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Abstract

The Federal Reserve holds two main sets of monetary policy meetings, the “Federal
Open Market Committee” (FOMC) and the “Board Meetings”, which gather with six-
week and two-week cadence respectively. Cieslak, Morse, and Vissing-Jorgensen (2019)
show that the cadence of these meetings is associated with cycles of corresponding
frequencies in stock markets. These can be fruitfully exploited through a portfolio
strategy that invests in the whole market at alternate weeks (the even-week strategy).
This simple investment rule is based on the cycles identified empirically but, so far,
lacks a theoretical foundation. In this paper, we provide a rigorous framework to detect
cycles in the stock market, and to determine optimal portfolio choices which profit from
such cycles. We use the filtering approach for stationary time series of Ortu, Severino,
Tamoni, and Tebaldi (2020) to isolate uncorrelated components of stock returns that are
precisely associated with two- and six-week cycles. Then, we replicate these components
using tradable assets from the U.S. market, and design an optimal portfolio strategy
that maximizes the investor’s wealth and outperforms the even-week strategy.

JEL Classification: G11, E32.
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1 Motivations and main results

The identification of trends and cycles in financial markets is of utmost important for the

investors. The presence of periodicities in asset prices can be explained by the way in which
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markets interiorize the information coming from diverse sources as, for instance, political

decisions, corporate news and macroeconomic forecasts. Cieslak et al. (2019) provide strong

evidence of two- and six-week cycles in U.S. stock market returns and relate them to the

occurrence of Federal Reserve (Fed) meetings. In their view, two- and six-week patterns

can be fruitfully exploited by a portfolio strategy that keeps only a share of the market

index at alternate weeks: the even-week strategy. This simple investment rule agrees with

the cycles previously isolated but, so far, misses a theoretical foundation. In this paper we

provide a rigorous framework for the detection of stock market cycles and the determination

of optimal portfolio choices that profit from two- and six-week periodicities. Specifically,

we use the techniques in Ortu et al. (2020) to decompose the time series of market returns

into uncorrelated subseries related to shocks with increasing persistence (or decreasing fre-

quencies). Two of these persistent components are associated with two- and six-week cycles.

By means of a factor model, we replicate these components by using the returns of traded

securities. Then, we use the replicated version of the components as input in a dynamic

optimal portfolio problem. The arising persistence-based strategy largely outperforms the

even-week strategy because it properly exploits the two- and six-week cycles of stock returns.

It is useful to summarize the origins of the even-week strategy. Fed open market oper-

ations are directed by the “Federal Open Market Committee” (FOMC) that gathers eight

times per year (roughly every six weeks). Such meetings are scheduled in advance and, since

1994, the FOMC announces its decisions and publishes accompanying statements right after

the meetings. Such press release provides the public with information about monetary pol-

icy decisions, causing important reactions in stock markets. As extensively acknowledged

in the literature, exceptional stock returns are documented around each FOMC meeting

(see Subsection 1.1). Interestingly, Cieslak et al. (2019) observe that stock returns are sig-

nificantly higher not only during the week of the FOMC, but also two and four weeks later.

This biweekly timing corresponds to the occurrence of additional Fed meetings (the “Board

of Governors Meetings” or “Discount Rate Meetings”) that would be beneficial for financial

markets. Most of Board Meetings are about the discount rate (or primary credit rate), i.e.

the interest rate charged to commercial banks on loans they receive from regional Fed lend-

ing facilities. However, these meetings are also important venues for staff briefings about

market financial health and the support provided by the Fed. Although these meetings

have no transcripts, information leaks from the Fed around the meeting times and makes

its way into the stock market (see the “Fed put” in Cieslak and Vissing-Jorgensen, 2021).

As a result, FOMC and Board Meetings turn out to generate the aforementioned two- and

six-week cycles.

In this paper, we consider an arbitrage-free market with n risky securities. An investor
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assumes autoregressive dynamics for excess returns and maximizes a CARA utility function

on terminal wealth, subject to the usual constraint on the wealth path (see Problem (2)

in Subsection 3.1). This problem is faced, for instance, by fund managers who invest their

clients’ money with a given time horizon, in order to maximize the final value of their

portfolio. The investor decides the amounts to invest in each of the risky securities. The

even-week strategy of Cieslak et al. (2019) prescribes investing only in the market index

and so n = 1 in their case. Nevertheless, our investor considers other ways to exploit two-

and six-week stock market cycles. One possibility could be to build, via a factor model,

some synthetic securities that respond only to two- and six-week shocks, and trade them. In

general, the resolution of such multi-period problems relies on dynamic programming (see

e.g. Chapter 9 in Back, 2010). Since we do not model returns as being independent and

identically distributed, computations get complicated quickly, but thanks to the choice of

the exponential utility function we can still find a closed form solution for optimal portfolio

weights by adapting the techniques in Chryssikou (1998).

To detect patterns with heterogeneous durations in the time series of asset returns, a

suitable tool is the Extended Wold Decomposition of Ortu et al. (2020). The latter provide

a methodology to decompose a weakly stationary process into uncorrelated components as-

sociated with increasing persistence levels (e.g. weekly, monthly or yearly durations). Such

subseries respond to shocks that impinge the market and last for specific time scales (e.g.

weekly, monthly or yearly shocks). As we illustrate in Subsection 2.1, the null correlation be-

tween persistent components permits to quantify the importance of each time scale through

a variance decomposition. Moreover, the construction is entirely in the time domain and

the persistent components of market returns can be seen as asset returns themselves. This

feature triggers their replication through traded securities or indices.

More precisely, starting from the daily time series rt of (cumulated) excess returns on

U.S. stock markets, we employ a suitable version of the Extended Wold Decomposition of

Ortu et al. (2020) to determine the persistent components r
(2)
t at time scale 2 and r

(3)
t

at time scale 3. The innovations on these time scales involve shocks of 9 and 27 days,

respectively. As a result, the components r
(2)
t and r

(3)
t are able to capture the two- and

six-week stock market cycles described by Cieslak et al. (2019), that correspond to roughly

10 and 30 working days. Later, the time series of r
(2)
t and r

(3)
t are replicated by projecting

them on ten traded factors, and the replicates are used as asset returns in our optimal

investment problem.

Our optimal portfolio recipe outperforms the even-week strategy because it properly ex-

ploits market cycles. However, this persistence-based strategy is more difficult to implement

because it requires dynamic investments in several factors. The issue is, then, to analyze
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the trade-off between the two approaches in detail. Hence, in the final part of the paper we

introduce robustness checks, as well as transaction and short-selling costs. The aim is to

make the optimal investment strategy feasible for the investor in a real market.

1.1 Additional related literature

The impact of Fed meetings on stock markets is analyzed in Lucca and Moench (2015), who

focus on FOMC meetings, which take place every six weeks. They identified a pre-FOMC

announcement drift, i.e. abnormally high stock returns during the 24 hours preceding the

release of monetary policy announcements from the FOMC. Evidence of abnormal stock

market returns on FOMC meeting dates was already provided by Tori (2001) and Savor

and Wilson (2013) renew the empirical evidence of significant excess returns on scheduled

days in which macroeconomic news are supposed to be released. More recently, Ernst

et al. (2019) dig into the reasons behind the origins of this too-much-return puzzle. The

announcement drifts have a sizable impact on U.S. bond markets too, as documented by

Brooks et al. (2019).

