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Abstract

This paper introduces a new method to maximize the Sharpe ratio of options’

portfolios, using a constrained optimization approach that incorporates position limits,

transaction costs, and volatility persistence. By regularizing portfolio weights, this

approach effectively mimics the leverage limits imposed by margin requirements and

mitigates price impacts from large trades in individual contracts. The out-of-sample

performance of optimal portfolios of monthly options from 1996 to 2020 yields Sharpe

ratios of index-neutral strategies between one and two for the S&P 500 and Nasdaq

100, but less than half for the Dow Jones. Constraining portfolios to be solvent on all

past index’ returns reduces Sharpe ratios by a third in the S&P 500 and Nasdaq 100

and by two thirds in the Dow Jones. All strategies suffer significant losses from the

coronavirus shock of March 2020, underscoring the vulnerability of options’ strategies

to rare events.
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1 Introduction

The options’ market offers significant investment opportunities,1 but the optimization of op-

tions’ portfolios is fraught with technical challenges.2 Options’ trading – unlike equities’ —

entails transaction costs of several percentage points even in the most liquid contracts, sub-

stantial margin requirements, and extreme correlation among contracts with similar strikes.

Incorporating such market frictions is thus critical in both the construction and the evalua-

tion of the performance and feasibility of options’ strategies.

This paper presents a parsimonious method for selecting portfolios of options that max-

imize the Sharpe ratio, subject to position limits, and accounting for separate prices for

buying and selling. Our method is akin to a regularization of portfolio weights, a technique

used to mitigate estimation error in portfolio optimization in traditional asset classes, but

hitherto unexplored for options’ portfolios.3 A priori, we constrain the norm of portfolio

weights in order to mimic the leverage limits implied by both the margin requirements im-

posed by brokers and exchanges, and to avoid price impact from large trades in individual

contracts. A posteriori, we find that such constraints also substantially reduce the impact

of high collinearity in options’ payoff in portfolio selection. In the absence of transaction

costs, optimal portfolios admit an explicit solution, which shows that the constraint has a

similar effect to the use of a shrinkage estimator for the covariance matrix, combined with an

increase in risk aversion linked to the shrinkage weight. Explicit solutions become infeasible

with transaction costs, but the above intuition remains valid and the problem retains its

computational tractability, as every option contract is replaced in the optimization problem

with two contracts, one for long and one for short positions, each of them commanding a

separate price and constrained to be held in a positive quantity.

The contribution of this paper is twofold: First, our methodology is the first one to specify

explicitly position limits in options’ portfolio optimization: Santa-Clara and Saretto (2009)

1See Jackwerth (2000), Coval and Shumway (2001), Bakshi and Kapadia (2003), Jones (2006), Driessen
and Maenhout (2007), Santa-Clara and Saretto (2009), Bondarenko (2014) and Schneider and Trojani (2015).

2Empirical studies that document significant risk-adjusted returns to options’ strategies include Coval
and Shumway (2001), Bakshi and Kapadia (2003), Santa-Clara and Saretto (2009), Eraker (2013), Driessen
and Maenhout (2013), Schneider and Trojani (2015) and Faias and Santa-Clara (2017).

3For portfolio optimization with constraints and penalties on portfolio weights, see Ledoit and Wolf
(2003), Jagannathan and Ma (2003), and DeMiguel et al. (2009). Korsaye et al. (2021) apply regularization
to the estimation of pricing kernels.
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find that margin requirements are a significant hurdle in executing ostensibly profitable

options’ strategies because they limit investors’ positions. Faias and Santa-Clara (2017)

mimic the effect of position limits by using a higher risk aversion for optimization than for

performance evaluation. By including position limits directly in the optimization, we find

that the tension between mean-variance efficiency and low portfolio weights not only reduces

the scale of the overall portfolio, but it also equalizes weights across different strikes. In the

small-position limit, which admits an explicit solution even with transaction costs, we see

that the asymptotically optimal portfolio entails equal weights in all contracts for which the

expected return is positive, and zero otherwise. As the constraint becomes more lenient,

optimal options’ portfolios typically imply higher weights on more extreme (but also more

profitable) strike prices.

Second, we offer a novel – and fully replicable – empirical study of the performance of

optimal options portfolios. Unlike previous studies, we include all call and put options with

available strikes in the optimization, while limiting the overall options’ position. Numerous

studies document high Sharpe ratios in option-writing strategies, even controlling for expo-

sure to known risk factors. A related strand of literature explores the optimization of portfo-

lios including a limited number of options’ contracts, such as one out-of-the-money (OTM)

option and the index (Liu and Pan, 2003), at-the-money (ATM) straddles and OTM calls

and puts (Eraker, 2013), two ATM and two OTM options (Faias and Santa-Clara, 2017).

(Table 1.1 summarizes the empirical literature on options’ performance.) Our approach

makes optimization over contracts with all available strikes feasible by resolving collinearity

issues, incorporating transaction costs, and imposing position limits. These features over-

come the tendency of mean-variance optimization to generate large long-short positions in

highly correlated securities with minor differences among in-sample returns.

In addition, while most empirical work focuses on options on the S&P 500 index and its

futures contract (with the exception of Driessen and Maenhout (2013), considering also the

FTSE 100 and Nikkei 225, and Malamud (2014), considering the Nasdaq 100 and Russel

2000), this paper also examines options on the Nasdaq 100 index and Dow Jones Industrial

Average index, highlighting some important differences.

Options’ strategies on the Nasdaq 100 yield even higher Sharpe ratios (up to 2.40) than

those on the S&P 500 index (up to 1.87) after controlling for exposure to the respective

indexes. By contrast, strategies in Dow Jones Industrial Average index options have much
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Paper Index(es) Period Options
Coval and Shumway (2001) S&P 500

S&P 100
1990-01 – 1995-10
1986-01 – 1995-12

Options with strike prices 10 to 15 points
below the index level to those with strike
prices 5 to 10 points above the index.

Plyakha and Vilkov (2008) S&P 100 1996-01 – 2004-12 Three moneyness and two maturity buck-
ets for calls and puts.

Constantinides et al. (2013) S&P 500 1986-04 – 2012-01 Calls or puts with one of nine target mon-
eyness ratios.

Eraker (2013) S&P 500 1996-01 – 2003-02 ATM straddles and OTM calls and puts.
Driessen and Maenhout (2013) S&P 500

Nikkei 225
FTSE 100

1992-04 – 2001-06 OTM put and ATM straddle, each with
‘crash-neutral’ variant, shorting a deep
OTM put.

Bondarenko (2014) S&P 500 1987-01 – 2000-12 ATM puts, deep OTM puts.
Malamud (2014) S&P 500

Nasdaq 100
Russel 2000

2004-01 - 2013-08 OTM strikes with moneyness in [0.8, 1.2].

Faias and Santa-Clara (2017) S&P 500 1996-01 – 2013-08 One ATM call, one ATM put, one 5%
OTM call, one 5% OTM put.

Chan et al. (2021) S&P 500 2017-05 – 2021-05 10% OTM calls compared with a 5% OTM
call, a 5% OTM put and a 10% either-side
strangle.

This paper S&P 500
Nasdaq 100
Dow Jones

1996-01 – 2020-12 All non-zero bid calls and puts.

Table 1.1: Summary of the empirical literature on options’ investing.

lower Sharpe ratios (up to 0.33), which do not significantly outperform their index’ return

over the same period.

The risk-adjusted returns of these strategies remain significantly positive even after en-

forcing the constraint that they remain solvent over any index return previously realized.

However, such a constraint reduces the Sharpe ratios on S&P 500 and Nasdaq 100 options by

about a third and on Dow Jones options by about two thirds, suggesting that a substantial

component of options’ returns is explained by the aversion of options’ writers to the risk of

large losses.

The rest of this paper is organized as follows: Section 2 describes the model and the

optimization algorithm, including theoretical results that guarantee its convergence. (All

proofs of are in the appendix.) Section 3 explains data analysis, volatility prediction and

its use for historical simulation. Section 4 contains the empirical results, including the

description of the estimation procedure.
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2 Model and Method

Recall the familiar Markowitz setting, whereby an investor seeks the portfolio of d risky

assets and one safe asset that maximizes the mean-variance tradeoff. Denoting by µ the

vector of expected excess returns on risky assets and by Σ their covariance matrix, the risky

portfolio weights w = (w1, . . . , wd) that maximize

w⊤µ− γ

2
w⊤Σw,

where γ denotes the risk-aversion parameter, are given by the formula

ŵ =
1

γ
Σ−1µ.

Bringing this approach to bear on the construction of optimal options’ portfolios raises mul-

tiple related issues: First, the mean-variance optimal portfolio is very sensitive to errors

in the estimator of the covariance matrix (Best and Grauer, 1991), especially in combina-

tion with errors in the expected returns. For example, two options with nearby strikes are

almost perfectly correlated, rendering a scenario-based estimator of Σ either singular or near-

singular. As a result, any minor difference in their estimated expected returns is perceived

by mean-variance optimization as a near-arbitrage opportunity, to be exploited with large

long positions in one option, combined with large short positions in the other option.

