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Abstract

We introduce a novel measure of weather risk implied from weather options�contracts.

WIVOL captures risks of future temperature oscillations, increasing with climate un-

certainty about physical events and regulatory policies. We �nd that shocks to weather

volatility increase the likelihood of unexpected costs: a one-standard deviation change

in WIVOL increases quarterly operating costs by 2%, suggesting that �rms, on av-

erage, do not fully hedge exposures to weather risks. We estimate returns�exposure

to WIVOL innovations and show that more negatively exposed �rms are valued at a

discount, with investors demanding higher compensations to hold these stocks. Firms�

exposure to local but not foreign WIVOL predicts returns, which con�rms the geo-

graphic nature of weather risks shocks.
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1 Introduction

The link between �nancial markets and extreme events stemming from climate related risks

has been at the forefront in the news and academic community. Whether these shocks arise

from physical damages caused by hurricanes or regulatory policies to transition to a less

polluting economy, climate change is increasingly associated to the performance of di¤erent

asset classes.

If climate change presents a material risk for �rms� cash-�ows and stock prices, then

studying their exposure to weather related shocks presents a major challenge not only for

the �rms themselves, but also for investors and policy makers. This task is far from trivial.

Existing analyses rely on �rms�disclosures concerning their corporate policies towards an

environmentally friendlier economy. The caveat is that these disclosures are mostly voluntary

and can be purposefully misleading, as the Securities and Exchange Commission (SEC)

notes. According to the SEC, few companies discuss about climate change and its more

than a decade old guideline is in the process of being updated. Moreover, Morningstar notes

that most companies do not disclose emissions data.1 An alternative approach focuses on

physical risks, which are based on historical weather events that can be rare and seasonal.

For example, extreme heat events that are most likely to occur, and matter, during the

summer months. Meanwhile, the primary objective is for companies to assess and mitigate

their exposure to climate risk throughout the entire year.

In this paper, we adopt a fresh approach to examine climate risk. Rather than focusing

only on ex-post extreme weather events, we explore the relevance of ex-ante weather volatility

risk for �nancial markets. Our primary interest is in understanding investors�expectations

1�SEC Opens Review of Corporate Climate Change Disclosures,�Wall Street Journal, February 24, 2021;
�SEC to Hunt for Climate-Friendly Marketing That Misleads Investors,� Wall Street Journal, March 4,
2021; �Carbon Emissions Data for Investors: Closing the Reporting Gap and Future-Proo�ng Estimations,�
Morningstar Sustainalytics, February 8, 2023.
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about future temperature �uctuations and the extent to which �rms are exposed to this risk.

Weather volatility risk can signi�cantly impact �rms�operating performance. Unusual

temperature patterns, such as warmer-than-normal summers or colder-than-normal winters,

can result in unexpected operating costs due to heightened energy demand, disruptions in

distribution channels, and decreased labor and capital productivity. Abnormal temperatures

can in�uence local power plants, leading to service outages that add to the disruptions faced

by these �rms (Shive (2012)). Extreme temperatures a¤ect �rms�performance by nega-

tively impacting employees�mental and physical health, consequently a¤ecting creativity,

productivity and decision making abilities (Addoum, Ng and Ortiz-Bobea (2023)). Even

less extreme temperature �uctuations pose a non-trivial risk for companies. For example,

Hewlett Packard Enterprise�s CEO Antonio Neri highlighted that HPE �projected scenarios

for non-extreme weather events, �nding than even small temperature increases (below 2 de-

grees Celsius) are important and could cost $200 million to the company�.2 Buildings also

play a major role in climate change, contributing to approximately one-third of global energy

consumption and one-quarter of carbon dioxide (CO2) emissions. Heating Ventilation and

Air Conditioning (HVAC) systems concentrate 38% of buildings�energy consumption, with

nearly half of it attributed to non-residential buildings (Gonzalez-Torres, Perez-Lombard,

Coronel, Maestre and Da (2022)).

We present a new approach to measure weather risk, which encompasses both extreme

and non-extreme weather events. We use weather option prices to estimate the time se-

ries for the implied weather volatility, which we denote WIVOL. Option contracts provide

unique insights into investors�ex-ante beliefs on weather risk. The weather implied volatil-

ity (WIVOL) is estimated using weather option contracts traded at the Chicago Mercantile

2�Companies�Climate Risks Are Often Unknown. Here�s How One Opened Up,�Wall Street Journal,
March 14, 2021
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Exchange Group Inc. (CME), whose payo¤s depend on daily deviations (or degree-days)

in temperature from 65 degrees Fahrenheit. The 65F benchmark is based on industry con-

ventions for commercial buildings�management and considered the most comfortable for

normal operations. To account for seasonal variations in temperature, the contracts are

further classi�ed into heating degree-days (HDD) and cooling degree-days (CDD) options.

Intuitively, HDD measure the additional heating �rms need to maintain normal operations

in colder days during winter months and CDD measure the additional cooling �rms need to

maintain normal operations in warmer days during summer months. Unlike recent work by

Shlenker and Taylor (2021) using weather futures prices to study trends related to global

warming through CDD futures contracts, our research delves into the signi�cance of weather

risks. We estimate investors�expectations about future temperature volatility, implied by

option prices, and test the exposure of �rms to this forward-looking measure of weather risk.

Since temperature is a geographic based measure, we focus our analysis for the city of New

York, for which option contracts�temperatures are recorded at the weather station of the

LaGuardia airport.

From January 2005 to July 2021, we estimate the weather option implied volatility

(WIVOL) and uncover signi�cant �uctuations over time. WIVOL exhibits varying pat-

terns across di¤erent seasons and years, increasing at the onset of heightened uncertainty on

physical and transition events. For example, WIVOL increases with the advent of Hurricane

Sandy in 2012 but also during times of abnormally colder temperatures such as in early 2014

and 2021. WIVOL also changes with consistently higher than expected temperatures with

no risk of physical damages, such as in late 2010. Notably, our �ndings indicate an upward

shift in WIVOL around mid-2020, which coincides with increased concern from regulators

about climate risks (see, for instance, Ramelli, Wagner, Zeckhauser and Ziegler (2021)).

These �ndings suggest WIVOL seems to capture not only market expectations about physi-
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cal risk events but also re�ects the growing concerns about climate-related risks from federal

agencies and policy makers.

We then utilize WIVOL to examine how �rms are in�uenced by market expectations

of weather risk. Speci�cally, we estimate the exposure (betas) of �rms to innovations in

WIVOL and analyze their predictive power for these �rms� future performance. The un-

derlying hypothesis is that �rms with more negative exposure to WIVOL innovations are

valued at a discount. The reasoning behind this is that if expectations of larger temperature

�uctuations lead to a higher risk of unexpected costs for the company, then forward-looking

investors might demand compensation for holding stocks with more negative WIVOL beta.

Consequently, this gives rise to a negative relationship between a �rm�s beta and its future

stock return. To assess the signi�cance of weather volatility risk, we conduct our empirical

analysis using the set of �rms headquartered in the city of New York.