Wachter and Zhu (2022) introduce a rational investor model explaining the striking em-

pirical findings about FOMC announcements. Boguth et al. (2019) provide some insights

on the way in which the information from such announcements is incorporated into equity

prices. Other explanations of FOMC-driven market anomalies arise from the resolution of

uncertainty due to FOMC meetings (Hu et al., 2022), in particular tail uncertainty or down-

side risk (Beckmeyer et al., 2021). In addition, Laarits (2022) and Cocoma (2022) propose

some underlying theoretical mechanisms that could generate the pre-FOMC announcement

drifts.

In general, beyond the two- and six-week cycles of Cieslak et al. (2019), the financial

literature is rich of contexts where shocks with heterogeneous duration are present. Some

examples are given by stock return volatility (Campbell and Hentschel, 1992), the Gross

National Product (Cochrane, 1988) and the yield curve (Cieslak and Povala, 2015). To

capture disturbances with heterogeneous persistence, we use the Extended Wold Decompo-

sition of Ortu et al. (2020). The methodology rests on a low-pass filter that makes averages

of subsequent shocks and permits to isolate innovations with lower and lower frequencies.

However, differently from existing methods (Müller and Watson, 2008), the Extended Wold

Decomposition is developed entirely in the time domain and does not require the use of

frequencies. The adaptation to multivariate time series is provided by Cerreia-Vioglio et al.

(2023).

In spite of the widespread empirical evidence about market cycles, few papers construct

portfolios that optimally respond to shocks with heterogeneous duration. Chaudhuri and
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Lo (2015), Crouzet et al. (2017) and Di Virgilio et al. (2019) provide some attempts. The

Extended Wold Decomposition allows us to fill this gap by using the persistent components

of stock returns as asset returns, after their replication via a factor model.

2 Persistence-based FED cycle detection

In this section we show how to elicit the persistent components of market returns associated

with two- and six-week cycles.

2.1 Persistence-based decomposition of excess returns

We employ a decomposition of market excess returns that generalizes the persistence-based

decomposition of Ortu et al. (2020). The latter moves from the fact that, by the Wold

decomposition (Wold, 1938), any zero-mean weakly stationary time series x = {xt}t is an

infinite moving average

xt =
+∞∑
k=0

αhεt−h, (1)

where the fundamental innovations ε = {εt}t constitute a unit variance white noise and αh

are the impulse response functions. The Extended Wold Decomposition of Ortu et al. (2020)

aggregates the fundamental innovations in a way to obtain an orthogonal decomposition of

xt into uncorrelated components x
(j)
t associated with increasing time scales j:

xt =

+∞∑
j=1

x
(j)
t , x

(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
.

Each detail process ε(j) = {ε(j)t }t is an MA(2j − 1) with respect to the fundamental in-

novations and β
(j)
k is the scale-specific response associated with scale j and time-shift k2j .

The explicit expressions of β
(j)
k and ε

(j)
t exploit the impulse response functions and the

fundamental innovations, respectively (Theorem 1 in Ortu et al., 2020).

The innovations of the persistent component x
(j)
t evolve on a 2j-step grid, capturing

higher and higher persistence (or lower and lower frequencies) as the time scale j increases.

This intuition is justified in Ortu et al. (2020) by spectral analysis considerations related to

the use of the scaling operator as low-pass filter.

Moreover, the orthogonality of persistent components and the unit variance of the detail

processes ε
(j)
t induce a variance decomposition of xt:

var (xt) =
+∞∑
j=1

var
(
x
(j)
t

)
=

+∞∑
j=1

+∞∑
k=0

(
β
(j)
k

)2
.
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As we outline in Appendix B, the Extended Wold Decomposition can be generalized to

any base N different from 2. As we discuss in the next subsections, In our application it is

convenient to choose N = 3. Indeed, when N = 3, an application of the scaling operator

smooths the effects of innovations lasting up to 3 periods, leaving such residual disturbances

at time scale 1. Another application of the operator will smooth the effects of innovations

lasting up to 9 periods, leaving the residual disturbances (involving shocks from 3 to 9 pe-

riods) at time scale 2. In short, the persistent component at scale 1 will be associated with

3-day shocks, the persistent component at scale 2 will be associated with 9-day shocks, and

so on. An orthogonal decomposition of xt into the sum of uncorrelated persistent compo-

nents x
(j)
t still obtains, as well a variance decomposition across the persistent components.

All formulas are in Appendix B for a general base N .

Empirically, the persistent components are easily estimated once the moving average

representation in eq. (1) is known. Hence, the first step is the estimation of an autoregressive

form for xt. Then, it is easy to retrieve the corresponding moving average representation of

xt. After that, the impulse responses and the fundamental innovations permit to compute

the scale-specific responses and the detail processes, respectively.

2.2 Sample construction

The FOMC began to regularly announce its decisions and issue companion statements after

the meetings in 1994. In particular, the first meeting of the year occurred on February 3,

1994. Therefore, it is sensible to start our analysis at the beginning of 1994. Moreover,

the totality of the ten factors that we will use in Subsection 3.3 to replicate the persistent

components is defined until the end of December 2019 (the USD index that we employ is

replaced by another index in 2020). Hence, we end our sample the week before the last

FOMC meeting of 2019. Summing up, the sample considered to estimate the persistent

components goes from January 3, 1994 to December 6, 2019. In addition, the choice of

the terminal date permits to exclude the COVID-19 pandemic from the analysis. At the

beginning of the pandemic, central bank interventions were unusually frequent, a fact that

is not compatible with two- and six-week cycles.

The return time series under consideration contain many missing data due, for instance,

to stock market closure on some days. We do a simple imputation by attributing zero

returns to these days. In doing so, and by excluding all week-ends, we are able to obtain

a full Monday-Friday structure in the data, which permits to easily implement weekly

portfolio strategies by investing on Monday. Then, we compute the 5-day forward cumulated

returns on each day in the sample, even when markets are closed. The resulting time series

constitute the object of our analysis.
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The estimation of the persistent components at scale 2 and 3 on the sample from January

3, 1994 to December 6, 2019 requires some initial data as input. Indeed, the innovations

at increasing time scales involve longer moving averages of the original shocks. Therefore,

these components can be estimated from June 21, 1994. Since the next FOMC meeting

took place on July 5, 1994, when dealing with the optimal portfolio problem, we consider

returns data from Monday July 4, 1994 to Friday December 6, 2019. Then, the investment

period under scrutiny will span from January 31, 2000 to December 6, 2019 and data before

January 31, 2000 will be employed to fit the models required by the optimization algorithm

at that date. See Subsection 3.2 and the following.

