes. The new test is designed specifically to detect

intraday flash crashes and gradual jumps in cryptocurrency prices recorded at a high fre-

quency. Empirical analysis shows that drift bursts in bitcoin price occur, on average, every

second day. Their economic importance is highlighted by showing that hedge funds holding

cryptocurrency in their portfolios are exposed to a risk factor associated with the intensity

of bitcoin crashes. On average, hedge funds do not profit from intraday bitcoin crashes and

do not hedge against the associated risk.
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1 Motivation

Cryptocurrency markets are infamous for huge volatility, bubble-like behaviour and abnormal

number of flash crashes and dramatic intraday price movements. This paper develops a new

econometric methodology for detecting intraday price spikes and crashes from high frequency data

and undertakes a systematic analysis of these events. Figure 1 shows two representative examples

of the events of interest detected using the new methodology in bitcoin prices. Panel A shows

an example of a “flash crash”: around 12 : 00 the bitcoin price drops sharply and subsequently

recovers in a matter of minutes forming the pattern analogous to the iconic flash crash of May 6,

2010. Panel B represents a positive “gradual jump”: the price level changes significantly over a

short time interval, however, the price change is not instant (as one expect when the price really

jumps), but accumulates continuously forming a short-lived explosive trend.

Figure 1: Examples of drift bursts in bitcoin.

Panel A: a flash crash Panel B: a gradual jump
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Note. This figure shows two examples of drift bursts detected in bitcoin using the new econometric methodology proposed in the present

paper.

Christensen et al. (2022) propose a unified mathematical framework (the drift burst model) incor-

porating the events as the ones shown in Figure 1 into the classical arbitrage-free continuous-time

stochastic volatility models driven by a Brownian motion. However, recent studies (Scaillet et al.,
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2020; Kolokolov, 2022) provide strong evidence that the dynamics of the cryptocurrency prices dif-

fers substantially from the Brownian stochastic volatility models. In particular, Kolokolov (2022)

show that bitcoin price is better described by non-Gaussian pure-jump models without a Brown-

ian motion component. This violates the assumptions of Christensen et al. (2022). Consequently,

their nonparametric detection methodology should not be applied to cryptocurrency data.

To overcome the aforementioned difficulty, this paper proposes a new nonparametric test for

detecting drift bursts in pure-jump processes. The new methodology remains valid in the classical

locally Gaussian models as well. Extensive Monte Carlo experiments show that the size and power

of the new test in standard stochastic volatility models driven by a Brownian motion are as good

as of the original Christensen et al. (2022) test. In the pure-jump setting, Christensen et al. (2022)

test suffers from a loss of power and the new methodology becomes superior.

Application of the new test to high frequency cryptocurrency data reveals a substantial number of

drift bursts. Starting from 2018, various kinds of drift bursts occur in bitcoin price roughly every

second day on average, while, for example, in the liquid stock prices one can observe roughly

8 similar events in a year as documented by Bellia et al. (2023) using CAC40 stocks traded at

Euronext Paris. The majority of drift bursts in bitcoin have a gradual jump form with overshooting:

they lead to a shift in the price level, but the original price movement is followed by subsequent

partial price reversal. The economic importance of intraday local trends in bitcoin is illustrated

by their impact on the performance of hedge funds holding cryptocurrency in their portfolios. By

estimating linear factor models for hedge fund returns, we show that, on average, hedge funds

profit from positive trends and lose money from negative ones. An average cryptocurrency hedge

fund is exposed to the same risks as a long-only bitcoin portfolio: hedge funds are not seem to

be crypto-market neutral, they do not diversify bitcoin risks by holding large cryptocurrency

portfolios and they are do not implement sophisticated trading strategies to profit during crashes.

Consequently, the proposed test for detecting drift bursts can be potentially useful for funds of

funds, that might be interested in comparing individual hedge fund returns over particular time

intervals (e.g., containing a high number of bitcoin crashes) in order to assess their investment

skills and hedging abilities.

The contribution of the present paper is twofold. From the theoretical point of view, the paper
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contributes to the broad econometric literature on the inference in pure-jump processes. The

majority of studies in this field are dedicated to measuring the jump activity index and volatility

or testing for the presence of a Brownian component (Aı̈t-Sahalia and Jacod, 2010; Cont and

Mancini, 2011; Jing et al., 2012; Kolokolov, 2022; Woerner, 2003, 2007; Todorov and Tauchen,

2010, 2011; Todorov, 2015; Hounyo and Varneskov, 2017). The present paper is the first study

dedicated to the inference on the drift in the class of pure-jump models. Thus, the paper also

contributes to the fast growing literature on the inference on the drifts, locally explosive trends

and local arbitrage violations from high-frequency data (Christensen et al., 2022; Andersen et al.,

2023; Flora and Renó, 2023; Kolokolov et al., 2023; Mancini, 2023).

From the empirical point of view the paper contributes to the recent studies on cryptocurrency

markets as well as to the long-established literature on hedge fund performance. Classical ques-

tions, such as “do hedge fund really hedge?” and “which factors explain the returns of hedge

funds?” are extensively studied for hedge funds investing in conventional assets (Fung and Hsieh,

2001; Titman and Tiu, 2011). The study of cryptocrashes allows to shed light on this questions

for the particular group of hedge funds investing in cryptocurrency.

The rest of the paper is organized as follows. Section 2 describes the econometric framework,

presents the test statistics and explains the details of its implementation. Section 3 is dedicated

to a Monte Carlo study. Real data analysis is conducted in Section 4. Section 5 concludes.

2 Drift bursts in stable noise

2.1 The settings

We consider a filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
satisfying usual conditions which

supports a log-price process X = (Xt)t≥0 specified by the assumption below.

Assumption 1. X is a pure-jump semimartingale evolving as

dXt = µt dt+ σtdSt, (1)

where S is a symmetric α-stable Lévy motion (i.e., E
[
eiλSt

]
= e−t|λ|

α

) with Lévy measure ν(dz) =

4



Bα |z|−(α+1) dz and tail index α ∈ (1, 2), X0 is F0-measurable and independent from (St)t≥0,

µ = (µt)t≥0 is a locally bounded and predictable drift and σ = (σt)t≥0 is an adapted, cádlág, locally

bounded stochastic scale.

Assumption 1 implies that X is a locally stable process. It is a pure-jump analog of a standard

formulation for locally Gaussian continuous-time arbitrage-free price processes (a standard locally

Gaussian stochastic volatility model with continuous sample paths is obtained by replacing the

stable process S with a Brownian motion W ). The difference from the classical model is that X

is comprised solely of jumps and does not include a continuous martingale component, which is

substituted by the infinitely many small jumps in X. The jump activity index of X is equal to the

tail index of the driving stable process α. Since α ∈ (1, 2), the jumps of X have infinite variation

and the variance of the increments Xt+∆ −Xt computed over short time scales is infinite1.

The condition α ∈ (1, 2) allows to adopt the drift burst concept of Christensen et al. (2022) to

the present pure-jump settings with minor modifications. As µ and σ are locally bounded, for a

time instant τ , as ∆→ 0,∫ τ+∆

τ−∆

µt dt = Op(∆) and

∫ τ+∆

τ−∆

σt dSt = Op(∆
1/α). (2)

Thus, since α > 1, over short time intervals the contribution of the drift to the variation of

X is negligible relative to the contribution of stochastic scale component. Hence, Assumption 1

describes the “normal times” without drift bursts.