First, we investigate the impact of WIVOL shocks on �rms�operating costs. Our analysis

reveals signi�cant results: a one-standard deviation increase in WIVOL corresponds to a 2%

rise in the quarterly growth rate of operating costs. This �nding suggests that, on average,

�rms do not fully hedge their exposures to temperature volatility. Furthermore, we document

that this impact is almost twice as pronounced for �rms with more negative exposure to

WIVOL, which con�rms our initial hypothesis. Additionally, our �ndings reveal a tendency

among managers to shift investors�focus towards �rms�vulnerability to climate change risks.

This inclination becomes evident when WIVOL shocks lead to higher operating costs, as

managers seem to blame it on the weather and attribute these challenges to weather-related

events.

Second, we test the predictive power of WIVOL beta on stock returns. To this end,

we form portfolios of stocks based on their previous month betas. Employing a long-short
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strategy that buys stocks with the most negative previous month WIVOL betas and sells

those with the most positive, we achieve risk-adjusted annualized returns ranging from 4.3%

to 5.4%. Additionally, we test the return e¤ect of WIVOL beta at the individual �rm

level using Fama MacBeth regressions and �nd a signi�cant negative relation between �rms�

betas and their future stock returns. In all, and since stock prices are determined by ex-

ante discounted cash-�ows, these results suggest that the option implied weather volatility

(WIVOL) contains value-relevant information that is not captured by historical counterparts.

By extracting expectations of future weather volatility, instead of relying on realized ex-post

equivalent measures, investors more e¤ectively estimate the degree of �rms� exposure to

weather risks.

It is worth noting that strategies hedging climate risk are largely based on signals derived

from extreme weather events, which are more likely to be associated with the summer months

(e.g., extreme heatwaves, hurricanes). In light of this, we investigate if the performance of

the WIVOL beta strategy is actually, and only, a summer a¤air. One of the advantages of

the WIVOL beta strategy is that it does not depend on the occurrence of extreme events

that are likely seasonal and infrequent. For example, strategies based on extreme heat

events that are likely to be of consideration during the summer can make the rebalancing of

portfolios more challenging. Unlike such strategies, the WIVOL beta approach is available

year-round, and allows for rebalancing every month of the year. After computing average

returns for each month of the year using the beta long-short strategy, our analysis con�rms

that the performance of the WIVOL beta strategy is not limited to the summer months.

Interestingly, we �nd that December yields the highest return, followed by the month of

April. This observation suggests that the WIVOL beta strategy�s e¤ectiveness is not con�ned

to a speci�c season and can be bene�cial across various months of the year.

Finally, and given that WIVOL is a geographic based measure, we expect local �rms
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to exhibit stronger exposure than non-local �rms based in a di¤erent state. To explore the

local aspect of WIVOL, we estimate the option implied volatility of weather for the Dallas-

Fort-Worth metroplex, with temperatures recorded at the weather station in the Dallas

Fort-Worth International airport. We �nd that, as in the case of New York, �rms based in

the Dallas Fort-Worth area are signi�cantly exposed to innovations in the WIVOL of Dallas

Forth-Worth. Greater negative exposure of �rms to WIVOL predicts higher future returns,

validating our initial hypothesis. Interestingly, our second set of results con�rm the local

nature of weather risks. When we estimate New York �rms�betas with respect innovations

in the WIVOL of Dallas Fort-Worth, the predictability of these betas is statistically insignif-

icant. Likewise, estimating Dallas Fort-Worth based �rms�exposure to innovations in the

WIVOL of New York leads to no predictability of future returns. This outcome indicates that

�rms are indeed signi�cantly exposed to uncertainty about weather volatility risks speci�c

to the city in which they are based.

The structure of the papers is as follows. Section 2 discusses the literature related to

the paper. Section 3 presents the main data sets used in the analysis. Section 4 presents

the weather option implied volatility (WIVOL). Section 5 discusses the empirical results.

Section 6 concludes.

2 Related Literature

While the topic on the interactions between climate events and �nancial markets is relatively

new, there has been a great amount of interest and research in the �eld. Giglio, Kelly and

Stroebel (2021) and Hong, Karolyi and Scheinkman (2020) provide an excellent review on

this literature. We next describe the studies most related to our work and then discuss our

contribution.
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A growing literature investigates the exposure of di¤erent asset classes to climate risks.

The asset classes include stocks, municipal and corporate bonds and real estate, while the

climate risks considered are physical risks, transition risks or a combination of both. To

determine the variable of interest governing these risks dynamics, the literature uses text-

based techniques (e.g., �nancial statements, news articles, emissions disclosures) or historical

extreme events (e.g., extreme heat, hurricanes, sea level rise).

Most studies �nd substantial e¤ects of climate risk on investors�decisions and asset re-

turns. Engle, Giglio, Kelly, Lee and Stroebel (2020) develop a text-based index using climate

change news from the Wall Street Journal and �nd that ESG friendly stocks outperform with

news coverage. Huynh and Xia (2021) �nd that this index predicts the cross-section of cor-

porate bonds returns. Acharya, Johnson, Sundaresan and Tomunen (2022) �nd that several

asset classes are exposed heat shocks. Goldsmith-Pinkham, Gustafson, Lewis and Schwert

(2023) document the signi�cant exposure of municipal bonds to sea level rise. Choi, Gao and

Jiang (2020) use Google news search to �nd that, when temperature levels are abnormally

high, investors pay more attention to global warming and stocks disclosing high levels of CO2

emissions underperform. Bolton and Kacperczyk (2021) use �rms�voluntary disclosures of

CO2 emissions and document that more polluting �rms earn higher future returns, as they

are more exposed to regulatory risks, and consistent with the �ndings of Hsu, Li and Tsou

(2023). Alekseev, Giglio, Maingi, Selgrad and Stroebel (2022) combine extreme heat shocks

with managers�SEC disclosures to determine the stocks to buy and sell. Sautner, van Lent,

Vilkov and Zhang (2023) also develop a text-based approach to determine �rms�exposure

to climate change based on managers earnings calls disclosures. Firms�risk is also impacted

by climate change. Ilhan, Sautner and Vilkov (2021) �nd that �rms�risk increase with CO2

emissions, while Kruttli, Roth Tran and Watugala (2023) document that hurricanes also

induce greater uncertainty on �rms�returns.
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Our study makes the following contributions to the literature on climate risk. First,

instead of extreme weather risk, we study the impact of innovations to temperature volatility

on �rms. We �nd that an increase in the likelihood of observing temperatures colder than

expected in the winter or warmer than expected in the summer leads to unexpected costs for

the �rm and it ultimately impacts its performance. Second, we introduce a novel measure

of weather risk. We estimate the time series for the volatility of temperature implied by

weather option prices, which we denote WIVOL. We �nd that �rms with more negative

exposure to WIVOL exhibit higher future returns. Third, we study, and con�rm, the local

nature of weather volatility. We �nd that �rms are exposed to the volatility of weather in the

area in which they are based only, a result that highlights the importance in distinguishing

between global and local weather risk.

3 Data and Methodologies

We obtain data on weather derivatives from the Chicago Mercantile Exchange Group In-

corporated (CME). CME weather derivatives are exchange-traded contracts whose payo¤

depends on the evolution of a weather-related variable for a speci�c geographic location and

period of time. The contracts are in the form of futures and options on futures, while the

weather variable is an index based on daily temperature.3 We next de�ne the variables used

in the computation of the derivatives�payo¤.

