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Segmentation Premia

Abstract

We present a novel approach to discern discrepancies in compensation for
shared risk factors across different markets by leveraging firm-specific characteris-
tics on factor loadings. Our methodology is tested on simulated factor economies
and a vast dataset of international stock returns. The results demonstrate the ef-
ficacy of our method in both simulated and real-world scenarios. Specifically, we
identify numerous instances where pricing for common risks differs across coun-
tries during certain periods. We also propose a portfolio strategy that capitalizes
on these temporary market segmentations.
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1 Introduction
Market integration has been a key driver of human history, fostering cooperation, and
promoting the exchange of ideas, goods, and services. In his book Sapiens, Harari
(2015) provides a unique perspective on the role of market integration in shaping hu-
man history, arguing that the integration of markets has been a fundamental force
driving human integration. Harari’s views are supported by the evidence from history,
where we see the emergence of vast trade networks that spanned continents, connecting
people and cultures from different regions. The Silk Road is a prime example of such a
network, which linked China, Central Asia, and the Mediterranean world, facilitating
the exchange of goods, technology, and culture.

Agreement on the value of traded assets is a key indicator of market integration.
This agreement can be achieved through the actions of market participants who buy and
sell assets across different regions and cultures. For instance, when the Mediterranean
trade began, Indian merchants might have considered gold to be a useless stone, and it
would have had little value in their local markets. However, Mediterranean merchants
recognized the value of gold and saw an opportunity to buy it at a low price in India
and sell it at a higher price in the Mediterranean region. This trade led to the gradual
convergence of the value of gold across the two geographically segmented areas.

The financial markets have been a valuable test bed for investigating the process
of market integration, given their unique characteristics. Unlike other markets, the
financial markets do not require the physical movement of assets, making them highly
accessible to investors across different regions and countries. Furthermore, the barriers
to cross-country investment have been steadily melting away over the past few decades,
creating new opportunities for investors to participate in global financial markets. As a
result, the financial markets have become an essential tool for testing theories of market
integration and exploring the factors that drive it.

The finance literature has a long history of investigating international market inte-
gration, with many studies focused on analyzing the degree of cross-market correlation
in asset prices and the effectiveness of international portfolio diversification. These
studies have shown that there is a high degree of correlation between asset prices in
different markets, suggesting that the financial markets are highly integrated. Further-
more, these studies have demonstrated that international portfolio diversification can
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be an effective way of reducing risk and maximizing returns.
This paper’s primary contribution is the introduction of a novel concept of market

integration, which involves the agreement of common factor prices across two countries,
with the assumption that the returns of each country have a factor structure where
individual stocks can be driven by common as well as country-specific factors. The
proposed method involves three steps:

In the first step, common factors are identified by applying principal component
analysis (PCA) to individual assets in each country, obtaining all systematic factors,
including common and country-specific factors. Canonical correlation analysis (CCA)
is then used to find the combination of within-country factors that maximizes cross-
country co-movement and recovers the true common factors.

In the second step, factor loadings on common factors are measured, which is known
to be a daunting task. The approach used follows Kim, Korajczyk, and Neuhierl (2021),
where the information in firm characteristics is exploited to estimate the factor loadings.
Returns are regressed on the interaction between firm characteristics and common fac-
tors, identifying the linear combination of firm characteristics that explains the returns
through the common factors.

In the last step, the difference in the prices of common risk is identified by using the
classical pricing equation, where the coefficient on factor loadings represents the prices
of risk. A cross-sectional regression of average returns on the estimated factor load-
ing is performed, reflecting the country-specific risk prices and factor randomness. By
subtracting the estimated risk prices, differences in risk prices across countries can be
recovered. This approach cancels out factor randomness and allows comparison of risk
prices even with short time series data. Furthermore, we also show that when there is a
disagreement on risk prices of common factors, one can construct an arbitrage portfolio
that exploits such segmentation.