A drift burst occurs in a vicinity of a time point τ (a drift burst time) if, as ∆→ 0,∫ τ+∆

τ−∆

µt dt = Op(∆
γ), (3)

with 0 < γ < 1/α. That is, in a neighborhood of τ the drift term diverges prevailing the stochastic

scale component.

A stylized example of a drift burst is given by the following semi-parametric specification of the

instantaneous drift process:

µdbt =
a1

(τ − t)α(µ)
1{t<τ} +

a2

(t− τ)α(µ)
1{t>τ}, (4)

1The condition α > 1 is compatible with real cryptocurrency data used in the empirical application: the average

jump activity index estimated by Kolokolov (2022) on five-minute bitcoin data is 1.76.
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where a1 and a2 are some non-positive (or non-negative) bounded stochastic processes, τ is an

Ft-stopping time, α(µ) is a parameter and 1{·} denotes the indicator function. The stopping time

τ determines the centre of the drift burst. The parameter α(µ) = γ − 1 controls the speed of the

explosion. Panel A of Figure 2 shows an example of price trajectory with and without (corre-

sponding to a1 = a2 = 0) a drift burst. When both a1 and a2 are bounded away from zero the

drift process specified by equation (4) generates a flash crash similar to the one shown in Panel A

of Figure 1. When a1 is positive and a2 = 0 identically, the parametric model generates a gradual

jump similar to the event shown in Panel B of Figure 1. Thus, gradual jumps can be considered

as “one-sided flash crashes”.

The above example is not unique. Another stylized example of a drift burst having a gradual jump

form is the following. Let X ′ be an auxiliary process satisfying Assumption 1 with µ being locally

bounded. Assume that there is a jump ∆X ′τ in X ′ at a time instant τ . Next, define the gradual

jump process as:

Gt = ∆X ′τ

(
1−

(
1− t− τ

τ − τ ′

)β)
1{t∈[τ ′,τ ]}, (5)

where τ ′ < τ is a stopping time and β is a constant parameter. Then, a process defined as the sum

Xt = X ′t + Gt −∆X ′τ1{t≥t} exhibits a drift burst of a gradual jump form in a vicinity of time τ .

Panel B of Figure 2 shows an example of price trajectory with and and without a gradual jump.

In this model, X ′ can be interpreted as a latent fundamental price process which has a large jump

at time τ . X stands for the observed price process which accumulates small movements into a

level shift at time τ , reflecting the gradually of the market learning.

Other specifications of explosive drifts of different forms can be found in Andersen et al. (2023).

In what follows we do not assume a particular parametric form for a drift burst, but propose a

nonparametric test for the presence of drift bursts in a pure-jump process defined by Assumption

1.

Remark 1. The class of pure-jump processes specified by Assumption 1 can be extended in several

ways. First, the stable process S in equation (1) can be replaced by a locally stable process, say L,

which behaves approximately like a stable process over small time increments only (locally stable

processes include, for example, tempered stable processes). Second, the log-price process X may be

6



Figure 2: Examples of drift bursts in simulated data.
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Note. Panel A shows an example of price trajectory with a drift burst generated by model (4). Panel B shows an example of price

trajectory with a gradual jump generated by model (5).

allowed to contain “residual” jumps, which are dominated by L over small time scales. Such general

setting are considered, for example, in Aı̈t-Sahalia and Jacod (2009), Todorov and Tauchen (2010,

2011), Hounyo and Varneskov (2017) and Kolokolov (2022). The identification theory presented

below remains valid under the general setting. However, assuming that the driving force of the log-

price in equation (1) is a stable process substantially simplifies the exposition and the mathematical

derivations. Hence, Assumption 1 is adopted for convenience and simplicity, but a more general

tempered-stable model is used to validate finite sample properties of the proposed test in the Monte

Carlo section.

2.2 Identification

The inference is based on a discretized path of X. We assume that X is recorded over a fixed

interval [0, T ] at times 0 = t0 < t1 < · · · < tn = T , where the time increments ∆i,n = ti − ti−1

are eventually converge to zero. The sampling times are allowed to be non-equispaced, however a

certain degree of regularity is required (Assumption 5 in the Appendix). In particular, we assume
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that for all i and a sufficiently large n, there exist constants 0 < c < C, such that

c∆n ≤ ∆i,n ≤ C∆n, (6)

where ∆n = T/n. In what follows we set T = 1 without loss of generality. The high-frequency

increments of X over [ti−1, ti] are denoted by ∆iX = Xti −Xti−1
.

Nonparametric detection of drift bursts in locally Gaussian models relies on kernel-based local

drift and volatility estimators defined respectively as:

µnt =
1

hn

n∑
i=1

K

(
ti − t
hn

)
∆iX and σnt =

√√√√ 1

h′n

n∑
i=1

K

(
ti − t
h′n

)
|∆iX|2, (7)

where hn and h′n are respectively mean and variance bandwidths and K is a kernel function. Bandi

(2002) and Kristensen (2010) show that µnt is inconsistent for the drift term but asymptotically

normal and unbiased. Using this fact, Christensen et al. (2022) prove that under the absence of a

drift burst,

tnt =

√
hn
K2

µnt
σnt

stably−→ N (0, 1) , (8)

where K2 is a kernel-dependent constant and
stably−→ denotes stable convergence in law. Thus, in

locally Gaussian models, the absence of a drift burst in a neighborhood of τ can be rejected when

the t-statistics tnτ exceeds the corresponding quantile of standard normal distribution.

The above result is not valid for pure-jump models. Recently, Mancini (2023) show that tnt does not

converge to a Gaussian limit in general pure-jump setting. Intuitively, for locally stable pure-jump

semimartingales as in Assumption 1, µnt is not asymptotically Normal due to the nonexistence

of the second moment of stable distribution (hence, tnt does not converge to normal distribution

either) and σnt is unbounded in probability. Consequently, the power of the drift burst test proposed

by Christensen et al. (2022) declines with respect to a locally Gaussian case.

To resolve this issue, nonparametric identification of drift bursts in pure-jump stetting relies on

tempering high-frequency increments. The increments ∆iX are substituted by dampened and

normalized counterparts g
(

∆iX

∆
1/α
n

)
, where g is a sufficiently regular tempering function, such that

all moments of g
(

∆iX

∆
1/α
n

)
exist and are finite. The corresponding conditions on g are provided by

assumption below.
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Assumption 2. The real valued function g is bounded, infinitely differentiable with bounded

derivatives and symmetric around zero with g (0) = 0.

Assumption 2 is satisfied by a wide range of functions. For example, it holds for g(x) = Φ(x)−Φ(0),

where Φ denotes the cumulative distribution function of standard normal distribution, used in the

empirical application. For a given tempering function g, a tempered local drift estimator (an

analog of the µnt based on tempered increments) is defined as:

µ̃nt =
∆n

hn

n∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆iX

∆
1/α
n

)
. (9)

When T →∞ and n→∞, a consistent estimator of the drift can be constructed from µ̃nt (Mies

and Steland, 2019). When T is fixed, the drift can not be estimated consistently. However, µ̃nt

admits a central limit theorem presented below.

Theorem 2.1. Assume that X is a semimartingale as defined by Assumption 1, and that As-

sumptions 2 and 4-6 (stated in the Appendix) are fulfilled. As n → ∞, hn → 0, nhn → ∞ and

n
2−α
α hn → 0. Then, it holds: √

hn
∆n

µ̃nt
stably−→ N

(
0, K2 ρ

(α)
σt−

(
g2
))
, (10)

where K2 =
∫ 0

−∞K
2(x) dx is a kernel-dependent constant and ρ

(α)
σt−(g2) = E

[
g (σt−S1)2], where S1

denotes standard symmetric α-stable random variable.

