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Abstract

We assess whether data-driven statistical methods and, in particular, forecast combination

strategies can provide additional information about expected market returns beyond that of theo-

retically motivated predictors. The results indicate that averaging forecasts from the theoretically

motivated predictor and combination strategies enhances prediction accuracy relative to using each

forecasting approach individually. Our findings demonstrate that flexible statistical methods could

be used to boost economic theory rather than dilute its importance for equity premium predictabil-

ity. Yet, forecast combination approaches can extract additional information and no theoretical

predictor in isolation is likely to be the expected return on the market.
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1 Introduction

In an important contribution, Welch and Goyal (2008) document that several well-known

candidate predictors display little ability to forecast the equity premium out-of-sample when

taken in isolation. Since then, a host of papers have proposed alternative economic mecha-

nisms leading to new variables designed to predict future excess market returns (e.g., Polk

et al., 2006; Ferreira and Santa-Clara, 2011; Martin, 2017; Campbell, 2018). These models

are often parsimonious and, importantly, are firmly anchored on theoretical foundations,

such as the present-value identity or the capital asset pricing model (CAPM). At the same

time, a rapidly expanding literature has introduced flexible statistical techniques designed

to handle the challenging problem of forecasting returns with a wealth of predictors (Elliott

et al., 2013; Rossi, 2018; Kelly and Xiu, 2023).

Perhaps surprisingly, the performance of statistical models is rarely benchmarked against

that of predictors motivated by theory and vice-versa. Comparing statistical and theoreti-

cal models is crucial to gauge whether a theoretical predictor truly represents the expected

market return. Equivalently, this assessment quantifies the information potentially over-

looked when dismissing a specific theoretically-backed predictor. In this paper, we fill this

gap by comparing a handful of simple, theoretically motivated return predictive regressions

against data-driven methods that do not prioritize any specific economic theory, devoting

particular attention to forecast combination methods that make indistinct use of all available

predictors.

Our contribution is twofold. First, from a methodological perspective, we extend the com-

plete subset regressions (CSR) proposed by Elliott et al. (2013) to account for the uncertainty
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about the size of the forecasting model.1 Specifically, we introduce a probabilistic approach,

based on the model confidence set (MCS) of Hansen et al. (2011), to select multiple models of

different sizes that produce a statistically equivalent out-of-sample predictive performances.

Our novel forecast combination approach outperforms other statistical methods and serves as

a benchmark for theoretically-motivated return predictive regressions. Second, we provide an

intuitive yet effective procedure to couple the strict parsimonious structure imposed by the-

oretically motivated predictors with the richness provided by forecast combination methods.

Our approach takes an agnostic perspective as to which predictive framework is preferable

while providing new insights into the role of a given economic theory for equity premium

predictability. In particular, we show that, although no theoretically-motivated predictor

subsumes the forecast from CSRs, a simple average of the two forecasts is generally superior

to each forecast taken individually.

In our empirical analysis, we consider an extensive set of 31 predictors for the equity

premium. This is about twice the number of predictors considered by Welch and Goyal

(2008) and comparable to Goyal et al. (2021). In addition to fundamental variables – such

as the term and the default spreads – and technical indicators based on past prices and

volume (Neely et al., 2014), we include several theoretically motivated predictors (see, e.g.,

Polk et al., 2006; Ferreira and Santa-Clara, 2011; Martin, 2017; Campbell, 2018). We also

evaluate, within a model combination strategy, the gains from imposing economic restrictions

such as positive forecast constraints (see, e.g., Campbell and Thompson, 2008). In addition

to univariate models prescribed by theory, we consider popular penalised regression methods

and conventional forecast combination techniques.

Several results stand out. First, we document that theoretically motivated predictors

1The size of a model is given by the number of included regressors (out of the many candidate predictors).
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perform well in terms of out-of-sample R2 (henceforth, R2
OOS). In particular, the “sum-of-

parts” (SOP) proposed by Ferreira and Santa-Clara (2011) – which is based on a present-

value identity – and the cross-sectional premium (CSP) proposed by Polk et al. (2006) – which

combines cross-sectional CAPM restrictions into a Gordon growth dividend model – attain

positive R2
OOS of 1.46% and 1.42%, respectively, when forecasting the excess market returns

one-month ahead. These R2
OOS are higher than what is attained by penalized regression

methods such as the lasso and elastic net. Nevertheless, we also find that CSR generally

performs on par with simple theoretically motivated predictive regressions, if not better in

some instances. Notably, the choice of the dimension(s) of the models to combine and the

imposition of economic constraints play an important role in obtaining such competitive

performance, which requires qualification.

Implementing CSR requires selecting the dimension(s) of the models to combine. Given

a total of p predictors, one can combine all models that include only K = 1 predictor, all

the models that include K = 2 predictors, and so on. The simplest possibility is to choose

a given K, e.g. K = 1, and average over all fixed-size models (e.g., Rapach et al., 2009).

Alternatively, one can acknowledge K to be a hyper-parameter whose “optimal” value(s)

is inherently uncertain. In this regard, Elliott et al. (2013) show that there exists a bias-

variance trade-off for different values of K and propose a recursive procedure to choose a

single value of K based on the cumulative out-of-sample mean squared error (MSE).

We build upon this intuition and propose a procedure to select all values of K that

produce a statistically equivalent performance. Specifically, we apply the model confidence

set approach of Hansen et al. (2011) to the CSR forecasts for all values of K. This yields a

set of models that includes all the values of K for which we cannot reject the hypothesis of

equal predictive ability. We then average the forecasts for all values of K in this set. Our
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approach outperforms other forecast combination methods, including the simple combination

proposed by Rapach et al. (2009) and a CSR that aggregates across all values of K.

This forecast combination approach – which, to the best of our knowledge, is new to the

literature – performs remarkably well both in terms of R2
OOS and economic utility gains.

In particular, the CSR that averages only over the models with equivalent predictive ability

delivers an R2
OOS of about 1.87% before imposing economic constraints. In addition, the same

model combination approach delivers an economic gain of 4.53% relative to the historical

mean benchmark, which represents an increase of almost 1.5% relative to the Ferreira and

Santa-Clara (2011) predictor, the best among the theoretically motivated regressions.

Importantly, the R2
OOS of our preferred CSR raises to 2.23% after imposing economic

restrictions on the sign of the equity premium. This is the largest value attained among all

models considered. The CSR approach with sign restriction also delivers the highest utility

gains, a fact that extends to the model averaging context the existing evidence on the value

of economic restrictions on individual regressions (see, e.g., Pettenuzzo et al., 2014).

Overall, our findings underscore that, although predictors motivated by economic theory

often claim to be the expected market return, one cannot rule out a priori the key role of

other variables in understanding the dynamics of the US equity premium. That is, model

uncertainty is pervasive, regardless of how strong the argument might be in favour of a given

economic theory of returns predictability. Yet, by the same token, combining a large set

of models is unlikely to be a panacea: if one keeps adding noisy predictors to the model,

averaging will not generate any predictive gain. Simply put, economic theory still matters.

Motivated by these results, we implement a series of forecast encompassing tests whereby

we impose a dogmatic view on a given theoretical predictor and test the extent of the addi-
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tional information on market expected returns captured by our novel CSR approach. The

results show that no individual theoretically motivated predictor incorporates all the relevant

information on expected returns; that is, the forecasts implied by theoretically justified pre-

dictors do not subsume the predictions obtained from our forecast combination approaches.

This supports the view that no theoretical predictor is likely to be the expected return on

the market. However, these results do not exclude that pooling forecasts from theoretically

motivated predictors and data-driven methods may lead to more accurate predictions of the

equity premium.

We test out-of-sample this hybrid forecasting approach and show that a simple average

of the forecasts from theoretically motivated predictive regressions and CSRs substantially

outperforms both predictions taken separately. For example, the baseline forecast using the

Polk et al. (2006) predictor achieves an R2
OOS of 0.67% and economic gains of 0.94% relative

to the historical mean benchmark. A naive average of this baseline model with the prediction

from our preferred CSR produces an R2
OOS of 2.25% and an economic gain of 4% annually.

Results using other predictors motivated by theory as baseline models also reveal similar

statistical and economic improvements. Importantly, we are not only improving upon the

theoretical predictors but also relative to the CSRs itself. For instance, combining the SOP

predictor with our CSR implementation attains an R2
OOS of 2.4% compared with the 1.8%

of the same CSR approach, which does not exploit the information in the SOP.

We also show that the naive approach of combining theoretical forecasts with statistical

ones by fixing the relative weight to 0.5 is superior to other combination approaches. The

reason is that the optimal weight is extremely unstable when estimated in real time. Finally,

we investigate what would be the optimal weight ex-post, and find a value of about 0.5 over

the full sample from 1953 to 2021. This value increases to 0.7 over the more recent sample
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from 1996 to 2021. Although this evidence suggests that theoretical predictors are getting

closer to be the expected return of the market over time, we find that this change is mostly

attributable to a deterioration of the statistical benchmark over this recent period.

We conclude that theoretically-predictors are informative but far from being the expected

return on the market. At the same time, averaging forecasts from all predictors, disregarding

their possibly different economic underpinning, is unlikely to be the solution. Therefore, we

recommend to decouple the parsimonious economic structure of theoretical models from the

agnostic view offered by data-driven methods such as complete subset regressions, and then

to combine the two separate forecasts to model expected returns.

1.1 Related literature

A vast literature examines the ability of different fundamentals, sentiment, and technical

factors to predict the aggregate excess market return.2 The linear regression forecasting

framework is a cornerstone in this literature, and the set of monthly candidate predictors of

Welch and Goyal (2008) is widely used.

Early on, several studies have recognised that adding all predictors in a single regression

results in poor out-of-sample predictive performance. Since then, the literature has uncovered

several techniques that enhance the out-of-sample performance of predictive regressions.3

2Another main strand in the literature pertains to the predictability in the cross-section of returns, where
a host of characteristics (the so-called factor zoo) that purportedly predict returns has been identified, see
e.g., McLean and Pontiff (2016); Green et al. (2017); Hou et al. (2020).

3We focus mostly on the literature that relies on standard predictive linear regression models. Another
strand of the literature focuses on model instability. It considers regime switches, structural breaks, and time-
varying coefficients; see, e.g., Paye and Timmermann (2006); Guidolin and Timmermann (2007); Lettau and
Van Nieuwerburgh (2008); Pástor and Stambaugh (2009); Henkel et al. (2011); Dangl and Halling (2012).
Cederburg et al. (2023) provides an economic framework to investigate the importance of accounting for
time-varying volatility when forecasting the equity premium.
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The first consists of imposing economically motivated restrictions to the regression forecasts

(Campbell and Thompson, 2008; Pettenuzzo et al., 2014; Li and Tsiakas, 2017), or relying on

theoretical foundations to either pre-select or design relevant predictors (e.g., Tsiakas et al.,

2020; Kelly and Pruitt, 2013; Huang et al., 2015; Dong et al., 2022) and restrict the form of

the predictive model (Ferreira and Santa-Clara, 2011; Campbell, 2018; Martin, 2017).

A second conventional modelling tool is to regularise the model parameter estimates,

i.e., penalised regressions such as lasso or ridge (Li and Tsiakas, 2017; Dong et al., 2022).

Opposite to this, there are model averaging techniques. For instance, Avramov (2002) and

Cremers (2002) show that Bayesian model averaging outperforms model selection approaches

that attempt to choose a single best model. Similarly, Rapach et al. (2009) show that

a parsimonious model that combines (i.e., averages) forecasts from univariate predictive

models strongly outperforms all individual models.4 Elliott et al. (2013) propose a complete

subset regression approach – which we leverage in our paper – that combines forecasts from

all possible linear regression models with a fixed number of predictors K. They show that

combining a small set of predictors (up to 6) outperforms the historical mean and other

competing approaches, such as shrinkage and Bayesian model averaging, with performance

peaking atK = 2.5 More recently, Giannone et al. (2021) proposed a Bayesian approach with

a prior that allows for sparsity and shrinkage. They show that dense models and Bayesian

model averaging produce the best results in the Welch and Goyal (2008) data set.6

4In the context of bond return predictability, Lin et al. (2018) propose using a linear combination of the
combined forecast from univariate regressions and the historical average return.

5This empirical result aligns with those reported by Tsiakas et al. (2020), who show that several low-
dimensional models perform well with 2 or 3 predictors. Tsiakas et al. (2020) explain the good performance
of low-dimensional models based on the realization that some predictors work better during expansionary
periods (e.g., the dividend yield), while others during recessions (e.g., the long-term return on government
bonds and the term spread).

6We note, however, that comparison of their results with those from the literature is hampered by the fact
that they work with annual observations only, and do not report metrics such as the R2

OOS . In unreported
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2 Forecasting the equity premium

Denote with p the total number of available predictors, xi,t, i = 1, . . . , p, with K the dimen-

sion of the model (K = 1 being univariate, K = 2 bivariate, etc.), and with T the number

of observations used to estimate a model. rt+1 is the excess return on the market. Next, we

discuss the statistical and theoretically motivated approaches to forecasting.

2.1 Forecasting methods

It is common to assume that excess returns are linear in the set of predictors:

rt+1 = α + β′xt + εt+1, (1)

with xt a p-dimensional set of predictors (see, e.g., Campbell and Thompson, 2008; Welch

and Goyal, 2008; Rapach et al., 2009). Given a sample {rτ+1, xτ}, τ = 1, . . . , T − 1, the set

of parameters (α,β) is estimated by minimising the mean squared error. We refer to the

model that includes all p predictors as the “kitchen sink” regression model (OLS KS).

Throughout the empirical analysis, we build upon the linear framework (1) either by

adding different layers of complexity in the loss function or by taking a prior view on the

composition of xt. Next, we describe each departure from this conventional model.

Penalised regressions. The first class of models we implement is penalised linear regres-

sions. In its general form, a penalised regression entails adding a penalty term on top of the

analysis, we have done extensive tests with similar Bayesian models, which did not outperform the simpler
approaches we consider in our paper.
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mean squared error LOLS (α,β) =
1
T

∑T−1
τ=1 ε

2
τ+1,

L (α,β; ·) = LOLS (α,β)︸ ︷︷ ︸
Loss Function

+ λϕ (β; ·)︸ ︷︷ ︸
Penalty Term

. (2)

Depending on the functional form of the penalty term, the regression coefficients can be

shrunk towards zero (the ridge regression of Hsiang, 1975), exactly set to zero (the lasso of

Tibshirani, 1996), or a combination of the two (the elastic net of Zou and Hastie, 2005):

ϕ (β; ·) =



∑p
j=1 β

2
j ridge∑p

j=1 |βj| lasso

(1− δ)
∑p

i=1 β
2
i + δ

∑p
i=1 |βi| elastic net

The hyper-parameter λ ≥ 0 governs the degree of shrinkage, and δ is a parameter for blending

the L1 and L2 components in the penalty term. While the ridge is a dense model in which

all predictors enter the model space, the lasso produces a sparse model which selects the

variables that are deemed relevant for forecasting. A drawback of the lasso is that the

L1 penalty term will select, in a somewhat arbitrary way, one predictor from a group of

highly correlated predictors (Zhao and Yu, 2006). The elastic net mitigates this tendency by

adding an L2 component in the penalty. In the empirical analysis, we set δ = 0.5 following

the recommendation of Hastie and Qian (2016).