2 The Model
We consider a pair of two countries, indexed by g = 1, 2. We assume that there exists a
large number of securities in each country and the return generating processes for those
individual securities are stable over a short horizon t = 1, · · · , T .
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We specify the return generating process of individual securities in each country g.
The returns of individual stocks in country g follow a Kg-factor model in which the
factors are unobservable, latent factors. Among Kg factors, Kc factors are common
across the two countries and Ks

g factors are country-specific. Thus, it holds that Kg =

Kc +Ks
g . In particular, the excess return of i-th asset in country at time t is generated

by the following model: for g = 1, 2, i = 1, · · · , Ng and t = 1, · · · , T,

Rgit = β′
gi

(
λc

g + ft
)
+ δ′

gi

(
λs

g + ggt

)
+ egit, (2.1)

where β′
gi = [βgi1 · · · βgiKc ]′ are the (Kc × 1) factor loadings of the i-th asset to the

common factors, λc
g =

[
λc
g1 · · · λc

gKc

]′ is the (Kc × 1) vector of risk premium in country
g on the exposure to common systematic factors, ft = [fg1 · · · fgKc ]′ is the (Kc × 1)

systematic zero-mean common factor realization in period t, δ′
gi =

[
δgi1 · · · δgiKs

g

]′ is
the

(
Ks

g × 1
)

factor loadings of the i-th asset to the country-specific factors in country
g, λs

g =
[
λs
g1 · · · λs

gKs
g

]′
is the

(
Ks

g × 1
)

vector of risk premium in country g on the
exposure to country-specific systematic factors, ggt =

[
gg1 · · · ggKs

g

]′ is the
(
Ks

g × 1
)

systematic zero-mean country-specific factor realization in period t, and egit is the zero-
mean idiosyncratic residual return of asset i at time t.1 Throughout, we use 0m, 1m,
and 0m×l denote the (m× 1) vectors of zeros and ones and the (m× l) matrix of zeros,
respectively. The return generating process of (2.1) is expressed compactly in matrices:
for g = 1, 2,

Rg = Bg

(
λc

g1
′
T + F′)︸ ︷︷ ︸

shared across countries

+Dg

(
λs

g1
′
T +G′

g

)︸ ︷︷ ︸
country specific

+Eg, (2.2)

where the (i, t) element of the (Ng × T ) matrix Rg is Rgit, the i-th row of the
(Ng ×Kc) matrix Bg is β′

gi, the t-th row of the (T ×Kc) matrix F is f ′t, the i-th row
of the

(
Ng ×Ks

g

)
matrix Dg is δ′

gi, the t-th row of the
(
T ×Ks

g

)
matrix Gg is g′

t, and
the (i, t) element of the (Ng × T ) matrix Eg is egit.

Next, we provide the economic interpretations of (2.2). The first term of RHS in
(2.2) is related to the common factors, i.e. factors that shared across the two countries.
The price of risk for the common factors, is λc

g. Our main question is whether the
1We can add a mispricing term to the return generating process (2.1) and derive identical results,

our objective is to identify the market segmentation through differences in the risk compensation and
hence we do not include the mispricing term to simplify the exposition.
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compensation to the common factors is identical across the two countries, i.e. is the
compensation for the same risk identical across countries. We therefore index the
prices of risk by g (2.2) as our main empirical question will be if λc

1 ̸= λc
2. The bulk of

this section will detail the structure and assumptions on the data generating process,
before we detail our estimation procedure to estimate the difference in the prices of risk
between two countries.

First, let us consider a hypothetical case. If we knew [Bg Dg] , the exposures to the
systematic factors in each country, we could have estimated λc

g1
′
T +F′ from straightfor-

ward cross-sectional regressions in each country under reasonable assumptions.2 Then,
we might have recovered any differences in λc

1 and λc
2 as the differences in the estimated

λc
g1

′
T +F′ because F′, the random realization of common factors, is cancelled out. How-

ever, it is well known in the literature that beta estimates for a large cross-section over
a short horizon entail substantial estimation errors. Hence, we exploit the intuition
above by extending the approach in Fan et al. (2016) and Kim et al. (2021) to the two
country setup. The crucial difference from Kim et al. (2021) is that we aim to identify
the differences in compensation by extracting the information on the factor loadings in
characteristics while Kim et al. (2021) focuses on extracting the mispricing embedded
in characteristics.