Theorem 2.1 shows that tempering high-frequency increments allows to obtain usual Gaussian

asymptotics for the functionals of tempered increments even in the pure-jump settings. Rescaling

the left-hand side of equation (10) by a suitable estimator of

√
K2 ρ

(α)
σt−(g2) provides an asymp-

totically standard normal test statistic that can identify drift bursts. The test statistics is defined

as:

t̃nt =

√
hn

∆nK2

µ̃nt
σ̃nt
, (11)

where

σ̃nt =

√√√√∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
g2

(
∆iX

∆
1/α
n

)
. (12)
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Theorem 2.2. Assume that X is a semimartingale as defined by Assumption 1. Under the as-

sumptions of Theorem 2.1, as n→∞, it holds:

t̃nt
stably−→ N (0, 1) . (13)

Theorem 2.2 shows that, in absence of a drift burst, t̃nt has a limiting standard normal distribution.

Thus, the exeedence of t̃nτ over a quantile of standard normal distribution indicates the presence

of a burst in a vicinity of the stopping time τ .

2.3 Robustness to microstructure noise

This section shows how to modify the test, so it is resistant to a market microstructure noise vastly

present at the tick level price data. Assume that instead of directly observing a discretisation of

X, the observations are recorded with errors:

Zti = Xti + uti , i = 0, 1, . . . . , n, (14)

where Xti are discretely sampled from a semimartingale X satisfying Assumption 1 and uti are

zero-mean random errors specified below.

Assumption 3. {uti}
n
i=0 is a sequence of zero-mean random variables adapted and independent of

X. For every i, E
[
u4
ti

]
<∞ and the covariance function γk = E

[
utiuti+k

]
is finite and independent

of i and n for any integer k ≥ 0. Moreover, there exists an integer Q > 0, such that γk = 0 for

any k > Q.

Let kn be a diverging sequence of integers. For a generic stochastic process V , define the pre-

averaged increments as:

∆iV =
kn−1∑
j=1

qnj ∆i+jV, (15)

where qnj = q (j/kn), and q : [0, 1] 7→ R is a continuous and piecewise continuously differentiable

function with a piecewise Lipschitz derivative q′, q(0) = q(1) = 0 and
∫ 1

0
q2(s) ds <∞.

The noise-robust test statistic is defined as:

t
n
t =

√
hn

µnt
σnt
, (16)
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where

µnt =
1

hn

n−kn+2∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆i−1Z

(n/kn)
1
α

)
, (17)

and σnt is a heteroscedasticity and autocorrelation consistent (HAC)-type estimator of the asymp-

totic standard deviation of µnt defined as:

σnt =

√√√√ 1
h′

[(
n−kn+2∑
i=1

K
(
ti−1−t
hn

)
g

(
∆i−1Z

(n/kn)
1
α

))2

+ 2
Ln∑
L=1

w
(
L
Ln

) n−kn−L+2∑
i=1

K
(
ti+L−1−t

hn

)
K
(
ti−1−t
hn

)
g

(
∆i−1Z

(n/kn)
1
α

)
g

(
∆i+L−1Z

(n/kn)
1
α

)]
,

(18)

where w : R 7→ R+ is a kernel function with w(0) = 1 and lim
x→∞

w(x) = 0, and Ln is the lag length

that determines the number of autocovariances.

Theorem 2.3. Assume that Z is defined by equation (14), where X is specified by Assumption 1

and uti is specified by Assumption 3. Assumptions 2 and 4-6 (stated in the Appendix) are fulfilled.

Assume further that as n → ∞, it holds: kn → ∞, L → ∞ such that knhn → 0 and knh
′
n → 0,

hnk
5
nn

α−2
α → 0 and h′nk

5
nn

α−2
α → 0, Ln

h′nn
→ 0. Then, as n→∞,

t
n
t

stably−→ N (0, 1) . (19)

Theorem 2.3 imposes strong conditions on the number of pre-averaged terms: hnk
5
nn

α−2
α → 0 and

h′nk
5
nn

α−2
α → 0. In practice, these conditions imply that that the number of pre-averaged terms

ought to be small. The conditions imposed on Ln are the same as in the Gaussian case.

2.4 Details of implementation

Detection of drift bursts on an interval [0, T ] consists of computing our t
n
t statistic progressively

over a grid of points 0 ≤ t∗1 < t∗1 < · · · < t∗m ≤ T partitioning the interval [0, T ]. To control the

family-wise error rate we evaluate the maximum of the absolute values of the test statistic:

t
n
? = max

t∗i

∣∣∣tnt∗i ∣∣∣ . (20)

Then, if t
n
? exceeds its critical value (defined below) we conclude that there is at least one drift

bursts in the interval [0, T ].
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Implementation of this strategy in practice requires the specification of the tuning parameters for

computing t
n
t∗i

in each point of the grid and of the critical value for t
n
? . Since the test statistics

t
n
t∗i

have asymptotic standard normal distribution, the solution to the later problem does not

differ from the Gaussian case and it is borrowed from Christensen et al. (2022). In particular, we

approximate the time series of the test statistics t
n
t∗1
, t
n
t∗2
, . . . , t

n
t∗m

by an AR(1) process, estimate the

autoregressive parameter using conditional maximum likelihood and simulate 100,000,000 Monte

Carlo replications of the AR(1) process. Then, q-% the data-driven critical value for t
n
? is computed

as the q-% quantile of the maximums of the absolute values of the simulated AR(1) processes.

For each t
n
t∗i

from the grid, we choose the tempering function to be g (x) = Φ(x)−Φ(0), where Φ(x)

denotes the cdf of standard normal distribution. This particular tempering function is adopted

as a similar function is successfully used by Mies and Steland (2019) for the drift estimation

under long-span asymptotic. For the choice of the remaining tuning parameters we again follow

the suggestions of Christensen et al. (2022). We set kn = 3 and calculate the drift burst test

statistic on a regular 30-second grid and only include values that are preceded by a price change

(stale prices corresponding to zero returns are removed). The bandwidth for the spot volatility

estimation is specified as five times the bandwith for the drift h′n = 5hn, we use Parzen kernel

and Ln = 2(kn + 1) + 10 lags for the HAC-correction and left-sided exponential kernel K (x) =

exp(− |x|), for x ≤ 0.23. For the estimation of the drift we use a large bandwidth of 20 minutes.

Finally, the computation of t
n
t∗i

requires scaling the pre-averaged returns by a factor (n/kn)
1
α , where

α is an unknown jump activity index. From the proof of Theorem 2.3 it is clear that the scaling

factor can be replaced with another sequence converging with the same rate. Therefore, to avoid

the estimation of α in practice we replace the tempered local drift estimator with a self-normalized

statistics:

µnt =
1

hn

n−kn+2∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆i−1Z

θn

)
, (21)

where θn =

1
n−kn+2

n−kn+2∑
i=1
|∆i−1Z|

cθ
, with cθ being a constant. cθ can be interpreted similarly to the

constant in the definition of the adaptive threshold used by Corsi et al. (2010): it controls how

large should be the increment
∣∣∆i−1Z

∣∣ relative to the average value to be truncated by the function

g. We set cθ = 0.2, which guarantees that for the increments, which are more than 15 times larger

12



than the average, we have
∣∣∣g (∆i−1Z

θn

)∣∣∣ ≈ 0.5 = g (∞), so the extremely large jumps are replaced

by a finite value. The local volatility estimator is adjusted in a similar way.