Second, options incur high transaction costs (typically, from 5% for at-the-money options

to 10% for out-of-the-money options), ignored by the familiar mean-variance objective, which

make long-short positions very costly. Third, options portfolios entail substantial margin

requirements, also ignored by the above objective, which de facto limit the size of long and

short positions in options.4 Fourth, though the market on index options is rather liquid, such

4Strategy-based options’ margins are studied by Hitzemann et al. (2021) and Bali et al. (2023), who
consider the specific rules described in https://www.cboe.com/us/options/strategy_based_margin. For
the options’ portfolios discussed in this paper the relevant margins would be calculated with portfolio-based
methodologies, such as SPAN, TIMS, or STANS.
The first two methods compute margins as worst-case losses based on a prespecified set of scenarios. The

STANS methodology, available to registered broker-dealers who are members of the Options Clearing Cor-
poration, calculates a portfolio’s margin as the 99% expected shortfall on a two-day horizon, using a Monte-
Carlo simulation accounting for current market conditions. For customers’ accounts, SEC rules require min-
imum margins that essentially follow the TIMS method, see https://www.ecfr.gov/current/title-17/

chapter-II/part-240/subpart-A/subject-group-ECFR541343e5c1fa459/section-240.15c3-1a.
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liquidity is spread over hundreds of individual contracts, each of them with limited depth

and hence sensitive to price impact from large orders.

In summary, the challenge of options portfolio optimization is to depart enough from the

familiar mean-variance objective to incorporate options’ specific features, while at the same

time retaining computational tractability.

2.1 Position Limits

To incorporate position limits in mean-variance optimization, we specify the objective func-

tion as

L(w, λ) = µ⊤w − γ

2
w⊤Σw − λ

2
w⊤w, (2.1)

where λ > 0. The significance of this variant of the mean-variance objective is threefold.

First, it can be interpreted as a robust version of the mean-variance tradeoff: suppose that the

investor has limited confidence in the estimated expected return µ, and therefore evaluates

the performance of a portfolio w as the minimum performance across the range of all possible

views

min
µ̂∈Rd

(
w⊤µ̂− γ

2
w⊤Σw +

1

2λ
(µ̂− µ)⊤Ω−1(µ̂− µ)

)
where the term 1

2λ
(µ̂−µ)′Ω−1(µ̂−µ) downplays the negative performance under those views

µ̂ that differ the most from the reference estimate µ. This expression reaches its minimum

for µ̂ = µ− λΩw, thereby yielding the formula

µ⊤w − γ

2
w⊤Σw − λ

2
w⊤Ωw

which coincides with (2.1) in the baseline setting of Ω = I (I is the d × d identity matrix),

whereby errors in all expected returns are considered equally important and uncorrelated

with each other.

Second, the objective (2.1) can be understood as the unconstrained version of the con-

We are indebted to John Dodson for explaining the complexities of options’ margins conventions.
For details, see https://www.cmegroup.com/clearing/risk-management/span-overview.html (SPAN),
https://www.theocc.com/Risk-Management/Margin-Methodology (TIMS), and https://www.theocc.

com/risk-management/customer-portfolio-margin (STANS).
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strained problem

max
w∈Rd

{
µ⊤w − γ

2
w⊤Σw : w⊤w =

d∑
i=1

w2
i ≤

L2

d

}
(2.2)

and coincides with the solution of the latter when the constraint is binding, for a suitable

choice of the penalty λ. The upper bound on the sum of squared weights is conveniently

specified as L2

d
, as it implies that L is an upper bound on the aggregate weights of options’

portfolios, because
d∑

i=1

|wi| ≤
√
d

√√√√ d∑
i=1

w2
i =

√
d · w⊤w ≤ L.

Thus, one can choose the parameter λ in relation to the bound L that it implies.

Third, as the objective (2.1) favors small portfolio weights in several contracts rather

than large weights in few contracts, it provides a tractable approximation of the combined

effect of margin requirements (without entering the minutiae of brokers’ and exchanges’

conventions) and the limited depth of options’ markets. Indeed, the bound L above represents

the maximum fraction of capital comprising the options’ premia paid by the investor or to the

investor. Conversely, the sum of squared weights discourages portfolios with large differences

in the weights of nearby contracts (such as two options with the same expiration and similar

strike prices), thereby mitigating the price impact that may result from large orders in the

same contract.

The first-order condition of (2.1) identifies the optimal portfolio as

w = (γΣ + λI)−1µ. (2.3)

The position limit then identifies the Lagrange multiplier λ ∈ (0,∞) as the solution to

µ⊤(γΣ + λI)−2µ =
L2

d
.

Thus, upon reflection, formulating position limits in terms of the objective (2.1) has an-

other significant advantage: it is tantamount to the regularization of the covariance matrix

estimator, combined with a change in risk aversion. This device remedies the typical near-

singularity of the usual covariance estimator and links the regularization parameter to the
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position limit. Indeed, the optimal portfolio in (2.3) admits the equivalent expression

w =
1

γ + λ

(
γ

γ + λ
Σ +

λ

γ + λ
I

)−1

µ,

which means that when the constraint is binding, solving the constrained optimization prob-

lem (2.2) is equivalent to solving the unconstrained problem, while simultaneously (i) in-

creasing the risk aversion from γ to γ+λ, and (ii) replacing the covariance matrix estimator

Σ with the shrinkage estimator γ
γ+λ

Σ + λ
γ+λ

I, which is always strictly positive definite (cf.

Ledoit and Wolf (2003); Jagannathan and Ma (2003); DeMiguel et al. (2009)).

In practice, the constraint binds under the following condition, which is satisfied for all

realistic combinations of position limits and risk aversion.5

Proposition 2.1. Suppose µ ̸= 0.6 Let σ∞ the largest eigenvalue of Σ. The constraint

w⊤w ≤ L2/d is binding if

L <

√
d∥µ∥
γσ∞

. (2.4)

2.2 Bid-Ask Spreads

The previous formulation incorporates position limits in the portfolio optimization problem,

but does not address transaction costs, which are very significant for options. To reflect

the difference between bid and ask prices, we follow Plyakha and Vilkov (2008), Eraker

(2013), and Faias and Santa-Clara (2017) by specifying each option contract as two distinct

securities, to be held in positive amounts: one with the long-option payoff, priced at the ask

quote, and one with the short-option payoff, priced at minus the bid quote.

With this representation, a portfolio optimization problem with d securities and transac-

tion costs translates to an optimization problem with 2d securities but short-sale constraints

instead of no transaction costs. That is, the portfolio weights w̄ in the enlarged security set

are linked to the portfolio weights w in original set by the relations w̄2i−1 = w+
i , w̄2i = w−

i ,

5Lemma A.1 in the Appendix characterizes the conditions under which a suitable value of λ satisfies the
constraint. If the vector of expected returns lies in the range of the covariance matrix, then the constraint
is binding for any value of L. Otherwise, it is binding for L2/d ≤ µ⊤Σ−2µ.

6If all average excess returns are zero, then the optimal strategy is w = 0, whence the limit position
cannot be binding.
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and wi = w̄2i−1 − w̄2i. Thus, the optimization problem with bid-ask prices is:

max
w̄∈R2d

{
w̄⊤µ− γ

2
w̄⊤Σw̄ : w̄ ≥ 0, w̄⊤w̄ ≤ L2/d

}
. (2.5)

The correspondence between w and w̄ is one-to-one, provided that one restricts the attention

to only those strategies which do not take a long and short position simultaneously.7 Due to

the positivity constraint, the solution to the optimization problem in (2.5) is not available

in closed form, but is nonetheless easy to obtain numerically: if the covariance matrix Σ is

invertible, the quadratic program with linear constraints

max
w̄∈R2d

{
w̄⊤µ− γ

2
w̄⊤Σw̄ : w̄ ≥ 0

}
yields the solution w̃. If w̃⊤w̃ ≤ L2/d, then the constraint is not binding, and w̃ solves

(2.5). Otherwise, the constraint is binding, and it suffices to solve the quadratic program

with linear constraints

max
w̄∈R2d

{
w̄⊤µ− γ

2
w̄⊤Σw̄ − λ

2
w̄⊤w̄ : w̄ ≥ 0

}
(2.6)

for both some large λ+, for which the corresponding w̃λ+ satisfies w̃⊤
λ+
w̃λ+ < L2

d
and some

small (or zero) λ−, for which w̃⊤
λ−
w̃λ− > L2

d
. Then, updating λ−, λ+ through a binary search

yields the value of λ for which w̃⊤
λ w̃λ = L2

d
.