2.3 Persistent components of market excess returns

We first apply the Exended Wold Decomposition of Ortu et al. (2020) in base 3 to the

time series rt of 5-day cumulated excess returns on U.S. stock markets in order to build the

persistent components of returns r
(j)
t for time scales j = 1, . . . , 6. The truncation at scale 6

is dictated by the sample size. Indeed, each single innovation at scale 6 involves 729 days

and so the required amount of data for the procedure is large. As mentioned at the end of

Subsection 2.1, the first step is to estimate an autoregressive form for rt by the Bayesian

Information Criterion (Schwarz, 1978), then its moving average representation and, finally,

its persistent components. See Panel (a) in Fig. 1. According to the persistence-based

variance decomposition, the components r
(2)
t and r

(3)
t turn out to explain the higher share

of return variance (roughly 38% and 32% in the sample from January 3, 1994 to December

6, 2019). See Panel (b) in Fig. 1. Since these components are associated with shocks lasting

9 and 27 working days respectively, the analysis provides further support to the detection

of two- and six-week cycles by Cieslak et al. (2019). We repeat the analysis on a rolling

window of past 1250 days and we plot the time series of variance ratios in Panel (c) of Fig.

1. On average, scale 2 explains roughly 40% of the sample variance, while scale 3 explains

31.5%.

3 Optimal capital allocation

We first present the theoretical dynamic portfolio problem to be solved by a CARA investor.

Then, we compute the optimal portfolio when the persistent components at scales 2 and 3

are supposed to be the (5-day forward cumulated) returns of traded securities (Subsection

3.2) or they are replicated by a ten-factor model (Subsection 3.3). We finally provide a

distributional analysis via bootstrap.
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Figure 1: Panel (a): realizations of 5-day forward cumulated market excess returns and
their persistent components at time scales 2 and 3. Panel (b): relative variance explained
by each persistent component from January 1994 to December 2019. Panel (c): relative
variance explained by the 2nd and 3rd persistent components of 5-day forward cumulated
market excess returns computed on a rolling window of 1250 past days, from January 1994
to December 2019.
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3.1 Dynamic optimal portfolio problem

We consider a market with a constant risk-free rate rf and n risky securities. A maturity

T is fixed. At any discrete time t between 0 and T , the excess returns are collected in the

vector rt. An investor has a CARA utility function with absolute risk aversion parameter

equal to γ and is endowed with an initial wealth W0. The investor faces a sequential

investment decision at times t = 0, 1, . . . , T − 1 concerning the final wealth at time T . The

excess returns on the risky assets are estimated through a VAR(p) process and, at any t,

the amounts invested in the risky securities are contained in the n-dimensional vector ut.

The investor’s optimal portfolio problem is

max
u0,...,uT−1

E
[
−e−γWT

]
(2)

sub Wt = (1 + rf )Wt−1 + u′t−1rt

rt = µ+B1rt−1 + · · ·+Bprt−p + εt,

where, Bi are the matrices of the returns sensitivities in the VAR(p), and εt ∼ N (0,Σ) are

independent normally distributed random vectors with zero mean and covariance matrix Σ.

No intermediate consumption is allowed and no transaction cost or friction are taken into

account.

Paired with the normality of returns, CARA preferences permit to obtain a closed-form

solution to the investor problem. Such preferences are used, e.g., by Wang (1993) and an

example of dynamic portfolio choice with CARA utility and ARMA(1,1) excess returns is

provided by Balvers and Mitchell (1997). In general, Problem (2) is solved by dynamic

programming, as done in Section 5.1 of Chryssikou (1998) with VAR(1) excess returns.

When excess returns are modeled via a VAR(p), we obtain the following proposition. In

Appendix A, we provide a derivation for the special case with p = 2, by using a Bellman

equation and backward induction.

Proposition 1 Consider Problem (2). For any k = 1, . . . , T , the optimal portfolio choice

at time T − k is

u∗T−k =
1

γ(1 + rf )k−1

Σ−1ET−k [rT−k+1]−
min{k−1,p}∑

i=1

B′
iΣ

−1Ek,i

 , (3)

where, for any i = 1, . . . ,min{k − 1, p},

Ek,i = ET−k [rT−k+i+1|rT−k+1 = · · · = rT−k+i = 0] .

As it is apparent from eq. (3), in the CARA-normal set-up the demand for risky assets

is unaffected by initial wealth. The optimal amount of risky assets u∗T−k depends on the

9



risk aversion, the risk-free rate, the time to maturity and the features of asset returns. As

shown in Chryssikou (1998), when p = 1, the solution at T −1 is discontinuous with respect

to previous investment choices. This is related to the number of lags in the autoregressive

process. When excess returns are modeled as a VAR(p) process, the same discrepancy holds

between the chosen amounts in the T − p last periods and the previous portfolio choices.

This explains the extremes in the summation term in eq. (3). Moreover, as can been seen in

the proof of the proposition, the CARA-normal setup can be reduced to an intertemporal

mean-variance problem. See, e.g., Cochrane (2014).

Regarding our application, in Problem (2) we use the series of 5-day forward cumulated

excess returns and a time unit of 5 days (Monday to Friday). The CARA investor makes

the portfolio choice on Monday, based on the past 5-day forward cumulated returns, and

holds it until the following Monday. For instance, time t may be Monday, February 4, 2019

and time t+1 Monday, February 11, 2019. In fact, we have built the persistent components

at scales 2 and 3 from the series of 5-day forward cumulated excess returns and the investor

considers the sub-sample of them consisting of all Mondays.

To make the comparison with the even-week strategy, it is important to ascertain that

such a strategy is available to the investor. A week when an FOMC meeting occurs is a

week 0 ; the week after is a week 1 and so on, until the counter is reset to 0 at the week

of the next FOMC meeting. The even-week strategy can be embedded in Problem (2)

by considering only one risky return (the return on the market) and selecting the amount

uT−k = WT−k on even weeks of the FOMC cycle, and uT−k = 0 on odd weeks (where the

entire wealth is invested in the risk-free asset). Hence, the even-week strategy is feasible for

our investor who makes the portfolio choice on Monday and does not review the position

until the following Monday.

Finally, to enhance the comparisons, we also consider the buy-and-hold strategy on the

market. Also in this case, only the market return is present in Problem (2) and the amount

invested in that is uT−k = WT−k for all k.

In case the wealth associated with the persistence-based investment strategy turns neg-

ative (or null), we close the position and we suppose returns to be null until the end of

the investment period. Moreover, if the initial amounts invested in the persistent compo-

nents is negative (or null), i.e. a short position is optimal at the starting date, we do not

make the comparison between the three strategies. Indeed, the even-week and the buy-and-

hold strategies do not require short positions and a comparison with the persistence-based

strategy would not be appropriate in this case.