To that end, we allow the systematic risk [Bg Dg] to be functions of asset-specific
characteristics in each country. Let xgi =

[
xgi1 · · · xgiLg

]′ be the (Lg × 1) vector of the
characteristics associated with stock i in country g. Then, define the (Ng × Lg) matrix
of Xg, the i-th row of which is x′

gi. We assume the following structure for [Bg Dg]:

Bg = XgΘ
c
g + Γc

g (2.3)

and

Dg = XgΘ
s
g + Γs

g, (2.4)

where Θc
g is the (Lg ×Kc) matrix, Θs

g is the
(
Lg ×Ks

g

)
matrix, and the (Ng ×Kc)

matrix, Γc
g and the

(
Ng ×Ks

g

)
matrix, Γs

g are cross-sectionally orthogonal to the char-
acteristic space of Xg. We call the two matrices of Θc

g and Θs
g as factor loading matrices

because they relate characteristics to factor loadings to the common and country-specific
2The object of λc

g1
′
T +F′ is closely related to the concept of expost risk premia discussed in Shanken

(1992) and Kim and Skoulakis (2018).
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systematic factors, respectively. The two terms of Γc
g and Γs

g represent the sources of
beta that are not attributable to the characteristics. While the factor loading matrices,
Θc

g and Θs
g can be consistently estimated in the large N/small T setting used here,

consistent estimates of Γc
g and Γs

g are not available. Therefore, our procedure does not
attempt to exploit the gammas, just their orthogonality to the characteristics in each
country. Furthermore, although we restrict the relation between factor loadings and
characteristics to be linear, there are various approaches to incorporate non-linearity.
For example, we would have chosen Xg to be a large set of characteristics, possibly
containing suitable polynomials of some underlying characteristics, X∗

g. Incorporating
(2.3) and (2.4) into (2.2), we have that:

Rg =
(
XgΘ

c
g + Γc

g

) (
λc

g1
′
T + F′)+ (XgΘ

s
g + Γs

g

) (
λs

g1
′
T +G′

g

)
+ Eg. (2.5)

We highlight some advantages of our approach. First, we can learn about beta
through XgΘ

c
g and XgΘ

s
g even when data are relatively infrequently observed (such as

monthly) over short horizon (such as a year) by instrumenting characteristics of Xg.
This is a strong advantage over other factor loadings extraction methods requiring long
time series or high frequency observations. Second, because we set T as a short horizon,
the process in (2.5) and can be treated as a local approximation of a conditional model
over a long horizon model. Third, our rolling estimation of (2.5) enables us to study
the temporal relation of characteristics to risk. Many empirical approaches (e.g. Kelly
et al. (2019), Ferson and Harvey (1999), Ghysels (1998)) construct conditional model by
allowing the characteristics to change period-by-period but holding the cross-sectional
relation between characteristics and risk constant, which might not be suitable for
detecting dynamic interplay between firm characteristics and risk. By estimating (2.5)
over rolling-windows, we can learn about the dynamics of XgΘ

c
g and XgΘ

s
g. Lastly, we

do not need to necessarily have all important characteristics for risks in (2.5). Because
any information in the missing characteristics is captured by Γc

g and Γs
g, our model

already incorporates the possibility of misspecifying the set of characteristics. Hence,
if some important characteristics are missing, we may lose some precision but will not
generate spurious results.

Note that the Arbitrage Pricing Theory (APT, Ross (1976)) implies that the com-
pensation for the common risk should be identical across all assets in the economy of
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the two countries, which will become clear later. Hence, in an economy without an
arbitrage, it supposes to hold that λc

1 = λc
2. Allowing for a market segmentation across

the two countries implies that the norm of λc
1 − λc

2 may be nonzero:

Assumption 1. It holds that (λc
1 − λc

2)
′ (λc

1 − λc
2) ≥ 0.

From (2.5), note that X1Θ
c
1 affects R1 individual stocks in country 1 by λc

1 plus a
realization of common factors and that X2Θ

c
2 affects R2 individual stocks in country 2

by λc
2 plus a realization of common factors. Hence, we can identify λc

1−λc
2 by observing

the differences in the relation between X1Θ
c
1 and R1 and that between X2Θ

c
2 and R2. It

is beyond the scope of this paper to examine the underlying cause of such a disagreement
in compensation.3 Also note that Assumption 1 does not imply that markets are always
segmented. The main objective of this paper is to provide a method to detect the market
segmentation if it exists. Furthermore, it will be shown that such information allows us
to form portfolios that yield abnormal returns (if (λc

1 − λc
2)

′ (λc
1 − λc

2) > 0) while not
having any exposure to systematic risk both to the country-specific or common factors.