Explicit solutions are available with bid-ask spreads in the small-position limit, i.e., for

L close to zero. In this special case, both the covariance matrix Σ and the risk aversion

γ become irrelevant, as they are overridden by the strict position limit, and the optimal

portfolio is equally weighted on all options that offer a positive expected return:

Proposition 2.2. Suppose there exists 1 ≤ i ≤ 2d for which µi > 0.8 For small L, the

constraint w⊤w ≤ L2/d is binding and, denoting by µ+ = (max(µi, 0))1≤i≤2d, the optimal

7Such a restriction is obviously inconsequential for a monotonic objective such as expected utility. For
the mean-variance objective under consideration, simultaneous long and short positions are also suboptimal,
as confirmed by Lemma A.2 below. Note that, for this reason, the constraint L2/d does not to be replaced
by L2/(2d).

8If all average excess returns are non-positive, then the optimal strategy is w = 0, whence the limit
position cannot be binding.
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portfolio satisfies

w̃ =
L√
d

µ+

∥µ+∥
+ o(L). (2.7)

2.3 Solvency Constraints

The mean-variance objective in (2.5) does not exclude potentially negative payoffs, therefore

it may lead to in-sample insolvency, that is, on some of the outcomes included in the empirical

distribution used for optimization. To understand how insolvency affects the performance

of options’ portfolios, it is useful to examine the performance of optimal options portfolios

with in-sample solvency constraints, i.e.,

max
w̄∈R2d

{
w̄⊤µ− γ

2
w̄⊤Σw̄ : w̄ ≥ 0, w̄⊤w̄ ≤ L2

d
, w̄⊤Ri ≥ −1, 1 ≤ i ≤ S

}
,

where (Ri)1≤i≤S represents the sample of size S of all the returns used to estimate µ and Σ.9

The additional constraint w̄⊤Ri ≥ −1 thus ensures that the optimizer yields positive wealth

for all outcomes in the sample, reflecting the approach of an investor who requires a strategy

to be solvent under any potential past return.10

3 Data

The analysis of options’ portfolios performance relies on OptionMetrics’ IvyDB database on

European options on the S&P 500,11 Nasdaq 100, and Dow Jones Industrial Average equity

indexes from January 1996 to December 2020. The dataset includes daily closing bid and

ask prices for each monthly option with the nearest expiration, daily closing prices of the

indexes, settlement price of the indexes (used to calculate options’ payoffs), and the daily

9While a priori each of the constraints Ri ≥ 0 may be binding, a posteriori only Rmin = min1≤i≤S Ri and
Rmax = min1≤i≤S Ri turn out to be binding.

10A priori, insolvency is possible out-of-sample, that is, on outcomes that are not included in the empirical
distribution, unless the portfolio’s payoff has no net short option position. A posteriori, the strategies
considered remained always solvent.

11In the OptionMetrics’ IvyDB database here are also quotes for SPX weekly options (SPXW), a new
option different from SPX options but having the same Security ID. They are removed form the data frame
to avoid repetition and because they settle at the closing price instead of the special opening quotation.
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term structure of interest rates.12

3.1 Options’ Filters

To ensure that optimal portfolios trade off return against risk, rather than pursuing spu-

rious arbitrage opportunities arising from asynchronous or stale data, options are filtered

by removing (i) observations with zero bids, (ii) bid-ask pairs where the bid is higher than

the ask, (iii) bid-ask pairs that violate put-call parity, adjusted for transaction costs and

dividends, and (iv) bid-ask pairs with zero or missing volume or open interest. Numer-

ous studies document parity violations (Phillips and Smith Jr, 1980; Baesel et al., 1983;

Santa-Clara and Saretto, 2009) and attribute them to the large transaction costs in options.

The filter described below ensures that all remaining options’ pairs satisfy the restrictions

implied by put-call parity, after controlling for the effects of bid-ask prices and dividends

(Van Binsbergen et al., 2012).

Recall the familiar parity relation C − P = S −Ke−rT − DT among the price of a call

option C and a put option P with the same strike price K and expiration T , when the

safe rate is r, the price of the index S, and the present value of the dividend DT (Stoll,

1969). (The estimation of dividends is discussed in the next subsection.) This relation holds

when bid-ask spreads are absent: when they are present, the equality is replaced by the two

simultaneous inequalities

Cbid − Pask < S −Ke−rT −DT < Cask − Pbid,

which are equivalent to the restriction

Cbid − Pask +Ke−rT +DT < S < Cask − Pbid +Ke−rT +DT (3.1)

on the index price. These inequalities result from absence of arbitrage, i.e., from the condition

that there are no gains from riskless replications of long or short forward payoffs through

options. Because (3.1) must hold simultaneously for all strike prices (Ki)1≤i≤k, the joint

12The settlement price of monthly options is not the closing price of the index on the expiration date, but
the special opening quotation (SOQ), which is calculated from the opening prices of the index’ components.
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Index No Removal Average Removal
S&P 500 96.33% 6.06%

Nasdaq 100 97.33% 9.76%
Dow Jones 99.64% 6.56%

Table 3.1: Percentage of months for which no options are removed due to put-call parity
violations (second column) and average percentage of options removed (third column) when
necessary, for each index (first column).

restriction is equivalent to

max
1≤i≤k

(
Ci

bid − P i
ask +Kie−rT +DT

)
=: SL < S < SU := min

1≤i≤k

(
Ci

ask − P i
bid +Kie−rT +DT

)
.

(3.2)

This condition is a restriction on both the bid-ask prices of options’ contracts, and on the

price of the index. In the data, asynchronous observations of options’ quotes and the closing

price may cause such condition to fail: such failure is ascribed to the options’ quotes if

SL > SU , in which case no choice of S is compatible with the absence of arbitrage, or to the

closing price if it lies outside (SL, SU), in which case it suffices to replace the closing price

with the midpoint of the arbitrage-free interval (SL, SU).

These observations motivate the following procedure to eliminate parity violations:

(i) If SL ≤ SU in (3.2) holds, then set S equal to the closing price if it lies in (SL, SU), or

to the midpoint (SL + SU)/2 otherwise.

(ii) Else (if SL > SU) remove both options pairs with both the strikes Kl and Ku for

which the lower and upper bounds SL, SU are achieved in (3.2) (thereby widening the

arbitrage-free interval). Then, return to step (i).

Table 3.1 shows that no options need to be removed for over 95% of the months (second

column). When removal is necessary, it averages from 5% to 10% of the strike prices available

(third column).

3.2 Dividends

The underlying indexes considered do not include the dividends paid by their components

to investors, which means that the put-call parity relation requires the dividend-adjustment
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discussed above, hence the estimation of dividends. The dividend yield on these indexes is

typically small (an annual dividend yield of 1.9% from 1996 to 2007, 3.11% in 2008, and

1.97% from 2009 to 2020) and the dividends are usually announced one month before being

paid, so their value is known with high accuracy at the time that the options’ portfolio is

set up. Thus, exclusively for the purpose of excluding options leading to parity violations, it

is appropriate to estimate the value of the dividend from the difference in the returns of the

index (which excludes dividends) and the exchange-traded fund (ETF) that tracks it (which

includes dividends). Thus,13

Rindex
T =

Sindex
T − Sindex

0

Sindex
0

, RETF
T =

Sindex
T − Sindex

0 +DT

Sindex
0

= Rindex
T +

DT

Sindex
0

,

where Sindex
0 , Sindex

T denote the values of the ex-dividend index at the beginning (portfolio

construction) and the end (options’ expiration) of the trading period. Thus, the above

relation yields the dividend estimate DT = (RETF
T − Rindex

T )Sindex
0 , which is used to exclude

put-call parity violations in options’ data.

3.3 Volatility Forecasts

The prices of options reflect both their risk premia and the market’s expectations about

future realized volatility until the options’ expiration. As volatility is highly persistent from

one month to the next, it is thus critical for an options’ investor to forecast realized volatility

at the beginning of a trading period, so as to estimate the expected returns of options with

different strikes. This paper adopts the specification

log(σt,T ) = log(α) + βimp log(σ
imp
t ) + βhist log(σ

hist
t ) + εt,T , (3.3)

where σt,T is the realized volatility over the next trading period and εt,T is the forecasting

error, while σimp
t and σhist

t are respectively the index’ implied and historical volatility at the

beginning of the period.

The specification in (3.3) is linear in the logarithms of volatilities rather than volatilities

13In principle, the ETF return also reflects the management fee deducted by the fund’s issuer. As such
fees are less than 0.1% per year while options expire in one month, the effect of fees is negligible and not
included in dividends’ estimation.
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themselves both to avoid negative forecasts, and because the unconditional distribution of

volatility is closer to a lognormal than to a normal distribution. Indeed, (3.3) is equivalent

to the mixture of powers

σt,T = α(σimp
t )

βimp
(σhist

t )
βhisteεt,T .