Bayesian shrinkage. The use of a prior distribution centered at zero on the regression

parameters β offers a way of regularizing the parameter estimates in a Bayesian context.

Several hierarchical shrinkage priors have been proposed in the statistical literature, with
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perhaps the simplest being a standard Normal prior on each individual slope coefficient

βj ∼ N (0, τ 2).7 In this paper, we consider a popular hierarchical shrinkage prior, namely the

“horseshoe” prior proposed by Carvalho et al. (2010): βi ∼ N (0, σ2λ2
i τ

2), λi ∼ C+(0, 1), τ ∼

C+(0, 1), and p(σ2) ∼ 1/σ2, where C+(0, 1) denotes the standard half-Cauchy distribution.

The horseshoe is a global-local shrinkage prior (Polson and Scott, 2011; Bhattacharya

et al., 2016) that maintains aggressive shrinkage of unimportant coefficients without affecting

the largest ones. The prior combines a local shrinkage parameter for each coefficient (λi) with

a global shrinkage parameter (τ), thus providing more versatility in detecting sparse signals

compared to other shrinkage approaches. Furthermore, this prior has the added benefit of

being fully data-driven, i.e., it requires minimal tuning of hyper-parameters.8

Partial least squares. A benchmark data compression methodology used in empirical

asset pricing is the so-called partial least squares (PLS) (see, e.g., Kelly and Pruitt, 2013,

2015). With PLS, the common components of the predictors are derived by conditioning on

the joint distribution of the target variable and the regressors. We use the three-pass proce-

dure proposed by Kelly and Pruitt (2015), a special case of PLS, using realized subsequent

market returns as the only proxy.9

7Given the value of the variance in the prior distribution τ2, the posterior mean for β is the solution to

argmin
β

LOLS (α,β) +
σ2

τ2

p∑
j=1

β2
j (3)

which is similar to the standard ridge regression outlined above.
8We rely on the Matlab implementation of the method provided by Bhattacharya et al.

(2016). We thank the authors for making their code available at https://github.com/antik015/

Fast-Sampling-of-Gaussian-Posteriors.
9We thank Seth Pruitt for making his code available at https://sethpruitt.net/research/

downloads/.
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Forecast combination. The fourth class of competing forecasting strategies is based on

the idea that, unless the correct forecasting model can be identified ex-ante, one can improve

the prediction of excess market returns by averaging the forecasts from different models (e.g.,

Bates and Granger, 1969; Clemen, 1989; Timmermann, 2004; Rapach et al., 2009).

Let r̂i,t+1 denote the forecast from the predictive model i ∈ {1, . . . , n}. A combined

forecast can be constructed as the weighted average:

r̂Ct+1 =
n∑

i=1

ωir̂i,t+1, (4)

where r̂Ct+1 is the final combination forecast, ωi,t is the weight associated to each individual

out-of-sample prediction r̂i,t+1 at time t. The simplest and often most effective forecasting

combination method is the simple mean of forecasts whereby ωi = 1/n.

When forecasting the equity premium, Rapach et al. (2009) found that an equal weight

average of simple linear predictive regressions r̂i,t+1 = α̂ + β̂xi,t produce forecasts that out-

perform a naive rolling mean. This simple combination of univariate forecasts represents

a special case of the complete subset regression (CSR) method proposed by Elliott et al.

(2013). For a fixed number of predictors K ≤ p, the complete subset of models is the col-

lection of the np,K =
(
p
K

)
possible regression models that include K out of the total number

of potential predictors p. When K = 1, we have np,1 = K such that r̂i,t+1 = α̂ + β̂xi,t for

i = 1, . . . , K. Instead, for K = p we have np,p = 1, meaning there is only one model that

includes all available predictors, and the model reduces to the kitchen sink regression. Figure

1 below illustrates the sets of models in CSR with p = 5 for each value of K.

Depending on the size of K and p, the number of total models to be considered can

become computationally prohibitive. For instance, in our empirical application, we consider
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Figure 1: CSR models with p = 5

Visual representation of all complete subset regression models with a total of p = 5 predictors.

a total of p = 31 predictors. Already withK = 12 one needs to evaluate n12,31 = 141, 120, 525

models. Elliott et al. (2013) address this issue and show that a uniform sampling of models

with relatively small draws works well. In our implementation, we consider K ∈ {1, . . . , 31}.

For each given K, if the number of possible models is less than 5,000, we estimate all possible

models. Otherwise, we estimate 5,000 models randomly selected (without replacement) from

the set of all possible models. This is similar to the subsampling approach proposed by

De Nard et al. (2022) in the cross-sectional asset pricing context.

The above description of the CSR method makes it clear that K is a hyperparameter to

be determined. Elliott et al. (2013) propose a recursive procedure that selects, at each point

in the forecasting process, the single value of K with the lowest cumulative out-of-sample

MSE. In this paper, we follow an approach similar to that proposed by Elliott et al. (2013),
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but we also propose an alternative procedure, which is new to the literature.

In particular, we propose to automatically select multiple values of K that produce

comparable predictive performance. This is based on two insights: (1) combining CSR

forecasts obtained with multiple values of K will further reduce variance and improve the

aggregate forecast; and (2) choosing multiple values ofK with similar predictive performance

mitigates the risk of failing to select the single optimal K, which may happen due to sample

variation. Our proposed approach to select an appropriate set of values for K is based on

the model confidence set procedure of Hansen et al. (2011) applied to the CSR forecasts.

Next, we describe this approach in detail.

Complete subset regression meets model confidence sets. To select an appropriate

set of values forK, we apply the model confidence set procedure of Hansen et al. (2011) to the

CSR forecasts for all values of K in each validation sample. This yields a model confidence

set (MCS) that includes all the values of K for which we cannot reject the hypothesis of

equal predictive ability. We then average the forecasts for all values of K in this set. We

now provide a description of the MCS procedure.

Given a set M of models, the MCS approach is based on a sequence of pairwise sig-

nificance tests, in which models found to be significantly inferior are eliminated. When no

further elimination is possible, the remaining models form a model confidence set, inter-

preted to contain the best model(s) with some confidence. More formally, assume there are

m models in M, and let Li = L(rt+1, r̂i,t+1) denote a loss function for a generic forecasting

model i at time t, where r̂i,t+1 is the forecast of the time-t market return obtained with

model i. The relative performance between two competing forecasting models i and j is

defined as dij = Li − Lj. The hypotheses tested in the MCS procedure are of the form
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H0,M : E(dij) = 0, ∀i, j ∈ M. The test statistic has a nonstandard distribution, and

p-values are obtained using bootstrap techniques.10

Given a significance level α, we denote by M̂
1−α%

the model confidence set. For example,

the M̂
75%

is interpreted to contain the best model with 75% confidence. We apply this

procedure using the MSE as our metric. In particular, we use the series of squared errors in

the validation sample to run the MCS procedure and select the best models. The forecast

is the average of the forecasts from the complete subset regressions for all values of K that

belong to M̂
1−α%

at each point in time. In total, we consider four different versions of model

combination using CSR:11

• CSR (K = 1): this is the simple combination of univariate forecasts in equation (4),

i.e., the combination used in Rapach et al. (2009).

• CSR (average all K): we form a combination of the forecasts from the complete sub-

set regressions for all values of K, i.e., the aggregate forecast from this approach is

essentially a combination of combinations.

• CSR (optimal K): this approach selects, at each point in the forecasting exercise, the

single value of K with the lowest validation sample MSE.

• CSR (average M̂MSE
75%

): this approach averages the forecasts from the complete subset

regressions for all values of K that are part of the model confidence set using the MSE

criterion.

10Based on the recommendation in the corrigendum to Hansen et al. (2011), we use the TR statistic to
test the hypothesis.

11Besides the statistical (MSE) criterion, we also try economic (quadratic utility) criteria to select the
optimal value for K or the model confidence set. Since the analysis based on MSE delivers almost the same
conclusions as that using the utility criterion, in the main text we focus on CSR (optimal K) and CSR

(average M̂MSE
75%

) and relegate to Appendix C.3 the results for utility-based CSR.
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2.2 Theoretically motivated predictors

We now describe the theoretically motivated predictors whose predictive power is tested both

in isolation and in conjunction with forecast combination methods.

Drifting steady-state valuation model. Campbell (2018) shows that when the log

dividend-price ratio follows a random walk, and the log dividend growth rate gt is condition-

ally normal and homoskedastic, then

Et [rt+1] ≈
Dt

Pt

(1 +Gt+1) + exp (Et [gt+1]) +
1

2
Vart (rt+1)− Et [1 + rf,t+1]︸ ︷︷ ︸

xt

(5)

where Et [gt+1] and Vart (rt+1) denote market participants’ conditional expectation of future

log dividend growth and the conditional variance of log returns and Et [1 + rf,t+1] is the

conditional expectation of the real risk-free rate. xt is a version of the dividend yield adjusted

for dividend growth and the real interest rate.

We construct an estimate of the adjusted dividend yield using the historical sample means

of real dividend growth and the real risk-free rate, and the historical sample variance of log

stock returns up to date t.12. In principle, we could run a classic predictive univariate

regression r̂t+1 = α̂ + β̂xt. However, imposing the theoretical restriction r̂t+1 = xt works

better in practice, so we follow this approach.

The “sum-of-parts” (SOP). Ferreira and Santa-Clara (2011) write the log stock returns

as the sum of the (log) growth in the price-earnings ratio, the growth in earnings, and the

12The term Dt

Pt
(1 +Gt+1) is scaled by 12 since the numerator is the 12-month trailing dividend.
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dividend–price ratio:

log (1 +Rt+1) = gmt+1 + get+1 + dpt+1,

where Rt+1 is the market return, gmt+1 = log Pt+1/Et+1

Pt/Et
, get+1 = log Et+1

Et
, and dpt+1 =

log
(
1 + Dt+1

Pt+1

)
. The authors propose to forecast separately the components of the stock

market return:

̂log (1 +Rt+1) = ĝmt+1|t + ĝet+1|t + d̂pt+1|t (6)

The SOP method assumes no multiples growth (ĝmt+1|t = 0) and that the dividend–price

ratio follows a random walk so that d̂pt+1|t = dpt; and it proxies for ĝet+1|t with the 20-year

moving average of the log growth in earnings per share up to time t, denoted by ḡt. In all,

we use xt = ḡt + dpt as the forecast of ̂log (1 +Rt+1).
13

Cross-sectional equity premium (CSP). Polk et al. (2006) combine the Gordon (1962)

stock-valuation model with the Sharpe-Lintner CAPM to obtain a prediction for expected

return:

Di,t

Pi,t−1

≈ βiEt−1 [rt]− E
[
gi − rft

]
where E

[
gi − rft

]
is expected dividend growth minus the interest rate, and betas and the

risk-free rate are assumed to be constant.

This expression leads to a cross-sectional measure of the equity premium. Specifically, regress

the cross-section of dividend yields on betas and expected dividend growth:

Di,t

Pi,t−1

≈ λ0,t−1 + λ1,t−1βi + λ2,t−1E [gi]

13The variable xt is a proxy for expected log return, whereas we are forecasting excess returns (without

log). One could run a predictive regression and use r̂t+1 = α̂ + β̂xt as the forecast, but we find that this
model underperforms the historical average. We therefore use a fixed coefficient model.

16



and then use λ1,t−1 as a predictor in a linear regression to forecast the next period’s equity

premium. Kelly and Pruitt (2013) propose a related procedure to extract market expecta-

tions of future returns from cross-sectional present value relations. We follow Polk et al.

(2006) and use the association between valuation rank and beta as our measure of the cross-

sectional beta premium (and do not control for expected growth). As discussed in Polk et al.

(2006), ranks are a transformation of the underlying multiples robust to outliers.

Simple VIX (SVIX). Martin (2017) provides a lower bound to the expected excess re-

turns on the market:

Et [rt+1] ≥ Rf,t × SVIX2
t+1

where the SVIX index measures the risk-neutral variance, SVIX2
t+1 = var∗t

(
Rt+1

Rf,t

)
, and it is

calculated at time t based on the prices of options that mature next month (at time t+ 1).

In this paper, we use the squared SVIX index as a proxy for the equity premium, assuming

the bound is tight.14

A natural question to ask is why we did not include, e.g., the dividend-price ratio in our

list of theoretically-motivated predictors. The reason is that all of the predictors mentioned

above convey information about next period market excess returns. On the other hand, the

dividend-price ratio (without any additional assumptions) would inform not only about the

next period but also about long-run returns and future dividend growth.

14In future versions, we plan to replace the SVIX with the exact equity premium proxy computed by
Tetlock (2023).
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2.3 Out-of-sample forecasting performance

We compare the forecasts obtained from each methodology to the historical average excess

stock returns. In particular, we calculate the out-of-sample predictive R2, as suggested by

Campbell and Thompson (2008). The R2
OOS is akin to the in-sample R2 and is calculated as

R2
OOS = 1−

∑T−1
t=0 (rt+1 − r̂t+1)

2∑T−1
t=0 (rt+1 − rt+1)

2

where r̂t+1 is the forecast value from a given approach from the start date of the estimation

sample through date t and rt+1 is the historical sample average of the excess return estimated

from the start date through t. Here T is the size of the out-of-sample forecast evaluation

period. A positive value for R2
OOS means the predictive regression has a lower average mean-

squared prediction error than a “no-predictability” benchmark.

The R2
OOS is a measure of the statistical performance of a forecasting model. However,

it is possible for a return forecasting model to have a negative R2
OOS and still generate

significant profits when used in the context of a dynamic trading strategy (Kelly et al., 2022).

Consider, for example, a model that accurately predicts the direction of the market return

one period ahead but gets the scale wrong. Although such a model has a negative R2
OOS,

it is certainly useful to develop a profitable trading strategy. Therefore, we also assess the

economic value of a given forecasting model relative to the historical average benchmark by

comparing certain equivalent returns for a mean-variance investor who dynamically allocates

his capital between the stock market and the risk-free asset, using forecasts from the model

and the recursive sample mean (see, e.g., Welch and Goyal, 2008; Goyal et al., 2021; Dangl

and Halling, 2012 and Pettenuzzo et al., 2014; Tsiakas et al., 2020; Dong et al., 2022).
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Specifically, at month t, the investor decides on an equity allocation wt by solving the

utility maximization problem

max
wt

Et [U(rp,t+1)] = r̂p,t+1 −
γ

2
σ̂2
p,t+1, (7)

where r̂p,t+1 = wtr̂t+1+(1−wt)rf and σ̂2
p,t+1 = w2

t σ̂
2
t+1 are forecasts of the investor’s portfolio

return and variance at time t+1, based on information up to time t, and γ is the coefficient

of relative risk aversion. The solution to problem (7) is wt =
1
γ

r̂t+1

σ̂2
p,t+1

. Given a time series

of out-of-sample portfolio returns based on a specific forecasting model, we calculate the

certain equivalent return as CERp = r̄p − γ
2
σ̂2
p, where r̄p and σ̂2

p are the mean and variance

of the portfolio return over the out-of-sample period. Similarly, we calculate the certain

equivalent return of the portfolio obtained using the benchmark sample average forecasts,

CERhist. The spread ∆CER = CERp −CERhist can be interpreted as the fee a risk-averse

investor is willing to pay to access the strategy implied by a given forecasting model.