A delicate point is the initial value of the even-week and the buy-and-hold strategies to

take into account. Indeed, the optimal portfolio choice of Problem (2) is independent of
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the investor’s initial wealth W0. From Proposition 1, we only find the optimal amount to

invest in the risky securities available. When this investment is positive, we suppose that

the investor does not trade risk-free assets at the beginning. Hence, the cost of the strategy

is the sum of the amounts invested in the risky securities, i.e. the sum of the entries of the

vector u∗0. Then, we set W0 equal to this value. To make a proper comparison, we consider

the contemporaneous even-week strategy with initial cost W0, meaning that the investor

buys W0 of the market index in the first week of investment, which is a week 0.

3.2 Optimal capital allocation when persistent components are traded

Due to the importance of the components r
(2)
t and r

(3)
t in subsamples illustrated in Panel

(c) of Fig. 1, we now consider the investor’s Problem (2) where exactly two risky assets

with cumulated returns r
(2)
t and r

(3)
t are available.
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Figure 2: Optimal wealth path obtained by investing in r
(2)
t and r

(3)
t , together with the

wealth paths of the even-week and the buy-and-hold strategies. Initial wealth is normalized
to 1 $. Investment period from January 31, 2000 to December 6, 2019.

In Problem (2), excess returns are supposed to follow a VAR(p) model. The order p of

the autoregressive can be inferred from the Akaike Information Criterion (Akaike, 1974).
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We apply this criterion in the 250-week return window preceding the investment period.

Every four weeks, we move the window and repeat the estimation. Moreover, Problem (2)

exploits a constant risk-free rate. Therefore, we set this rate as the risk-free rate at the

beginning of each period of portfolio optimization (and so it is updated every four weeks).

The investment period that we consider starts from a week where the FOMC meeting

takes place (a week 0 ). This makes the comparison with the even-week strategy well-posed.

Fig. 2 displays the optimal wealth path obtained by investing in the components at scale 2

and 3, as well as the even-week and the buy-and-hold strategies, after normalizing the initial

wealth to 1 $. The return on the persistence-based strategy is astonishing: roughly 47 $

against a 1 $ initial investment. The even-week strategy outperforms the buy-and-hold one,

but its terminal wealth is only close to 4 $. Here, the persistent components are supposed

to be the returns of securities traded in the market, hence the optimal wealth is expected

to be upward biased in this analysis.

3.3 Optimal capital allocation when persistent components are replicated

In our replication exercice, beyond Fama-French five factors, we use the USD index, AAA

and BBB bond indices, a commodity and a volatility index. Specifically, our analysis makes

use of the following daily data.

� Fama and French (2015) five factors (MKT, SMB, HML, RMW, CMA), as well as the

risk-free rate from Kenneth R. French website, Fama/French 5 Factors (2x3) [Daily]

series.

� The USD index, i.e. the Nominal Major Currencies U.S. Dollar Index (Goods Only)

from the FRED (Federal Reserve Economic Data) database of St Louis Fed, DTWEXM

series.

� The AAA (and BBB) indices, i.e. the ICE BofA AAA (or BBB) U.S. Corporate Index

Total Return from the FRED database of St Louis Fed, BAMLCC0A1AAATRIV (or

BAMLCC0A4BBBTRIV ) series.

� The GSCI index, i.e. the S&P GSCI Commodity Total Return (SPGSCITR) from

this website.

� The VIX index from CBOE website.

In Fama-French database, the risk-free rate is the one-month Treasury bill rate, updated

at the beginning of each month. Moreover, the first factor (the market) comes from value-

weighted returns of all NYSE, AMEX, and NASDAQ firms. This factor is directly employed
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in the even-week strategy and the persistent components are computed from this time series,

after cumulating the returns over 5 days forward. The other factors in the list capture

different risk exposures and are used to replicate the market persistent components in a

later step. The last five factors come from the literature on hedge funds, in particular from

Fung and Hsieh (1997) and Hasanhodzic and Lo (2007), who build upon the original asset-

class factor model by Sharpe (1992). In addition, the dates of Federal Reserve meetings can

be obtained from web scraping of the Fed website.

We first provide some descriptive information about the ten factors and their persistent

components. Consistent with the approach taken so far, we begin with cumulating the

returns of each factor over 5 days forward. We then perform the persistence analysis. As

Fig. 3 shows, scales 2 and 3 are the most relevant for all the ten factors. Together they

explain from 60% to 75% of the variance of each index. This feature is inline with the

variance decomposition of the market factor provided in Fig. 1(b). As a result, evidence of

FED-induced cycles emerges here as well.

Table 1 contains the correlation matrix of the (cumulated) returns on the ten factors,

as well as the correlation coefficients between the market and its components r
(2)
t and r

(3)
t .

Consistent with our optimal portfolio problem, we only consider the returns on Mondays.

Regarding the ten factors, the highest correlations (in absolute value) are found between

AAA and BBB and between MKT and VIX. Such correlation may reveal some level of mul-

ticollinearity, which we will address in Subsection 4.3. As expected, the sample correlation

between the two components is almost null due to their orthogonality. Finally, Table 2

shows the coefficients of the linear regression of the market persistent components at scale

2 and 3 on the (cumulated) returns on the ten factors. MKT and RMW are significant

predictors for both components at the levels indicated in Table 2. Other significant factors

for r
(2)
t are SMB, AAA, BBB and VIX. As to r

(3)
t , HML and USD constitute additional

significant factors.

A further step is the replication of the persistent components r
(2)
t and r

(3)
t via the linear

regressions

r
(2)
t =

10∑
i=1

bifi,t + εt, r
(3)
t =

10∑
i=1

cifi,t + ηt (4)

where each fi,t is the 5-day forward cumulated return of one of the ten factors and εt and

ηt are the error terms. The regression coefficients bi and ci refer to the components at scale

2 or 3, respectively. As Hasanhodzic and Lo (2007), we omit the constant terms in the

regressions because the coefficients bi (resp. ci) are the weights in the portfolios replicating

the persistent components. Accordingly, we also impose that the sum of bi is equal to 1,

as well as the sum of ci. For r
(2)
t , this can be easily done by a substitution leading to the

13
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Figure 3: Relative variance explained by the persistent components of 5-day forward cumu-
lated returns of the ten factors from January 1994 to December 2019.
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Table 1: Correlation matrix of the (5-day forward cumulated) ten factors from July 4, 1994
to December 6, 2019 with weekly sampling (on Monday). Then, correlation between the
market and the persistent components at scale 2 and 3.