By construction, the logarithmic regression in (3.3) yields the unbiased estimator of log(σt,T )

log(σ̂t,T ) = log(α̂) + β̂imp log(σ
imp
t ) + β̂hist log(σ

hist
t )

and the corresponding unbiased estimator of realized variance follows.

Proposition 3.1. If the forecasting errors εt,T are conditionally (with respect to σimp
t and

σhist
t ) normal and homoskedastic, then

σ̃t,T = σ̂t,T e
(1−R2)Var(log σ̂t,T )

is an unbiased estimator of realized variance, in that E[σ̃2
t,T − σ2

t,T |σ
imp
t , σhist

t ] = 0.

In the volatility forecast, σimp is the implied volatility index, on the day before trading,

for the equity index considered (VIX for the S&P 500, VXN for the Nasdaq 100, and VXD

for the Jow Jones), once such index has been available for at least two months. Before, VIX

is used instead. Likewise, σhist is the historical volatility, also on the day before trading,

obtained from the Oxford Man daily realized volatility database, once such index has been

available for at least two months. Before, the volatility estimator from daily returns on the

past monthly period is used instead. Table 3.3 describes in detail the use of data for portfolio

optimization, including volatility forecasting.

Table 3.2 reports the model parameter estimates for the entire dataset, i.e., the param-

eters that would be used to forecast the volatility at the end of 2020 for the two different

historical volatility estimators. When daily realized volatility is used (right column), the

volatility estimator is approximately a weighted geometric mean, in that the weights for the

implied and historical volatilities are both positive, and their sum is close to one. Instead,

when daily returns are used to estimate historical volatility, the implied probability weight

rises above one to compensate for the loss in significance of the historical probability weight.

The scaling constant also decreases, as to offset the effect of the increased implied volatility

weight, which would otherwise overestimate future realized volatility.

14



log(σt,T ) = log(α) + βimp log(σ
imp
t ) + βhist log(σ

hist
t ) + εt,T

Daily returns Oxford-Man
(Intercept) −0.564∗∗∗ −0.320∗

(0.138) (0.171)

log(σimp
t ) 1.132∗∗∗ 0.901∗∗∗

(0.086) (0.096)
log(σhist

t ) −0.043 0.149∗∗

(0.063) (0.064)
No. Observations 371 251
R2 0.624 0.656

Table 3.2: Volatility forecast (3.3) on the last trading date 2020-12-21, with maximal his-
torical data available. Significance codes: *(0.1), **(0.05), ***(0.01).

3.4 Returns’ Distribution

While volatility controls the time-varying scale of the distribution of returns, its location

and shape are captured by the normalized empirical distribution, as follows.

At the beginning of each trading period, first consider the set R of all returns, realized

before the trading date, over 21 consecutive business days. That is, Ri = Si/Si−21 − 1,

21 < i ≤ t, where t is the last business day before trading. (Data availability varies by index

and is reported in Table 3.3.) Each return Ri ∈ R is then standardized, by calculating

R̃i =
Ri − µ̄∆i

σ̄
√
∆i

,

where µ̄ and σ̄ are the annualized mean return and volatility of the index in the whole period

and ∆i is the number of calendar days spanning the return Ri, divided by 360. The set of

normalized returns is R̃ = (R̃)ni=1. (Because 21 business days lead to a variable number of

calendar days, this adjustment rescales different calendar periods accordingly.)

At the beginning of each period, the investor estimates the distribution of the index’

return over the next period by considering equally likely the samples

R̂i = R̃iσ̃[t,T ]

√
∆+ µ̄∆

where σ̃[t,T ] is the volatility estimator in the previous subsection, while ∆ denotes the number
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of calendar days spanning the next return, divided by 360. Thus, R̂ = (R̂i)
n
i=1 is the empirical

distribution used to evaluate the expected performance of options’ portfolios over the next

period.

4 Results

This section discusses the performance of mean-variance optimal options’ portfolios on the

monthly options on the S&P 500, Nasdaq 100 and Dow Jones Industrial Average equity

indexes for the 25-year period 1996:01-2020:12 (1997:10-2020:12 for the Dow Jones, see Table

3.3). Options on these indexes are European, hence can be exercised only at their expiration.

All the empirical results present of the paper are out-of-sample, i.e., the options’ portfolio

is constructed at each period using only data available before such period. In particular, at

each period, only past index’ returns are used to forecast volatility (including the parameters

of the volatility model), to estimate the expected returns and covariance matrix of the

options’ portfolio (hence its weights), and even to estimate dividends. In-sample estimates

are never used for portfolio construction throughout the paper.

Each month, on the Monday following monthly options’ expiration14 we construct a port-

folio of options expiring the following month through the procedure described in the previous

section: First, forecast realized volatility over the following month, obtaining a rescaled em-

pirical distribution of returns. Second, from this empirical distribution and current options’

prices, calculate options’ expected returns and covariances. Third, combine expected returns

and covariances with the risk-aversion and position-limit parameters in the constrained op-

timization problem, obtaining the optimal portfolio weights. Fourth, record the portfolio

performance at the end of the month from the index’ ex-post return. (To compute excess

returns, the term-structure of interest rates in OptionMetrics is interpolated linearly.) To

examine the effect of solvency requirements, the same optimization is also performed with

the additional constraint that the portfolio remain in-sample solvent (i.e., over all scenarios

in the empirical distribution).

Three position limits L on the total portfolio weights of long and short options premia

are considered, corresponding to 3%, 5%, and 10% of the portfolio value each month, com-

bined with risk aversions of 1, 3, and 5, yielding nine benchmark options’ portfolios. These

14The third Friday of the month, or Thursday is Friday is a holiday, such as Good Friday.
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parameters are chosen to obtain portfolios with annual volatility in the typical range of

10% to 20%. Performance analysis includes the annualized Sharpe ratios, alphas, and betas

from regressions of portfolios’ excess returns against the index’s excess return, as well as the

standard deviation of the hedged (i.e., zero beta) portfolio and its Sharpe ratio (i.e., the

Appraisal ratio).15

4.1 S&P 500

Figure 4.1 displays the cumulative return on a hypothetical portfolio starting with a dollar at

the beginning of 1996, reinvested in the mean-variance optimal strategies with risk aversion

γ = 3 and various position limits, with (dashed) and without (solid) the solvency constraint,

in comparison with the index’ performance (black). For example, a large loss is observed

on all options’ portfolios in correspondence of the coronavirus crisis of March 2020: as

the options’ portfolios typically sell significant amounts of put options, as shown below,

they are vulnerable to large losses on extreme events. Overall, all portfolios significantly

outperform the index, though their risk is concentrated in large infrequent drawdowns rather

than dispersed among the small frequent losses typical of the index. Looser position limits

lead to higher returns but imply commensurate losses in unfavorable states. The solvency

constraint is a significant drag on portfolio performance, as each dashed line remains always

below the solid line with the same color, even immediately after rare large losses.

Table 4.1 assesses quantitatively the strategies’ performance: note that the most signifi-

cant determinant of strategies’ volatility is the position limit L, indicating that the constraint

is indeed binding for the parameters’ combinations considered. Without the solvency con-

straints (top panel), the Sharpe ratios are all in the range 0.93 to 1.90, clearly outperform

the index’, but some component of such performance is explained by the positive exposure

(beta) to the index. Controlling (i.e., hedging) for such exposure, the residual Sharpe ra-

tio (the Appraisal ratio) is from 0.83 to 1.87, with the top of the range achieved for the

loosest position limit. The bottom panel of Table 4.1 shows that the inclusion of solvency

15Denoting by Ro the excess return of the options’ portfolio and by R the excess return of the index, the
variance of the beta-neutral portfolio is then

σ2
0 = Var(Ro − βR) = Var(Ro)− β2Var(R).

Accordingly, the Appraisal ratio is α
σ2
0
, where α is the alpha of the options’ portfolio.
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Figure 4.1: Performance of mean-variance optimal option strategies with (dashed) or without
(solid) the solvency constraint, and position limits L = 3% (blue), L = 5% (green) and
L = 10% (red) for risk-aversion γ = 3, compared to the performance of the index (black),
the S&P 500.

constraints results in a reduction in the Sharpe Ratio of around 0.3 on average, as Appraisal

ratios range from 0.65 to 1.39. (Index exposure also declines slightly.)

Overall, the mean-variance optimal options strategies display abnormal Sharpe ratios,

in excess of one, over the entire 25-year period. Although the strategies considered have

a positive exposure to the index, such exposure explains only a minor fraction of the pos-

itive excess returns. The abnormal Sharpe ratios persist also in the presence of solvency

constraints, although they decrease significantly.