2.4 Sample splitting and parameters tuning

Our sample period is from November 1928 to December 2021. Each forecasting model is

estimated using a rolling-window approach with a training window of 240 months and a

validation window of 60 months. Therefore, the out-of-sample period started in November

1953. Forecast errors in each validation window are used to select the hyper-parameters,

such as the shrinkage parameter for penalised regressions, the optimal number of predictors

K, and to define the model confidence set for our complete subset regression model. Upon

choosing the hyper-parameters, each model is retrained using the combined training and

validation samples so that forecasts for the following month – the test sample – are made
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using, for e.g., the optimal K or the optimal set of models. Models without any hyper-

parameters – such as the linear model with all predictors included horseshoe shrinkage and

the theoretically motivated regressions – are estimated directly with the combined training

and validation samples.

Our use of a rolling window is needed to satisfy the assumption of the bootstrap procedure

to compute the MCS (see Section 6.1 in Hansen et al., 2011). However, we also investigate

the performance of all forecasting models under an expanding window approach (c.f., Section

3.3), which may shed light on whether differences in performance are potentially related to

model instability, structural breaks, or changes in regime (e.g., Paye and Timmermann, 2006;

Lettau and Van Nieuwerburgh, 2008; Henkel et al., 2011; Dangl and Halling, 2012).

In the expanding window approach, we start with the same training and validation periods

as in the rolling window approach, but the windows are expanded each month, with the

validation period kept at 20% of the combined training and validation periods. Using this

approach, we obtain forecasts for the same out-of-sample period as with the rolling window

approach. However, there are two disadvantages to using an expanding window. First, as

already discussed, the assumptions of the bootstrap needed for the MCS procedure are not

met and the selection of statistically equivalent models is likely not reliable. Thus, we do not

report MCS p-values. Second, we can only include predictors for which we have complete

data over the entire sample period.

For the model confidence set, we follow Hansen et al. (2011) and choose a 75% interval

(M̂
75%

). When comparing models in terms of their ability to forecast the market return,

we consider a quadratic loss function. Finally, to compute the CER, we use a risk aversion

coefficient of 5 and (out-of-sample) estimates of the market variance using a rolling window
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of 60 months. Also, to keep the optimal portfolio weights wt within a reasonable range that

could be implemented in practice, we impose the restriction that −1 ≤ wt ≤ 2 when dealing

with unconstrained forecasts.

2.5 Imposing economic constraints on the forecasts

Campbell and Thompson (2008) show that many predictive regressions beat the historical

average return only once weak restrictions are imposed on the signs of coefficients and return

forecasts. Following this intuition, we explore the impact of imposing sensible restrictions on

the out-of-sample forecasting performance of all forecasting specifications outlined above. In

particular, we assume that investors rule out a negative equity premium, and set the forecast

to zero whenever it is negative: r̂POS
t+1 = max (0, r̂t+1), where r̂t+1 is the forecast value from

a given approach (see, e.g., Li and Tsiakas, 2017; Pettenuzzo et al., 2014).

Notice that some of the existing literature often imposes constraints on the sign of slope

coefficient. We do not follow this route for two reasons. First, although financial theory

may offer justification regarding the sign of individual predictors in isolation (i.e., univariate

models), there is little economic guidance in the context of models with many predictors,

which is the focus of this paper. Second, when multiple predictors are considered in the

same model, imposing an ex-post restriction (i.e., setting certain regression coefficients to

zero if they do not have the expected sign) may affect other coefficients (including the

intercept), with the unintended consequence of a sign change in the forecast. Similarly to

the unconstrained case, we restrict the optimal portfolio weights to 0 ≤ wt ≤ 2 that could

be implemented in practice since it does not involve extremely leveraged investments.
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3 Empirical results

We use 31 predictors in our study, which we compile from various sources. Table A.1 in the

Appendix provides a summary. We start with 11 predictors from Welch and Goyal (2008):

the dividend yield (DY ), the earnings/price ratio (EP ), the market volatility (RV OL)

calculated following Mele (2007), the book/market ratio (BM), the net equity expansion

(NTIS), the Treasury bill rate (TBL), the long-term return of government bonds (LTR),

the term spread (TMS), the default yield spread (DFY ), the default return spread (DFR),

and inflation (INFL).15

Using the same set of data, we also calculate the predictor in equation (5) from Campbell

(2018), which we denote by DP Drift, as well as the two components of the SOP model,

namely, the moving average of the log-growth in earnings and the logarithm of one plus

the dividend yield (see (6) for more details). Using data from CRSP and Compustat, we

calculate the cross-sectional risk premium (CSP ) following Polk et al. (2006). We obtain

data on short interest (SI) from Dave Rapach’s website.16 In addition, we calculate the

SV IX2 as in Martin (2017) using data from WRDS/OptionMetrics, and we follow Dong

et al. (2022) and construct the average return from 172 long-short portfolios (rLS) obtained

from Chen and Zimmermann (2022).17

Finally, we follow Neely et al. (2014) and construct a group of return predictors which

15We thank Amit Goyal for making the data available at https://sites.google.com/view/agoyal145.
We do not include the dividend/price ratio because it has a near-perfect correlation with the dividend yield.
Likewise, we exclude the payout ratio (DE) since is a linear combination of the dividend/price ratio and the
earnings/price ratio. Finally, we also exclude the long-term yield (LTY ), which is a linear combination of
the Treasury bill rate (TBL) and the term spread (TMS).

16We thank Dave Rapach for making this available on his website at https://sites.google.com/slu.
edu/daverapach.

17The returns on the anomaly portfolios are collected from the Open Source Asset Pricing website https:
//www.openassetpricing.com/ used in Chen and Zimmermann (2022).
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consist of various technical analysis indicators, such as (1) moving average crossovers of

different lengths MA(nshort, nlong) – which equal one if a moving average of nshort months

of the S&P 500 index is above a moving average of nlong months, for nshort ∈ {1, 2, 3} and

nlong ∈ {9, 12} –, (2) time-series momentum indicators TSMOM(n) – which equals one if

the S&P 500 index is greater than its value n months ago, for n ∈ {9, 12} –, and (3) the

signed-volume moving average crossover MAV OL(nshort, nlong) – which is constructed using

the signed volume of the S&P 500 index, with the same values for nshort and nlong.

3.1 Equity premium forecasts

We start by investigating the predictive ability of theoretically motivated predictors and

several statistical models designed to accommodate a large set of predictors. Table 1 shows

the results. The columns report the R2
OOS, the mean-squared error (MSE) and the relative

certainty equivalent return (∆CER). The last three columns report the same metrics when

a positive constraint is imposed on the conditional forecasts.

Several results stand out. First, theoretically motivated predictors perform well in terms

of R2
OOS; this is particularly the case for CSP (Polk et al., 2006) and SOP (Ferreira and

Santa-Clara, 2011) (R2
OOS = 1.420% and 1.465%, respectively) and, to a lesser extent, for the

Campbell (2018) drifting steady-state valuation model (R2
OOS = 0.40%). The SOP attains

the largest CER, almost double that of CSP and DPDrift. Consistent with the intuition

that theoretically motivated predictors already impose meaningful economic restrictions at

the outset, we observe that adding a positive forecast constraint does not significantly affect

the performance of theoretical predictors as testified by a similar R2
OOS and ∆CER.

The comparable R2
OOS for CSP and SOP hides some important facts. First, SOP emerges
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as the best theoretically motivated predictor if one adopts ∆CER as the performance metric:

the SOP commands a fee of about 3.31% whereas an investor would pay 1.43% to access the

CSP forecasts. Second, CSP and SOP carry some non-redundant information about expected

returns. For instance, Figure 2 reveals that the CSP conveys substantial information at the

beginning of the sample (until 1965), whereas the performance of SOP is particularly good

post-2000 and before 2010. Furthermore, the unconditional correlation between the CSP

and SOP forecasts is only 0.44. This is prima facie evidence that neither of these predictors

is likely to be the expected return on the market in isolation.

Turning to Panel B, we observe that Bayesian shrinkage and partial least squares fail to

deliver a positive R2
OOS. Among penalised regression models, the performance of the ridge

model stands out, although the R2
OOS = 0.748 is only half of that attained by CSP and

SOP. When a positive forecast constraint is imposed, the performance of the horseshoe prior

improves substantially and is now on par with that of ridge regression. We interpret this

evidence as an indication in favour of “dense” models for forecasting stock returns.

One needs to turn to complete subset regressions (CSR) to obtain R2
OOS larger than those

observed for theoretical predictors. Importantly, an agnostic average across all possible model

sizes (CSR average all K) still does not perform well, with a negative R2
OOS = −0.53.18 The

simple combination forecast of Rapach et al. (2009), i.e., CSR with K = 1, obtains a higher

R2
OOS = 0.56, although it still does not ourperform CSP or SOP. Our proposed extensions

of the baseline CSR (using a single optimal model size K or the average of models in the

75% model confidence set, M̂MSE
75%

) deliver the largest R2
OOS - of more than 1.80% - and the

largest ∆CER. A positive forecast constraint further improves our proposed CSR methods.

18Note that the CSR employs all predictors except those labelled as theoretically motivated and analyzed
in Panel A.
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Figure 3 provides some insights into what drives the performance of different combination

methods.19 In particular, we compare the kitchen sink regression (OLS KS), the simple

combination by Rapach et al. (2009) and the two preferred CSR forecasts, namely the CSR

that dynamically selects the optimal model size K and the one that averages over models

in the 75% model confidence set. Compared to OLS KS, CSRs reduce the forecast variance

and, as such, do well in terms of R2
OOS. However, the simple combination shrinks forecasts

excessively, making the forecasts very close to the historical average benchmark. Between

the optimal model size K and averaging models in the MCS, the latter has a lower variance,

although sometimes it produces extreme forecasts. Given that the CSR with optimal K and

the CSR with average M̂MSE
75%

emerge as the best performing models (among the statistical

ones considered in the paper), we focus most of our discussion on these two models.

The evidence in Panels A and B suggests that there is fundamental information in the-

oretically motivated predictors and arguably in other predictors, once properly combined.

Naturally, the question arises: Can one use information from both sets to enhance equity

premium prediction? Panel C makes an attempt to answer this question by considering the

same statistical models of Panel B, where the set of predictors is now enlarged to include

the theoretical ones listed in Panel A. Quite surprisingly, the performance of CSR methods

(and of all others) deteriorates substantially in terms of R2
OOS.

20

19In Appendix B.1, we discuss the bias-variance tradeoff as the model dimension K varies and show that
the proposed methods to dynamically select optimal value(s) of K outperform CSR models with static K.
Furthermore, in Appendix B.2, we discuss the time-variation in the model dimension and investigate its
economic determinants.

20The fact that increasing the number of predictors alone does not necessarily improve the predictions is
also seen in other contexts. For example, Bianchi et al. (2021) shows that a neural network with macroe-
conomic variables and forward rates performs worse than a more parsimonious combination of two separate
networks. A possible explanation for this degradation in performance is the near multicollinearity introduced
by adding correlated predictors. For example, in our case, the dividend yield is a component in DPDrift

and SOP .
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In the next section, we show that it is possible to achieve better statistical and economic

performance by combining theoretical predictors together with other predictors. Importantly,

our approach also provides a test of whether a given theoretically-motivated predictor is the

expected return on the market, hence subsuming other predictors.

3.2 Testing the expected return on the market

Full-sample estimates. Table 2 provides preliminary evidence that there is information

in other predictors that is not subsumed by theoretically motivated variables. As a result,

theoretical predictors proposed in the literature may not be the expected return on the

market. In particular, we build upon Harvey et al. (1998) and run the following regression:

rt+1 = δr̂Theo
t+1 + (1− δ)r̂CSR

t+1 + εt+1 with 0 ≤ δ ≤ 1 (8)

where r̂Theo
t+1 and r̂CSR

t+1 represent the out-of-sample forecast of the equity premium from a

given theoretically motivated predictor and a CSR model, respectively. When δ = 1 the

theoretical predictor encompasses the r̂CSR
t+1 forecast. On the contrary, when δ = 0, it is

the prediction from the CSR that encompasses the expected returns implied by r̂Theo
t+1 . In

the case that both r̂Theo
t+1 and r̂CSR

t+1 contain valuable information on the equity premium, δ

should be between zero and one (see, e.g., Granger and Ramanathan, 1984). Thus, we can

use (8) to evaluate whether theoretical and statistical forecast specifications can be fruitfully

combined to produce a superior characterization of the expected return on the market.

The theoretical predictors used to compute r̂Theo
t+1 are the CSP, DPDrift and SOP (see

Panel A, B, and C, respectively). To proxy for r̂CSR
t+1 we consider the CSR with K = 1, with

optimal K, and with average M̂MSE
75%

(from left to right). The table shows that the loading
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δ is around 0.4 when we pit the theoretical predictor against the CSR that accounts for

optimal model size or CSR that averages across models of different sizes. This value of δ is

far from the benchmark value of one. Interestingly, when using the CSR (K = 1) or CSR

(Average all K) as a data-driven approach, the estimates δ̂ are closer to one, which would be

consistent with r̂Theo
t+1 being the expected return on the market.21 This analysis shows that it

is important to benchmark theoretical predictors against combination methods that account

for model size uncertainty, like our preferred CSR approach with average M̂MSE
75%

. These

methods do indeed provide additional information on the expected returns, which is not

captured by competing model averaging methods. More generally, combining theoretical

predictors with other macro or trend variables shows promise since the R2
OOS for the full

sample of forecasts is as high as 2.7%, and the CER is as large as 4.7%.

Real-Time Estimates. Table 2 reported the δ estimated from Eq. (8) using the full set

of out-of-sample forecasts r̂Theo
t+1 and r̂CSR

t+1 . We now instead estimate δ from the perspective

of a real-time investor. The purpose of this exercise is twofold. First, we want to understand

whether the δ = 0.4 estimated in Table 2 masks any meaningful time variation. For example,

it could be the case that, in some periods, r̂Theo
t+1 could indeed be considered the expected

return on the market by a real-time investor. Second, we aim to investigate whether the

good performance observed in Table 2 for a model that combines theoretical predictors with

the (combined) forecasts from other variables also holds when implemented in real-time.