The daily temperature (in Fahrenheit degrees) is measured for a speci�c weather station

and the weather index is in degree-days, which is the daily temperature deviation from

65 Fahrenheit degrees. We consider two degree-days cases. Heating degree-days (HDD)

measures the deviation below 65 degrees, while cooling degree-days (CDD) measures the

3Alternative weather variables include rainfall, snowfall and frost.
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deviation above 65 degrees. Intuitively, HDD measure the additional heating �rms need to

maintain normal operations during colder days (below 65F). CDD measure the additional

cooling �rms need to maintain normal operations during warmer days (over 65F).

Option contracts written on futures contracts are based on the degree-days index, and so

is their strike price. The futures contracts are written on the cumulative degrees days over

a speci�c period of time. HDD call and put options payo¤ with strike price K and with T

days to maturity respectively take the form

CHDDT = max

 
TX
t=1

max (65� Ft; 0)�K; 0
!

PHDDT = max

 
K �

TX
t=1

max (65� Ft; 0) ; 0
!

Likewise, CDD call and put options payo¤with strike price K and with T days to maturity

respectively take the form

CCDDT = max

 
TX
t=1

max (Ft � 65; 0)�K; 0
!

PCDDT = max

 
K �

TX
t=1

max (Ft � 65; 0) ; 0
!

We focus on monthly HDD and CDD contracts, for which both futures and options on

futures expire on the second business day after the futures contract month. The CME lists

HDD contracts for the months of November, December, January, February and March plus

the transition months of October and April. CDD contracts are listed for the months of May,

June, July, August and September plus the transition months of October and April. For

each trading day, we collect data on the contract expiration date, option price, futures price,

strike price and option implied volatility. Using these inputs and U.S. Treasury bill rates,
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we con�rm the contracts�option implied volatility following Black (1976) and discard obser-

vations violating the put-call parity and outside the 0-200 percent range (see, for example,

Goyal and Saretto (2009) and Chabi-Yo, Doshi and Zurita (2023)).

To study market expectations of localized weather volatility, we focus our analysis on

future weather oscillations for the city of New York given that it represents the most liquid

contract (Schlenker and Taylor (2021)). Therefore, the degree-days are with respect to the

Weather Bureau Army station located at the LaGuardia airport (WBAN 14732). In order

to generate a time series for the monthly weather option implied volatility, we utilize option

contracts that are at-the-money and with maturity closest to 30 days. In addition, we

compute the average implied volatility between HDD and CDD contracts for the transition

months of October and April. We follow this procedure for each day from January 2, 2005 to

July 31, 2021, and then take the monthly average. The resulting variable is the one-month,

at-the-money, weather option implied volatility (WIVOL) that we discuss in next Section.

Data with respect to �rms�is obtained from CRSP and Compustat. We collect monthly

observations on �rms�stock price, market capitalization and corporate headquarter location

(matching the �rm�s city, state and zip code) from CRSP. We collect quarterly accounting

data from Compustat. For the period between January 2005 to July 2021, the sample

contains 2,669 New York based �rms, with an average (median) of 656 (651) �rms per

month. We discard stocks with a price per share less than $5 and �rms with less than 24

monthly returns.
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4 Weather Option Implied Volatility

Figure 1 plots the time series for WIVOL, the weather option implied volatility based on

the temperature recorded at the LaGuardia airport in the city New York. The sample

period is from January 2005 to July 2021. To construct the time series, we use closest to

one month to maturity option contracts that are at-the-money. The time series reports the

average monthly observation from daily traded contracts. The series exhibits an average

of 26.1% (median of 23%) implied volatility of weather throughout the sample. When we

contrast WIVOL with other risks measures, the �ndings suggests it is related to weather

speci�c risks, which are location speci�c in nature. For example, we �nd that the correlation

between WIVOL and aggregate stock market volatility index VIX is negative and equal to

-4.5%. In addition, WIVOL correlation with the global warming news index of Engle, Giglio,

Kelly, Lee and Stroebel (2020) is also negative and equal to -7.7%.

[Insert Figure 1 Here]

The time series exhibits substantial time variation. WIVOL, given its link to the second

distributional moment of a random variable, captures expected future oscillations due to

both large and small shocks. We observe major oscillations in times of uncertainty about

hurricanes in the summer season and snowstorms in the winter season. In 2005, while New

York was not directly impacted by major developments in the Atlantic ocean, including

Hurricane Katrina, local weather developments impacted WIVOL. June of 2005 was des-

ignated the warmest June on record, with WIVOL reaching 58%. October 2005 was the

wettest month on record, with almost double the amount of rain recorded in any October

and causing local �ooding. WIVOL climbed to 52.9%.
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In 2010, WIVOL peaked to 80.4% for what would end up being New York�s hottest

summer on record. Interestingly, in this record-breaking season there was no cataclysm that

de�ned the period but a consistently higher than expected temperature. A combination of

record breaking heat combined with a strong backdoor cold front approaching the region

from the northeast helped to provide a very unstable environment. Flooding disrupted New

England, with stretches of Interstate 95, the main route linking Boston to New York, closed

for days. Hurricane Earl generated most of the uncertainty in October 2010 but ultimately

did not impact the area. However, the city Power Authority was criticized for excessive

spending on emergency crews, which led increased power rates for New York buildings.

WIVOL reached its maximum value of 81.7% in September of 2012, preceding the arrival

of hurricane Sandy in the following month. Large parts of the city and surrounding areas

lost electricity for several days as a result of the storm, which killed 43 people in New York

City. Rehse, Riordan, Rottke and Zietz (2019) document that increased uncertainty about

material physical risks like the impact of Hurricane Sandy lowers market liquidity. The

winter of 2014 also generated an increase in WIVOL, with utilities asking customers to cut

power use in early January and natural gas prices soaring as a snowstorm brought freezing

temperatures to the northeast of the country.

We continue to observe time variation throughout the sample, with an upward shift in

mid-2020. The increase in WIVOL can be related to climate policies and regulations for

the city, as the New York State Department of Financial Services urged New York-based

insurance companies to better manage the risks they face from climate change.4 Moreover,

the agency states that it would start asking insurers in 2021 what steps they have taken as

part of its examination process. This local policy event, combined with discussions at the

federal level regarding a stronger stance from regulators towards climate change could have

4�New York Regulator Pushes Insurers on Climate Change,�Wall Street Journal, September 22, 2020.
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impacted WIVOL given the increased demand for hedging climate risks.5 In 2021, WIVOL

drastic increase in February of 2021 is consistent with local and national weather events

during this month, the latter mostly driven by the Texas power crisis caused by the winter

storm. New York experienced one of the snowiest Februaries on record, with the National

Weather Service registering three signi�cant weather events for New York. Winter weather

emergency declaration restricted all non-emergency travel in early February as well as all

�ights cancellation in LaGuardia airport.

Overall, we observe that WIVOL seems to capture future temperature oscillations, with

peaks before or at the onset of important physical weather risks. It also seems to be related

to regulatory or transition risks, as the increased levels from the mid-2020 suggests.