Next, we assume standard regularity conditions on the characteristics and residual
returns in the two countries.

Assumption 2. In each country g = 1, 2, as Ng → ∞, it holds that
(i) R′

gRg

Ng

p→ VRg and X′
gXg

Ng
→ VXg , where VRg , VXg are positive definite matrices,

(ii) X′
gΓ

c
g

Ng

p→ 0Lg×Kc ,
X′

gΓ
s
g

Ng

p→ 0Lg×Ks
g
, and X′

gEg

Ng

p→ 0Lg×T ,

(iii) N1

N1+N2
→ n1 < 1.

Condition (i) simply states that the cross section of returns and characteristics are not
redundant but well-spread over individual stocks in each country. Condition (ii) imposes
the cross-sectional orthogonality conditions between the characteristics of Xg factor
loading regression residuals of Γc

g and Γs
g, and residual returns of Eg in each country.

Lastly, condition (iii) imposes that the numbers of individual stocks are comparable
across the two countries.

Lastly, we assume mild restrictions to separately identify factor loading matrices
Θc

g and Θs
g. We introduce the (T × T ) matrix JT = IT − 1

T
1T1

′
T , which corresponds

to time-series demeaning, and the (T × T ) matrix Pc = JTF (F′JTF)
−1 F′JT , which

corresponds to the projection to the demeaned common factors. Also, we let Θg and
Hg be

[
Θc

g Θs
g

]
and

[
F Gs

g

]
, respectively.

3See xxx among many for potential causes of market segmentation.
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Assumption 3. In each country g = 1, 2, as Ng → ∞, it holds that

(i) Θ′
gX

′
gXgΘg

Ng
=

[
Θc′

g X′
gXgΘc

g

Ng

Θc′
g X′

gXgΘs
g

Ng
Θs′

g X′
gXgΘc

g

Ng

Θs′
g X′

gXgΘs
g

Ng

]
→

[
Θc′

gVXgΘ
c
g Θc′

gVXgΘ
s
g

Θs′
g VXgΘ

c
g Θs′

g VXgΘ
s
g

]
= VΘg , where

VΘg is a (Kg ×Kg) positive definite matrix,
(ii) Θc′

g X′
gXgΘs

g

Ng
→ Θc′

gVXgΘ
s
g = 0Kc×Ks

g
,

(iii) H′
gJTHg

T
=

[
F′JTF

T

F′JTHg

T
H′

gJTF

T

H′
gJTHg

T

]
=

[
ΣF ΣFHg

Σ′
FHg

ΣHg

]
= ΣHg , where ΣHg is a (Kg ×Kg)

positive denifite matrix,
(iv) (IT − Pc) [G1 G2] is a full rank (T × (Ks

1 +Ks
1)) matrix.

Condition (i) implies that each column of XgΘg provides non-redundant information.
In a similar vein, condition (iii) posits that factor realizations are not redundant in
each country. Later, these limits will explicitly appear for identification restrictions.4

Condition (ii) restricts that XgΘ
c
g are cross-sectionally orthogonal to XgΘ

s
g. This as-

sumption is without loss of generality. If there is any correlation between XgΘ
c
g and

XgΘ
s
g, the correlated component can be assigned to the country-specific component

XgΘ
s
g by shifting country-specific part accordingly (Connor et al. (2012) and Kim et al.

(2021) utilize a similar orthogonality condition for identification between mispricing
and factor loadings). Condition (iv) implies that each country specific factors across
the two countries are not redudant after orthogonalizing against the common factors.
This condition is natural given that country-specific factors in a country should reflect
some shocks independent of the factors in the other country. Also, this property plays
an important role later in separating common factors from country-specific factors.