For L near zero, Proposition 2.2 demonstrates that the portfolio w = L√
d

µ+

∥µ+∥ approx-

imates well the mean-variance efficient portfolio, thereby raising the question of whether
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γ L µ σ Sharpe Alpha Beta Hedged σ Appraisal
Unconstrained

1 3% 10.76% 10.19% 1.06 8.71% 0.28 8.84% 0.99
3 3% 9.88% 9.28% 1.07 8.11% 0.24 8.19% 0.99
5 3% 9.27% 7.37% 1.26 7.96% 0.18 6.61% 1.20
1 5% 18.16% 19.62% 0.93 14.32% 0.53 17.18% 0.83
3 5% 16.52% 12.68% 1.30 14.25% 0.31 11.37% 1.25
5 5% 15.44% 9.79% 1.58 13.89% 0.21 9.02% 1.54
1 10% 35.13% 31.53% 1.11 29.18% 0.82 27.89% 1.05
3 10% 30.51% 18.19% 1.68 27.80% 0.37 16.91% 1.64
5 10% 27.85% 14.64% 1.90 26.06% 0.25 13.96% 1.87

Solvency Constrained
1 3% 8.01% 10.96% 0.73 5.84% 0.30 9.55% 0.61
3 3% 8.09% 8.49% 0.95 6.48% 0.22 7.50% 0.86
5 3% 7.84% 7.23% 1.08 6.56% 0.18 6.50% 1.01
1 5% 12.42% 16.28% 0.76 9.26% 0.44 14.28% 0.65
3 5% 12.15% 12.29% 0.99 9.97% 0.30 11.05% 0.90
5 5% 12.07% 9.87% 1.22 10.52% 0.21 9.09% 1.16
1 10% 21.15% 26.79% 0.79 16.26% 0.68 23.90% 0.68
3 10% 21.28% 17.96% 1.18 18.65% 0.36 16.75% 1.11
5 10% 21.05% 14.56% 1.45 19.27% 0.25 13.88% 1.39

Small Position Limit
Small 3% 4.77% 6.34% 0.75 3.73% 0.14 5.79% 0.64
Small 5% 7.95% 10.56% 0.75 6.22% 0.24 9.65% 0.64
Small 10% 15.90% 21.12% 0.75 12.43% 0.48 19.30% 0.64

Table 4.1: Portfolios of options’ on the S&P 500 index. The S&P 500 index has annualized
average excess returns 7.22% and volatility of 17.85% (hence a Sharpe ratio of 0.40).

such an approximation, which does not depend on options’ covariances and risk aversion,

yields a performance that is comparable to that of portfolios obtained from the constrained

maximization problem, which do depend on options’ covariances and risk aversion. Note

that the excess returns and volatility of the small-position limits scale linearly in L, thereby

leading to the same Sharpe and Appraisal ratios.

Small-position approximations also yield positive excess returns, but they lag the per-

formance of their finite counterparts, highlighting the importance of cross-hedging effects in

generating high risk-adjusted returns.
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Expected Utility

The crucial advantage of the mean-variance objective considered in this paper is the tractabil-

ity characteristic of quadratic optimization problems. Its potential disadvantage is that, by

focusing on the first two moments of a portfolio’s payoff, quadratic optimization may not

capture the effect of the whole distribution on the expected utility that the mean-variance

objective approximates.

To address this issue, recall first the relation between mean-variance optimization and

constant relative risk aversion utility functions

U(x) =

x1−γ−1
1−γ

γ ≥ 0, γ ̸= 1

log x γ = 1
.

The Equivalent Safe Rate ESR(R) of a return R is defined as the return on the certainty-

equivalent, i.e., the hypothetical risk-free return that would make a utility-maximizer indif-

ferent between R and such risk-free return, which is the solution to the equation

U(1 + ESR(R)) = E[U(1 +R)]. (4.1)

Likewise, the Mean-Variance Equivalent Safe Rate MVR(R) is obtained from the second-

order Taylor expansion of (4.1), which is

MVR(R)− γ

2
MVR(R)2 = E[R]− γ

2
E[R2]

and has the solution

MVR(R) =
−1 +

√
(γ
2
E[R2]− E[R])2γ + 1

−γ
≈ E[R]−γ

2
E[R2] = E[R]−γ

2

(
Var(R) + E[R]2

)
.

Thus, the difference between ESR and MVR measures the additional equivalent safe rate

obtained by a utility maximizer from a mean-variance optimal portfolio.

Table 4.2 reports the ESR and MVR – along with their absolute and relative differences

– of the unconstrained portfolios in Table 4.1 on the whole period 1996-2020. Except for the

riskiest combination (γ = 1, L = 10), the expected utility of each other portfolio is close to,
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γ L ESR MVR ESR−MVR ESR /MVR−1
1 3% 10.17% 10.19% -0.02% -0.21%
3 3% 8.10% 8.47% -0.37% -4.53%
5 3% 7.47% 7.73% -0.27% -3.56%
1 5% 14.93% 16.10% -1.17% -7.84%
3 5% 13.02% 13.77% -0.75% -5.80%
5 5% 12.29% 12.54% -0.26% -2.09%
1 10% 36.82% 29.64% 7.18% 19.49%
3 10% 23.69% 24.38% -0.69% -2.92%
5 10% 20.82% 20.87% -0.06% -0.26%

Table 4.2: Equivalent Safe Rate (ESR) and Mean-Variance Equivalent Safe Rate (ESR) for
the S&P 500 options’ portfolios in Table 4.1.

but marginally lower than, its mean-variance approximation, consistently with the familiar

intuition that expected utility penalizes losses more than its quadratic expansion does.

The most negative difference of 1.17% occurs for γ = 1, L = 5, with the exact ESR of

14.93% against the approximate MVR of 16.10%. In all other cases, negative differences

are less than 1%, and account for a few percentage points of the overall ESR. For γ = 1,

L = 10, the exact ESR is significantly higher than the MVR: this particularly risky portfolio

is prone to large fluctuations, and the high second moment in the observation period arises

more from positive returns than from negative ones, leading the MVR to underestimate the

ESR.

In summary, the comparison of the mean-variance performance MVR with the utility-

based ESR tends to allay concerns that mean-variance analysis might substantially overes-

timate the certainty-equivalents of the options’ portfolios considered. In all portfolio com-

binations considered, the mean-variance performance leads to either modest overestimation

or, in one case, to underestimation of the ESR.

Performance on Subperiods

The remarkable performance of options’ strategies over the entire period is rather uneven

over time, as demonstrated by Tables 4.3 and 4.4: the extraordinary Sharpe ratios above

two in the late nineties are followed by unimpressive 0.4-0.5 in the first half of the naughties.

Sharpe ratios above one return in the following fifteen years, though performance at times
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varies significantly with the parameters, with low risk aversion associated with much lower

Sharpe and Appraisal ratios. By contrast, such relation was inverted in the nineties, and

absent in the naughties.

In summary, while mean-variance optimal options’ strategies display significant abnormal

returns over the whole observation period, the average returns vary considerably across five-

year periods. Such variation is explained in part by the gap, within each period, between

realized volatility, which reflects the actual variability of the index, and implied volatility,

which reflects the price that options’ buyers pay for such variability. Indeed, in 1996-2000

the average implied volatility (VIX) was 22.41%, over 7% higher than the realized volatility

of 14.68%, leading to Sharpe and Appraisal ratios above 2.

By contrast, in 2001-2005 implied volatility averaged 20.65%, less than 2% above the

18.91% realized volatility, and the performance of options’ portfolios was more modest.

Similar remarks apply to the next two five-year periods, in which implied volatility averaged

respectively 23.43% (2006-2010) and 17.42% (2011-2015), corresponding to gaps of 4.37%

and 3.12% above realize volatility. This rule of thumb does not perform well in the last

period (2016-2020), as realized volatility (21.40%) was in fact higher than average implied

volatility (17.65%) and options’ portfolios performance was mixed, ranging from -0.12 to

3.19. This phenomenon is partially explained by the several large daily changes in the index

during the early stages of the coronavirus pandemic, which account for the unusually high

realized volatility. The individual performance of options’ portfolios during these critical

months had a large impact on the period’s overall performance and is a reminder of the

impact of rare events on the performance of options’ portfolios.

Effective Position

As the optimization on the squared sum of portfolio weights only ensures an upper bound on

total portfolio weights, it is opportune to examine the effective position of options’ portfolios

over the observation period.

Denoting the option weights by w = (wi)
2d
i=1, define the effective position as their sum

(recall that all weights are positive, as short positions are encoded as positive positions in

additional securities)

Le =
2d∑
i=1

wi.
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By design, the effective position is less than or equal to L in each sample, in view of the

Cauchy-Schwarz inequality and the constraint w⊤w ≤ L2/d. In fact, Table 4.5 shows that

the average effective position L̂e is between one half and two thirds of the upper bound L,

across the parameter range γ = 1, 3, 5 and L = 3%, 5%, 10%, and with modest deviations

from these averages.

In practice, L = 3%, 5%, 10% lead to portfolios in which options premia paid and received

account for approximately Le = 2%, 3%, 5% of portfolio value, respectively.