5 Empirical Analysis

In this section, we �rst estimate �rms� exposure to innovations in WIVOL. Second, we

investigate on the impact WIVOL on �rms�future operating performance. Third, we test

�rms�exposure to weather risks as a predictor of their future returns.

5.1 Firms Exposure to WIVOL

We estimate the exposure of �rms to weather option implied volatility innovations (�WIVOL).

Speci�cally, each month t and for each �rm i, we estimate the ��WIV OL of individual stocks

using monthly rolling regressions of excess stock returns on �WIVOL

Ri;t = �i;t + �
�WIV OL
i;t �WIV OLt + �

X
i;tXt + "i;t (5.1)

5A recent survey by Stroebel and Wurgler (2021) �nds that investors identify regulatory risk as the most
important climate risk to business in the short-term.
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where Ri;t is the excess return of �rm i in month t; �WIVOL is the innovation in weather

option implied volatility and X is a set of controls. The controls impose for the loading

��WIV OL to be orthogonal to the stock market excess return and the historical temperature

volatility.6 We use a 36-month window in the estimation of ��WIV OL. The �rst set of betas

are obtained using the sample from January 2005 to December 2007. We then use these

monthly betas to predict stock returns in the following month (January 2008) and repeat

this exercise until July 2021.

5.2 WIVOL and Operating Performance

Weather is considered a key driver for buildings�energy consumption since it a¤ects energy

demand for heating, ventilation, and air conditioning (HVAC). Furthermore, other weather

dependent conditions, such as daylight and humidity have a great impact on the use of

equipment and on the number of hours indoors (Gonzalez-Torres, Perez-Lombard, Coronel,

Maestre and Da (2022)). In the U.S., large o¢ ce buildings account for 65% of the total elec-

tricity use and 36% of total energy use, with heating and cooling building services generating

15% of worldwide greenhouse-gas emissions. Larger oscillations in temperature around nor-

mal levels can therefore have non-trivial e¤ects on �rms�cash-�ows. And this also includes

non-disaster events.

Given that WIVOL measures expectations of future temperature oscillations around nor-

mal levels, we next study the extent to which �rms�costs are impacted by innovations to

WIVOL. Our conjecture is that operating costs increase with positive innovations toWIVOL.

Weather risk directly impacts �rms, as temperatures outside the normal range increases op-

6We proxy for the historical volatility of temperature with the standard deviation of the year-over-year
change in temperature in the last 36 months. Using alternative de�nitions for the computation of the
historical volatility produces similar results. The historical volatility is based on NOAA daily temperatures
for the LaGuardia airport.
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erating costs due to higher demand for energy. But it also does it indirectly, impacting

power plants in the area which during outages cannot supply services to these �rms, cre-

ating further disruptions (Shive (2012)). Furthermore, we expect this result to be stronger

among �rms with more negative exposure to WIVOL. We obtain quarterly �rms�operating

costs (COGSQ) from Compustat and then compute the year-over-year growth in operating

costs. Since the dependent variable is an accounting measure, we follow Petersen (2009) and

test the impact of weather risk within a panel data framework. We implement quarterly

panel predictive regressions where the dependent variable is the year-over-year growth in

operating costs. The explanatory variable is lagged quarterly innovations in WIVOL, and

we control for �rms size (log of market capitalization). We compute t-statistics controlling

for the �rm-e¤ect and clustering standard errors at the �rm level to account for potential

serial correlation in the residuals. Table 1 reports the results.

[Insert Table 1 Here]

In column 1, the coe¢ cient for �WIVOL is positive and statistically signi�cant, indi-

cating that positive innovations to WIVOL lead to higher operating costs in the following

quarter. The economic signi�cance is very important: a one-standard deviation increase in

�WIVOL results in a 2% increase in the quarterly growth rate in operating costs. This

�nding is consistent with Somanathan, Somanathan, Sudarshan and Tewari (2021), who

show that temperatures outside expected intervals can generate unexpected costs. WIVOL

measures precisely the risk of temperatures falling below 65 degrees Fahrenheit in the winter

months or exceeding 65F degrees in the summer months, with the 65 �gure based on industry

conventions for normal building operations. Addoum, Ng and Ortiz-Bobea (2020) �nd that

extreme weather events have insigni�cant e¤ects on �rms�establishment sales, suggesting

that large corporations have the resources to withstand physical damages. In the case of
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�rms�exposure to innovations in WIVOL, these shocks include also non-extreme events that

can still impact �rms due to unexpected operational costs. Our results on the relevance of

weather shocks are consistent with Brown, Gustafson and Ivanov (2021), who document that

severe winter weather has no impact on �rms�sales but reduces �rms�cash-�ows by increas-

ing operating costs.7 Unlike severe winter weather shocks, WIVOL innovations encompass

both extreme and non-extreme events and seem to be prevalent during all seasons.

Next, we investigate the e¤ect on operating costs for a subset of �rms. If WIVOL does

impact future operating costs, we expect for the e¤ect to be stronger in �rms with more

negative exposure to weather risks. Note that a �rm with negative exposure indicates that

asWIVOL increases its stock price decreases, and therefore its beta is negative. Therefore, we

interact WIVOL with �rms�beta to test this conjecture. To create the interaction, the betas

are transformed to dummy variables. The dummy equals to 1 for �rms with below median

beta, and 0 otherwise. Note that in this exercise, the dummy equal to 1 is for below median

and not above median betas. The interaction term is �WIVOL���WIV OL < Median, and

the expected interaction sign for the coe¢ cient is positive. Column 2 of Table 1 reports the

results for the interaction variable, with a positive and statistically signi�cant coe¢ cient.

Do managers blame �rms�performance on the weather? The signi�cant e¤ect of weather

volatility on �rms�future costs suggests managers should consider this risk as non-trivial.

To investigate this matter, we explore the relevance of WIVOL on managers�discussions

concerning climate change during �rms�upcoming earnings calls. We employ the company-

level measure of exposure to climate change developed by Sautner, van Lent, Vilkov and

Zhang (2023) as a proxy for the level of attention managers dedicate to climate change. We

anticipate that positive shocks toWIVOL will lead to an increase in discussions about climate

7In Table A.1, we report that innovations to WIVOL have no signi�cant e¤ect on �rms�sales but negatively
impact their cash-�ows.
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change in the future, particularly within �rms characterized by more negative exposure to

WIVOL. This mirrors the case observed when considering operating costs.

Note that this analysis examines whether there is an increased focus from managers

about �rms�climate change exposure subsequent to positive shocks to the WIVOL metric,

regardless of whether these managers implement policies to mitigate the said exposure. In

Table 2, column 1 presents �ndings indicating that innovations to WIVOL lead to heightened

discussions about climate change among managers on average for �rms. Column 2 introduces

an interaction between the change in WIVOL (�WIVOL) and the level of �rms�exposure

to this change, revealing that the in�uence of �WIVOL on managerial discussions is more

pronounced among companies with more negative betas. These results imply that, following

an episode of weather-related uncertainty shock, managers redirect the attention of investors

toward their �rms�susceptibility to risks arising from climate uncertainty. This is a means

to explain the negative repercussions of these shocks on the companies�fundamentals in the

future. This pattern also suggests that managers attribute potential underperformance of

the �rm to the impact of uncertainty stemming from weather shocks, thereby safeguarding

their own professional standing.