Figure 4 shows the real-time δ estimated from Eq. (8) at each month via constrained

21The optimal δs are smaller for CSR (average all K) than for CSR (K = 1). This may be surprising at
first, since CSR (average all K) attains a negative R2

OOS in Table 1. However, observe that CSR (average
all K) delivers a positive R2

OOS = 1.616 once we impose the positive constraint. Thus, when we combine
CSR (average all K) with theoretical forecasts, we boost the performance in two ways: First, because the
theoretical forecasts contain quite different information; and second, because the combined forecasts likely
turn positive.
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least squares using either a rolling window of five-years of out-of-sample forecasts (blue

line) or an expanding window starting with 60 months of out-of-sample forecasts (red line).

Shaded areas indicate NBER recessions. From left to right, the different columns report

the estimated loading δ̂ when using CSP, DPDrift or SOP to compute the forecast r̂Theo
t+1 .

Two interesting facts emerge. First, there is instability in the δ when it is estimated on a

rolling window (blue line). The null hypothesis that r̂Theo
t+1 encompasses the expected market

return implied by CSR can be arguably rejected more strongly outside recessions. This is

more evident for r̂CSR
t+1 proxied by CSR (K = 1), which is a simple combination of univariate

forecasts. Second, the weights attached to the CSR (optimal K) and the CSR (average

M̂MSE
75%

) specifications are very similar. The rank correlation between the δt obtained with

either specification is 0.86 (average across the CSP, DPDrift, and SOP models). This is

consistent with the comparable performance in terms of R2
OOS of theoretically-motivated

predictive models, in particular CSP and SOP, outlined in Table 1 and Table 2.

Implications for out-of-sample forecasting. Table 3 reports the results from the com-

bined forecasts r̂t+1 = δtr̂
Theo
t+1 + (1 − δt)r̂

CSR
t+1 using the real-time estimates of Figure 4; i.e.,

δt is estimated from t− 59 to t to avoid look-ahead bias or double usage of the target equity

premium rt+1.
22

This approach is similar to the iterated mean combination (IMC) proposed by Lin et al.

(2018) with two key differences. First, we combine the forecast combination method with

a given theoretically motivated predictor rather than with the running mean of market

returns. We do so because our objective is not to provide yet another shrinkage strategy

towards the unconditional average of returns but rather to test the encompassing property

22Because of the additional estimation step for δt, we lose five years of data relative to Table 1.
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of theoretically justified predictors, i.e., their ability to capture the expected return on the

market out-of-sample. Second, we restrict δt ∈ [0, 1] so that it can be interpreted as the

relative weight assigned to, a priori, complementary and potentially not mutually exclusive

proxies for the expected return on the market.

Panel A of Table 3 reports results for the three best CSR models (K = 1, optimal K,

and average M̂MSE
75%

), which are similar to those in Table 1 over this shorter period. The first

row of Panels B, C and D (“Baseline”) reports the performance of the theoretical predictors.

When compared to Panel A of Table 1 we observe degradation in R2
OOS for CSP (from 1.42%

to 0.67%). On the other hand, the performance of DPDrift and SOP appears to be more

stable.

Our main interest lies in the performance of our IMC implementation. The results con-

sistently show that the IMC forecast that combines the baseline with the CSR (optimal K)

or the CSR (average M̂MSE
75%

) outperforms (both in terms of statistical and economic metrics)

theoretical predictors, but fails to improve upon the respective CSR models in Panel A that

exclude them. One potential reason for such dismal performance is the large instability in

the rolling window estimates of δt (c.f., the blue line in Figure 4).

To address the instability of δt, we follow a naive model averaging (NMA) approach,

which fixes δ = 0.5.23 This value is close to the full sample estimates reported in Table 2.

The results in Table 3 show that fixing the δt to 0.5 improves the performance across models,

with R2
OOS above 2.2% for any of the theoretical predictors combined with the CSR (optimal

K) or the CSR that averages across the model confidence set. The best model is the naive

method that combines SOP and CSR with optimal model size K; this model yields the

23This approach is similar in spirit to the one proposed by Chen et al. (2022). Whereas Chen et al. (2022)
shrink forecasts from univariate predictive regressions towards the sample average of market excess returns,
we focus on a combination of theoretical models and statistical models with many predictors.
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highest R2
OOS = 2.46% and has a ∆CER = 4.66%, which is second only to that of the CSR

with optimal K in Panel A (∆CER = 4.70%). Imposing the positivity constraint on the

resulting combined forecasts improves R2
OOS and ∆CER even further.24 Our interpretation

of these results is that, regardless of the approach taken, economic theory is an important

consideration when forming forecasts of the equity risk premium. Our dynamic CSR forecasts

perform well on their own but can be improved by imposing the positivity constraint (which

is rooted in economic theory, as the equity premium should be positive) or through a simple

combination with forecasts from theoretical models of the equity risk premium. In the case

of SOP, both seem to help.

As highlighted in Figure 4, a feasible alternative to stabilize the estimates of δt is to adopt

an expanding rather than a rolling window approach: the expanding window estimates (red

line) are indeed less volatile.25 Table 4 reports the performance when using such δt estimated

over an expanding window.26 The results confirm that more stable values of δ lead to larger

R2
OOS and ∆CER compared to when δt is estimated with a rolling window. Nevertheless, the

NMA approach that fixes δ outperforms an expanding window combination of theoretical

and CSR forecasts. This holds for all the theoretical predictors and the three versions of

CSR.

A natural question is whether fixing δt = 0.5 represents an optimal compromise, or one

could further improve the out-of-sample forecasting performance by using alternative fixed

values for δ. We formally investigate this question by showing the out-of-sample R2
OOS across

24We impose the positivity constraint on the combined forecast, i.e., the constrained forecasts are calculated
as max (r̂t+1, 0) = max (δtr̂

Theo
t+1 + (1− δt)r̂

CSR
t+1 , 0).

25Note that r̂Theo
t+1 and r̂CSR

t+1 are still obtained from a rolling sample. We do so to isolate the effect of
instability in δ and allow a comparison between Tables 3 and 4.

26The results in Panel A and those for the naive model averaging (NMA) that fixes δ = 0.5 are, of course,
identical between Tables 3 and 4, and reported only for reader’s convenience.
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different values of δ = 0, 0.1, . . . , 1, and for all theoretical predictors and CSR methods.

Figure 5 shows the results. The leftmost point on the graph is the R2
OOS that would be

obtained by the given CSR method. The rightmost point is the R2
OOS obtained by the

theoretical predictor in isolation.27 The graph shows that δ = 0.5 is nearly optimal for CSP

and SOP, whereas a lower loading is needed on DPDrift.

Overall, we can conclude that none of the theoretical predictors analyzed seems to be

the expected return on the market. Nevertheless, theoretical predictors carry meaningful

information on the equity premium so that, when combined together with other variables,

the out-of-sample predictability of stock market returns substantially increases.

3.3 Individual forecasts based on an expanding window

All the results discussed so far are obtained using a rolling window approach to produce the

forecasts for both r̂Theo
t+1 and r̂CSR

t+1 . This allows us to incorporate additional predictors for

which data is only available more recently. Nevertheless, an expanding window approach has

often been used as an alternative to rolling-window implementations. For example, Rapach

et al. (2009), Elliott et al. (2013), and Neely et al. (2014) rely on an expanding window

approach whereas Li and Tsiakas (2017) and Tsiakas et al. (2020) use a rolling window

approach.28 To compare our results with previous studies, Tables C.2 and C.3 reproduce the

evidence in Tables 1 and 3 using the expanding window approach.

Table C.3 reports the results using all predictors for which data is available throughout

the sample period. For consistency, the historical average used in calculating the R2
OOS in

27Since δt is fixed, there is no need for an initial 5-year burn-in period to estimate it. Therefore, Figure 5
uses the entire OOS period from Nov 1953 to Dec 2021, and the left and rightmost points math the values
reported in Table 1.

28See Cooper and Gulen (2006) for a discussion of the merits of the two approaches.
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this case is also based on an expanding window. The first notable difference with respect

to our previous results is a widespread decrease in R2
OOS and ∆CER for statistical methods

(see Panel A). For example, without the positive constraint on the prediction, the CSR with

optimal K displays an R2
OOS = 0.41 relative to the 1.85 reported in Table 3. Furthermore,

the CSR (optimal K) underperforms the CSR (K = 1). However, once we impose the

positive forecast constraint, the CSR (optimal K) beats the simple combination in terms of

R2
OOS of 0.69% while producing the highest ∆CER (which equals 2.39%). The CSR that

relies on the MCS shows a negative R2
OOS, which is not surprising, given that underlying

assumptions for the combination procedure are unlikely to hold.29

Another interesting result is the deterioration in the performance of the theoretical models

based on expanding window regressions relative to the results obtained with a rolling window.

The CSP (Polk et al., 2006) and DPDrift (Campbell, 2018) now produce negative R2
OOS (see

row “Baseline” in Panels B and C). These results suggest a substantial model instability,

which can be more accurately attenuated with a rolling window forecasting approach. More

importantly, we continue to find that the naive combination – with δ = 0.5 – of a given

theoretically motivated predictor with the CSR (optimal K) delivers the best performance.

For instance, for CSP, we observe an R2
OOS = 0.74 and a ∆CER= 2.21%. Similarly, we

see an R2
OOS = 0.82 and a ∆CER = 2.53% for SOP. Overall, we confirm that theoretical

predictors do not produce encompassing expected returns with respect to CSR and that

combining theoretical and statistical forecasts through a simple weighted average enhances

out-of-sample predictive accuracy compared to using each forecast in isolation.

29The implementation of the MCS procedure relies on bootstrapping the differences in loss between fore-
casts from each pair of models, which are assumed to be stationary. This assumption is unlikely to hold when
the parameters are estimated based on an expanding window (see Hansen et al., 2011, Section 6.1). Because
of this, we are careful in interpreting the results obtained with the complete subset regression methods that
rely on the MCS procedure to select different values of K.
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3.4 Evidence over the post-1996 sample

The purpose of this section is twofold. First, we want to investigate the robustness of our

conclusions over an alternative sample period. At the same time, the SVIX proposed by

Martin (2017) becomes available over this shorter sample. Thus, we can test whether this

important variable – which has been widely used in the literature to measure the expected

market return – subsumes information by other predictors.30 Panel A in Table 5 shows the

performance of each theoretically motivated predictor over the sample from 1996 to 2021.

Compared to Table 1, the R2
OOS halves from 1.42% to 0.70% for CSP, it decreases from

1.46% to 0.42% for SOP, and it turns negative for DPDrift. Despite the large decrease in

statistical performance, the SOP yields the best economic gain with a CER=2.33%. Over

this sample period, the SVIX achieves the largest R2
OOS among theoretical predictors and

the second largest economic gain (∆CER= 1.61%).

Panel B shows that the worsening in performance over this sample period is not unique

to theoretical predictors, but it also afflicts statistical models. In particular, we see that the

R2
OOS is in negative territory also for the CSRs. Imposing the positive forecast constraint

restores a positive R2
OOS only for our proposed methods, namely the CSRs with optimal K

and the CSR averaging over models in the M̂MSE
75%

set. Panel C shows that adding theoretically

motivated predictors to the set of variables used in Panel B does not help the statistical

models. On the contrary, we now observe that both the CSR (optimal K) and the CSR

(average M̂MSE
75%

) display negative R2
OOS, even after imposing the positive forecast constraint.

Overall, the results in Table 5 raise the possibility that, over this sample, the theoretical

predictors are getting closer to be the expected return on the market. This conjecture is

30Tables 5, 6, and 7 in this subsection are the counterparts of Tables 1, 2 and 3, respectively.
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supported to some degree by the results in Table 6. The weight on CSP increases from

about 0.44 to 0.77, whereas that on SOP goes from 0.44 to 0.66 (CSR optimal K). The

SVIX displays a similar weight of about 0.66. As we have already observed in Table 2, it is

important to use a forecast combination model that accounts for either optimal model size

or optimal set of models; otherwise, one would estimate δs at least as large as 0.85 for CSP

and SOP, and 0.77 for SVIX. Importantly, the full-sample estimate of δ yields sizable R2s:

focusing on the forecast from CSR (optimal K), the R2
OOS are 0.81, 0.34, 0.70 and 1.39%

for CSP, DPDrift, SOP and SVIX, respectively. These values are all greater than those

obtained by each theoretically motivated predictor taken in isolation (0.70, −0.69, 0.42, and

0.92%; c.f. Table 5, Panel A). This evidence prompts an investigation of the out-of-sample

performance of the IMC and NMA.

Table 7 shows that CSP yields an R2
OOS = 1.06% and virtually zero economic gain.

However, when CSP is naively combined (i.e., δ = 0.5) with CSR that averages over the

M̂MSE
75%

set, these figures become 1.11% and 3.49%.31 The gain is also large for SOP: when

moving from the sole theoretical predictor to the NMA with CSR (average over M̂MSE
75%

), the

R2
OOS raises from 0.53% to 0.82% and the CER increases from 2.5% to 3.8%. The SVIX

is no exception; alone it yields an R2
OOS = 0.61 and a ∆CER = 1.04%.32 These values

increase substantially for the NMA approach that uses the CSR averaging over M̂MSE
75%

: the

31Figure 7 shows that the estimated δ is extremely volatile when using a rolling window. The poor
performance of IMC relative to NMA observed in Panels B to E of Table 7 are a reflection of this wild
variation in δ. Indeed, for the combination of CSP with CSR (optimal K), we observe a more stable δ and,
hence, similar performance between IMC and NMA (R2

OOS = 0.93% vs R2
OOS = 1.04%).

32The performance of theoretically motivated predictors is not stable. We already observed this point
when comparing Panel A in Table 1 to Table 3. Similarly, when comparing Panel A in Table 5 (sample: 1996
to 2021) to Table 7 (sample: 2001 to 2021) we see that the R2

OOS increases from 0.70 to 1.01 for CSP but
decreases from 0.92 to 0.61 for the SVIX. By imposing a tight structure on the role of theoretical predictors,
the evidence suggests that the NMA approach could mitigate the instability of theoretical predictors over
time.
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R2
OOS is now = 1.51% and the CER= 3.67%. Given the excellent performance obtained by

fixing δ = 0.5, one may still wonder if this is the optimal weight to combine theoretically

motivated predictors and statistical models. Figure 8 answers this question by recomputing

the out-of-sample R2
OOS for different values of δ. For CSP, SOP and SVIX, we find a value

larger than 0.5. In particular, the maximum R2
OOS are achieved for δ equal to 0.75, 0.65, and

0.68 when these predictors are combined with the CSR (average M̂MSE
75%

). These values align

closely with the full sample estimates reported in Table 6, confirming that, over this sample,

the theoretical predictors are getting closer to be the expected return on the market.

In sum, our main conclusions continue to hold over this more recent - and shorter - sam-

ple period. First, the simple, naive combination of theoretically motivated predictors with

macroeconomic and trend-based variables improves the performance of individual theoretical

predictors over purely statistical models. Second, although over this sample the theoretical

predictors perform better than the statistical models, and seem to be closer to the expected

return on the market, there is substantial information contained in other variables that

provide statistical and economic gains to a real-time investor.