Optimal Strategies

Figure 4.2 displays optimal options strategies on a representative date, December 2020. In

each of the panels (a)-(f), the long put positions are in the upper left, long calls in the upper

right, short puts in the lower left, and short calls in the lower right.

A clear pattern emerges across optimal strategies for different position limits, with or

without the solvency constraint: the typical optimal strategy entails (i) short positions in

out-of-the-money puts, with more aggressive (higher L) strategies loading more on deeper

strikes, (ii) mixed long-short call positions, long in deep out-of-the-money calls, and short in

calls that are nearer to the money.

The overall combination of these positions leads to a strategy that benefits from frequent

small gains, while partly foregoing gains on months of unusually high returns, and suffering

significant losses on months of negative returns.

4.2 Nasdaq 100

Figure 4.3 and Table 4.6 report the performance of mean-variance optimal strategies on

options on the Nasdaq 100 index. As in the case of the S&P 500, the strategies produce

abnormal positive Sharpe ratios, even controlling for index exposure.

Unlike the S&P 500, the reduction in performance from the solvency constraint is more

modest, but this phenomenon may be due in part to the more limited historical sample,

which starts in 1971 rather then 1927, and therefore is likely to include less extreme returns.

Rare events also appear to have a milder effect on strategies involving Nasdaq options’

than on S&P 500 options. For example, the loss on the coronavirus month is much less

noticeable, and is fully recovered by the end of the year. As in the case of the S&P, the
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Figure 4.2: Options’ strategies in the S&P 500 index (SPX) on December 2020. Each panel
displays portfolio weights (vertical) against the option delta of each contract (horizontal), for
long puts (top left), long calls (top right), short puts (bottom left), and short calls (bottom
right). (a): Small-position approximation, scaled for L = 3%; (b), (c), (d): Unconstrained
strategies for L = 3%, 5%, 10%, respectively; (e), (f): Solvency constrained strategies for
L = 5%, 10%, respectively. Risk aversion γ = 3 in all strategies.
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Figure 4.3: Performance of mean-variance optimal option strategies with (dashed) or without
(solid) the solvency constraint, and position limits L = 3% (blue), L = 5% (green) and
L = 10% (red) for risk-aversion γ = 3, compared to the performance of the index (black),
the Nasdaq 100.

Nasdaq strategies also struggle in the first half of the naughties, regaining momentum in the

years that follow. Index exposure is also significant for this index, but it varies considerably

across parameter combinations.

Figure B.1 confirms that Nasdaq 100 options’ strategies are qualitatively similar, in that

they involve short positions in out-of-the-money calls and puts, long positions on near-

the-money calls, and almost never long put positions. Table B.1 also confirms that actual

portfolio weights are between half and two-thirds of the upper bound, as for the S&P 500

index.
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4.3 Dow Jones Industrial Average

Options’ strategies on the Dow Jones Industrial Average, which started trading in 1997,

highlight some significant differences from the S&P 500 and Nasdaq 100.

Figure 4.4 is in stark contrast 4.1 and 4.3, showing a performance that lags behind by

nearly two orders of magnitude over a period that is less than two years shorter, and a

drastic loss on the coronavirus month, which erases five years of gains for most strategies,

bringing their overall performance in line with that of the index itself. Note that such drastic

difference in performance cannot be ascribed to data availability, as the historical sample for

the Dow Jones dates back to 1927.

These considerations are summarized by Table 4.7, where the strategies’ Sharpe ratios

are about 0.4-0.5, and decline to 0.3 after controlling for index exposure, which is somewhat

higher than for the other indexes. Solvency constraints further reduce the options’ strategy

to a meager 0.1-0.2, even below the index’ performance.

While actual portfolio weights are similar to the other indexes’ strategies (Table B.2), the

options’ strategies are qualitatively different, as it is clear from Figure B.2. Long positions

in calls and puts are virtually absent, while short positions are mostly concentrated on

near-the-money puts and, to a lesser extent, near-the-money calls.

Thus, the large abnormal returns present in the S&P 500 and Nasdaq 100 markets do not

appear in options on the Dow Jones index. In isolation, this phenomenon appears to exempt

such an index from the anomaly. But it does make the anomalies in the other indexes worse:

because the Dow Jones is strongly correlated with the S&P 500 and the Nasdaq, an investor

could use its options to hedge the short options’ positions in the other indexes, potentially

increasing the overall Sharpe and Appraisal ratios even further. Such a development is not

discussed in this paper, which focuses on options’ portfolio optimization on a single index.

5 Conclusion

This paper offers a novel method to construct optimal options’ portfolios that incorporate

the position limits implied by margin requirements, the substantial bid-ask spreads, and the

limited depth typical of the options’ market.

Position limits significantly distort optimal portfolio weights, spreading otherwise con-
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Figure 4.4: Performance of mean-variance optimal option strategies with (dashed) or without
(solid) the solvency constraint, and position limits L = 3% (blue), L = 5% (green) and
L = 10% (red) for risk-aversion γ = 3, compared to the performance of the index (black),
the Dow Jones Industrial Average.

centrated options’ positions across several strike prices, and mitigating the risks of spurious

long-short positions in similar contracts. Overall, the effect of position limits is akin to

that of a shrinkage estimation of the covariance matrix, combined with an increase in risk

aversion.

An out-of-sample empirical study on twenty-five years of options’ investments shows that

typical options portfolios entail frequent small gains with rare large losses, similar to the risk

profile of insurers.
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A Appendix

Lemma A.1. Let µ ̸= 0 and rank(Σ) ≥ 1. The function

κ(λ) := µ⊤(γΣ + λI)−2µ, λ > 0

is strictly positive, strictly decreasing, and it satisfies

lim
λ→∞

κ(λ) = 0, lim
λ→0

κ(λ) = κ⋆ ∈ (0,∞]. (A.1)

The constraint w⊤w ≤ L2

d
is binding if and only if κ∗ ≥ L2/d. Moreover:

(i) If detΣ > 0, then κ⋆ = µ⊤Σ−2µ > 0.

(ii) If µ ̸∈ R(Σ), then κ⋆ = ∞.

Proof. The function is strictly positive, as for any λ > 0, the inverse of (γΣ+λI) exists, and

µ ̸= 0. Differentiating, we obtain

κ′(t) = −2µ⊤(γΣ + λI)−3µ < 0

for any λ ∈ (0,∞), which proves strict monotonicity and implies the limits in (A.1). Let

now U be an orthogonal matrix such that UDU⊤ = Σ, where D is a diagonal matrix with

decreasing eigenvalues. If Σ is invertible, then clearly κ⋆ = µ⊤Σ−2µ > 0, and we have

(i). To prove (ii), note that, as µ ̸∈ R(Σ), D must be degenerate, such that Djj = 0 for

j = r + 1, . . . , d, where 1 ≤ r = rank(D) < d. µ ̸∈ R(Σ), implies that U⊤µ ̸∈ R(D)16, and

thus there exists r < j ≤ d such that (U⊤µ)j ̸= 0. It follows that

κ⋆ = lim
λ→0

µ⊤U(γD + λI)−2U⊤µ = lim
λ→0

(
(U⊤µ)j

λ

)2

= ∞.

16In fact, µ ∈ R(Σ) if and only if U⊤µ ∈ R(D). This follows from the fact that µ = Σξ for some ξ ∈ Rd

implies that U⊤µ = Dη, where η = U⊤ξ (and vice versa).
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Proof of Proposition 2.1. By rescaling the problem, the constraint is binding if the equation

µ⊤
(
γΣL/

√
d+ λI

)−2

µ = 1

has a solution. By Lemma A.1 (strict monotonicity of κ and the first limit in (A.1)) it is

enough to find λ > 0 such that

µ⊤
(
γΣL/

√
d+ λI

)−2

µ > 1.

As

µ⊤
(
γΣL/

√
d+ λI

)−2

µ ≥ ∥µ∥2

(γσ∞L/
√
d+ λ)2

and by assumption (2.4), the right hand side becomes greater than 1 for sufficiently small

λ.

Lemma A.2. If w̄ maximizes (2.5) or (2.6), then either w̄2k−1 = 0 or w̄2k = 0 for all

1 ≤ k ≤ d.

Proof of Lemma A.2. The return R+ from a long position equals

R+ =
X

A
− 1,

where X is the option payoff and A > 0 is the ask price. Denoting by 1 − ε the bid-to-ask

ratio, the return on the short position is

R− =
X

A(1− ε)
− 1.

Without loss of generality, we consider the first option only. The optimal portfolio can

be written as w̄ := (w+, w−, w⊥) ∈ R2d
+ . Its excess return is a random variable of the form

R− r = w+(R+ − r) + w−(R− − r) + w⊤
⊥(R⊥ − r).