2.1 Methodology

Our procedure for detecting market segmentation involves Projected-PCA (PPCA) pro-
cedure, projecting returns on cross-sectional information for short time-series samples,
and Canonical Correlation Analysis (CCA), finding a pair of linear combination from
each group (country in our framework) so as to maximize the correlation. Fan et al.
(2016) show that the estimated factor loadings using such an approach converges to the

4Without this restriction, we cannot identify factor loadings functions because of the rotational
indeterminacy of latent factor models. For example, XgΘgF

′
g = XgΘgMM−1F′

g for any invertible
matrix M.
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true factor loadings as the cross-sectional sample increases, even for small time-series
samples. Kim et al. (2021) extend the PPCA estimator to not only estimate factors,
but also the mispricing function. We propose a method to detect market segmentation
by applying the PPCA estimator along with CCA estimator for a pair of countries.

We achieve the goal of detecting market segmentation in three steps. In the first
step, we estimate (demeaned) common factors F′JT by applying Asymptotic Principal
Components (APC) to demeaned projected returns in each country, (Connor and Ko-
rajczyk (1986)) and selecting the common factors from CCA. In the second step, we
estimate factor loadings for the common factors XgΘ

c
g. To this end, we (i) orthogonal-

ize returns against estimated demeaned common factors F′JT from the first step, (ii)
project the orthogonalized returns on the characteristics and apply APC to obtain the
country specific factor loadings, XgΘ

s
g., and (iii) finally regress demeaned returns on

the product of demeaned common factors JTF and characteristics Xg, revealing XgΘ
c
g.

In the third step, we regress the average returns of two countries, [R1 R2]
1T

T
on the

stacked factor loadings [X1Θ
c
1 X2Θ

c
2] and the stacked loadings times a country-1 dummy

[X1Θ
c
1 0N2×Kc ]. Then, it turns out that the coefficients on the second set of regressors

will consistently estimate λc
1 − λc

2. Furthermore, if λc
1 − λc

2 is not zero, we exploit this
market segmentation across Home and Foreign countries and suggest a portfolio which
delivers the profit of δ without any exposure to the systematic risks of either country.

Step 1: estimation of common factors The first step of our procedure is the
estimation of F′JT (upto rotation) from returns in the two coutries. Recall that the
observed returns in (2.5) are driven both by the risk premium λc

g and λs
g, and realization

of F and Hg. Because we want to learn the factor realization not the risk premium in this
step, we eliminate the effect of the risk premium by multiplying JT

(
= IT − 1

T
1T1T

)
,

or demeaning the observed returns:

RgJT =
(
XgΘ

c
g + Γc

g

) (
λc

g1
′
T + F′)JT

+
(
XgΘ

s
g + Γs

g

) (
λs

g1
′
T +G′

g

)
JT + EgJT

=
(
XgΘ

c
g + Γc

g

)
F′JT +

(
XgΘ

s
g + Γs

g

)
G′

gJT + EgJT , (2.6)

where the last equality is from the property of 1′
TJT = 1′

T

(
IT − 1

T
1T1

′
T

)
= 1′

T −
T
T
1′
T = 0′

T . For further isolation of XgΘ
c
g and XgΘ

s
g, we project the demeaned returns

10



of (2.1) on the (linear) span of Xg by premultiplying by the projection matrix Pg =

Xg

(
X′

gXg

)−1
X′

g. Then, we get

R̂g ≡PgRgJT (2.7)

=
(
PgXgΘ

c
g +PgΓ

c
g

)
F′JT +

(
PgXgΘ

s
g +PgΓ

s
g

)
G′

gJT +PgEgJT

=
(
XgΘ

c
g +PgΓ

c
g

)
F′JT +

(
XgΘ

s
g +PgΓ

s
g

)
G′

gJT +PgEgJT ,

where the last equality is from PgXg = Xg. Furthermore, exploiting the orthogonality
of Γc

g and Γs
g with respect to Xg and the limits in Assumption 2(ii), PgΓ

c
g, PgΓ

s
g, and

PgEg will become negligible for large Ng. Hence, with a large Ng, it follows that
R̂g = PgRgJT ≈

[
XgΘ

c
g XgΘ

s
g

] [
F′JT G′

gJT

]
= XgΘgH

′
gJT , where Θg =

[
Θc

g Θs
g

]
and

Hg = [F Gg] . Finally, as in Fan et al. (2016), we estimate HgJT by applying standard
principal component analysis to R̂g.