3 Simulation study

In this section we investigate the finite-sample size and power of the proposed test by Monte Carlo

simulations. The overall goal is to compare the new drift burst test with the original test developed

for Brownian models by Christensen et al. (2022). Therefore we adopt the same simulation setting

as in their paper extending it further by replacing Brownian motion with pure-jump processes.

The driftless “efficient” log-price process X evolves as:

dXt = γ(α) σt dL
(α)
t ,

dσ2
t = κ(θ − σ2

t ) dt+ ξσtdBt, t ∈ [0, 1],
(22)

where B is a standard Brownian motion and L(α) is either a locally stable processes (when α < 2)

or a standard Brownian motion (when α = 2), such that E
[
dL

(2)
t dBt

]
= ρ. When α < 2, the

pure-jump process L(α) is specified as in Kolokolov (2022): it is a mixture of tempered stable

processes with the Lévy measure νL(x) = e−λ|x|
(

A0

|x|α+1 + A1

|x|α/3+1

)
.

We consider different values of the jump activity index α ranging in the interval (1, 2] and choose

other parameters as in Christensen et al. (2022) and Kolokolov (2022). The annualized volatility

parameters are (κ, θ, ξ, ρ) =
(
5, 0.0225, 0.4,−

√
0.5
)
. For each value of α, λ = 0.25 and A0 and

A1 are such that A0

∫
R
|x|1−α e−λ|x| dx = 1 and A1

∫
R
|x|1−α e−λ|x| dx = 0.2. Next, for each of the

simulated paths, the constants γ(α) are calibrated to guarantee that the quadratic variation of X

is the same for different values of α and γ(2) = 1, so the relative contribution of the drift burst

is the same across considered levels of jump activity. A total of 1000 repetitions is generated via

an Euler discretization. In each simulation, n = 23400 and σ2
t is initiated at random from its

stationary law.

To asses the power of the test under alternative we add drift and volatility bursts components (al-

though, the presence of volatility bursts is not considered in the theory, they are added to intricate
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the Monte Carlo experiments) to the log-price process X, so the observed process becomes:

X̃t = Xt +

∫ t

0

µdbs ds+

∫ t

0

σvbs dL(α)
s , (23)

where the parametric form of the drift and volatility bursts are respectively:

µdbt = a
sign(t− τ)

|τ − t|α(µ)
, σvbs = b

√
θ

|τ − t|β
. (24)

We set τ = 0.5, so the the price experiences a short-lived flash crash at the centre of the simulated

trading day. We consider small, medium and large drift bursts corresponding to three different

explosion rates α(µ) ∈ {0.55, 0.65, 0.75} and a = 3. The parameters of the volatility bursts are

b = 0.15 and β = 0.5 which guarantee satisfactory identification of the drift burst in the Gaussian

case according to the simulations in Christensen et al. (2022).

Table 1 reports the number of rejections of the absence of a drift burst in the model defined by

equation (22) for different levels of the jump activity α. Panel A reports the rejections for the

Christensen et al. (2022) test. Panel B reports the number of rejections for the new test. First,

the table shows that in the standard Gaussian case (the bottom rows of Panels A and B) the

performances of the two tests are not significantly different. For example, with the 95% confidence

level, medium and large drift burst are detected by the original test in respectively 46.3% and

84.2% of the simulations; the new test detects these drift bursts in respectively 45.4% and 86.3%

of the simulations. However, the power of the new test in significantly larger than the power

of the original test for the pure-jump setting. For example, when jump activity α = 1.5, small,

medium and large drift bursts are detected (with the 95% confidence level) by the original tests

in respectively 37.8%, 69.7% and 90% of the simulations, while the new test detects them in

respectively 68.0%, 94.2% and 99.5% of the simulations. Second, Table 1 shows that the smaller

the jump activity index the easier it is to detect a drift bursts. Intuitively this result can be explain

as follows. The quadratic variation of a pure-jump process is equal to the sum of squared jumps.

When the jump activity index is small, there are just a few very large jumps, which account for

the major part of the quadratic variation. The increments of X not containing the largest jumps

are relatively small. Hence, the contribution of the (exploding) drift to this increments is relatively

larger and can be easier captured by the test statistics.

14



Table 1: Size and power of drift burst t-statistics.

P (t?m > q0.950) P (t?m > q0.990) P (t?m > q0.995)

Size Power: α(µ) = Size Power: α(µ) = Size Power: α(µ) =

µdb = 0 0.55 0.65 0.75 µdb = 0 0.55 0.65 0.75 µdb = 0 0.55 0.65 0.75

Panel A: Christensen, Oomen, Renó (2020) test

α = 1.1 0.017 0.583 0.801 0.923 0.009 0.518 0.744 0.888 0.008 0.496 0.718 0.876

1.2 0.009 0.521 0.784 0.949 0.006 0.452 0.716 0.908 0.005 0.427 0.690 0.890

1.3 0.008 0.456 0.757 0.911 0.003 0.383 0.684 0.866 0.003 0.355 0.647 0.845

1.4 0.005 0.409 0.706 0.919 0.002 0.312 0.607 0.869 0.002 0.290 0.565 0.833

1.5 0.007 0.378 0.697 0.900 0.003 0.293 0.599 0.841 0.003 0.267 0.549 0.808

1.6 0.011 0.353 0.633 0.894 0.002 0.253 0.523 0.815 0.001 0.222 0.491 0.776

1.7 0.014 0.286 0.621 0.897 0.003 0.190 0.471 0.812 0.002 0.162 0.421 0.764

1.8 0.027 0.243 0.541 0.876 0.008 0.154 0.397 0.777 0.003 0.131 0.339 0.719

1.9 0.022 0.208 0.498 0.852 0.006 0.108 0.359 0.750 0.001 0.078 0.310 0.693

2 0.043 0.177 0.463 0.842 0.003 0.089 0.287 0.697 0.003 0.059 0.234 0.634

Panel B: New test

α = 1.1 0.045 0.961 0.998 1.000 0.032 0.927 0.994 1.000 0.028 0.913 0.993 1.000

1.2 0.027 0.908 0.994 1.000 0.017 0.865 0.991 1.000 0.016 0.847 0.987 1.000

1.3 0.028 0.847 0.988 1.000 0.017 0.777 0.979 1.000 0.012 0.751 0.972 0.998

1.4 0.017 0.783 0.973 0.999 0.007 0.686 0.951 0.997 0.006 0.641 0.936 0.995

1.5 0.021 0.680 0.942 0.995 0.007 0.566 0.892 0.988 0.005 0.531 0.859 0.986

1.6 0.029 0.559 0.871 0.993 0.010 0.440 0.800 0.983 0.006 0.394 0.748 0.968

1.7 0.022 0.427 0.820 0.989 0.004 0.309 0.703 0.964 0.003 0.279 0.650 0.945

1.8 0.038 0.326 0.681 0.964 0.004 0.224 0.550 0.925 0.002 0.192 0.492 0.885

1.9 0.028 0.229 0.552 0.918 0.007 0.126 0.419 0.850 0.004 0.097 0.368 0.806

2 0.038 0.171 0.454 0.863 0.003 0.075 0.285 0.749 0.002 0.050 0.231 0.681

Note. The table reports the number of rejections of the absence of a drift burst in the model defined by equation (22) for different

levels of jump activity α. Panel A reports the rejections for the Christensen, Oomen, Renó (2020) test. Panel B reports the number of

rejections for the new test proposed in the present paper.
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Figure 3 shows the correlation between the original and the new test statistics in Gaussian (Panel

A) and pure-jump (Panel B) settings. Under the presence of the Brownian motion the two tests are

highly correlated and most of the time they detect drift bursts in the same simulated trajectories

of X. Panel B shows that in the pure-jump case (with jump activity index α = 1.5) the two test

statistics remain correlated, but the scatter plot substantially deviates from the 45 degree line

indicating larger power of the new test. The relative loss of power for the original test is consistent

with the theoretical intuition: since in the pure-jump settings the standard local volatility estimator

in the denominator of the test statistics is unbounded in probability, the value of the original test

statistic decreases.