Suppose, by contradiction, that the optimal portfolio wδ(L) satisfies w+ > 0 and w− > 0.

For δ < min(w+, w−) consider the alternative strategy

wδ(L) = (w+ − δ, w− − (1− ε)δ, w⊥). (A.2)
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Its excess return is of the form

Rδ − r = R− r + δε(r + 1), (A.3)

and thus the expected excess return for any choice δ < min(w+, w−) is greater than the excess

return of the optimal strategy. Furthermore, the variance of returns of the two strategies

coincide by equation (A.3). The position limit also decreases because

w⊤
δ wδ = (w+ − δ)2 + (w− − δ(1− ε))2 + w⊤

⊥w⊥ < w2
+ + w2

− + w⊤
⊥w⊥ = w⊤w.

Thus, the alternative portfolio wδ outperforms w̄, which contradicts its optimality. Whence

either w+ = 0 or w− = 0.

In view of equation (A.2) in the proof, the same conclusion also holds for the alternative

objective (2.6).

Proof of Proposition 2.2. Rescaling the problem in terms of the weights v := w̄
L/

√
d
, the

problem is equivalent to maximizing

v⊤µ− γL

2
√
d
v⊤Σv (A.4)

subject to

v ≥ 0, ∥v∥ ≤ 1. (A.5)

As the optimizer depends continuously on the parameters, the solutions v = v(L) converge,

as L → 0, to the solution of

max
v

v⊤µ, s.t. v ≥ 0, ∥v∥ ≤ 1.

The limit solution is thus

lim
L→0

v(L) =
µ+

∥µ+∥
,

whence (2.7) follows upon rescaling. This proves the second part of the Proposition.

It remains to show that for sufficiently small L, the constraints become binding.

By assumption, there exists 1 ≤ i ≤ 2d for which µi > 0. (That is, a long or short option

position has strictly positive excess return.) Let w(L) be the optimal strategy satisfying the
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position limit constraint, and thus satisfying (A.4)–(A.5). By the first part of the proof,

w(0) = (w1, . . . , w2d) has positive weights wj > 0, for every 1 ≤ j ≤ 2d, where µj > 0. We

claim that this is a robust result, in the sense that for all sufficiently small L, the weight

w(L) = µ+ × κ(L), where κ(L) is a strictly positive 2d-vector. To prove this claim, suppose,

for a contradiction, that the optimal solution w = w(L) satisfies wj > 0 for some j, where

µj = 0. Let v be the alternative strategy defined by vj = wj, except for vi = 0. Then, the

difference between the objective evaluated at v and the maximum is

wj

(
|µj|+ γ

(
L√
d
Σw

)
j

)
≥ wj

(
|µj| − γ

L√
d
∥Σ∥

)
> 0,

where the last inequality holds provided that

L <
√
d
min{|µj| : µj ̸= 0}

γ∥Σ∥

and ∥v∥ < ∥w∥ ≤ 1, which contradicts the optimality of w(L).

We conclude that for sufficiently small L, the non-negativity constraints for the weights is

redundant. Consider the reduced problem, where one strikes all indices j where wj = 0, and

uses the symbol ⋆ for such reduced quantities. This amounts to trade only those assets that

have a strictly positive excess return. Since now µ⋆ > 0, the goal is equivalent to maximize

v⊤µ− γ

2
v⊤

L√
d
Σ⋆v −

λ

2
v⊤v

for v = v(λ) ≥ 0 (using the Lagrange multiplier λ). Because, without non-negativity con-

straint, the problem has the explicit solution

v =
1

γ

(
L√
d
Σ +

λ

γ
I

)−1

µ⋆,

it follows that v ≥ 0 for sufficiently small L (e.g., using the Neumann series). Therefore, it

also solves the constrained problem v ≥ 0 and the original problem (2.5), i.e., v = w⋆. Thus,

for sufficiently small L, the map λ 7→ ∥vλ∥ is strictly decreasing in λ, and Proposition 2.1

completes the proof.
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Proof of Proposition 3.1. Because the error εt,T in (3.3) is uncorrelated with the estimator

log σ̂t,T , it follows that

Var(log σt,T ) = Var(log σ̂t,T ) + Var(εt,T )

Thus, the relation

σ2
t,T = σ̂2

t,T e
2εt,T

implies that, as εt,T is conditionally normal with zero mean,

E[σ2
t,T |σ̂t,T ] = σ̂2

t,TE[e2εt,T |σ̂t,T ] = e2Var(εt,T |σ̂t,T ).

As εt,T is conditionally homoskedastic, Var(εt,T |σ̂t,T ) = Var(εt,T ), and by the definition, the

R2 of the regression of log σt,T on log σ̂t,T equals

R2 =
Var(log σ̂t,T )

Var(log σt,T )
= 1− Var(εt,T )

Var(log σt,T )

whence Var(εt,T ) = (1−R2)Var(log σt,T ), and the claim follows.

B Additional Tables
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Figure B.1: Options’ strategies in the Nasdaq 100 index (NDX) on December 2020. Each
panel displays portfolio weights (vertical) against the option delta of each contract (hori-
zontal), for long puts (top left), long calls (top right), short puts (bottom left), and short
calls (bottom right). (a): Small-position approximation, scaled for L = 3%; (b), (c), (d):
Unconstrained strategies for L = 3%, 5%, 10%, respectively; (e), (f): Solvency constrained
strategies for L = 5%, 10%, respectively. Risk aversion γ = 3 in all strategies.
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(f) Solvency Constrained, L = 10%

Figure B.2: Options’ strategies in the Dow Jones Industrial Average (DJX). Each panel
displays portfolio weights (vertical) against the option delta of each contract (horizontal),
for long puts (top left), long calls (top right), short puts (bottom left), and short calls (bottom
right). (a): Small-position approximation, scaled for L = 3%; (b), (c), (d): Unconstrained
strategies for L = 3%, 5%, 10%, respectively; (e), (f): Solvency constrained strategies for
L = 5%, 10%, respectively. Risk aversion γ = 3 in all strategies.

35



γ L µ σ Sharpe Alpha Beta Hedged σ Appraisal
1996 - 2000

1 3% 13.65% 4.45% 3.07 14.26% -0.06 4.37% 3.26
3 3% 11.77% 5.04% 2.34 12.85% -0.10 4.82% 2.67
5 3% 10.37% 5.12% 2.03 11.68% -0.12 4.80% 2.43
1 5% 21.90% 8.03% 2.73 23.32% -0.13 7.80% 2.99
3 5% 17.43% 8.67% 2.01 19.65% -0.21 8.13% 2.42
5 5% 14.81% 8.33% 1.78 17.26% -0.23 7.64% 2.26
1 10% 38.86% 17.30% 2.25 42.77% -0.36 16.46% 2.60
3 10% 27.84% 16.28% 1.71 32.84% -0.46 14.79% 2.22
5 10% 22.79% 14.76% 1.54 27.91% -0.47 13.02% 2.14

SPX Index 10.80% 14.68% 0.74
2001 - 2005

1 3% 4.33% 9.71% 0.45 3.97% 0.28 8.19% 0.49
3 3% 3.76% 9.16% 0.41 3.43% 0.25 7.85% 0.44
5 3% 3.33% 8.10% 0.41 3.05% 0.21 7.04% 0.43
1 5% 7.09% 16.37% 0.43 6.49% 0.46 13.89% 0.47
3 5% 5.66% 13.68% 0.41 5.19% 0.36 11.88% 0.44
5 5% 4.87% 11.65% 0.42 4.49% 0.29 10.24% 0.44
1 10% 12.60% 30.20% 0.42 11.54% 0.81 25.98% 0.44
3 10% 9.34% 21.85% 0.43 8.63% 0.54 19.30% 0.45
5 10% 8.40% 17.33% 0.48 7.86% 0.41 15.50% 0.51

SPX Index 1.31% 18.91% 0.07
2006 - 2010

1 3% 8.43% 5.94% 1.42 8.59% 0.16 5.14% 1.67
3 3% 8.61% 4.98% 1.73 8.74% 0.13 4.32% 2.02
5 3% 7.85% 4.61% 1.70 7.97% 0.12 4.05% 1.97
1 5% 15.16% 9.53% 1.59 15.42% 0.25 8.26% 1.87
3 5% 13.69% 7.79% 1.76 13.89% 0.20 6.83% 2.03
5 5% 12.26% 6.84% 1.79 12.43% 0.17 6.07% 2.05
1 10% 29.63% 17.22% 1.72 30.09% 0.44 15.02% 2.00
3 10% 23.50% 13.21% 1.78 23.83% 0.31 11.78% 2.02
5 10% 20.20% 11.20% 1.80 20.46% 0.25 10.13% 2.02

SPX Index -1.04% 19.06% -0.05

Table 4.3: Portfolios of options’ on the S&P 500 index. Performance over the five-year
periods 1996-2000, 2001-2005, and 2006-2010. The last row of each panel reports the index’
performance over that period.
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γ L µ σ Sharpe Alpha Beta Hedged σ Appraisal
2011 - 2015