MKT SMB HML RMW CMA USD AAA BBB GSCI VIX

MKT 1 0.149 -0.004 -0.400 -0.338 -0.143 -0.081 0.015 0.258 -0.705

SMB 0.149 1 -0.006 -0.358 -0.018 -0.075 -0.144 -0.088 0.127 -0.098

HML -0.004 -0.006 1 0.168 0.490 -0.069 -0.033 -0.025 0.139 0.022

RMW -0.400 -0.358 0.168 1 0.286 0.050 0.118 0.024 -0.114 0.199

CMA -0.338 -0.018 0.490 0.286 1 0.002 -0.006 -0.017 -0.057 0.165

USD -0.143 -0.075 -0.069 0.050 0.002 1 -0.122 -0.163 -0.308 0.038

AAA -0.081 -0.144 -0.033 0.118 -0.006 -0.122 1 0.811 -0.074 0.122

BBB 0.015 -0.088 -0.025 0.024 -0.017 -0.163 0.811 1 0.031 0.025

GSCI 0.258 0.127 0.139 -0.114 -0.057 -0.308 -0.074 0.031 1 -0.186

VIX -0.705 -0.098 0.022 0.199 0.165 0.038 0.122 0.025 -0.186 1

MKT r
(2)
t r

(3)
t

MKT 1 0.635 0.562

r
(2)
t 0.635 1 -0.032

r
(3)
t 0.562 -0.032 1
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Table 2: Coefficients of the linear regression of the market persistent components on the
(5-day forward cumulated) ten factors from July 4, 1994 to December 6, 2019 with weekly
sampling (on Monday):

r
(2)
t = α

(2)
0 +

10∑
i=1

α
(2)
i fi,t + ξ

(2)
t , r

(3)
t = α

(3)
0 +

10∑
i=1

α
(3)
i fi,t + ξ

(3)
t .

Here, ξ
(2)
t and ξ

(3)
t denote the error terms. t-statistics are in parentheses and ∗, ∗∗ and ∗∗∗

denote a p-value lower than 0.10, 0.05 and 0.01 respectively.

r
(2)
t r

(3)
t

Intercept 0.001∗∗ 0.000
(2.456) (0.259)

MKT 0.347∗∗∗ 0.315∗∗∗

(16.820) (14.651)

SMB -0.084∗∗∗ 0.030
(-3.428) (1.161)

HML 0.008 0.045∗

(0.325) (1.705)

RMW 0.057∗ -0.080∗∗

(1.861) (-2.492)

CMA -0.055 -0.044
(-1.365) (-1.029)

USD -0.042 -0.063∗

(-1.192) (-1.733)

AAA 0.306∗∗∗ 0.051
(4.470) (0.712)

BBB -0.488∗∗∗ 0.068
(-6.619) (0.879)

GSCI 0.007 -0.010
(0.579) (-0.857)

VIX -0.014∗∗∗ 0.003
(-4.518) (0.842)

N 1327 1327
R2 0.442 0.329
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regression

r
(2)
t − f1,t =

10∑
i=2

bi (fi,t − f1,t) + εt. (5)

To avoid the look-ahead bias, such linear regressions are fitted in a time window of 250 weeks

preceding the investment period. After obtaining the two linear clones r̂
(2)
t and r̂

(3)
t , we use

them in Problem (2) instead of the persistent components at scale 2 and 3. Differently

from before, the CARA investor trades an optimal amount of ten indices instead of two

assets. The optimal amount invested in each index turns out to be [bi, ci]u
∗
T−k. To make

the estimation dynamic, we keep the 250-week rolling window and update the estimates

every four weeks.

The left panel of Fig. 4 shows the optimal wealth paths for the persistence-based, the

even-week and the buy-and-hold strategies. The replication of components r
(2)
t and r

(3)
t is

responsible for lowering the return on the persistence-based strategy with respect to the

one obtained in Fig. 2. For an investment of 1 $, we observe a decrease of terminal wealth

from (approximately) 47 $ to a value close to 8 $. However, the ranking between the three

considered investment strategies keeps unchanged, starting from the second year from the

start of the investment. The right panel of Fig. 4 depicts the fraction of wealth invested in

each of the ten factors by the persistence-based strategy. Portfolio weights do not require

extreme positions except for the crisis periods of 2001 and 2008-2009, during which they

are more volatile.

We finally compare our portfolio strategies in terms of Sharpe ratio, by considering

the (weekly) mean excess return and the empirical standard deviation over the investment

period. Results are collected in Table 3. The persistence-based strategy features the highest

mean return, the lower volatility and the highest Sharpe ratio, both when the components

are traded and when they are replicated by ten factors.

Table 3: Weekly mean excess returns, standard deviations and Sharpe ratios obtained by

investing in the traded components r
(2)
t and r

(3)
t , the replicated components r̂

(2)
t and r̂

(3)
t ,

the even-week and the buy-and-hold strategies. Investment period from January 31, 2000
to December 6, 2019.

Mean Standard deviation Sharpe ratio

Traded components 0.0035 0.0138 0.2540

Replicated components 0.0018 0.0142 0.1263

Even-week 0.0012 0.0178 0.0656

Buy-and-hold 0.0012 0.0246 0.0494
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Figure 4: Panel (a): optimal wealth path obtained by investing in the replicated persistent

components r̂
(2)
t and r̂

(3)
t , together with the wealth paths of the even-week and the buy-and-

hold strategies. Initial wealth is normalized to 1 $. Panel (b): fraction of wealth invested
in the ten factors by the persistence-based strategy. Investment period from January 31,
2000 to December 6, 2019.

3.4 Bootstrap

To provide a distributional view on the results of Fig. 2, we implement a bootstrap procedure

(Efron and Tibshirani, 1986) in case the persistent components are the returns of traded

securities. To implement the bootstrap, we first fit an AR(77) model to the daily time

series of market returns and the risk-free rate, from January 3, 1994 to December 6, 2019.

The choice of 77 lags in the autoregressive model is based on the AIC of market returns.

Then, we shuffle the residuals and we add them to the fitted values in order to obtain a

bootstrap sample of daily returns. We use the same permutation of residuals for the risk-

free rate. Then, we set to zero the returns on the days of market closure, in order to mimic

the original data-set. After that, we compute 5-day forward cumulated returns and we

estimate the persistent components at scales 2 and 3 by using a rolling window of 1250 past

observations. We repeat this procedure 500 times. Both the persistence-based, the even-

week and the buy-and-hold strategies yield zero (or negative) wealth in some bootstrap

samples. We filter out such bootstrap samples and, in Fig. 5, we plot for each week the 5%

and 95% percentiles of the distributions of the (normalized) wealth for our strategies, in

logarithmic scale. The buy-and-hold strategy is omitted to improve the graph readability.

Although there is a small overlap of the bootstrap intervals of the two strategies at
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Figure 5: 5% and 95% bootstrap percentiles of the optimal wealth paths obtained by

investing in r
(2)
t and r

(3)
t , together with the 5% and 95% bootstrap percentiles of the wealth

paths of the even-week strategy. Initial wealth is normalized to 1 $. Investment period from
January 31, 2000 to December 6, 2019. The y-axis is in logarithmic scale.
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the beginning of the investment period, starting from 2002 there is no intersection between

the two. Our persistence-based strategy consistently outperforms the even-week strategy

from 2002 on. By considering a 1 $ initial investment, at the end of 2019, the wealth

obtained from the persistence-based strategy spans from (approximately) 26.5 $ to 1333.0

$, while the even-week strategy provides an approximate terminal wealth between 1.3 $ and

7.6 $. The bootstrap intervals may be extremely wide due to the variability introduced

during the bootstrap sample creation over long time series. However, the ranking between

the persistence-based and the even-week strategy is also maintained in this distributional

analysis.