Figure 3: Original v.s. new drift burst tests.
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Note. This figure shows the scatter plot of the original drift burst statistics of Christensen, Oomen, Renó (2022) against the new test

statistics in Gaussian case (Panel A) and pure-jump case with α = 1.5 (Panel B). The blue dashed lines represents average 99% critical

values.

Overall, the Mote Carlo experiments show that the newly proposed test is more suitable for detect-

ing drift bursts in cryptocurrency prices. Even if the jump activity of an underling cryptocurrency

price varies over time or approaches the value of 2, application of the new methodology allows

safely detecting drift bursts without risking the test power and without any visible size distortion.
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4 Application to real data

4.1 Bitcoin crashes

We consider a time series of tick-by-tick bitcoin prices traded at Kraken recorded from January

1, 2017 to April 19, 2022. In total we obtain 1934 trading days with 24 hours in each. The data

are available from www.bitcoincharts.com. In order to detect drift bursts in bitcoin prices the

noise-robust test statistic t
n
t is computed for every trading day on a grid of equispaced time points

distant by 30-seconds intervals. The tuning parameters are set as explained in Section 2.4. In order

to be able to detect drift bursts occurring during the same trading day the maximum test statistic

t
n
? defined by equation (20) is calculated every hour. Each detected drift burst is classified as being

positive or negative based on the sign of the test statistics.

Table 2 reports the number of positive and negative drift bursts detected in bitcoin price and

average of 5, 10- and 30-minute returns before and after the drift bursts peaks. On average, a drift

burst with any sign occurs in roughly 42% of trading days. Panel A of Figure 4 illustrates the

temporal distribution of drift burst across trading days and trading hour during the day. In 2017

(when bitcoin market was not yet very developed and relatively illiquid) bitcoin crashes occur

relatively less frequent than in the later years. After 2018 drift bursts occur on average every

second day. They are scattered nearly uniformly across the years and the time of the day, without

a clear pattern, which might be associated with a specific time of the day. Several drift bursts

frequently occur on the same day. The frequency of positive and negative events is roughly the

same.

Panel B of Figure 4 shows the scatter plot of pre- and post-drift burst returns. We observe that

some of drift bursts can be associated with subsequent partial price reversals (the reversals are

not always statistically significant). This result resembles the findings of Christensen et al. (2022)

based on the analysis of drift bursts in different future contracts. In order to test the significance

of the price reversals, for each of the detected event, the proposed test is applied in reverse time.

Panels B and C of Table 2 report the number of detected crashes respectively with subsequent

significant reversals and without them. The majority of the crashes – roughly 83% for positive
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Table 2: Drift bursts detected in bitcoin prices.

# R
(−)
5 R

(+)
5 R

(−)
10 R

(+)
10 R

(−)
30 R

(+)
30

Panel A: All events

positive 428 0.016 −0.003 0.020 −0.003 0.024 −0.003

(0.013) (0.008) (0.016) (0.009) (0.018) (0.012)

negative 400 −0.021 0.006 −0.026 0.006 −0.032 0.006

(0.020) (0.015) (0.027) (0.017) (0.032) (0.023)

Panel B: With significant reversals (gradual jumps with overshooting)

positive 71 0.016 −0.008 0.019 −0.010 0.024 −0.016

(0.016) (0.010) (0.018) (0.011) (0.021) (0.015)

negative 96 −0.025 0.014 −0.031 0.017 −0.039 0.023

(0.024) (0.019) (0.031) (0.023) (0.043) (0.035)

Panel C: Without significant reversals (gradual jumps)

positive 357 0.015 −0.003 0.020 −0.002 0.025 −0.001

(0.013) (0.007) (0.015) (0.008) (0.017) (0.010)

negative 304 −0.020 0.003 −0.024 0.003 −0.030 0.001

(0.019) (0.012) (0.025) (0.014) (0.027) (0.015)

Note. The table reports the number of positive and negative drift bursts detected in bitcoin prices for the period from January 1, 2017

to April 19, 2022. The second column reports the number of detected events. The other columns report the average 5, 10- and 30 minute

returns before (R
(−)
5 ,R

(−)
10 ,R

(−)
30 ) and after (R

(+)
5 ,R

(+)
10 ,R

(+)
30 ) the peak of drift bursts and their standard deviations (in parenthesis).

and 75% for negative drift bursts – have gradual jump form: they are not followed by significant

price reversals. Negative drift bursts tend to revert more relative to positive ones. The price drops

observed during the crashes with reversals are slightly larger than during gradual jumps: for

example, average 10-minute return during a price crash associated with subsequent price recovery

is −3.1%, while it is −2.5% for the crashes without significant reversals.

Figure 5 presents average shapes of detected drift bursts. It displays average (across detected events

of different kinds) cumulative log-returns in one hour interval surrounding drift burst instant.

4.2 An economic lens: impact on hedge fund performance

This section study how drift bursts in bitcoin impact the performance of cryptocurrency investors.

While a long-only bitcoin investors profit from positive gradual jumps and lose from negative ones,

sophisticated investors, for example, hedge funds, may benefit from both kinds of bursts (or at
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Figure 4: Temporal distribution and reversion of drift bursts.
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Note. Panel A shows the distribution the drift bursts instants across days and time of a day. Positive drift bursts are labeled with +.

Panel B shows the scatter plot of 5 and 30 minutes pre- and post-drift burst returns.

least annihilate the risk caused by bitcoin crashes) by proper market timing, short selling, trend

following strategies and holding well-diversified portfolios of various cryptocurrencies. To test the

later claim we estimate various multi-factor models for the Barclay Cryptocurrency Traders Index

(BCTI), which measures the average performance of hedge funds holding cryptocurrency in their

portfolios. Along with standard factors typically used to explain hedge fund returns (Fung and

Hsieh, 2001) we add new ones measuring the intensity of drift bursts in bitcoin. The data for BCTI

are available on monthly level from January 2018 to May 2021 from the Barclay Hedge database.

We consider several linear factor models for BCTI specified as:

Rt = α + β1λ
+
t + β2λ

−
t + β′Controlst + εt, (25)

where Rt is the value of BCTI on month t, λ+
t and λ−t denote the monthly intensity of respectively

positive and negative drift bursts (measured by the number of detected bursts in each month),

Controlst is a vector of standard factors used to explain hedge fund returns and εt is a stochastic

error term. First, the model is estimated without control variables. Next, controls are added into

the regression. Finally, we distinguish between gradual jumps with and without subsequent price
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Figure 5: Average shapes of the drift bursts.
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Note. Average positive (left panel) and negative (right panel) drift bursts in bitcoin with and without significant price overshooting

and subsequent price reversals.

reversals by replacing λ+
t and λ−t in the regression equation by the intensities of the corresponding

events.