4 Conclusions

In this paper, we investigate the extent to which theoretically motivated predictors can

capture the expected return on the market. We start by documenting that theoretically

motivated predictors perform well in terms of economic and statistical performance. We

then turn to a variety of statistical approaches that can handle a large number of predictors

and show that combination methods can compete with the theoretical predictive models.

However, not all combination methods work equally well. A simple combination of univariate
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models or an agnostic combination of all possible model sizes is suboptimal. In other words,

the model size matters. We propose to either select the dimension delivering the lowest (in

an out-of-sample sense) MSE, or to combine models of different dimensions that are deemed

statistically indistinguishable in terms of MSE. We show that these variants of complete

subset regressions yield out-of-sample R2
OOS of similar magnitude to theoretically motivated

predictors and larger economic gains as measured by the certainty equivalent.

Given this evidence, we turn to the key questions of this paper: (1) whether theoreti-

cally motivated predictors subsume information in a large set of candidate predictors of the

equity premium, and (2), if not, whether there is a benefit in combining forecasts from the

two approaches. Since complete subset regressions (CSRs), in particular those that account

for optimal model size, emerge as the best statistical method among those we considered,

we propose to combine a given theoretically-motivated predictor with the forecasts obtained

from a combination method, i.e., we use an iterated combination method. We also restrict

the sum of weights on the theoretical and CSR forecasts to be one, so that the expected

return on the market is given by the theoretical predictor under consideration at one ex-

treme, and by the CSR forecasts at the other. We show that the weight on theoretically

motivated predictors is generally less than one, suggesting that it is unlikely that a theoret-

ically motivated predictor in isolation is the expected return on the market. However, the

optimal weight is extremely unstable. Indeed, a naive approach that fixes that weight to a

given value yields superior performance relative to other iterated combination approaches.

Quantitatively, the fixed weight with the best performance is about 0.5 over the full sample

from 1953 to 2021, but rises to 0.7 when we consider the more recent sample from 1996 to

2021.

We conclude that theoretically-predictors are informative but far from being the expected
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return on the market. At the same time, averaging all variables disregarding their possibly

different economic underpinning is unlikely to be the solution. Therefore, our recommenda-

tion to financial economists is to decouple the parsimonious economic structure of theoretical

models from the agnostic view offered by data-driven methods such as complete subset re-

gressions, and then to combine the two separate forecasts to model expected returns.

This supports a rather intuitive, although often unappreciated view: complex statistical

methods could be used to boost theoretically motivated predictors rather than dilute the im-

portance of economic theory for equity premium prediction. Yet, each predictor in isolation

is unlikely to be the expected return on the market.
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Table 1: Equity premium forecasts (Nov 1953 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: theoretically-motivated models
CSP (Polk et al., 2006) 1.42 1.775 1.433 1.436 1.774 1.46
DP drift (Campbell, 2018) 0.404 1.793 1.695 0.404 1.793 1.695
SOP (Ferreira and Santa-Clara, 2011) 1.465 1.774 3.143 1.537 1.773 3.233

Panel B: models with all predictors except those in Panel A
OLS KS −13.435 2.042 0.154 −3.843 1.869 2.893
Ridge 0.748 1.787 3.099 1.072 1.781 3.044
Lasso 0.242 1.796 2.412 0.814 1.786 2.501
Elastic Net 0.096 1.798 2.341 0.615 1.789 2.362
Horseshoe −0.276 1.805 1.913 1.078 1.781 2.711
PLS −5.216 1.894 −3.58 −2.327 1.842 −1.676
CSR(K=1) 0.561 1.79 1.535 0.612 1.789 1.607
CSR(optimal K) 1.874 1.766 4.534 2.234 1.76 4.461

CSR(average M̂MSE
75%

) 1.829 1.767 4.135 2.148 1.762 4.407

CSR(average all K) −0.525 1.81 2.501 1.616 1.771 3.849
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Table 1: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel C: models with all predictors
OLS KS −15.328 2.076 2.246 −6.176 1.911 3.154
Ridge −0.137 1.803 3.933 0.741 1.787 3.668
Lasso −1.072 1.82 2.227 −0.205 1.804 2.31
Elastic Net −0.761 1.814 2.423 −0.009 1.8 2.388
Horseshoe 0.028 1.8 2.241 1.064 1.781 2.771
PLS −5.265 1.895 −3.338 −2.369 1.843 −1.528
CSR (K=1) 0.651 1.788 1.642 0.713 1.787 1.733
CSR (optimal K) 0.57 1.79 4.38 0.975 1.783 4.117

CSR (average M̂MSE
75%

) 0.935 1.783 4.469 2.08 1.763 4.707

CSR (average all K) −0.387 1.807 3.114 1.945 1.765 4.079

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared

error (MSE), and the change in the certain equivalent return (∆ CER) for portfolios
constructed based on each forecast, relative to portfolios constructed using the historical
average benchmark. OLS KS is the “kitchen sink” regression model using all predic-
tors. PLS is the partial least squares method of Kelly and Pruitt (2015). CSR denotes
complete subset regressions using different approaches to select the optimal model di-
mension(s). CSP is the cross-sectional premium predictor of Polk et al. (2006). SOP is
the “sum-of-parts” model of Ferreira and Santa-Clara (2011)DPDrift is the steady-state
valuation model of Campbell (2018).
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Table 2: Full-sample estimation of optimal combinations (Nov 1958 to Dec 2021)

CSP (Polk et al., 2006)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 0.791 0.443 0.449 0.638
R2 1.485 2.656 2.645 2.348
∆CER 1.885 4.358 4.23 3.668

DP drift (Campbell, 2018)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 0.425 0.312 0.319 0.572
R2 0.749 2.255 2.227 1.595
∆CER 2.01 4.331 4.005 2.736

SOP (Ferreira and Santa-Clara, 2011)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 1 0.442 0.446 0.665
R2 1.465 2.567 2.505 2.141
∆CER 3.143 4.725 4.393 3.817

The table reports estimates of the optimal combination of theoretical models with complete subset
regression (CSR) models. The models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1 is
the forecast from a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a CSR
model, and 0 ≤ δ ≤ 1. The theoretical models considered are the CSP model of Polk et al. (2006),
the DP drift model of Campbell (2018), and the SOP model of Ferreira and Santa-Clara (2011).
CSR (K = 1) indicates the simple combination of univariate predictive regressions. CSR (optimal
K) indicates a combination where the optimal K in the CSR procedure is chosen based on the lowest

mean squared error in each validation sample. CSR (average M̂MSE
75%

) indicates a combination using
the average of models in the 75% model confidence set, using the Hansen et al. (2011) procedure.
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Table 3: Iterated mean combinations (rolling 60-month δ) and enhanced theoretical models (Nov
1958 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) 0.491 1.816 1.515 0.544 1.815 1.592
CSR (optimal K) 1.852 1.791 4.701 2.234 1.784 4.626

CSR (average M̂MSE
75%

) 1.817 1.792 4.310 2.158 1.785 4.605

Panel B: CSP (Polk et al., 2006)
Baseline 0.672 1.812 0.94 0.688 1.812 0.968
IMC (Baseline, CSR (K = 1)) 0.299 1.819 1.327 0.376 1.818 1.456
IMC (Baseline, CSR (optimal K)) 1.533 1.797 4.073 2.006 1.788 4.201

IMC (Baseline, CSR (average M̂MSE
75%

) 1.548 1.796 3.731 1.87 1.791 3.933

NMA (Baseline, CSR (K = 1) ) 0.902 1.808 1.918 0.87 1.809 1.872
NMA (Baseline, CSR (optimal K)) 2.257 1.784 4.023 2.173 1.785 3.929

NMA (Baseline, CSR (average M̂MSE
75%

) 2.259 1.784 3.975 2.115 1.786 3.783

Panel C: DP drift (Campbell, 2018)
Baseline 0.564 1.814 2.040 0.564 1.814 2.04
IMC (Baseline, CSR (K = 1)) 0.417 1.817 1.398 0.43 1.817 1.418
IMC (Baseline, CSR (optimal K)) 0.893 1.808 3.385 1.417 1.799 3.627

IMC (Baseline, CSR (average M̂MSE
75%

) 0.934 1.808 2.706 1.415 1.799 3.167

NMA (Baseline, CSR (K = 1) ) 0.775 1.811 2.176 0.775 1.811 2.176
NMA (Baseline, CSR (optimal K)) 2.217 1.784 4.179 2.255 1.784 4.280

NMA (Baseline, CSR (average M̂MSE
75%

) 2.207 1.784 4.035 2.212 1.784 4.110
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Table 3: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel D: SOP (Ferreira and Santa-Clara, 2011)
Baseline 1.205 1.803 2.901 1.281 1.801 2.998
IMC (Baseline, CSR (K = 1)) −8.666 1.983 −1.948 −0.708 1.838 1.197
IMC (Baseline, CSR (optimal K)) 1.384 1.799 3.895 1.93 1.790 4.151

IMC (Baseline, CSR (average M̂MSE
75%

) 1.305 1.801 3.54 1.863 1.791 3.959

NMA (Baseline, CSR (K = 1) ) 1.021 1.806 2.474 1.073 1.805 2.546
NMA (Baseline, CSR (optimal K)) 2.463 1.780 4.665 2.575 1.778 4.726

NMA (Baseline, CSR (average M̂MSE
75%

) 2.408 1.781 4.406 2.512 1.779 4.504

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model (i.e.
identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of the baseline
model and different versions of CSR. The IMC models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1

is the forecast from a theoretical model of the equity risk premium, r̂CSR
t+1 is the forecast from a CSR model, and

0 ≤ δ ≤ 1 is estimated via constrained least squares using a rolling window of 60 months. The NMA models fix
δ = 0.5.

47



Table 4: Iterated mean combinations (expanding δ) and enhanced theoretical models (Nov 1958
to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) 0.491 1.816 1.515 0.544 1.815 1.592
CSR (optimal K) 1.852 1.791 4.701 2.234 1.784 4.626

CSR (average M̂MSE
75%

) 1.817 1.792 4.310 2.158 1.785 4.605

Panel B: CSP (Polk et al., 2006)
Baseline 0.636 1.813 1.336 0.67 1.813 1.402
IMC (Baseline, CSR (K = 1)) 0.636 1.813 1.336 0.67 1.813 1.402
IMC (Baseline, CSR (optimal K)) 1.711 1.794 3.657 1.902 1.79 3.752

IMC (Baseline, CSR (average M̂MSE
75%

) 1.688 1.794 3.503 1.833 1.791 3.668

NMA (Baseline, CSR (K = 1) ) 0.902 1.808 1.918 0.87 1.809 1.872
NMA (Baseline, CSR (optimal K)) 2.257 1.784 4.023 2.173 1.785 3.929

NMA (Baseline, CSR (average M̂MSE
75%

) 2.259 1.784 3.975 2.115 1.786 3.783

Panel C: DP drift (Campbell, 2018)
Baseline 0.564 1.814 2.040 0.564 1.814 2.04
IMC (Baseline, CSR (K = 1)) 0.529 1.815 1.794 0.529 1.815 1.794
IMC (Baseline, CSR (optimal K)) 1.96 1.789 4.627 2.31 1.783 4.647

IMC (Baseline, CSR (average M̂MSE
75%

) 2.008 1.788 4.125 2.193 1.785 4.277

NMA (Baseline, CSR (K = 1) ) 0.775 1.811 2.176 0.775 1.811 2.176
NMA (Baseline, CSR (optimal K)) 2.217 1.784 4.179 2.255 1.784 4.280

NMA (Baseline, CSR (average M̂MSE
75%

) 2.207 1.784 4.035 2.212 1.784 4.110
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Table 4: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel D: SOP (Ferreira and Santa-Clara, 2011)
Baseline 1.205 1.803 2.901 1.281 1.801 2.998
IMC (Baseline, CSR (K = 1)) −2.886 1.877 −1.432 0.44 1.817 1.516
IMC (Baseline, CSR (optimal K)) 1.993 1.788 4.241 2.284 1.783 4.446

IMC (Baseline, CSR (average M̂MSE
75%

) 1.886 1.790 3.865 2.192 1.785 4.263

NMA (Baseline, CSR (K = 1) ) 1.021 1.806 2.474 1.073 1.805 2.546
NMA (Baseline, CSR (optimal K)) 2.463 1.780 4.665 2.575 1.778 4.726

NMA (Baseline, CSR (average M̂MSE
75%

) 2.408 1.781 4.406 2.512 1.779 4.504

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model (i.e.
identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of the
baseline model and different versions of CSR. The IMC models are of the form r̂t+1 = δr̂Theo

t+1 + (1 − δ)r̂CSR
t+1 ,

where r̂Theo
t+1 is the forecast from a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a
CSR model, and 0 ≤ δ ≤ 1 is estimated via constrained least squares using an expanding window. The NMA
models fix δ = 0.5.
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Table 5: Equity premium forecasts (Jan 1996 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: theoretically-motivated models
CSP (Polk et al., 2006) 0.703 1.917 −0.273 0.784 1.915 −0.205
DP drift (Campbell, 2018) −0.692 1.944 1.373 −0.692 1.944 1.373
SOP (Ferreira and Santa-Clara, 2011) 0.418 1.922 2.329 0.698 1.917 2.701
SV IX2 (Martin, 2017) 0.922 1.912 1.613 0.922 1.912 1.613

Panel B: models with all predictors except those in Panel B
OLS KS −16.419 2.247 1.895 −7.879 2.082 3.803
Ridge −2.05 1.97 0.715 −1.157 1.953 1.313
Lasso −3.101 1.99 −0.455 −1.398 1.957 0.237
Elastic Net −3.241 1.993 −0.5 −1.569 1.96 0.165
Horseshoe −3.066 1.989 −0.095 −0.76 1.945 0.616
PLS −5.076 2.028 −2.428 −3.784 2.003 −0.789
CSR (K=1) −0.177 1.934 0.964 −0.05 1.931 1.156
CSR (optimal K) −0.311 1.936 3.169 0.144 1.927 3.353

CSR (average M̂MSE
75%

) −0.606 1.942 3.358 0.254 1.925 4.005

CSR (average all K) −3.241 1.993 2.413 −0.278 1.936 3.759
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Table 5: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel C: models with all predictors
OLS KS −16.941 2.257 3.487 −10.423 2.131 3.589
Ridge −2.831 1.985 3.183 −0.603 1.942 3.369
Lasso −3.789 2.003 0.167 −1.854 1.966 0.745
Elastic Net −3.594 2 0.06 −1.44 1.958 0.687
Horseshoe −3.147 1.991 −0.166 −0.685 1.943 0.636
PLS −5.798 2.042 −2.371 −3.775 2.003 −0.842
CSR (K=1) −0.137 1.933 0.97 0.016 1.93 1.207
CSR (optimal K) −1.533 1.96 4.33 −0.608 1.942 4.224