1 3% 19.10% 10.72% 1.78 15.75% 0.37 9.32% 1.69
3 3% 16.81% 8.19% 2.05 14.08% 0.30 6.97% 2.02
5 3% 14.99% 6.57% 2.28 12.73% 0.25 5.52% 2.31
1 5% 32.48% 18.12% 1.79 26.77% 0.63 15.71% 1.70
3 5% 26.23% 11.01% 2.38 22.45% 0.42 9.26% 2.43
5 5% 23.51% 8.39% 2.80 20.73% 0.31 7.15% 2.90
1 10% 58.27% 27.49% 2.12 48.93% 1.03 23.19% 2.11
3 10% 46.10% 15.43% 2.99 41.18% 0.54 13.32% 3.09
5 10% 41.75% 11.90% 3.51 38.47% 0.36 10.72% 3.59

SPX Index 9.04% 14.29% 0.63
2016 - 2020

1 3% 8.29% 15.84% 0.52 0.10% 0.51 11.43% 0.01
3 3% 8.45% 15.06% 0.56 0.99% 0.47 11.29% 0.09
5 3% 9.81% 10.62% 0.92 4.73% 0.32 8.16% 0.58
1 5% 14.16% 34.18% 0.41 -3.14% 1.08 25.16% -0.12
3 5% 19.62% 18.72% 1.05 10.68% 0.56 14.42% 0.74
5 5% 21.73% 12.02% 1.81 16.36% 0.34 9.64% 1.70
1 10% 36.29% 51.80% 0.70 10.91% 1.59 39.14% 0.28
3 10% 45.76% 20.94% 2.19 36.76% 0.56 17.12% 2.15
5 10% 46.10% 14.75% 3.13 40.48% 0.35 12.70% 3.19

SPX Index 16.00% 21.40% 0.75

Table 4.4: Portfolios of options’ on the S&P 500 index. Performance over the five-year
periods 2011-2015 and 2016-2020. The last row of each panel reports the index’ performance
over that period.
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γ L L̂e, Unconstrained L̂e, Solvency Constrained
1 3% 1.9% (0.3%) 1.8% (0.3%)
3 3% 1.8% (0.3%) 1.7% (0.3%)
5 3% 1.7% (0.3%) 1.6% (0.4%)
1 5% 3.2% (0.4%) 2.9% (0.5%)
3 5% 3.0% (0.5%) 2.8% (0.6%)
5 5% 2.8% (0.6%) 2.6% (0.6%)
1 10% 6.3% (1.0%) 5.5% (1.1%)
3 10% 5.5% (1.2%) 5.0% (1.2%)
5 10% 5.0% (1.2%) 4.7% (1.2%)

Table 4.5: Average position L̂e (standard deviation in brackets), for unconstrained (third
column) and solvency constrained (fourth column) options’ portfolios on the S&P 500 index.
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γ L µ σ Sharpe Alpha Beta Hedged σ Appraisal
Unconstrained

1 3% 12.27% 11.61% 1.06 8.72% 0.26 9.70% 0.90
3 3% 12.35% 8.65% 1.43 9.46% 0.22 6.91% 1.37
5 3% 11.40% 6.80% 1.68 9.06% 0.17 5.35% 1.69
1 5% 22.23% 18.83% 1.18 16.32% 0.44 15.55% 1.05
3 5% 19.60% 11.56% 1.70 15.63% 0.30 9.08% 1.72
5 5% 17.53% 9.02% 1.94 14.50% 0.23 7.19% 2.02
1 10% 42.43% 28.38% 1.49 32.81% 0.71 22.50% 1.46
3 10% 33.95% 16.59% 2.05 28.49% 0.41 13.37% 2.13
5 10% 29.71% 12.84% 2.31 25.80% 0.29 10.74% 2.40

Solvency Constrained
1 3% 11.68% 11.75% 0.99 8.08% 0.27 9.79% 0.82
3 3% 11.85% 8.79% 1.35 8.89% 0.22 6.99% 1.27
5 3% 11.19% 6.86% 1.63 8.83% 0.18 5.38% 1.64
1 5% 19.52% 19.17% 1.02 13.47% 0.45 15.77% 0.85
3 5% 17.97% 11.75% 1.53 13.91% 0.30 9.20% 1.51
5 5% 16.49% 9.04% 1.82 13.43% 0.23 7.17% 1.87
1 10% 33.91% 28.80% 1.18 24.09% 0.73 22.75% 1.06
3 10% 28.94% 16.46% 1.76 23.40% 0.41 13.11% 1.79
5 10% 26.42% 12.68% 2.08 22.44% 0.30 10.47% 2.14

Table 4.6: Portfolios of options’ on the Nasdaq 100 index (NDX). The panels show the
performance of mean-variance optimal strategies without (top) and with (bottom) the sol-
vency constraint. The Nasdaq 100 index has annualized average excess returns 13.45% and
volatility of 24.19% (hence a Sharpe ratio of 0.56).
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γ L µ σ Sharpe Alpha Beta Hedged σ Appraisal
Unconstrained

1 3% 6.66% 16.09% 0.41 3.73% 0.49 13.38% 0.28
3 3% 5.64% 11.80% 0.48 3.43% 0.37 9.70% 0.35
5 3% 4.58% 9.96% 0.46 2.77% 0.30 8.31% 0.33
1 5% 10.98% 23.47% 0.47 6.61% 0.74 19.30% 0.34
3 5% 7.70% 16.72% 0.46 4.68% 0.51 13.95% 0.34
5 5% 5.79% 13.69% 0.42 3.47% 0.39 11.72% 0.30
1 10% 18.48% 38.26% 0.48 11.36% 1.20 31.50% 0.36
3 10% 10.42% 24.87% 0.42 6.34% 0.69 21.53% 0.29
5 10% 7.86% 17.72% 0.44 5.30% 0.43 15.91% 0.33

Solvency Constrained
1 3% 4.24% 16.41% 0.26 1.15% 0.52 13.43% 0.09
3 3% 4.30% 11.99% 0.36 2.02% 0.38 9.77% 0.21
5 3% 3.62% 10.08% 0.36 1.77% 0.31 8.35% 0.21
1 5% 6.34% 21.73% 0.29 2.13% 0.71 17.55% 0.12
3 5% 5.11% 16.95% 0.30 1.98% 0.53 13.99% 0.14
5 5% 4.06% 13.81% 0.29 1.67% 0.40 11.73% 0.14
1 10% 8.85% 31.64% 0.28 3.02% 0.98 26.17% 0.12
3 10% 5.42% 24.55% 0.22 1.24% 0.70 20.98% 0.06
5 10% 4.36% 17.97% 0.24 1.70% 0.45 16.03% 0.11

Table 4.7: Trading options on Dow Jones Industrial Average (DJX). The panels show
the performance of mean-variance optimal strategies without (top) and with (bottom) the
solvency constraint. The Dow Jones Industrial Average has annualized average excess returns
5.94% and a volatility of 18.13% (hence a Sharpe ratio of 0.33).
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γ L L̂e, Unconstrained L̂e, Solvency Constrained
1 3% 1.9% (0.3%) 1.9% (0.3%)
3 3% 1.9% (0.3%) 1.8% (0.3%)
5 3% 1.7% (0.4%) 1.7% (0.4%)
1 5% 3.3% (0.5%) 3.2% (0.5%)
3 5% 3.0% (0.6%) 2.9% (0.6%)
5 5% 2.7% (0.7%) 2.7% (0.7%)
1 10% 6.4% (1.1%) 6.0% (1.1%)
3 10% 5.2% (1.4%) 4.9% (1.3%)
5 10% 4.6% (1.4%) 4.4% (1.4%)

Table B.1: Average position L̂e (standard deviation in brackets), for unconstrained (third
column) and solvency constrained (fourth column) options’ portfolios on the Nasdaq 100
index (NDX).

γ L L̂e, Unconstrained L̂e, Solvency Constrained
1 3% 1.9% (0.3%) 1.8% (0.3%)
3 3% 1.8% (0.3%) 1.7% (0.3%)
5 3% 1.6% (0.3%) 1.6% (0.3%)
1 5% 3.1% (0.5%) 2.9% (0.5%)
3 5% 2.8% (0.6%) 2.7% (0.6%)
5 5% 2.5% (0.6%) 2.4% (0.6%)
1 10% 5.9% (1.1%) 5.4% (1.1%)
3 10% 4.8% (1.3%) 4.5% (1.3%)
5 10% 4.0% (1.3%) 3.8% (1.3%)

Table B.2: Average position L̂e (standard deviation in brackets), for unconstrained (third
column) and solvency constrained (fourth column) options’ portfolios on the Dow Jones
Industrial Average (DJX).
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