4 Robustness

We now provide some robustness analyses to confirm the superior performance of the

persistent-based strategy with respect to the even-week and the buy-and-hold strategies. In

Subsection 4.1 the persistent components are supposed to be the returns of traded securities

(as in Subsection 3.2), while in Subsections 4.2 and 4.3 the components are replicated by

the ten factors of Subsection 3.3. The first is a benchmark framework where we can easily

move the starting date of the investment period forward, consider a fixed investment term

or move the terminal date backward. The other is a more suitable framework to study the

impact of transaction and short-selling costs, as well as the potential multicollinearity issues

arising in the factor model

4.1 Subsample robustness

We propose three kinds of robustness analysis in case r
(2)
t and r

(3)
t are the returns of traded

securities. As reference period, we keep the investment window from January 31, 2000 to

December 6, 2019.

We first move the starting date from one Monday to the next one, by considering only

Mondays of even weeks, and we make the portfolio strategy comparison on every (shorter

and shorter) investment period ending on December 6, 2019. In case the persistence-based

strategy prescribes a negative initial investment in the persistent components, we do not

make the comparison with the even-week and the buy-and-hold strategy. In Fig. 6 we

represent the gross return of each strategy on a weekly basis and the average Sharpe ratios

computed by using weekly returns. The end of the sample features some instability of the

returns on the persistence-based strategy, which is much lower before 2018. This suggests

that long investment periods provide stable weekly returns on such strategy. In any case, the

performance of the persistent-based strategy is remarkable throughout the whole sample,
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in terms of both weekly returns and Sharpe ratios. In particular, the Sharpe ratios of the

persistent-based strategy are always positive.
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(a) Weekly gross returns.
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(b) Sharpe ratios.

Figure 6: Investment strategies ending on December 6, 2019. The starting date is increasing
over time, from Monday to Monday. Only Mondays of even weeks are considered. Panel
(a): gross returns (in percentage points) of the three types of strategies converted on a
weekly basis. Panel (b): average Sharpe ratios of the three types of strategies. The plotted
values refer to the day in which the investment starts.

In the previous analysis, the investment horizon becomes shorter and shorter as long as

the starting date is shifted forward. Hence, we now ask ourselves what would happen in case

a fixed investment horizon is considered. We keep the same framework as the last analysis

and consider a 3-year investment horizon for the strategy comparison. Fig. 7 traces Fig. 6

except for the last part of the sample, which is missing because the investment term goes

beyond the used data. Both returns and Sharpe ratios of the persistence-based strategy are

always positive. The returns of such strategy are variable over time and we can recognize

some cycles in the corresponding series of Sharpe ratios. Overall, the persistence-based

strategy features a prominent performance with respect to both the even-week and the

buy-an-hold strategy throughout the whole sample. The extra return of the persistence-

based strategy depends on the initial date of the 3-year investment.

Finally, we keep the starting date fixed on January 31, 2000 and we move the terminal

date in the investment window from January 31, 2000 to December 6, 2019. The terminal

date is moved from one Monday to the previous one. Similarly to before, we make the

comparison of our three investment strategies on every (longer and longer) investment period

starting on January 31, 2000. This creates a “term structure” of portfolio returns that we
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Figure 7: Investment strategies over a 3-year (156-week) term. The starting date is in-
creasing over time, from Monday to Monday. Only Mondays of even weeks are considered.
Panel (a): gross returns (in percentage points) of the three types of strategies converted
on a weekly basis. Panel (b): average Sharpe ratios of the three types of strategies. The
plotted values refer to the day in which the investment starts.

plot in the left panel of Fig. 8. The right panel contains the average Sharpe ratios, similarly

to the previous figures. The ranking among the persistence-based, the even-week and the

buy-and-hold strategy is consistent across maturities. In line with Fig. 6, short horizons

feature the highest returns and Sharpe ratios, while long horizons are rather stable. Fig. 8

even suggests a long-term convergence to a weekly return of roughly 0.35% (and a Sharpe

ratio of 0.25) over time. In short, the persistent-based strategy largely outperforms the

other strategies under consideration, with a stable effect for long maturities.

4.2 Transaction and short-selling costs

We now consider the case in which the persistent components at scale 2 and 3 are replicated

by the ten factors described in Subsection 3.3. In this case, the implementability of the

persistence-based strategy is an important aspect to study. In particular, we focus on

transaction costs and short-selling costs.

Transaction costs are supposed to be proportional to the amount invested in risky assets.

According to the mutual fund expense ratios documented in Duvall (2020), a conservative

approach is to consider a proportion of 2%. Since, in our optimization problem, the invested

amounts are multiplied by the asset returns, we apply this percentage directly to market
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Figure 8: Investment strategies starting on January 31, 2000. The terminal date is decreas-
ing over time, from Monday to Monday. Panel (a): gross returns (in percentage points) of
the three types of strategies converted on a weekly basis. Panel (b): average Sharpe ratios
of the three types of strategies. The plotted values refer to the day in which the investment
ends.

returns at the beginning. Then, we follow the usual steps.

As to short-selling costs, Weitzner (2023) documents (in Table 1D) average stock loan

fees that amount to roughly 2.5% (annual rate). Hence, to be conservative, in our analysis

we reduce the wealth associated with short positions by 3% (annual rate).

We consider the investment window between January 31, 2000 and December 6, 2019,

and we plot the results in Fig. 9, which traces the previous Fig. 4. The introduction of

transaction and short-selling costs decreases the optimal wealth of the persistence-based

strategy, while the other strategies are not particularly affected. In fact, neither the even-

week nor the buy-and-hold strategy requires short selling. For an investment of 1 $, the

terminal wealth of our persistence-based strategy is around 7 $ instead of the 8 $ obtained

in Fig. 4. Nevertheless, the optimal investment in r̂2t and r̂
(3)
t keeps outperforming the

even-week and the buy-and-hold strategies, starting from the second year from the start of

the investment. As to the portfolio weights required by the persistence-based strategy, in

the right panel of Fig. 9 we observe some tiny adjustments with respect the corresponding

panel of Fig. 4 due to the introduction of transaction and short-selling costs.
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Figure 9: Panel (a): optimal wealth path obtained by investing in the replicated persistent

components r̂
(2)
t and r̂

(3)
t with transaction and short-selling costs, together with the wealth

paths of the even-week and the buy-and-hold strategies. Initial wealth is normalized to
1 $. Panel (b): fraction of wealth invested in the ten factors by the persistence-based
strategy with transaction and short-selling costs. Investment period from January 31, 2000
to December 6, 2019.
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4.3 The multicollinearity issue

The predictors employed in our factor models can potentially suffer from multicollinearity.

For instance, we already observed in Table 1 that AAA and BBB indices are rather cor-

related, as well as MKT and VIX. The literature on variable selection offers a plethora of

methods to address this issues as the stepwise or the best subset selection. Here, we propose

to use the LASSO, a penalized regression that permits to decrease the number of predictors

(Tibshirani, 1996). We set the tuning parameter as the minimum of the mean square error.