CSR (average M̂MSE
75%

) −3.102 1.99 3.539 −0.192 1.934 4.173

CSR (average all K) −2.78 1.984 2.939 0.39 1.923 3.974

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared

error (MSE), and the change in the certain equivalent return (∆ CER) for portfolios
constructed based on each forecast, relative to portfolios constructed using the historical
average benchmark. OLS KS is the “kitchen sink” regression model using all predictors.
PLS is the partial least squares method of Kelly and Pruitt (2015). CSR denotes complete
subset regressions using different approaches to select the optimal model dimension(s).
CSP is the cross-sectional premium predictor of Polk et al. (2006). SOP is the “sum-of-
parts” model of Ferreira and Santa-Clara (2011) DPDrift is the steady-state valuation
model of Campbell (2018).
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Table 6: Full-sample estimation of optimal combinations (Jan 1996 to Dec 2021)

CSP (Polk et al., 2006)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 1 0.766 0.747 0.853
R2 0.703 0.808 0.874 0.825
∆CER -0.273 1.537 1.552 1.018

DP drift (Campbell, 2018)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 0.275 0.442 0.489 0.681
R2 -0.091 0.336 0.364 0.025
∆CER 1.515 3.037 2.815 2.246

SOP (Ferreira and Santa-Clara, 2011)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 1 0.656 0.681 0.839
R2 0.418 0.695 0.706 0.558
∆CER 2.329 3.246 3.204 2.822

SV IX2 (Martin, 2017)

CSR (K = 1) CSR (Lowest MSE) CSR (average M̂MSE
75%

) CSR (Average all K)

δ̂ 0.858 0.656 0.662 0.767
R2 0.953 1.39 1.462 1.346
∆CER 1.908 3.626 3.545 3.287

The table reports estimates of the optimal combination of theoretical models with complete subset
regression (CSR) models. The models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1 is
the forecast from a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a CSR
model, and 0 ≤ δ ≤ 1. The theoretical models considered are the CSP model of Polk et al. (2006),
the DP drift model of Campbell (2018), and the SOP model of Ferreira and Santa-Clara (2011).
CSR (K = 1) indicates the simple combination of univariate predictive regressions. CSR (optimal
K) indicates a combination where the optimal K in the CSR procedure is chosen based on the lowest

mean squared error in each validation sample. CSR (average M̂MSE
75%

) indicates a combination using
the average of models in the 75% model confidence set, using the Hansen et al. (2011) procedure.
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Table 7: Iterated mean combinations (rolling 60-month δ) and enhanced theoretical models -
SV IX2 period (Jan 2001 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) −0.192 1.835 1.494 −0.026 1.832 1.73
CSR (optimal K) −0.205 1.835 4.406 0.389 1.825 4.64

CSR (average M̂MSE
75%

) −0.563 1.842 4.67 0.56 1.821 5.474

Panel B: CSP (Polk et al., 2006)
Baseline 1.059 1.812 −0.001 1.165 1.81 0.083
IMC (Baseline, CSR (K = 1)) 0.237 1.827 1.566 0.509 1.822 1.887
IMC (Baseline, CSR (optimal K)) 0.929 1.815 3.904 1.703 1.8 4.384

IMC (Baseline, CSR (average M̂MSE
75%

) 0.707 1.819 3.998 1.729 1.8 4.506

NMA (Baseline, CSR (K = 1) ) 0.618 1.82 1.18 0.618 1.82 1.18
NMA (Baseline, CSR (optimal K)) 1.044 1.813 3.449 1.265 1.808 3.719

NMA (Baseline, CSR (average M̂MSE
75%

) 1.108 1.811 3.494 1.413 1.806 3.748

Panel C: DP drift (Campbell, 2018)
Baseline −0.682 1.844 1.685 −0.682 1.844 1.685
IMC (Baseline, CSR (K = 1)) −0.701 1.844 0.849 −0.658 1.844 0.911
IMC (Baseline, CSR (optimal K)) −0.898 1.848 3.009 −0.117 1.834 3.36

IMC (Baseline, CSR (average M̂MSE
75%

) −0.908 1.848 2.655 −0.149 1.834 3.046

NMA (Baseline, CSR (K = 1) ) −0.157 1.835 1.991 −0.157 1.835 1.991
NMA (Baseline, CSR (optimal K)) 0.54 1.822 3.433 0.723 1.818 3.719

NMA (Baseline, CSR (average M̂MSE
75%

) 0.604 1.821 3.382 0.927 1.815 3.752
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Table 7: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel D: SOP (Ferreira and Santa-Clara, 2011)
Baseline 0.529 1.822 2.516 0.895 1.815 2.975
IMC (Baseline, CSR (K = 1)) −8.447 1.986 0.101 1.281 1.808 4.724
IMC (Baseline, CSR (optimal K)) 0.104 1.83 3.436 0.989 1.814 3.983

IMC (Baseline, CSR (average M̂MSE
75%

) 0.006 1.832 3.773 1.161 1.81 4.385

NMA (Baseline, CSR (K = 1) ) 0.272 1.827 2.125 0.455 1.823 2.375
NMA (Baseline, CSR (optimal K)) 0.836 1.816 4.07 1.37 1.807 4.413

NMA (Baseline, CSR (average M̂MSE
75%

) 0.818 1.817 3.81 1.542 1.803 4.365

Panel D: SV IX2 (Martin, 2017)
Baseline 0.608 1.82 1.036 0.608 1.82 1.036
IMC (Baseline, CSR (K = 1)) −7.162 1.963 −0.007 2.517 1.786 3.09
IMC (Baseline, CSR (optimal K)) 0.471 1.823 3.796 1.15 1.811 4.012

IMC (Baseline, CSR (average M̂MSE
75%

) 0.277 1.827 3.378 1.215 1.809 3.64

NMA (Baseline, CSR (K = 1) ) 0.66 1.82 1.874 0.66 1.82 1.874
NMA (Baseline, CSR (optimal K)) 1.442 1.805 3.805 1.322 1.807 3.616

NMA (Baseline, CSR (average M̂MSE
75%

) 1.514 1.804 3.666 1.521 1.804 3.678

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model (i.e.
identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of the
baseline model and different versions of CSR. The IMC models are of the form r̂t+1 = δr̂Theo

t+1 + (1 − δ)r̂CSR
t+1 ,

where r̂Theo
t+1 is the forecast from a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a
CSR model, and 0 ≤ δ ≤ 1 is estimated via constrained least squares using a rolling window of 60 months. The
NMA models fix δ = 0.5.

54



Table 8: Iterated mean combinations (expanding δ) and enhanced theoretical models - SV IX2

period (Jan 2001 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) −0.192 1.835 1.494 −0.026 1.832 1.73
CSR (optimal K) −0.205 1.835 4.406 0.389 1.825 4.64

CSR (average M̂MSE
75%

) −0.563 1.842 4.67 0.56 1.821 5.474

Panel B: CSP (Polk et al., 2006)
Baseline 1.059 1.812 −0.001 1.165 1.81 0.083
IMC (Baseline, CSR (K = 1)) 0.446 1.823 1.701 0.717 1.818 2.022
IMC (Baseline, CSR (optimal K)) 0.676 1.819 4.096 1.436 1.805 4.618

IMC (Baseline, CSR (average M̂MSE
75%

) 0.406 1.824 4.021 1.574 1.803 4.513

NMA (Baseline, CSR (K = 1) ) 0.618 1.82 1.18 0.618 1.82 1.18
NMA (Baseline, CSR (optimal K)) 1.044 1.813 3.449 1.265 1.808 3.719

NMA (Baseline, CSR (average M̂MSE
75%

) 1.108 1.811 3.494 1.413 1.806 3.748

Panel C: DP drift (Campbell, 2018)
Baseline −0.682 1.844 1.685 −0.682 1.844 1.685
IMC (Baseline, CSR (K = 1)) −0.499 1.841 1.546 −0.499 1.841 1.546
IMC (Baseline, CSR (optimal K)) −0.42 1.839 3.292 0.396 1.824 3.403

IMC (Baseline, CSR (average M̂MSE
75%

) −0.441 1.84 3.351 0.51 1.822 3.634

NMA (Baseline, CSR (K = 1) ) −0.157 1.835 1.991 −0.157 1.835 1.991
NMA (Baseline, CSR (optimal K)) 0.54 1.822 3.433 0.723 1.818 3.719

NMA (Baseline, CSR (average M̂MSE
75%

) 0.604 1.821 3.382 0.927 1.815 3.752
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Table 8: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel D: SOP (Ferreira and Santa-Clara, 2011)
Baseline 0.529 1.822 2.516 0.895 1.815 2.975
IMC (Baseline, CSR (K = 1)) 0.412 1.824 2.732 0.402 1.824 2.635
IMC (Baseline, CSR (optimal K)) −0.119 1.834 3.324 1.086 1.812 3.859

IMC (Baseline, CSR (average M̂MSE
75%

) −0.064 1.833 3.854 1.233 1.809 4.326

NMA (Baseline, CSR (K = 1) ) 0.272 1.827 2.125 0.455 1.823 2.375
NMA (Baseline, CSR (optimal K)) 0.836 1.816 4.07 1.37 1.807 4.413

NMA (Baseline, CSR (average M̂MSE
75%

) 0.818 1.817 3.81 1.542 1.803 4.365

Panel D: SV IX2 (Martin, 2017)
Baseline 0.608 1.82 1.036 0.608 1.82 1.036
IMC (Baseline, CSR (K = 1)) −1.852 1.866 −0.069 0.117 1.829 0.79
IMC (Baseline, CSR (optimal K)) −0.02 1.832 2.177 1.182 1.81 2.935

IMC (Baseline, CSR (average M̂MSE
75%

) 0.199 1.828 2.76 1.291 1.808 3.315

NMA (Baseline, CSR (K = 1) ) 0.66 1.82 1.874 0.66 1.82 1.874
NMA (Baseline, CSR (optimal K)) 1.442 1.805 3.805 1.322 1.807 3.616

NMA (Baseline, CSR (average M̂MSE
75%

) 1.514 1.804 3.666 1.521 1.804 3.678

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model (i.e.
identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of the
baseline model and different versions of CSR. The IMC models are of the form r̂t+1 = δr̂Theo

t+1 + (1 − δ)r̂CSR
t+1 ,

where r̂Theo
t+1 is the forecast from a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a
CSR model, and 0 ≤ δ ≤ 1 is estimated via constrained least squares using an expanding window months. The
NMA models fix δ = 0.5.
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Figure 2: Performance of equity risk premium forecast models - Theoretical Models

The figure displays the out-of-sample performance of theoretical models to forecast the equity risk premium. Each
graph shows the cumulative squared error of the historical mean forecast minus the cumulative squared error of
the alternative.
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Figure 3: Realized returns and forecasts from OLS model and complete subset regressions

The solid gray line represents the realized excess market return. The solid black line represents the forecast using the historical average
benchmark. The solid blue line represents the forecasts from the model shown in the title of each graph. Models are estimates using
all available predictors, excluding those in theoretical models.
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Figure 4: Optimal combination weight (δ)

Each graph shows estimates of the optimal weight in a combination of theoretical models with complete subset regression (CSR)
models. The models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1 is the forecast from a theoretical model of the equity
risk premium, r̂CSR

t+1 is the forecast from a CSR model, and 0 ≤ δ ≤ 1. Optimal values of δ in each combination are obtained by
constrained least square using either a rolling window of 60 months (blue line) or an expanding window (red line) approach. The
theoretical models considered are the CSP model of Polk et al. (2006), the DP drift model of Campbell (2018), and the SOP model
of Ferreira and Santa-Clara (2011). CSR (K = 1) indicates the simple combination of univariate predictive regressions. CSR (lowest
MSE) indicates a combination where the optimal K in the CSR procedure is chosen based on the lowest mean squared error in each

validation sample. CSR (average M̂MSE
75%

) indicates a combination using the average of models in the 75% model confidence set, using
the Hansen et al. (2011) procedure. Shaded areas indicate NBER recessions.
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Figure 5: R2
OOS of combinations of theoretical models and and complete subset regressions

Each panel shows the out-of-sample R2
OOS of models of the form r̂t+1 = δr̂Theo

t+1 + (1 − δ)r̂CSR
t+1 , where r̂Theo

t+1 is the forecast from
a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a CSR model, and 0 ≤ δ ≤ 1. The theoretical models
considered are the CSP model of Polk et al. (2006), the DP drift model of Campbell (2018), and the SOP model of Ferreira and
Santa-Clara (2011). In each panel, dashed horizontal lines represent the R2

OOS of the standalone model indicated. Blue circles, red
diamonds, and magenta squares represent combinations of the theoretical model and each version of CSR for values of 1 − δ shown
on the x axis. CSR (lowest MSE) indicates a combination where the optimal K in the CSR procedure is chosen based on the lowest

mean squared error in each validation sample. CSR (average M̂MSE
75%

) indicates a combination using the average of models in the 75%
model confidence set, using the Hansen et al. (2011) procedure.
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Figure 6: Forecasts of theoretical models and naive combinations with complete subset regressions

The solid gray line represents the realized excess market return. The solid black line represents the forecast using the historical
average benchmark. The solid blue line represents the forecasts from the model shown in the title of each graph. The dashed red line
indicates the naive model combination of the theoretical model and the Complete Subset Regression (Lowest MSE) model. Shaded
areas indicate NBER recessions.
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Figure 7: Optimal combination weight (δ) - SV IX2 period (Jan 2001 - Dec 2021)

Each graph shows estimates of the optimal weight in a combination of theoretical models with complete subset regression (CSR)
models. The models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1 is the forecast from a theoretical model of the equity
risk premium, r̂CSR

t+1 is the forecast from a CSR model, and 0 ≤ δ ≤ 1. Optimal values of δ in each combination are obtained by
constrained least square using either a rolling window of 60 months (blue line) or an expanding window (red line) approach. The
theoretical models considered are the CSP model of Polk et al. (2006), the DP drift model of Campbell (2018), and the SOP model
of Ferreira and Santa-Clara (2011). CSR (K = 1) indicates the simple combination of univariate predictive regressions. CSR (lowest
MSE) indicates a combination where the optimal K in the CSR procedure is chosen based on the lowest mean squared error in each

validation sample. CSR (average M̂MSE
75%

) indicates a combination using the average of models in the 75% model confidence set, using
the Hansen et al. (2011) procedure. Shaded areas indicate NBER recessions.
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Figure 8: R2
OOS of combinations of theoretical models and and complete subset regressions - SV IX2 period (Jan

1996 - Dec 2021)

Each panel shows the out-of-sample R2
OOS of models of the form r̂t+1 = δ)r̂Theo

t+1 + (1 − δ)r̂CSR
t+1 , where r̂Theo

t+1 is the forecast from
a theoretical model of the equity risk premium, r̂CSR

t+1 is the forecast from a CSR model, and 0 ≤ δ ≤ 1. The theoretical models
considered are the CSP model of Polk et al. (2006), the DP drift model of Campbell (2018), the SOP model of Ferreira and Santa-Clara
(2011), and the SV IX2 model of Martin (2017). In each panel, dashed horizontal lines represent the R2