[Insert Table 2 Here]

Taken together, the results in this section con�rm our hypothesis that an increase in mar-

ket expectations about future temperature volatility leads to an increase in �rms�operating

costs, with managers acknowledging the importance of weather risks, and with the overall

impact particularly stronger for �rms with more negative WIVOL exposure.
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5.3 Firms Exposure and Expected Returns

Do �rms�exposures (betas) to innovations inWIVOL help predict these �rms�future returns?

Intuitively, �rms with more negative exposure to weather risks will perform poorly asWIVOL

increases, and therefore investors demand a higher compensation to invest in these �rms.

Conversely, �rms with more positive exposure provide a good hedge against weather risks,

and therefore investors are willing to pay higher prices and accept lower future returns

for them. If this reasoning manifests over time, then a strategy buying stocks with most

negative exposure while selling stocks with most positive exposure will exhibit positive and

statistically signi�cant returns.

To construct the long-short strategy, we form quintile portfolios by sorting individual

stocks based on their previous-month betas. The portfolio quintile 5 (high) contains stocks

with the highest (most positive) ��WIV OL during the previous month, while the portfolio

quintile 1 (low) contains stocks with the lowest (most negative) ��WIV OL during the previ-

ous month. The di¤erence portfolio (low minus high) results from holding a long position

in the low ��WIV OL portfolio and a short position in the high ��WIV OL portfolio. We im-

plement and rebalance the long-short strategy on a monthly basis and for the sample period

from January 2008 to July 2021. Table 3 reports the results for value-weighted portfolios.

Speci�cally, the Table reports the average betas as well as annual raw returns and abnormal

returns for each quintile portfolio and long-short strategy. By construction, since the portfo-

lios are formed by ranking stocks on previous month exposures, quintile betas monotonically

decrease from 0.69 for portfolio 5 to -0.62 for portfolio 1. For the long-short strategy, the

average return di¤erence between quintile 1 (Low) and quintile 5 (High) is statistically sig-

ni�cant and equal to 0.38% per month with a �ve-lags Newey and West (1987) corrected

t-statistic of 2.6. This result indicates that stocks in the lowest beta quintile generate 4.56%
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higher annual returns compared to stocks in the highest beta quintile.

[Insert Table 3 Here]

We investigate the possibility that return predictability generated by ��WIV OL decreases

once we incorporate well established risk factors. We therefore account for the excess market

return, the three factors of Fama and French (1994), the Carhart (1997) momentum factor,

the �ve factors of Fama and French (2015) and the four factors of Hou, Xue and Zhang (2014).

In columns 3 to 7 of Table 3, each entry reports the intercept (alpha) from the regression

of the portfolio returns on a constant and a risk factor model. In all cases, the long-short

strategy yields economically and statistically signi�cant returns, with alphas ranging from

4.32% to 5.40% annual, even after controlling for di¤erent risk factors.

These results suggest that sorting equity portfolios based on �rms exposure to WIVOL

innovations seems to provide signi�cantly positive returns. In addition, the ��WIV OL strat-

egy provides diversi�cation bene�ts, given the correlation between WIVOL and VIX and

the global warming news index from Engle, Giglio, Kelly, Lee and Stroebel (2020), as we

document in Section 4. Strategies that hedge climate risks based on extreme events can be

challenging to rebalance frequently. This is the case since extreme events can be rare and

also seasonal, such as the case of extreme hot temperatures or hurricanes, usually during the

summer months. Firms, however, are exposed to uncertainty about temperature volatility

year-round. The long-short ��WIV OL strategy provides an alternative that can be imple-

mented every month of the year. However, a valid concern is if the ��WIV OL strategy is a

summer a¤air. If its performance is mostly driven by extreme, seasonal events during the

summer, we expect for its return to originate mostly in the summer months. To test this

hypothesis, we compute the average return for each month of the year during our sample.

Figure 2 con�rms that the performance of the strategy is not a summer a¤air, with Decem-
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ber (106 monthly basis points) representing the month with largest return, followed by the

month of April (86 monthly basis points).

[Insert Figure 2 Here]

We further look into the return e¤ect of ��WIV OL at the individual instead of portfolio

level. We examine the cross-sectional relation between expected returns and lagged betas

at the stock level using Fama and MacBeth (1973) regressions. We compute the time-series

averages of the slope coe¢ cients from the regressions of one-month-ahead stock returns on

the beta. The average slopes provide standard Fama-MacBeth tests for determining if the

explanatory variable has, on average, nonzero premium. Table 4 reports the time-series aver-

ages of the slope coe¢ cients and the Newey-West t-statistics in parentheses. The univariate

regression results reported in column 1 indicate a negative and statistically signi�cant rela-

tion between the beta and the cross-section of future stock returns. Column 2 controls for

the �rm�s size (log of market capitalization) and also reports a signi�cant loading with the

expected sign. In line with results at the portfolio level, �rms with lower ��WIV OL exhibit

higher future returns. Sautner, van Lent, Vilkov and Zhang (2023b) document that man-

agers discussions on climate change do not seem to predict the realized future return of these

�rms. Their non-result could be an indication that, despite managers�discussing on climate

change, they seem to blame it on the weather instead of implementing hedging policies. This

is also consistent with the signi�cant return e¤ect of ��WIV OL, since its relevance suggests

that managers do not fully hedge weather risk exposure.

[Insert Table 4 Here]

Overall, we �nd signi�cant results for the return e¤ect of ��WIV OL.8 The negative link

between �rms�beta and their future returns at the portfolio and individual level is consistent
8Following Ang, Hodrick, Xing and Zhang (2006), we re-estimate betas only including the market return
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with an investors� intertemporal hedging motive. On the one hand, stocks with negative

betas correlate negatively with increases in expected weather volatility; hence, investors

demand extra compensation in the form of higher expected return to hold these stocks. On

the other hand, stocks with positive betas correlate positively with increases in expected

weather volatility. Since stocks with positive beta would be viewed as relatively safer assets

at times of increased volatility, investors are willing to pay higher prices and accept lower

expected returns.

5.4 Firms Exposure to Foreign Weather Risk

Section 4 documents thatWIVOL seems to change with local physical and regulatory weather

risks, while Section 5.3 �nds that local �rms exhibit signi�cant exposure to innovations in

WIVOL. We therefore expect for local �rms to exhibit stronger WIVOL exposure than non-

local �rms, which are based in a di¤erent geographic location.

We test this local exposure hypothesis next. We implement a similar exercise but this

time use option prices based on the temperatures recorded in the metro area of Dallas Fort-

Worth (DFW) in the state of Texas.9 As in the case of WIVOL for the city of New York,

we collect CME data on prices for options, futures, strikes, expiration dates and implied

volatilities. To generate the time-series for the weather option implied volatility WIVOL,

we use closest to one month maturity contracts that are at-the-money. We then compute

the exposure of local �rms to WIVOL DFW. We restrict the set to �rms headquartered only

in the cities of Dallas and Fort-Worth, based on a �rm�s city, state and zip code attributes.

in equation (5.1.), since including additional controls can add noise to the estimation. We then re-compute
the portfolio strategy and the cross-sectional regressions, and �nd that the signi�cance of the beta return
e¤ect remains strong. We report these results in Table A.2 and Table A.3 respectively.