Table 3 presents the estimates of the regression coefficients from different specifications of the

model (25). The intensities of both positive and negative drift bursts are highly significant. They

explain 41.8% of the variation of BCTI, while standard hedge-fund factors (Controlst) taken alone

capture only 17.8% of the total variation. The partial effect of positive gradual jumps on BCTI

is positive and the effect of negative ones is negative. Thus, on average, hedge funds do not profit

from intraday bitcoin crashes and they do not hedge against the associated risk. Splitting drift

burst into the events with and without price reversals shows that the above-mentioned effect is due

to the gradual jumps without overshooting. The intensity of the reverting events is not significant.
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Table 3: Impact on hedge fund returns.

const 5.689 3.572 12.108 11.363 0.554

(0.885) (0.511) (1.538) (1.301) (0.194)

λ+t 2.604∗∗∗ 1.809∗∗∗

(3.951) (2.615)

λ−t −3.146∗∗∗ −3.217∗∗∗

(−4.706) (−4.004)

λ
+,(1)
t −0.279 −0.330

(−0.170) (−0.190)

λ
+,(0)
t 2.842∗∗∗ 2.101∗∗∗

(4.472) (3.018)

λ
−,(1)
t −0.191 −1.235

(−0.129) (−0.758)

λ
−,(0)
t −3.387∗∗∗ −3.540∗∗∗

(−5.266) (−4.292)

Mkt RF −0.603 −0.535 −0.689

(−0.997) (−0.897) (−0.949)

SMB 2.087∗∗∗ 1.776∗∗ 2.772∗∗∗

(2.735) (2.317) (3.019)

PTFSBD 0.080 0.065 0.125

(0.948) (0.766) (1.201)

PTFSFX −0.141 −0.130 −0.053

(−1.094) (−0.993) (−0.339)

PTFSCOM 0.158 0.086 0.490∗∗

(0.869) (0.444) (2.370)

PTFSIR 0.053 0.074 −0.212

(0.350) (0.495) (−1.277)

PTFSSTK −0.155 −0.161 −0.127

(−1.143) (−1.159) (−0.776)

BondMkt 0.003 0.003 −0.009

(0.024) (0.022) (−0.063)

CreditSpread 0.009 0.044 −0.114

(0.070) (0.338) (−0.719)

R2 0.446 0.529 0.612 0.653 0.359

R
2

0.418 0.478 0.469 0.492 0.178

Note. The table reports OLS estimates of the regression coefficients from model (25) with different sets of regressors. t-statistics are in

parenthesis. Coefficients significant at 95, 99 and 99.9% level are indicated respectively with ∗, ∗∗ and ∗∗∗. The regressors are following:

λ+t and λ−t are the intensities of respectively positive and negative drift bursts, λ
+,(1)
t , λ

+,(0)
t and λ

−,(1)
t , λ

−,(0)
t are respectively the

intensities of respectively positive and negative drift bursts with and without subsequent price recovery. Mkt RF, SMB, BondMkt,

CreditSpread denote respectively market, size, bond market and credit risk factors. PTFSBD, PTFSFX, PTFSIR, PTFSSTK are

respectively risk factors computed by Fung and Hsieh (2001).
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The above results complement the findings on hedge funds investing in conventional assets. Hedge

fund returns can be divided into two components: a passive component that tracks an index or

a passive portfolio, and an active component uncorrelated with the first one. Titman and Tiu

(2011) show that most hedge funds are not market neutral and they are exposed to systematic

risk factors. They also find that individual hedge funds that are least exposed to systematic factors

have higher Sharpe ratios, higher information ratios, and higher alphas. Our results show that the

intensity of drift bursts in bitcoin forms a systematic risk factor for the hedge funds investing in

cryptocurrency. The study of the effect of this new systematic factor on individual hedge funds

may be an interesting avenue for future research.

5 Conclusion

This paper proposed a novel nonparametric test for detecting intraday price spikes and crashes

using the high-frequency data. The test is designed specifically for pure-jump processes, with

cryptocurrency prices being one of the prominent examples. The amount of crashes detected in

cryptocurrency prices is much larger than in conventional assets. Drift bursts in bitcoin price

occur on average every second day with no particular pattern with respect to time of a day.

Sophisticated market participants, such as hedge funds, are exposed to systematic risk associated

with the intensity of crashes in bitcoin price.
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Christensen, K., Oomen, R., Renó, R., 2022. The drift burst hypothesis. Journal of Econometrics

227, 461–497.

Cont, R., Mancini, C., 2011. Nonparametric tests for pathwise properties of semimartingales.

Bernoulli 17, 781–813.
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A Mathematical appendix

Below C > 0 denotes a generic positive constant which changes from line to line.

A.1 Assumptions and auxiliary results

This section summarise the technical assumptions and their implications repeatedly used in the

proofs.

Assumption 4. Fix t ∈ [0, T ]. Assume there exists a Γ > 0 and a sequence (τm)m≥1 of Ft-stopping

times with τm →∞ and constants C
(m)
t , such that for all m,

E
[
|µu − µs|2 + |σu − σs|2

∣∣ Fs

]
≤ C

(m)
t |u− s|Γ , (26)

for all all 0 ≤ s ≤ u ≤ T ∧ τm.

Assumption 4 holds for a large class of stochastic processes. For example, due to the Burkholder-

Davis-Gundy inequality it allows σ to be a Brownian semimartingale plus jumps. By a localization

procedure as in Jacod and Protter (2012, Section 4.4.1), in all the following proofs we assume

without loss of generality that µ and σ are bounded. In that case, Assumption 4 implies that, for

any r ≥ 2,

E [|σu − σs|r | Fs] ≤ C |u− s|Γ . (27)

For r = 1, due to Jensens’s inequality,

E [|σαu − σαs | | Fs] ≤ C |u− s|Γ/2 , (28)

for any α ∈ [1, 2].

Assumption 5. {ti}ni=0 is a deterministic sequence. Let ∆−n = min
1,...,n

∆i,n and ∆+
n = max

1,...,n
∆i,n and

assume that, for a sufficiently large n, there exists positive constants c and C, such that

c∆n ≤ ∆−n ≤ ∆+
n ≤ C∆n, (29)

where ∆n = T/n. Moreover, denoting the “quadratic variation of time up to t” as H(t) =

lim
n→∞

Hn(t), where Hn(t) = 1
∆n

∑
ti≤t

(∆i,n)2, we assume H(t) exists and is Lebesgue-almost surely
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differentiable in (0, T ) with derivative H ′ such that |H ′(ti)−∆i,n/∆n| ≤ C∆i,n, for any ti in

which H is differentiable, where C does not depend on i and n.

Assumption 6. The bandwidths hn, h′n are sequences of positive real numbers, such that, as

n → ∞, hn → 0, h′n → 0, nhn → ∞, and nh′n → ∞. The Kernel, K : R → R+ is any function

with the properties:

1. K(x) = 0 for x > 0;

2. K is bounded and differentiable with bounded first derivative. Further, xK(x) → 0 and

xK ′(x)→ 0, as x→ −∞;

3.
∫ 0

−∞K(x) dx = 1 and K2 =
∫ 0

−∞K
2(x) dx <∞.

4. K has fast vanishing tail in the sense that for every positive sequence Gn,t →∞,
∫ −Gn,t
−∞ K(x)dx ≤

CG−Bn,t for some B > 0 and C > 0;

5. mK(α) =
∫ 0

−∞K(x) |x|α dx < ∞, for all α > −1; m′(α) =
∫ 0

−∞K
2(x) |x|α dx < ∞, for all

α > −1.