The structure of the exercise is the same as the one in Subsection 3.3: we only replace the

multiple regression with the LASSO.
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Figure 10: Panel (a): optimal wealth path obtained by investing in the replicated persistent

components r̂
(2)
t and r̂

(3)
t obtained through LASSO, together with the wealth paths of the

even-week and the buy-and-hold strategies. Initial wealth is normalized to 1 $. Panel (b):
fraction of wealth invested in the ten factors by the persistence-based strategy obtained
through LASSO. Investment period from January 31, 2000 to December 6, 2019.

We fix the investment window from January 31, 2000 to December 6, 2019, and we

plot the results in Fig. 10, which traces Fig. 4. We observe a reduction of terminal wealth

for the persistence-based strategy from a value close to 8 $ (in Fig. 4) to a value close to

6 $. However, the ranking of the three investment strategies is unchanged with respect to

Fig. 4. The resulting Sharpe ratio of 0.1029 still exceeds the ones of the even-week and

the buy-and-hold strategies reported in Table 3. Importantly, the factor models chosen by

the LASSO in each rolling window can be more parsimonious than the ten-factor model.

This fact increases the frequency of zero portfolio weights for some indices, making the
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implementation of the persistence-based strategy less demanding. For instance, the initial

period requires no investment in BBB, as we can see in the right panel of Fig. 10.

5 Conclusions

The paper enriches the literature of portfolio management by providing a methodology to

exploit the persistent patterns of stock returns induced by periodic meetings of the Fed. The

contribution is both theoretical and empirical. First of all, we provide a renewed evidence of

the presence of two- and six-week cycles in the stock market by analyzing the persistence of

market returns. Then, we model such cycles so that they are usable in a capital allocation

problem. The investment strategies based on the elicited persistent components turn out

to be profitable ways of exploiting such market cycles.

A large number of factors is available today and the financial literature keeps creating

them. Using an expression from Cochrane (2011), the so-called factor zoo counts more than

500 factors today (Harvey and Liu, 2019). This poses many issues such as multicollinear-

ity and non-stationarity, which can be addressed by machine learning techniques, such as

penalized regressions or other methods for variable selection and dimensionality reduction.

Feng et al. (2020) put things in order by analyzing and proposing novel approaches. The

replication of the persistent components of market returns could benefit from this literature.

A better replication could improve the accuracy of optimal portfolio weights and generate

higher wealth for the investor.

We expect our portfolio recipe to be beneficial for a large audience of investors that could

improve the performance of their portfolios by properly exploiting market cycles induced

by the Fed meetings.
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Appendix

A Dynamic CARA portfolio optimization

The general solution of Problem (2), presented in Proposition 1, is particularly lengthy.
Therefore, here we suppose that the excess returns of the risky assets follow a VAR(2)
process and we solve the problem

max
u0,...,uT−1

E
[
−e−γWT

]
(6)

sub Wt = (1 + rf )Wt−1 + u′t−1rt

rt = µ+B1rt−1 +B2rt−2 + εt.

We now provide a derivation for the special case of Proposition 1 with p = 2.

Proposition 2 Consider Problem (6). For any k = 1, . . . , T , the optimal portfolio choice
at time T − k is

u∗T−k =
1

γ(1 + rf )k−1

Σ−1ET−k [rT−k+1]−
min{k−1,2}∑

i=1

B′
iΣ

−1Ek,i

 , (7)

where

Ek,1 = ET−k [rT−k+2|rT−k+1 = 0] = µ+B2rT−k,

Ek,2 = ET−k [rT−k+3|rT−k+1 = rT−k+2 = 0] = µ.

We propose an adaptation of the proofs of Theorem 5.1 and Proposition 5.2 of Chrys-
sikou (1998) to the case p = 2. The original results are valid for p = 1 only. We provide
the explicit derivation for the first steps of the algorithm corresponding to k = 1, . . . , 4. A
formal proof can be obtained by induction.

Problem (6) can be stated through a Bellman equation and solved via backward induc-
tion. We denote by rt the realizations rτ for τ = 0, . . . , t. For t = 0, 1, . . . , T − 1, the value
function at t is

Vt (Wt, rt) = max
u0,...,ut

Et [Vt+1 (Wt+1, rt+1)]

with the terminal condition VT (WT , rT) = −e−γWT .
At time T − 1, we solve

VT−1 (WT−1, rT−1) = max
uT−1∈Rn

ET−1

[
−e−γWT

]
sub WT = (1 + rf )WT−1 + u′T−1rT

rT = µ+B1rT−1 +B2rT−2 + εT .
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Since εT is normally distributed, by Proposition 5.1 in Chryssikou (1998), we rewrite the
conditional expectation as

ET−1

[
−e−γWT

]
= ET−1

[
− exp

(
−γ
(
(1 + rf )WT−1 + u′T−1rT

))]
= − exp (−γ(1 + rf )WT−1)ET−1

[
exp

(
−γu′T−1(µ+B1rT−1 +B2rT−2 + εT )

)]
= − exp

(
−γ(1 + rf )WT−1 − γu′T−1(µ+B1rT−1 +B2rT−2) +

1

2
γ2u′T−1ΣuT−1

)
.

As a result, the maximization problem is equivalent to

min
uT−1∈Rn

−γu′T−1 (µ+B1rT−1 +B2rT−2) +
1

2
γ2u′T−1ΣuT−1.

Since we obtain a convex optimization problem, first-order conditions are necessary and
sufficient to find the minimum. The first-order condition is

−γ(µ+B1rT−1 +B2rT−2) + γ2ΣuT−1 = 0.

Thus, the optimal investment choice is

u∗T−1 =
1

γ
Σ−1 (µ+B1rT−1 +B2rT−2) =

1

γ
Σ−1ET−1 [rT ]

and it can be retrieved in eq. (7). By replacing u∗T−1 in the objective function, we get the
value function at T − 1:

VT−1 (WT−1, rT−1) = − exp

(
−γ(1 + rf )WT−1 −

1

2
E′
T−1 [rT ] Σ

−1ET−1 [rT ]

)
.

We now move to time T − 2 and consider the problem

VT−2 (WT−2, rT−2) = max
uT−2∈Rn

ET−2 [VT−1 (WT−1, rT−1)]

sub WT−1 = (1 + rf )WT−2 + u′T−2rT−1

rT−1 = µ+B1rT−2 +B2rT−3 + εT−1.

In the expression of VT−1(WT−1, rT−1), rT−1 appears both in −γ(1 + rf )WT−1 and in
E′
T−1 [rT ] Σ

−1ET−1 [rT ]. We take the expectation at T−2, use Proposition 5.1 in Chryssikou
(1998) and compute the first-order condition. We obtain the optimal investment choice

u∗T−2 =
1

γ(1 + rf )

(
Σ−1(µ+B1rT−2 +B2rT−3)−B′

1Σ
−1(µ+B2rT−2)

)
=

1

γ(1 + rf )

(
Σ−1ET−2 [rT−1]−B′

1Σ
−1E2,1

)
.