9Speci�cally, the contract�s payo¤ is with respect to the temperature (in degree-days) measured at the
Dallas Fort-Worth International (DFW) airport station (WBAN 03927).
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For the sample period of January 2005 to July 2021 this generates a total of 441 �rms, with

an average (median) of 101 (105) �rms per month. We then estimate the exposure of DFW

�rms to WIVOL DFW and test its predictive power. Following the argument of Section 5.3,

the long-short strategy entails buying stocks with most negative betas while simultaneously

selling stocks with most positive betas. We �nd that the long-short strategy generates

positive and statistically signi�cant returns, even after controlling for well established risk

factors. We also test the signi�cance of the beta return e¤ect at the individual �rm level

with Fama-MacBeth predictive regressions and �nd a negative and statistically signi�cant

coe¢ cient, indicating that, on average, �rms with lower exposure to WIVOL exhibit higher

future returns. These results, reported in Table A.4 and Table A.5 respectively, support the

hypothesis that the exposure of local �rms to innovations in local weather risk is signi�cant

and helps predict �rms�future performance.

Several studies �nd that measures that track global weather events have a signi�cant

impact on geographically dispersed entities (see, for instance, Engle, Giglio, Kelly, Lee and

Stroebel (2020) and Huynh and Xia (2021)). The local nature of WIVOL (based on the

temperature of a geography speci�c weather station) provides an interesting tool to test the

extent to which �rms based in one area are impacted by innovations in weather volatility of

a di¤erent area. Therefore, we next test whether market expectations of weather volatility

for New York (Dallas) contain signi�cant information about the future performance of �rms

based in Dallas (New York). Speci�cally, we link WIVOL measured for the city of New

York to �rms based in the Dallas Forth-Worth area. This produces betas for DFW �rms

with respect to innovations in the weather volatility of New York, which we use to predict

future stock returns of �rms in DFW. Likewise, we estimate betas for New York based �rms

using innovations in the weather volatility of the Dallas Fort-Worth area. We use these

betas to predict the future stock returns of �rms based in New York. If we �nd signi�cant
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exposure, then the local risk hypothesis does not hold, as both measures of risk become

indistinguishable.

We test this argument by sorting quintile portfolios, buying stocks with most negative

exposure (quintile 1) and selling stocks with most positive exposure (quintile 5). Interest-

ingly, we �nd insigni�cant return predictability in both cases. Betas constructed using New

York weather volatility do not predict the future return of �rms based in the Dallas Fort-

Worth metro area. Likewise, betas estimated using DFW weather volatility do not predict

the future return of New York based �rms. We report these results in Table 5. This �nding

supports the argument that, while �rms can be subject to global climate risks, local �rms

are more exposed to local weather risk than non-local �rms. Tuzel and Zhang (2017) �nd

that �rms location a¤ect �rms risk through local factor prices such as real estate and labor,

while Kruttli, Roth Tran and Watugala (2023) �nd that �rms located in hurricane prone

area exhibit higher volatility of returns. Our �ndings are of �rst order, as local �rms with

more negative exposure to local weather risk exhibit higher future returns.

[Insert Table 5 Here]

6 Conclusion

We investigate on the relevance of weather volatility for �rms�performance. To the best of

our knowledge, this is the �rst study using investors�expectations about weather risks, which

can only be extracted using weather option prices. We denote this new, forward-looking

variable WIVOL, the weather option implied volatility. We �nd that WIVOL captures

markets expectations about future shocks to weather risk, increasing with the likelihood of

physical events such as hurricanes and with discussions about regulations to transition to an
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environmentally friendlier economy.

We estimate �rms�exposure to WIVOL innovations and test its predictive power. First,

we �nd that innovations to WIVOL increase operating costs of the average �rm, and this

e¤ect almost doubles for �rms with more negative exposure to WIVOL. We then relate �rms

WIVOL exposure to their future returns. We argue that �rms with more negative exposure

to WIVOL innovations are valued at a discount because expectations of larger oscillations in

temperatures lead to a higher risk of unexpected costs for the company. Investors therefore

demand a weather risk compensation to hold these stocks. We �nd that weather volatility

risks are priced, a long-short strategy that buys stocks with more negative exposure and

sells stocks with more positive exposure generates signi�cant returns after controlling for

di¤erent risk factors. Moreover, unlike strategies based on extreme events that are likely

seasonal, the WIVOL strategy can be implemented year-round. We also con�rm that �rms

are signi�cantly exposed to the volatility of weather of the area in which they operate only,

as innovations to weather volatility of a di¤erent area do not predict their future returns.
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Figure 1: Weather Option Implied Volatility

We plot the time-series for WIVOL, the option implied volatility using weather options on

futures contracts based on the temperature registered at the LaGuardia Airport in the city

of New York. The time-series is constructed using one month to maturity contracts for at-

the-money options. We report monthly average values. The sample period is from January

2005 to July 2021.
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Figure 2: Average Return Strategy By Month

We plot average monthly returns for the long-short ��WIV OL strategy. The strategy buys

stocks with most negative ��WIV OL and sells stocks with most positive ��WIV OL. The bar

represents the average return (in basis points) in each month and for the sample period

January 2008 to July 2021.

30



Table 1: WIVOL and Operating Costs

We report the quarterly panel regressions. The dependent variable is �rms�year-over-year

growth in quarterly operating costs (COGSQ). The sample is for �rms based in the city of

New York. The main explanatory variable is �WIVOL, the changes in the weather option

implied volatility. Column 1 reports the results for �WIVOL. Column 2 interacts �WIVOL

with a dummy variable using �rms�exposure to �WIVOL. The dummy variable equals to

1 for �rms with below median ��WIV OL and 0 otherwise. The regression also includes the

dummy itself. The control variable is the �rm�s size de�ned as the log of the �rm�s market

capitalization. We report in parentheses the t-statistics controlling for �rm-�xed e¤ects and

clustering standard errors at the �rm level. All explanatory variables are one-quarter lagged.

The sample period is from January 2008 to July 2021.

Dependent Variable Operating Costs Gr.

(1) (2)

Intercept -0.06 -1.28

(-0.06) (-1.34)

Size 0.15 0.34

(0.99) (2.27)

�WIVOL 6.65 2.10

(4.57) (1.03)

�WIVOL � ��WIV OL<Median 8.45

(2.38)

R2Adj 0.31 0.35

N 30,208 26,785
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Table 2: WIVOL and Climate Change Exposure

We report the quarterly panel regressions. The dependent variable is �rms�quarterly Climate

Change Exposure, as measured by managers�discussion on climate change during earnings

calls and developed by Sautner, van Lent, Vilkov and Zhang (2023). The sample is for �rms

based in the city of New York. The main explanatory variable is �WIVOL, the changes in

the weather option implied volatility. Column 1 reports the results for �WIVOL. Column 2

interacts �WIVOL with a dummy variable using �rms�exposure to �WIVOL. The dummy

variable equals to 1 for �rms with below median ��WIV OL and 0 otherwise. The regression

also includes the dummy itself. The control variable is the �rm�s size de�ned as the log

of the �rm�s market capitalization. We report in parentheses the t-statistics controlling for

�rm-�xed e¤ects and clustering standard errors at the �rm level. All explanatory variables

are one-quarter lagged. The sample period is from January 2008 to December 2020.