OOS of the standalone model
indicated. Blue circles, red diamonds, and magenta squares represent combinations of the theoretical model and each version of CSR
for values of 1 − δ shown on the x axis. CSR (lowest MSE) indicates a combination where the optimal K in the CSR procedure is

chosen based on the lowest mean squared error in each validation sample. CSR (average M̂MSE
75%

) indicates a combination using the
average of models in the 75% model confidence set, using the Hansen et al. (2011) procedure.
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Online Appendix

A Description of data

Table A.1: Summary of predictors used in the study

Variable Description Source of data

DY Dividend yield
EP Earnings/Price
RV OL Equity risk premium volatility (Mele 2007, JFE)
BM Book/Market ratio
NTIS Net equity expansion Amit Goyal’s website
TBL Treasury bill rate
LTR Long-term rate of return for government bonds
TMS Term Spread
DFY Default Yield Spread
DFR Default Return Spread
INFL Inflation
CSP Cross-sectional Premium (Polk et al, 2006) Self-calculated (CRSP/Compustat)
SI Short interest Dave Rapach’s website
DP drift Adjusted dividend/price ratio (Campbell, 2018) Self-calculated using Goyal’s data

SOP

Sum of moving average of growth in earnings (ĝe)

and log of Dividend/Price ratio (d̂p)
(Ferreira and Santa-Clara, 2011)

Self-calculated using Goyal’s data

SV IX2 Bound on equity premium (Martin, 2017) Self-calculated from CRSP/Compustat data

rLS
Average of long-short anomalies portfolios
(inspired by Dong et al, 2022)

Self-calculated with data from OSAP

MA(1, 9) Moving average cross-over L21 month/9 months) Self-calculated using Goyal’s data
MA(1, 12) Moving average cross-over (1 month, 12 months) Self-calculated using Goyal’s data
MA(2, 9) Moving average cross-over (2 months, 9 months) Self-calculated using Goyal’s data
MA(2, 12) Moving average cross-over (2 months, 12 months) Self-calculated using Goyal’s data
MA(3, 9) Moving average cross-over (3 months, 9 months) Self-calculated using Goyal’s data
MA(3, 12) Moving average cross-over (3 months, 12 months) Self-calculated using Goyal’s data
TSMOM(9) Time-series momentum indicator (9 months) Self-calculated using Goyal’s data
TSMOM(12) Time-series momentum indicator (12 months) Self-calculated using Goyal’s data
V OL(1, 9) Volume-based indicator (1 month, 9 months) Self-calculated (CRSP)
V OL(1, 12) Volume-based indicator (1 month, 12 months) Self-calculated (CRSP)
V OL(2, 9) Volume-based indicator (2 months, 9 months) Self-calculated (CRSP)
V OL(2, 12) Volume-based indicator (2 months, 12 months) Self-calculated (CRSP)
V OL(3, 9) Volume-based indicator (3 months, 9 months) Self-calculated (CRSP)
V OL(3, 12) Volume-based indicator (3 months, 12 months) Self-calculated (CRSP)
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B Complete Subset Regressions: Additional Analysis

B.1 Properties of the forecast combination

In the main manuscript, we have emphasized the good performance – both from a statistical

and economic perspectives – generated by forecast combination strategies. We now provide

more insights on the key properties of these forecasts. Given the discussion in Section 3.1 and

the established ranking of the models, our discussion will centre on the forecast properties

of CSR (average M̂MSE
75%

) and of CSR (optimal K) based on a rolling window estimation.

Figure B.1 reports the variance (upper left), squared bias (upper right), R2
oos (bottom

right), and the ∆ CER of complete subset regressions forecasts for different values of K.

In each graph, the solid triangles represent the corresponding value for the complete subset

regression model that averages models with the corresponding number of predictors, shown

in the x axis. The red line indicates the value attained by the forecast that average across all

values of K, while the blue and magenta lines represent the value for the forecasts from the

complete subset regressions (lowest MSE) and complete subset regression (average M̂MSE
75%

).

The upper left graph shows that the forecast variance increases with the value of K, as we

move closer to the kitchen-sink regression, similar to the results reported by Elliott et al.

(2013).33 We observe that the complete subset regressions (lowest MSE) and complete subset

regression (average M̂MSE
75%

) reduce forecast variance significantly (blue and magenta lines)

relative to the forecast that averages across all K (red line).

The upper right graph in Figure B.1 shows also an increasing pattern for the square bias

as a function of K. The forecasts from the CSR (optimal K) and CSR (average M̂MSE
75%

)

achieve a squared bias which is close to the minimum across all values of K. The bottom left

graph in Figure B.1 shows the R2
oos of complete subset regressions for each value of K. The

R2
oos remains positive up to K = 12, and the R2

oos of the complete subset regression (average

M̂MSE
75%

), shown by the magenta line, is slightly superior to that of any individual K, which

further confirms that the method is able to select appropriate sets of values for K over time.

33Note that, although we have 31 predictors in total, we only report results for complete subset regressions
with up to 29 predictors in this graph. The reason is that the data for two predictors (short interest, SI,
and SV IX2) becomes available later than other variables, and therefore we only have forecasts for K = 30
and K = 31 once those predictors have a complete history in the combined training and validation sample.
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Finally, the bottom right graph in Figure B.1 reports the ∆CER for the different com-

plete subset regression models. Although the complete subset regression beats the historical

average for all values of K in terms of certain equivalent returns, we notice substantial gains

from our two preferred CSR models, which achieve a higher economic performance compared

to CSRs with any specific value for K.
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Figure B.1: Out-of-sample statistical and economic performance

Solid triangles represent results obtained using a complete subset regression model in which forecasts from all models with a given
number of predictors (K) is averaged. The red line labeled “Average” represents a model that averages forecasts from all models which
up to 15 predictors. The blue line labeled “CSR (optimal K)” represents a model in which a single value of K in the complete subset
regression model is chosen at each iteration to minimize the validation mean squared error. The magenta line labeled “CSR (Average

M̂
75%

)” corresponds to dynamic selection of a set of values of K using the model confidence set approach of Hansen et al. (2011).
The top left, top right, bottom left, and bottom right panels report forecast variances, squared biases, out-of-sample r-squared, and
the difference between the certain equivalent return of portfolios formed using each model, relative to the historical mean.
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B.2 The dynamics of model uncertainty

Given the good performance of the CSRs, one may wonder how volatile are the optimal

model dimension K and the size of the model confidence set over which we average models.

The short answer, for both, is: a lot. Figure B.2 shows the optimal model dimension over

time, when K is chosen according to the lowest MSE in each validation sample. In several

circumstances it is optimal to average over models that use most or even all of the predictors,

e.g. in the early 1960s, mid 1990s, in the period 2003-2007, and finally in the last part of our

sample. We also observe persistent sequences of months where the combination of univariate

models (K = 1) is optimal, e.g., in the late 1990s and between 2010 and 2017 (with minor

interruptions).34

Figure B.2 shows the dimension of the models in the MCS (chosen using the MSE) over

time. At each month, a blue cross for a specific value of K indicates that the complete

subset regression with K predictors was included in the model confidence set, and therefore

included in the forecast. The red line indicates the number of different complete subset

regressions over which we are averaging. For example, in the late 1990s, only univariate

models enter the MCS (K=1 and the crosses overlap with the red line). The graph also

shows that, occasionally, the complete subset regressions is optimal. This case is denoted by

a red line flat at 29 to 31 (depending on availability of predictors, as discussed previously).

Although using the full set of predictors is sometimes optimal, it is clear that an inter-

mediate value – i.e., K lower than the total number of predictors – is often common, for

e.g., in the period 1970-1980 and again in the mid 1980s. Furthermore, it is interesting to

note that low dimensional models – denoted by a white area in the top part of the graph –

were optimal in the early part of our sample, in the late 1970s and 1990s, and late 2000s.

34The relatively high level of variation in the optimal K that we document contrasts with the mostly stable
(and low) values of K obtained by Elliott et al. (2013, , Fig. 9). The differences, however, are reconciled
when we compare the method to select the hyperparameter K. Elliott et al. (2013) use the cumulative
out-of-sample performance of the complete subset regressions for each value of K to select the optimal K
at each month, starting with a period of five years of out-of-sample forecasts, whereas we rely on a rolling
validation window with a length of 60 months to select the optimal K. Figure C.2 in the Appendix shows
our implementation of both methods using an expanding window for consistency with their results. Using
the Elliott et al. (2013) approach produces, as expected, lower and more stable values for the optimal K
over time. However, we note that the performance of this approach is not superior to that of the approach
we propose using rolling windows.
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Overall, the graph suggests that although it is clearly important to consider the dimension

of the model K as an uncertain parameter, i.e., averaging unconditionally over all possible

model sizes is unlikely to be optimal for equity premium forecasting.

Next, we investigate the relationship between model dimension and macroeconomic con-

ditions by regressing the optimal K in the top panel of Figure B.2 and the median K in

the bottom panel of the same figure onto three variables: market realised volatility (RV ),

defined as the square root of sum of squares of daily returns on each month; the Baker and

Wurgler (2006) sentiment index (BW ); and the NBER recession indicator (REC).35 It is

important to highlight that the optimal number of predictors using either the lowest MSE or

median model dimension in the MCS at month t are determined using the validation window,

which consists of the previous 5 years. Because of this, it is appropriate to include lags of

the explanatory variables. However, including too many lags would shorten the sample and

would likely result in multi-collinearity issues.

To keep the model parsimonious and to use as much of the data as possible, we adopt

the following approach. For each explanatory variable, we calculate lags of 1 to 24 months.

We then include in the regression the contemporaneous value, an average of the lags from 1

to 12 months, and an average of the lags from months 13 to 24:

MDt = β0 + β1RVt + β2RV t−12:t−1 + β3RV t−24:t−13

+ β4BWt + β5BW t−12:t−1 + β6BW t−24:t−13

+ β7RECt + β8RECt−12:t−1 + β9RECt−24:t−13 + εt,

where MDt denotes the model dimension, which is either the optimal K obtained using the

MSE, or the median model dimension from the models in the MCS. We report results for

different models including each explanatory variable (as well as its average lags, as explained

above) one at a time, and the three variables (and their average lags) simultaneously. We also

report the total impact of each variable, calculated as the sum of the corresponding estimated

35The realised volatility is the square root of the SV AR variable obtained from Amit Goyal’s web-
page at https://sites.google.com/view/agoyal145?pli=1. The Baker and Wurgler (2006) sentiment
index was downloaded from Jeffrey Wurgler’s website at https://pages.stern.nyu.edu/~jwurgler/.
The NBER recession indicator was downloaded from the St. Louis Federal Reserve website at https:

//fred.stlouisfed.org/series/USRECM).
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regression coefficients. For example, the total impact of RV is calculated as β̂1 + β̂2 + β̂3.
36

Table B.1 shows the results. Columns (1) through (4) report results when model di-

mensionality is proxied with the optimal K using the MSE criterion. Column (1) reports

results when only the current and lagged values of RVt are used. The results suggest that an

increase in realised volatility (contemporaneous or lagged) is associated with a decrease in

model dimensionality, i.e., during turbulent periods, models of lower dimension are typically

selected. The total effect of RV is negative and significant at the 5% level.

When only the Baker and Wurgler (2006) sentiment index (BW ) is considered, the results

in column (2) suggest that neither the contemporaneous, nor the lagged effects are significant;

however, the total effect os BW is positive and significant at the 5% level. This suggests

that periods of high sentiment are associated with models of higher dimension. Column (3)

reports results using only the recession indicator and its lags. Overall, there does not seem

to be much association between recessions and the model dimension.

We find similar results when all regressors are used simultaneously in column (4), with RV

and BW being negatively and positively associated with model dimensionality. Interestingly,

when controlling for volatility and sentiment, the overall impact of REC becomes positive,

although it is not statistically significant. Columns (5) through (8) of Table B.1 report results

using as response variable the median model dimension in the MCS procedure. When all

predictors are used simultaneously in column (8), similar conclusions are reached in terms

of the signs of the overall impacts of the regressors in comparison with column (4), although

the realised volatility is only statistically significant at the 10% level, while recessions now

appear to be positive associated with higher median model dimension.

36The corresponding standard errors are calculated using the covariance matrix of errors corrected for
heteroscedasticity and autocorrelation using the Newey-West procedure.
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Figure B.2: Optimal model dimension in complete subset regression

The top graph shows the optimal number of predictors selected in the complete subset regression (Lowest MSE) approach. At each
point in time during the forecasting exercise, all complete subset regressio models are estimated in the training window. Forecasts are
made for the validation set, and the optimal value of K is the one with the lowest validation mean squared error. The bottom graph
shows which sets of K are included in the CSR (average M̂MSE

75%
) approach over time. At each point in time during the forecasting

exercise, the model confidence set (MCS) procedure of Hansen et al. (2011) is run to identify a set of models for which the null of
equal predictive ability is not rejected. The values of K that are part of the model confidence set at each point are shown as a blue
“x”. The red line shows how many values of K are part of the MCS at each point in time.
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Table B.1: Determinants of model dimension

Optimal K (lowest MSE in validation) Median K - models in MCS

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 8.086∗∗∗ 8.086∗∗∗ 6.951∗∗∗ 6.951∗∗∗ 9.223∗∗∗ 9.223∗∗∗ 8.593∗∗∗ 8.180∗∗∗

RVt −0.293 −0.269 −0.153 −0.359
RV t−12:t−1 −0.240 −1.159∗∗ −0.356 −1.087
RV t−24:t−13 −1.284∗∗∗ −1.471∗∗ −0.197 −0.192
BWt 0.480 1.290 −0.458 −0.048
BW t−12:t−1 0.367 −0.755 1.042 0.427
BW t−24:t−13 0.585 1.021 −0.036 0.279
RECt −0.589 −0.750 1.312 1.471
RECt−12:t−1 3.304 5.568∗∗ 1.646 3.352∗∗

RECt−24:t−13 0.218 3.178∗ 1.484 2.530∗

Total RV −1.817∗∗∗ −2.898∗∗∗ −0.706∗ −1.638∗∗∗

Total BW 1.433∗∗∗ 1.556∗∗∗ 0.548 0.658
Total REC 2.932 7.996∗∗∗ 4.441∗∗∗ 7.352∗∗∗

R2
Adj 0.045 0.030 0.011 0.128 0.012 0.019 0.043 0.127

The table reports results from regression models of the form

MDt = β0 + β1RVt + β2RV t−12:t−1 + β3RV t−24:t−13

+ β4BWt + β5BW t−12:t−1 + β6BW t−24:t−13

+ β7RECt + β8RECt−12:t−1 + β9RECt−24:t−13 + εt.

MDt denotes the model dimension, either the optimal K from the complete subset regression that minimizes the MSE in each
validation sample (see Figure B.2) or the median model dimension of the models in the MCS using the MSE criterion (the
median of the selected Ks in Figure ??). RVt, BWt, and RECt denote contemporaneous values of realized volatility, the Baker
and Wurgler (2006) investor sentiment index, and a recession dummy. The remaining variables are averages of past values of
the corresponding predictors. For example, RV t−12:t−1 is the average of the lags of RV from time t − 12 to time t − 1. The
values reported under “Total RV ”, “Total BW”, and “Total REC” are the sums of the corresponding coefficients. For example,
“Total RV ” in column1.000is the sum of the coefficients on RVt, RV t−12:t−1, and RV t−24:t−13.