A.2 Proofs of the main results

Proof of Theorem 2.1.

Denote by ∆iY = σti−1
∆iS the piecewise constant scale approximations of the increments ∆iX,

i = 1, 2, . . . , n, and consider the decomposition:√
∆n

hn

n∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆iX

∆
1/α
n

)
= An + En, (30)

where An is the leading term based on the approximations:

An =

√
∆n

hn

n∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆iY

∆
1/α
n

)
, (31)

and En is the approximation error of the form:

En =

√
∆n

hn

n∑
i=1

K

(
ti−1 − t
hn

)(
g

(
∆iX

∆
1/α
n

)
− g

(
∆iY

∆
1/α
n

))
. (32)
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The proof consists of showing that En is asymptotically negligible and An
stably−→ N

(
0, K2 ρ

(α)
σt− (g2)

)
.

In order to prove the asymptotic negligibility of En it is enough to show that

n∑
i=1

E [|en,i| | Fi−1]
p−→ 0, (33)

where en,i =
√

∆n

hn
K
(
ti−1−t
hn

)(
g
(

∆iX

∆
1/α
n

)
− g

(
∆iY

∆
1/α
n

))
. Since g (·) is Lipschitz continuous, there

exists a real constant C > 0 such that,∣∣∣∣g(∆iX

∆
1/α
n

)
− g

(
∆iY

∆
1/α
n

)∣∣∣∣ ≤ C

∣∣∣∣∆iX −∆iY

∆
1/α
n

∣∣∣∣ , (34)

where

∆iX −∆iY =

∫ ti

ti−1

µs ds+

∫ ti

ti−1

(
σs − σti−1

)
dSs. (35)

Combining inequality (34) with the algebraic inequality |a+ b| ≤ |a|+ |b| we obtain:

n∑
i=1

E [|en,i| | Fi−1] ≤
n∑
i=1

∆
α−2
2α
n√
hn

K

(
ti−1 − t
hn

)
ηni,1 +

n∑
i=1

∆
α−2
2α
n√
hn

K

(
ti−1 − t
hn

)
ηni,2, (36)

where

ηni,1 = E
[∫ ti

ti−1

|µs| ds
∣∣∣∣ Fi−1

]
, and ηni,2 = E

[∣∣∣∣∫ ti

ti−1

(
σs − σti−1

)
dSs

∣∣∣∣ ∣∣∣∣ Fi−1

]
. (37)

Since µt is bounded,

ηni,1 = E
[∫ ti

ti−1

|µs| ds
∣∣∣∣ Fi−1

]
≤ C ∆n,i. (38)

Consequently,
n∑
i=1

∆
α−2
2α
n√
hn

K

(
ti−1 − t
hn

)
ηni,1 = Op

(√
hn ∆(α−2)/2α

n

)
. (39)

Next, using the inner clock moment inequality of stable stochastic integrals (Rosinski and Woy-

czynski, 1985), for a constant C > 0, we obtain:

ηni,2 ≤ C E

[(∫ ti

ti−1

∣∣σs − σti−1

∣∣α ds)1/α
∣∣∣∣∣ Fi−1

]
. (40)

Since α > 1,

E

[(∫ ti

ti−1

∣∣σs − σti−1

∣∣α ds)1/α
∣∣∣∣∣ Fi−1

]
≤ E

[∫ ti

ti−1

∣∣σs − σti−1

∣∣ ds ∣∣∣∣ Fi−1

]
, (41)
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where by Assumption 4 and Hölder inequality we have:

E
[∫ ti

ti−1

∣∣σs − σti−1

∣∣ ds ∣∣∣∣ Fi−1

]
=

∫ ti

ti−1

E
[∣∣σs − σti−1

∣∣ ∣∣ Fi−1

]
ds ≤ C ∆

1+Γ/2
i,n . (42)

Consequently,
n∑
i=1

∆
α−2
2α
n√
hn

K

(
ti−1 − t
hn

)
ηni,2 = Op

(√
hn ∆Γ/2+(α−2)/2α

n

)
, (43)

which implies that En is asymptotically negligible.

The leading term can be expressed as:

An =
n∑
i=1

ξni , (44)

where

ξni =

√
∆n

hn
K

(
ti−1 − t
hn

)
g

(
∆iY

∆
1/α
n

)
. (45)

Consequently, by Theorem 2.2.14 of Jacod and Protter (2012), to establish the convergence of An

it is sufficient to verify the four conditions:

(i)
n∑
i=1

E [ξni | Fi−1]
p−→ 0,

(ii)
n∑
i=1

E
[
(ξni )2

∣∣ Fi−1

] p−→ K2 ρ
(α)
σt− (g2) ,

(iii)
n∑
i=1

E
[
(ξni )4

∣∣ Fi−1

] p−→ 0,

(iv)
n∑
i=1

E [ξni ∆iN | Fi−1]
p−→ 0, where either N = S or N is a martingale orthogonal to S.

Notice that the probability law of ∆
−1/α
n ∆iY is the same as the probability law of σti−1

S1, where

S1 is a standard symmetric stable variable. Thus, for every r ≥ 1,

E
[
gr
(

∆iY

∆
1/α
n

) ∣∣∣∣ Fi−1

]
= ρ(α)

σti−1
(gr) , (46)

with ρ
(α)
σti−1

(g) = 0 and
∣∣∣ρ(α)
σti−1

(gr)
∣∣∣ ≤ C due to the properties of g. Consequently, the first condition

(i) is fulfilled since E [ξni | Fi−1] = 0 by construction. For the second condition we have:

E
[
(ξni )2

∣∣ Fi−1

]
=

∆n

hn
K2

(
ti − t
hn

)
E
[
g2
(
σti−1

S1

) ∣∣ Fi−1

]
. (47)
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Since E
[
g2
(
σti−1

S1

) ∣∣ Fi−1

]
= ρ

(α)
σti−1

(g2), analogously to Mancini et al. (2015) we obtain:

n∑
i=1

∆n

hn
K2

(
ti − t
hn

)
E
[
g2
(
σti−1

S1

) ∣∣ Fi−1

] p−→ K2 ρ
(α)
σt−

(
g2
)
, (48)

which proves that the second condition (ii) holds.

For the third condition, since g is bounded, we have:

n∑
i=1

E
[
(ξni )4

∣∣ Fi−1

]
≤ C

n∑
i=1

∆2
n

h2
n

K4

(
ti − t
hn

)
= Op

(
∆n h

−1
n

)
, (49)

which implies that the third condition (iii) holds.

Finally, since g is bounded, where exist nonrandom numbers cn ≤ Cn, such that cn ≤ ξni ≤ Cn.

Consequently, for any martingale N , we have:

E [ξni ∆iN | Fi−1] ≤ CnE [∆iN | Fi−1] = 0, (50)

and

E [ξni ∆iN | Fi−1] ≥ cnE [∆iN | Fi−1] = 0, (51)

implying that E [ξni ∆iN | Fi−1] = 0 and the fourth condition (iv) is fulfilled, which completes the

proof.

Proof of Theorem 2.2.