Dependent Variable Climate Change Exposure

(1) (2)

Intercept -0.01 -0.04

(-0.34) (-1.70)

Size 0.01 0.02

(4.82) (6.05)

�WIVOL 0.19 0.01

(2.12) (0.09)

�WIVOL � ��WIV OL<Median 0.14

(2.10)

R2Adj 0.72 0.73

N 17,632 17,168
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Table 3: Portfolio Returns

We report the annualized returns for the value-weighted portfolios using common stocks in

the NYSE, Amex, and Nasdaq exchanges for �rms based in the city of New York. Each

month, quintile portfolios are formed by sorting individual stocks based on their previous

month ��WIV OL. Quintile 5 (High) contains stocks with the highest ��WIV OL during the

previous month. Quintile 1 (Low) contains stocks with the lowest ��WIV OL during the

previous month. The bottom row (Low-High) reports the di¤erences between portfolio 1

and portfolio 5. The columns report the betas, returns and abnormal returns (alphas).

Column 1 reports the average ��WIV OL per quintile. Column 2 reports the raw excess

returns. Column 3 reports the abnormal returns �MKT controlling for the market factor

MKT. Column 4 reports the abnormal returns �FF3 controlling for the three factors in

Fama and French (1993). Column 5 reports the abnormal returns �C4 controlling for the

three factors in Fama and French (1993) and the Carhart (1997) factor. Column 6 reports

abnormal returns �FF5 controlling for the �ve factors in Fama and French (2015). Column

7 reports abnormal returns �HXZ4 controlling for the four factors in Hou, Xue and Zhang

(2014). We report in parentheses the Newey-West corrected t-statistics. The sample period

is from January 2008 to July 2021.

��WIV OL Return �MKT �FF3 �C4 �FF5 �HXZ4

(1) (2) (3) (4) (5) (6) (7)

High 0.68 2.76 2.52 2.04 2.04 1.92 2.28

(1.63) (1.48) (1.08) (1.09) (1.04) (1.31)

Q4 0.12 6.12 5.76 5.40 5.28 6.00 5.40

(3.16) (3.12) (2.90) (2.71) (3.13) (2.62)

Q3 0.02 6.36 5.88 6.36 6.36 6.24 6.00

(3.52) (3.98) (4.30) (4.42) (4.32) (4.15)

Q2 -0.07 6.24 6.00 5.76 5.64 6.00 5.64

(3.37) (3.54) (3.26) (3.10) (3.29) (2.93)

Low -0.62 7.32 6.84 7.08 7.20 7.32 7.08

(4.03) (4.14) (3.91) (3.80) (4.29) (3.75)

Low-High 4.56 4.32 5.04 5.16 5.40 4.80

(2.54) (2.39) (2.50) (2.64) (2.65) (2.43)
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Table 4: Firms Exposure and Return Predictability

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,

Amex, and Nasdaq exchanges for �rms based in the city of New York. The dependent

variable is the �rm�s monthly stock return. Column 1 reports the univariate regression

using the benchmark explanatory variable, the �rm�s weather volatility exposure ��WIV OL.

Column 2 controls for the �rm�s size de�ned as the log of the �rm�s market capitalization.

All explanatory variables are one-period lagged. We report in parentheses the Newey-West

corrected t-statistics. The sample period is from January 2008 to July 2021.

Dependent Variable Firm Return

(1) (2)

Intercept 0.36 0.12

(2.80) (0.98)

��WIV OL -0.07 -0.06

(-2.28) (-2.13)

Size 0.05

(3.93)

R2Adj 0.01 0.02

N 114,872 114,872
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Table 5: Firms exposure to foreign weather and return predictability

We report the annualized returns for the value-weighted portfolios using common stocks in

the NYSE, Amex, and Nasdaq exchanges. Panel A estimates the exposure of �rms based

in the city of New York with respect to �WIVOL for the metro area of Dallas Fort-Worth.

Panel B estimates the exposure of �rms based in the metro area of Dallas Fort-Worth with

respect to �WIVOL for the city of New York. Quintile 5 (High) contains stocks with

the highest ��WIV OL during the previous month. Quintile 1 (Low) contains stocks with

the lowest ��WIV OL during the previous month. The bottom row (Low-High) reports the

di¤erences between portfolio 1 and portfolio 5. The columns report the betas, returns and

abnormal returns (alphas). Column 1 reports the average ��WIV OL per quintile. Column

2 reports the raw excess returns. Column 3 reports the abnormal returns �MKT controlling

for the market factor MKT. Column 4 reports the abnormal returns �FF3 controlling for

the three factors in Fama and French (1993). Column 5 reports the abnormal returns �C4
controlling for the three factors in Fama and French (1993) and the Carhart (1997) factor.

Column 6 reports abnormal returns �FF5 controlling for the �ve factors in Fama and French

(2015). Column 7 reports abnormal returns �HXZ4 controlling for the four factors in Hou,

Xue and Zhang (2014). We report in parentheses the Newey-West corrected t-statistics. The

sample period is from January 2008 to July 2021.
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��WIV OL Return �MKT �FF3 �C4 �FF5 �HXZ4

(1) (2) (3) (4) (5) (6) (7)

Panel A. New York �rms exposure to Dallas Fort-Worth �WIVOL

High 0.21 5.88 5.28 5.28 5.40 5.28 5.16

(3.28) (2.64) (2.56) (2.70) (2.46) (2.40)

Low -0.18 5.04 4.68 4.44 4.32 4.56 4.20

(2.98) (3.21) (2.69) (2.52) (2.72) (2.43)

Low-High -0.84 -0.72 -0.84 -1.08 -0.72 -0.96

(-0.45) (-0.35) (-0.36) (-0.51) (-0.29) (-0.41)

Panel B. Dallas Fort-Worth �rms exposure to New York �WIVOL

High 0.40 5.52 5.76 5.52 6.24 5.64 6.00

(3.04) (3.24) (2.95) (3.08) (2.69) (2.91)

Low -0.38 5.28 5.16 5.16 5.04 4.92 4.56

(2.95) (2.80) (2.72) (2.72) (2.69) (2.38)

Low-High -0.24 -0.48 -0.36 -1.20 -0.60 -1.44

(-0.09) (-0.24) (-0.16) (-0.53) (-0.26) (-0.59)
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Table A.1: WIVOL and Operating Performance

We report the quarterly panel regressions. The dependent variable are �rms� year-over-

year growth in quarterly cash-�ows (IBQ+DPQ) and sales (SALEQ). The sample is for

�rms based in the city of New York. The main explanatory variable is �WIVOL, the

changes in the weather option implied volatility. Columns 1 and 2 report the results for

cash-�ows. Columns 3 and 4 report the results for sales. The control variable is the �rm�s

size de�ned as the log of the �rm�s market capitalization. We report in parentheses the

t-statistics controlling for �rm-�xed e¤ects and clustering standard errors at the �rm level.

All explanatory variables are one-quarter lagged. The sample period is from January 2008

to July 2021.