By defining Λ1 =
(
Σ−1 +B′

1Σ
−1B1

)−1
and denoting with | · | the matrix determinant, the

value function at T − 2 turns out to be

VT−2 (WT−2, rT−2) =−

√
|Λ1|
|Σ|

exp
(
−γ(1 + rf )

2WT−2

)
exp

(
−1

2
E′
T−2 [rT−1] Σ

−1ET−2 [rT−1]−
1

2
E′

2,1Σ
−1E2,1

)
.
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Then, at T − 3, we face the problem

VT−3 (WT−3, rT−3) = max
uT−3∈Rn

ET−3 [VT−2 (WT−2, rT−2)]

sub WT−2 = (1 + rf )WT−3 + u′T−3rT−2

rT−2 = µ+B1rT−3 +B2rT−4 + εT−2.

Similarly to before, we obtain the optimal investment choice

u∗T−3 =
1

γ(1 + rf )2
(
Σ−1 (µ+B1rT−3 +B2rT−4)−B′

1Σ
−1 (µ+B2rT−3)−B′

2Σ
−1µ

)
=

1

γ(1 + rf )2
(
Σ−1ET−3 [rT−2]−B′

1Σ
−1E3,1 −B′

2Σ
−1E3,2

)
.

By defining Λ2 =
(
Σ−1 +B′

1Σ
−1B1 +B′

2Σ
−1B2

)−1
, the value function at T − 3 is

VT−3(WT−3, rT−3) =−

√
|Λ1||Λ2|
|Σ|2

exp
(
−γ(1 + rf )

3WT−3

)
exp

(
−1

2
E′
T−3 [rT−2] Σ

−1ET−3 [rT−2]−
1

2
E′

3,1Σ
−1E3,1 −

1

2
E′

3,2Σ
−1E3,2

)
.

At T − 4 the problem is

VT−4 (WT−4, rT−4) = max
uT−4∈Rn

ET−4 [VT−3 (WT−3, rT−3)]

sub WT−3 = (1 + rf )WT−4 + u′T−4rT−3

rT−3 = µ+B1rT−4 +B2rT−5 + εT−3.

As can be seen from the expressions of VT−2(WT−2, rT−2) and VT−3(WT−3, rT−3), the value
functions at T −2 and T −3 have a similar form. Thus, we can write the optimal investment
choice u∗T−4 similarly to u∗T−3:

u∗T−4 =
1

γ(1 + rf )3
(
Σ−1 (µ+B1rT−4 +B2rT−5)−B′

1Σ
−1 (µ+B2rT−4)−B′

2Σ
−1µ

)
=

1

γ(1 + rf )3
(
Σ−1ET−4 [rT−3]−B′

1Σ
−1E4,1 −B′

2Σ
−1E4,2

)
.

Moreover, by defining Λ3 = Λ2, the value function at T − 4 is

VT−4 (WT−4, rT−4) =−

√
|Λ1||Λ2||Λ3|

|Σ|3
exp

(
−γ(1 + rf )

4WT−4

)
exp

(
−1

2
E′
T−4 [rT−3] Σ

−1ET−4 [rT−3]

)
exp

(
−1

2
E′

4,1Σ
−1E4,1 −

1

2
E′

4,2Σ
−1E4,2 −

1

2
µ′Σ−1µ

)
.
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By induction, it is straightforward to see that the solutions at the previous periods T − k
for k ⩾ 5 have a similar form. In general, the optimal portfolio choice at any T − k is given
by eq. (7) and the value function at time T − k is

VT−k(WT−k, rT−k) = −

√∏k−1
j=1 |Λj |
|Σ|k−1

exp
(
−γ(1 + rf )

kWT−k

)
exp

−1

2
E′
T−k [rT−k+1] Σ

−1ET−k [rT−k+1]−
1

2

min{k−1,2}∑
i=1

E′
k,iΣ

−1Ek,i −
k − 2− 1

2
µ′Σ−1µ


with

Λj =

Σ−1 +

min{j−1,2}∑
i=1

B′
iΣ

−1Bi

−1

.

B Extended Wold Decomposition in base N

The Extended Wold Decomposition of Ortu et al. (2020) exploits 2 as reference number.
Indeed, their construction exploits a dyadic procedure inspired by the Discrete Haar Trans-
form. However, it is possible to deduce alternative orthogonal decompositions by using any
natural number N as base. A given zero-mean weakly stationary time series x = {xt}t∈Z
is decomposed into the sum of uncorrelated components whose persistence is now classified
according to the time grid N j at any scale j. The notation employed can be retrieved in
Section A.1 of the online supplement of Ortu et al. (2020).

Let Ht(ε) be the Hilbert space spanned by the sequence of the fundamental innovations
of xt of eq. (1):

Ht(ε) =

{
+∞∑
k=0

akεt−k :
+∞∑
k=0

a2k < +∞

}
.

Given N ∈ N, define the scaling operator R : Ht(ε) −→ Ht(ε) by

R :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

ak√
N

N−1∑
i=0

εt−Nk−i =
+∞∑
k=0

a⌊ k
N
⌋√

N
εt−k,

where ⌊·⌋ associates any real number c with the integer ⌊c⌋ = max{n ∈ Z : n ⩽ c}. The
scaling operator is isometric on Ht(ε) and its adjoint is the operator R∗ : Ht(ε) −→ Ht(ε)
such that

R∗ :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

1√
N

(
N−1∑
i=0

aNk+i

)
εt−k.

The wandering subspace LR
t = Ht(ε)⊖RHt(ε) is

LR
t =

{
+∞∑
k=0

akεt−k ∈ Ht(ε) : aNk+N−1 = −
N−2∑
i=0

aNk+i ∀k ∈ N0

}
.

33



In addition, by defining the innovations

ε̃
(j)
t =

1√
N j−1

Nj−1−1∑
k=0

εt−k

for all j ∈ N and t ∈ Z, we have

Rj−1LR
t =

{
+∞∑
k=0

{
N−2∑
i=0

aNk+iε̃
(j)

t−Njk−Nj−1i
−

(
N−2∑
i=0

aNk+i

)
ε̃
(j)

t−Njk−Nj−1(N−1)

}
∈ Ht(ε) : ah ∈ R

}
.

Following the same steps as Theorem 1 in Ortu et al. (2020), we decompose xt into the sum

of the uncorrelated persistent components x
(j)
t :

xt =

+∞∑
j=1

x
(j)
t , x

(j)
t =

+∞∑
k=0

N−1∑
q=0

β
(j)
k,q ε̃

(j)

t−kNj−qNj−1

with

β
(j)
k,q =

1√
N j−1

Nj−1−1∑
i=0

αNjk+Nj−1q+i −
1

N

Nj−1∑
i=0

αNjk+i

 .

As expected, the orthogonality of persistent components and the unit variance of the scale-

specific innovations ε̃
(j)
t allow for a variance decomposition of the original time series:

var (xt) =
+∞∑
j=1

var
(
x
(j)
t

)
=

+∞∑
j=1

+∞∑
k=0

N−1∑
q=0

(
β
(j)
k,q

)2
.
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