Let νt = ρ
(α)
σt− (g2) and νnt = (σ̃nt )2. Then, by Theorem 2.1,√

hn
∆nK2

µ̃nt
stably−→ N (0, νt) . (52)

Consequently, since the above convergence is stable, in order to complete the proof it is sufficient

to show that

νnt
p−→ νt. (53)

Recall that

νnt =
∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
g2

(
∆iX

∆
1/α
n

)
. (54)
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It can be decomposed as

νnt =
∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
g2

(
∆iY

∆
1/α
n

)
+ Eσ

n , (55)

where ∆iY are the approximations for the increments ∆iX defined as in Theorem 2.1 and

Eσ
n =

∆

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)(
g2

(
∆iX

∆
1/α
n

)
− g2

(
∆iY

∆
1/α
n

))
. (56)

Since g is Lipschitz continuous, so is g2. In particular, there exists a real constant C > 0 such

that, ∣∣∣∣g2

(
∆iX

∆
1/α
n

)
− g2

(
∆iY

∆
1/α
n

)∣∣∣∣ ≤ C

∣∣∣∣∆iX −∆iY

∆
1/α
n

∣∣∣∣ . (57)

Consequently, analogously to the proof of the negligibility of En in Theorem 2.1 it follows that

Eσ
n is asymptotically negligible.

It remains to prove that

∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
g2

(
∆iY

∆
1/α
n

)
p−→ νt. (58)

Analogously to the proof of the condition (ii) in Theorem 2.1 we immediately obtain:

∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
E
[
g2

(
∆iY

∆
1/α
n

) ∣∣∣∣ Fi−1

]
p−→ νt. (59)

Next, consider the difference:

Dn =
∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
g2

(
∆iY

∆
1/α
n

)
− ∆n

h′n

n∑
i=1

K

(
ti−1 − t
h′n

)
E
[
g2

(
∆iY

∆
1/α
n

) ∣∣∣∣ Fi−1

]
. (60)

It can be expressed as Dn =
n∑
i=1

ηni , where ηni = ∆n

h′n
K
(
ti−1−t
h′n

)(
g2
(

∆iY

∆
1/α
n

)
− E

[
g2
(

∆iY

∆
1/α
n

) ∣∣∣ Fi−1

])
.

By construction, E [ηni | Fi−1] = 0. Since g2 is bounded,

n∑
i=1

E
[
|ηni |

2
∣∣ Fi−1

]
≤ C

n∑
i=1

∆2
n

(h′n)2
K2

(
ti−1 − t
h′n

)
= Op

(
∆n

h′n

)
, (61)

which implies that Dn is asymptotically negligible and completes the proof.

Proof of Theorem 2.3.

Set δn = (n/kn)
2−α
α . The proof consists of showing that, as n→∞,
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(i) for some random variable νt,√
δn
hn

n−kn+2∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆i−1Z

(n/kn)
1
α

)
stably−→ N (0, νt) ,

(ii)

δn (σnt )2 p−→ νt.

Consider the decomposition:√
δn
hn

n−kn+2∑
i=1

K

(
ti−1 − t
hn

)
g

(
∆i−1Z

(n/kn)
1
α

)
= An + En, (62)

where

An =
n−kn+2∑
i=1

√
δn
hn
K

(
ti−1 − t
hn

)
g

(
∆i−1u

(n/kn)
1
α

)
, (63)

and

En =
n−kn+2∑
i=1

√
δn
hn
K

(
ti−1 − t
hn

)(
g

(
∆i−1Z

(n/kn)
1
α

)
− g

(
∆i−1u

(n/kn)
1
α

))
. (64)

The leading term is An. Notice that the summands in An are zero-mean kn-dependent with kn →∞

due to the pre-averaging. Thus, analogously to the proof of the convergence of Mε,n in Theorem

5 of Christensen et al. (2022) we conclude that

An
stably−→ N (0, νt) , (65)

for some random variable νt.

Thus, to complete the first part of the proof it remains to show that En is asymptotically negligible.

Since g (·) is Lipschitz continuous, using the algebraic inequality |a+ b| ≤ |a| + |b|, for a real

constant C > 0, we obtain:∣∣En

∣∣ ≤ C
n−kn+2∑
i=1

√
δn
hn
K

(
ti−1 − t
hn

) ∣∣∣∣∣ ∆i−1X

(n/kn)
1
α

∣∣∣∣∣ ≤ En,1 + En,2, (66)

where En,1 =
n−kn+2∑
i=1

ε
(1)
i and En,2 =

n−kn+2∑
i=1

ε
(2)
i with

ε
(1)
i = C

√
δn
hn
K

(
ti−1 − t
hn

) ∣∣∣∣∣
kn−1∑
j=1

qnj

∫ ti+j
ti+j−1

µs ds

(n/kn)
1
α

∣∣∣∣∣ ,
ε

(2)
i = C

√
δn
hn
K

(
ti−1 − t
hn

) ∣∣∣∣∣
kn−1∑
j=1

qnj

∫ ti+j
ti+j−1

σs− dSs

(n/kn)
1
α

∣∣∣∣∣ .
(67)
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The random variables ε
(k)
i , k = 1, 2, are Fi+kn−1-measurable. Consequently, to prove that En,k are

asymptotically negligible it is sufficient to show that kn
n−kn+2∑
i=1

E
[
ε

(k)
i

∣∣∣ Fi−1

]
p−→ 0.

Since µt is bounded,

E
[∫ ti

ti−1

|µs| ds
∣∣∣∣ Fi−1

]
≤ C ∆n,i ≤ C

1

n
. (68)

Consequently, using the fact that

(
kn−1∑
j=1

qnj
1
kn

)
converges to a constant, we obtain:

kn

n−kn+2∑
i=1

E
[∣∣∣ε(1)

i

∣∣∣ ∣∣∣ Fi−1

]
≤ C

n−kn+2∑
i=1

kn

√
δn
hn
K

(
ti−1 − t
hn

)(
n

kn

)− 1
α
kn−1∑
j=1

qnj E

[∫ ti+j

ti+j−1

|µs| ds

∣∣∣∣∣ Fi−1

]

≤ C
n−kn+2∑
i=1

kn

√
δn
hn
K

(
ti−1 − t
hn

)(
n

kn

)− 1
α kn
n

(
kn−1∑
j=1

qnj
1

kn

)

∼
√
hnk5

n

n
−→ 0,

(69)

which implies that En,1 is asymptotically negligible.

Next, since σt is bounded and by the properties of α-stable motion, we have:

E
[∣∣∣∣∫ ti

ti−1

σs dSs

∣∣∣∣ ∣∣∣∣ Fi−1

]
≤ C ∆

1/α
n,i ≤ C

(
1

n

)1/α

. (70)

Consequently,

kn

n−kn+2∑
i=1

E
[∣∣∣ε(2)

i

∣∣∣ ∣∣∣ Fi−1

]
≤ C

n−kn+2∑
i=1

kn

√
δn
hn
K

(
ti−1 − t
hn

)(
n

kn

)− 1
α
kn−1∑
j=1

qnj E

[∣∣∣∣∣
∫ ti+j

ti+j−1

σs dSs

∣∣∣∣∣
∣∣∣∣∣ Fi−1

]

≤ C

n−kn+2∑
i=1

kn

√
δn
hn
K

(
ti−1 − t
hn

)(
n

kn

)− 1
α kn
n1/α

(
kn−1∑
j=1

qnj
1

kn

)

∼

√
hnk5

n

n
2−α
α

−→ 0,

(71)

which implies that En,2 is asymptotically negligible.

The second part of the proof, namely the convergence δn (σnt )2 p−→ νt follow from the same

arguments as the convergence of the HAC estimator in Theorem 5 of Christensen et al. (2022),

which completes the proof.
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