Dependent Variable Cash-Flow Gr. Sales Gr.

(1) (2) (3) (4)

Intercept -0.02 -0.02 0.01 -0.03

(-1.42) (-1.08) (6.38) (-1.48)

�WIVOL -9.31 -8.62 -0.26 -0.10

(-3.96) (-4.23) (-1.06) (-0.81)

Size 0.00 0.01

(0.53) (2.07)

R2Adj 0.01 0.01 0.07 0.15

N 36,285 35,223 31,560 30,660
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Table A.2: Estimation Robustness: Portfolio Returns

We report the annualized returns for the value-weighted portfolios using common stocks in

the NYSE, Amex, and Nasdaq exchanges for �rms based in the city of New York. Each

month, quintile portfolios are formed by sorting individual stocks based on their previous

month ��WIV OL. Each �rm�s beta is estimated using the stock market return as control

in the estimation of equation (5.1). Quintile 5 contains stocks with the highest ��WIV OL

during the previous month. Quintile 1 contains stocks with the lowest ��WIV OL during the

previous month. The bottom row reports the di¤erences between portfolio 1 (Low) and

portfolio 5 (High). The columns report the betas, returns and abnormal returns (alphas).

Column 1 reports the average ��WIV OL per quintile. Column 2 reports the raw excess

returns. Column 3 reports the abnormal returns �MKT controlling for the market factor

MKT. Column 4 reports the abnormal returns �FF3 controlling for the three factors in

Fama and French (1993). Column 5 reports the abnormal returns �C4 controlling for the

three factors in Fama and French (1993) and the Carhart (1997) factor. Column 6 reports

abnormal returns �FF5 controlling for the �ve factors in Fama and French (2015). Column

7 reports abnormal returns �HXZ4 controlling for the four factors in Hou, Xue and Zhang

(2014). We report in parentheses the Newey-West corrected t-statistics. The sample period

is from January 2008 to July 2021.

��WIV OL Return �MKT �FF3 �C4 �FF5 �HXZ4

(1) (2) (3) (4) (5) (6) (7)

High 0.93 3.48 3.24 2.64 2.64 3.00 3.12

(1.94) (1.82) (1.33) (1.41) (1.65) (1.81)

Q4 0.11 6.72 6.24 6.00 5.88 6.36 5.76

(3.45) (3.56) (3.40) (3.17) (3.24) (2.89)

Q3 0.02 4.20 3.60 3.84 4.08 3.96 3.96

(2.40) (2.50) (2.56) (2.71) (2.49) (2.46)

Q2 -0.06 7.44 7.08 6.60 6.36 6.84 6.36

(3.93) (4.37) (3.84) (3.61) (3.91) (3.44)

Low -0.95 7.56 7.08 7.44 7.68 7.56 7.56

(4.26) (4.44) (4.26) (4.23) (4.36) (4.23)

Low-High 4.20 3.84 4.80 4.92 4.56 4.44

(2.30) (2.03) (2.22) (2.35) (2.10) (2.09)
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Table A.3: Estimation Robustness: Firms Exposure and Return Predictability

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,

Amex, and Nasdaq exchanges for �rms based in the city of New York. The dependent

variable is the �rm�s monthly stock return. The main explanatory is the �rm�s exposure

to innovation in weather volatility risk ��WIV OL. Each �rm�s beta is estimated using the

stock market return as control in the estimation of equation (5.1). Column 1 reports the

univariate regression using the ��WIV OL. Column 2 controls for the �rm�s size de�ned as

the log of the �rm�s market capitalization. All explanatory variables are one-period lagged.

We report in parentheses the Newey-West corrected t-statistics. The sample period is from

January 2008 to July 2021.

Dependent Variable Firm Return

(1) (2)

Intercept 0.36 0.12

(2.79) (0.97)

��WIV OL -0.09 -0.08

(-2.12) (-2.03)

Size 0.05

(3.96)

R2Adj 0.00 0.02

N 114,872 114,872
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Table A.4: Portfolio Returns (DFW)

We report the annualized returns for the value-weighted portfolios using common stocks in

the NYSE, Amex, and Nasdaq exchanges for �rms based in the metro area of Dallas Fort-

Worth. Each month, quintile portfolios are formed by sorting individual stocks based on

their previous month ��WIV OL. Quintile 5 (High) contains stocks with the highest ��WIV OL

during the previous month. Quintile 1 (Low) contains stocks with the lowest ��WIV OL

during the previous month. The bottom row (Low-High) reports the di¤erences between

portfolio 1 and portfolio 5. The columns report the betas, returns and abnormal returns

(alphas). Column 1 reports the average ��WIV OL per quintile. Column 2 reports the raw

excess returns. Column 3 reports the abnormal returns �MKT controlling for the market

factor MKT. Column 4 reports the abnormal returns �FF3 controlling for the three factors

in Fama and French (1993). Column 5 reports the abnormal returns �C4 controlling for the

three factors in Fama and French (1993) and the Carhart (1997) factor. Column 6 reports

abnormal returns �FF5 controlling for the �ve factors in Fama and French (2015). Column

7 reports abnormal returns �HXZ4 controlling for the four factors in Hou, Xue and Zhang

(2014). We report in parentheses the Newey-West corrected t-statistics. The sample period

is from January 2008 to July 2021.

��WIV OL Return �MKT �FF3 �C4 �FF5 �HXZ4

(1) (2) (3) (4) (5) (6) (7)

High 0.40 -0.12 -0.12 -0.60 -0.72 -0.12 -0.84

(-0.07) (-0.08) (-0.35) (-0.40) (-0.05) (-0.46)

Q4 0.10 6.12 5.76 5.76 6.24 6.24 6.60

(3.12) (2.83) (2.74) (3.00) (2.90) (3.07)

Q3 0.01 6.96 6.96 6.84 6.84 6.36 6.36

(2.94) (3.06) (2.98) (2.97) (2.64) (2.67)

Q2 -0.07 2.64 2.16 3.24 3.00 3.24 2.64

(1.10) (0.92) (1.42) (1.35) (1.43) (1.15)

Low -0.34 3.48 3.12 3.12 3.24 3.96 3.84

(1.88) (1.94) (2.00) (2.04) (2.48) (2.16)

Low-High 3.60 3.24 3.72 3.96 4.08 4.80

(2.02) (1.98) (2.01) (2.14) (2.15) (2.45)
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Table A.5: Firms Exposure and Return Predictability (DFW)

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,

Amex, and Nasdaq exchanges for �rms based in the in the metro area of Dallas Fort-Worth.

The dependent variable is the �rm�s monthly stock return. Column 1 reports the univariate

regression using the benchmark explanatory variable, the �rm�s weather volatility exposure

��WIV OL. Column 2 controls for the �rm�s size de�ned as the log of the �rm�s market

capitalization. All explanatory variables are one-period lagged. We report in parentheses

the Newey-West corrected t-statistics. The sample period is from January 2008 to July 2021.

Dependent Variable Firm Return

(1) (2)

Intercept 0.12 -0.28

(1.35) (-3.66)

�WIV OL -0.28 -0.29

(-2.07) (-2.04)

Size 0.07

(3.88)

R2Adj 0.02 0.04

N 17,959 17,959
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