∗, ∗∗, and ∗∗∗ denotes statistical
significance at the 10%, 5%, and 1% levels, respectively. p-values are calculated using heteroscedasticity and autocorrelation
consistent standard errors using the Newey-West procedure.
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C Additional tables and graphs
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Figure C.1: Correlations among predictors

The figure shows a correlation heatmap of the main predictors used in this study that are
available throughout the entire sample period from November 1928 to Decembe 2021.
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Table C.1: Equity premium forecast with different sets of predictors (Nov 1953 to Dec 2021)

R2
OOS - No constraint R2

OOS - Positive forecast constraint

ALL MACRO TECH ALL MACRO TECH

OLS KS −13.435 −6.781 −3.697 −3.843 −2.375 −1.361
Ridge 0.748 0.316 −1.056 1.072 1.294 −0.351
Lasso 0.242 −1.026 −1.076 0.814 0.389 −0.281
Elastic Net 0.096 −0.888 −1.022 0.615 0.513 −0.25
Horseshoe −0.276 −0.499 −0.502 1.078 1.256 −0.336
PLS −5.216 −3.304 −2.794 −2.327 −0.814 −1.309
CSR (K=1) 0.561 0.912 0.046 0.612 0.984 0.219
CSR (optimal K) 1.874 0.691 −0.867 2.234 1.846 −0.251

CSR (average M̂MSE
75%

) 1.829 1.439 −0.557 2.148 2.107 −0.069

CSR (average all K) −0.525 0.65 −0.467 1.616 1.707 0.221

The table reports the out-of-sample r-squared (R2
OOS) of different forecasting models for three sets

of predictors. The columns “ALL”, “MACRO”, and “TECH” refers to models estimated using all
available predictors, only macroeconomic predictors, and only predictors based on technical indicators,
respectively. OLS KS is the “kitchen sink” regression model using all predictors. PLS is the partial
least squares method. CSR denotes complete subset regressions using different approaches to select
the optimal model dimension(s). CSP is the cross-sectional premium predictor of Polk et al. (2006).
SOP is the “sum-of-parts” model of Ferreira and Santa-Clara (2011). AVG LS is the model that
includes the average return on long-short anomalies portfolios, following (Dong et al., 2022).
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C.1 Results using an expanding window
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Table C.2: Equity premium forecast using all predictors (Nov 1953 to Dec 2021) - Expanding
window approach

No constraint Positive forecast constraint

R2
OOS ∆ CER R2

OOS ∆ CER

Panel A: models with all predictors
OLS KS −9.952 −2.528 −2.82 0.498
Ridge 0.54 1.906 0.796 2.076
Lasso −0.86 −0.857 −0.399 −0.395
Elastic Net −0.975 −0.906 −0.455 −0.407
Horseshoe −58.589 −5.95 −15.169 −0.382
PLS −4.251 −6.309 −3.216 −4.643
CSR (K=1) 0.635 1.699 0.635 1.699
CSR (optimal K) 0.472 2.041 0.728 2.229

CSR (average M̂MSE
75%

) −0.13 1.549 0.455 1.894

CSR (average all K) −0.719 0.91 0.243 1.752

Panel B: theoretically-motivated models
CSP (Polk et al., 2006) 0.165 0.505 0.686 1.447
Campbell (fixed) −0.293 0.787 −0.293 0.787
SOP (Ferreira and Santa-Clara, 2011) 0.776 2.235 0.848 2.325

The table reports the out-of-sample r-squared (R2
OOS) and the change in the certain equivalent return

(∆ CER) for portfolios constructed based on each forecast, relative to portfolios constructed using the
historical average benchmark. Models are estimated using an expanding window approach. The initial
training is from November 1928 to October 1948 (240 months), the initial validation window is from
November 1948 to October 1953 (60 months), and the first out-of-sample forecast is for November
1953. Thereafter, windows are expanded by one month, with the validation period kept at 20% of the
combined training and validation periods.
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Table C.3: Iterated mean combinations (Expanding window and δ) (Nov 1958 to Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) 0.607 1.802 1.761 0.607 1.802 1.761
CSR (optimal K) 0.412 1.806 2.189 0.685 1.801 2.391

CSR (average M̂MSE
75%

) −0.207 1.817 1.693 0.415 1.805 2.064

Panel B: CSP (Polk et al., 2006)
Baseline −0.594 1.824 0.041 −0.082 1.815 0.989
IMC (Baseline, CSR (K = 1)) 0.251 1.808 1.512 0.441 1.805 1.714
IMC (Baseline, CSR (optimal K)) 0.28 1.808 1.783 0.527 1.803 2.018

IMC (Baseline, CSR (average M̂MSE
75%

) −0.058 1.814 1.382 0.331 1.807 1.76

NMA (Baseline, CSR (K = 1) ) 0.684 1.801 1.996 0.589 1.802 1.901
NMA (Baseline, CSR (optimal K)) 0.741 1.8 2.21 0.7 1.8 2.179

NMA (Baseline, CSR (average M̂MSE
75%

) 0.435 1.805 1.751 0.533 1.803 1.996

Panel C: DP drift (Campbell, 2018), fixed
Baseline −0.079 1.814 1.2 −0.079 1.814 1.2
IMC (Baseline, CSR (K = 1)) 0.535 1.803 1.673 0.535 1.803 1.673
IMC (Baseline, CSR (optimal K)) 0.286 1.808 1.949 0.52 1.804 2.174

IMC (Baseline, CSR (average M̂MSE
75%

) −0.13 1.815 1.487 0.261 1.808 1.795

NMA (Baseline, CSR (K = 1) ) 0.445 1.805 1.781 0.445 1.805 1.781
NMA (Baseline, CSR (optimal K)) 0.504 1.804 2.127 0.557 1.803 2.181

NMA (Baseline, CSR (average M̂MSE
75%

) 0.244 1.809 1.799 0.384 1.806 1.988
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Table C.3: (Continued)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel D: SOP (Ferreira and Santa-Clara, 2011), fixed
Baseline 0.566 1.803 2.061 0.643 1.801 2.157
IMC (Baseline, CSR (K = 1)) −1.312 1.837 −0.166 −0.195 1.817 0.786
IMC (Baseline, CSR (optimal K)) 0.565 1.803 2.136 0.632 1.802 2.216

IMC (Baseline, CSR (average M̂MSE
75%

) 0.422 1.805 1.935 0.555 1.803 2.125

NMA (Baseline, CSR (K = 1) ) 0.747 1.799 2.184 0.749 1.799 2.188
NMA (Baseline, CSR (optimal K)) 0.819 1.798 2.529 0.889 1.797 2.603

NMA (Baseline, CSR (average M̂MSE
75%

) 0.556 1.803 2.287 0.737 1.8 2.478

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model (i.e.
identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of the baseline
model and different versions of CSR. The IMC models are of the form r̂t+1 = δr̂Theo

t+1 + (1− δ)r̂CSR
t+1 , where r̂Theo

t+1

is the forecast from a theoretical model of the equity risk premium, r̂CSR
t+1 is the forecast from a CSR model, and

0 ≤ δ ≤ 1 is estimated via constrained least squares using an expanding window months. The NMA models fix
δ = 0.5.

.3-1!
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C.2 Results of models à la Lin et al. (2018) and Chen et al. (2022)
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Table C.4: Combinations of historical average and complete subset regressions (Nov 1958 to
Dec 2021)

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

Panel A: CSR
CSR (K = 1) 0.491 1.816 1.515 0.544 1.815 1.592
CSR (optimal K) 1.852 1.791 4.701 2.234 1.784 4.626

CSR (average M̂MSE
75%

) 1.817 1.792 4.31 2.158 1.785 4.605

Panel B: Combinations of historical average and CSR, rolling δ
IMC (rt+1, CSR (K = 1)) 0.47 1.816 1.517 0.524 1.815 1.595
IMC (rt+1, CSR (optimal K)) 1.287 1.801 3.639 1.75 1.793 3.865

IMC (rt+1, CSR (average M̂MSE
75%

) 1.523 1.797 3.685 1.918 1.79 3.961

Panel C: Combinations of historical average and CSR, expanding δ
IMC (rt+1, CSR (K = 1)) 0.491 1.816 1.515 0.544 1.815 1.592
IMC (rt+1, CSR (optimal K)) 1.807 1.792 4.483 2.27 1.783 4.58

IMC (rt+1, CSR (average M̂MSE
75%

) 1.883 1.79 4.196 2.176 1.785 4.432

Panel C: Combinations of historical average and CSR, Naive Model Averaging
NMA (rt+1, CSR (K = 1) ) 0.281 1.82 0.851 0.281 1.82 0.851
NMA (rt+1, CSR (optimal K)) 1.877 1.79 3.503 1.928 1.79 3.558

NMA (rt+1, CSR (average M̂MSE
75%

) 1.82 1.792 3.32 1.85 1.791 3.355

Uni.OLS + NMA ((Chen et al., 2022) 0.351 1.818 0.789 0.392 1.818 0.846

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean squared error (MSE), and the

change in the certain equivalent return (∆ CER) for portfolios constructed based on each forecast, relative
to portfolios constructed using the historical average benchmark. Panel A reports results for complete subset
regressions (CSR). The remaining panels report results for different baseline theoretically-motivated model
(i.e. identical to those in Table 1), iterated mean combinations (IMC) and naive model averages (NMA) of
the baseline model and different versions of CSR. The IMC models are of the form r̂t+1 = δrt+1+(1−δ)r̂CSR

t+1 ,
where rt+1 is historical average benchmark forecast of the equity risk premium using data until time t, r̂CSR

t+1

is the forecast from a CSR model, and 0 ≤ δ ≤ 1 is estimated via constrained least squares using an expanding
window months. The NMA models fix δ = 0.5.
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C.3 Using utility as a criterion to select model dimension

The results for CSR models in the main text relied on the statistical performance (i.e., the

MSE) in the validation window to select the optimal value of K or, to a set of values of K

that were part of the model confidence set. As discussed in Section 2.1, we also explored

corresponding versions of CSR that use utility as a criterion to select values of K. These

approaches are referred to as CSR (highest utility) and CSR (average M̂U
75%

). Table C.5

reports results using these alternative methodologies. The left part of the table reports

results for unconstrained forecasts. In terms of R2
OOS, the utility-based CSR models fare

worse compared to other CSR approaches: both the CSR (highest utility) and the CSR

(average M̂U
75%

) models deliver negative R2
OOS (−0.81% and −0.01%, respectively). On the

other hand, the CSR (highest utility) achieves a ∆CER of 4.45%, the highest value among

all the unconstrained models. As discussed previously, this apparent contradiction between

statistical and economic performance is indicative of the model’s ability to predict market

movements better than the historical average, while potentially not being accurate in terms

of scale or the variance of the forecasts.

When the positive forecast constraint is imposed, both models deliver positive R2
OOS, al-

though not as high as other versions of CSR. For example, the CSR (average M̂U
75%

) approach

achieves an R2
OOS of 1.31%, which is lower than the R2

OOS of the CSR (average M̂MSE
75%

), 2.03%.

Both utility-based CSR models continue to deliver values of ∆CER which are only inferior

to that of the CSR (average M̂MSE
75%

). Because of this, our preference continues to be for the

latter approach, which seems to offer the best mix of statistical and economic performance.
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Table C.5: Complete subset regressions using utility criteria vs MSE criterion

No constraint Positive forecast constraint

R2
OOS MSE ∆ CER R2

OOS MSE ∆ CER

CSR (optimal K) 1.874 1.766 4.534 2.234 1.76 4.461

CSR (average M̂MSE
75%

) 1.829 1.767 4.135 2.148 1.762 4.407

CSR (highest utility) −0.761 1.814 4.191 0.652 1.788 4.379

CSR (average M̂U
75%

) 0.909 1.784 3.475 1.707 1.769 4.034

The table reports the out-of-sample r-squared (R2
OOS), the out-of-sample mean

squared error (MSE) and corresponding MCS p-values using the Hansen et al. (2011)
methodology, the change in the certain equivalent return (∆ CER) for portfolios con-
structed based on each forecast, relative to portfolios constructed using the historical
average benchmark, and the corresponding MCS p-values using a utility-based loss
function. CSR denotes complete subset regressions using different approaches to se-
lect the optimal model dimension(s). The results based on MSE are the same as in
Table 1, and reported here for reader convenience and to facilitate the comparison.
CSR (highest utility) uses the certainty equivalent to select the model size. CSR (av-

erage M̂U
75%

) uses the certainty equivalent to determine the models in the confidence
set.
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C.4 The dynamics of model uncertainty: Additional Results
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Figure C.2: Optimal number of predictors in complete subset regression - comparison with Elliott et al. (2013)

The figure shows the optimal number of predictors selected in the complete subset regression under an expanding
window approach using either the validation MSE or the approach in Elliott et al. (2013), which relies on the
cumulative out-of-sample performance. At each point in time during the forecasting exercise, all complete subsets
from K = 1 to K = 29 are estimated in the training window. The optimal K using the validation MSE selects,
at each month, the value of K with the lowest validation mean squared error. The optimal K in the Elliott et al.
(2013) approach relies on the cumulative performance of the complete subset regressions for each value of K, using
information up to, but not including, the current month. A starting period of five years of monthly out-of-sample
forecasts is used initially, and thereafter the performance is calculate by accumulating the out-of-sample periods.
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Figure C.3: Optimal number of predictors in complete subset regression - expanding window approach

The top graph shows the optimal number of predictors selected in the complete subset regression (Lowest MSE)
model using an expanding window approach. At each point in time during the forecasting exercise, all complete
subset regression models are estimated in the training window. Forecasts are made for the validation set, and the
optimal value of K is the one with the lowest validation mean squared error. The bottom graph shows which sets
of K are included in the CSR (average M̂MSE

75%
) approach over time. At each point in time during the forecasting

exercise, the model confidence set (MCS) procedure of Hansen et al. (2011) is run to identify a set of models for
which the null of equal predictive ability is not rejected. The values of K that are part of the model confidence
set at each point are shown as a blue “x”. The red line shows how many values of K are part of the MCS at each
point in time.
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C.5 Results using 20 different replications

Figure C.4: R2
OOS and ∆CER of complete subset regressions in 20 different replications

The figure shows boxplots of the out-of-sample r-squared (R2
OOS, top charts) and the change

in the certain equivalent return (∆ CER, bottom charts) relative to portfolios constructed
using the historical average benchmark for forecasts obtained using two complete subset
regression approaches in 20 replications. The CSR (optimal K) indicates the approach
where the optimal value of K is chosen based on the lowest mean squared error in each
validation sample. The CSR (average M̂MSE

75%
) indicates the complete subset regression that

averages forecasts of models in the 75% model confidence set.
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