Theorem 2.1. Let Ĥg denote the (T ×Kg) matrix, the k-th column of which is the
eigenvector of R̂′

gR̂g

Ng
corresponding to the k-th largest eigenvalue of R̂′

gR̂g

Ng
, where R̂g is

given by (2.7). Under Assumptions 2 and 3, as Ng increases, Ĥg
p→ JTHgOg, where

the (Kg ×Kg) matrix Og is given in Lemma A.1.

Note that we identify the (demeaned) factors only up to rotation. We choose
the matrix Og so that O′

gΣFgOg is an identity matrix and O−1
g VΘgO−1′

g is a diago-
nal matrix. To provide some intuition of the above theorem, recall that R̂g converges
(as Ng → ∞ ) to XgΘgH

′
gJT = XgΘgO−1′

g O′
gH

′
gJT . Therefore, R̂′

gR̂g

Ng
converges to

JTHgOg

(
O−1

g
Θ′

gXgXgΘg

Ng
O−1′

g

)
O′

gH
′
gJT . Recall the given property of Og, O′

gH
′
gJTHgOg =

IKg . Furthermore, with Assumption 3(i), O−1
g

Θ′
gXgXgΘg

Ng
O−1′

g converges a diagonal ma-
trix as a property of Og. Hence, with a large Ng, each column of JTHgOg and each
diagonal element of O−1

g
Θ′

gXgXgΘg

Ng
O−1′

g can be interpreted as an eigenvector and an

eigenvalue of R̂′
gR̂g

Ng
, respectively. Resorting to these observations, we attempt to re-

cover JTHgOg as stated in Theorem 2.1.
Up to now, we have recovered the factors that are common across the countries

and the country specific factors. In the next steps, we will separate the common from
the country specific factors. The main analytical tool for this purpose is Canonical
Correlation Analysis (CCA). Define the (K1 ×K1) matrix Σ̂H1 , the (K2 ×K2) matrix
Σ̂H2 , and the (K1 ×K2) matrix Σ̂H12 as Σ̂H1 =

Ĥ′
1Ĥ1

T
, Σ̂H2 =

Ĥ′
2Ĥ2

T
, and Σ̂H12 =

Ĥ′
1Ĥ2

T
.
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Then, we propose an estimator F̂1, constructed as Ĥ1Ŵ1 where k-th column of the
(K1 ×Kc) matrix Ŵ1 is the canonical directions associated with the k-th largest eigen-
values obtained from eigen-decomposition of Σ̂−1

H1
Σ̂H12Σ̂

−1
H2
Σ̂′

H12
and Ŵ′

1Σ̂H1Ŵ1 = IKc .
Similarly, we define F̂2 as Ĥ2Ŵ2 where k-th column of the (K2 ×Kc) matrix Ŵ2 is
the cannonical directions associated with the k-th largest eigenvalues obtained from
eigen-decomposition of Σ̂−1

H2
Σ̂′

H12
Σ̂−1

H1
Σ̂H12 and Ŵ′

2Σ̂H2Ŵ2 = IKc . The next theorem
shows that we can recover the linear space generated by the demeaned common factors
from either F̂1 or F̂2. [this formulation is from the group factor model by Ghysel. But,
I think the singular value decomposition is simpler. ]

Theorem 2.2. Under Assumptions 2 and 3, it holds that F̂g
p→ JTFS for some S such

that SS ′ = Σ−1
F for g = 1, 2.

Note that CCA suggests to pair a linear combination of Ĥ1 with a linear combination
of Ĥ2 so that the correlation between the linear combinations is maximized. Given that
both Ĥ1 and Ĥ2 asymptotically recover the linear space spanned by the common factors
but that the systematic factor of one country cannot recover the country-specific factors
of the other country (Assumption 3(iv)), we can filter out the country-specific factors
by applying CCA to the Ĥ1 and Ĥ2. Then, we use the following corollary to pin down
the estimator for common factors:

Corollary 2.1. Under Assumptions 2 and 3, it holds F̂
(
≡ 1

2

(
F̂1 + F̂2

))
p→ JTFS for

some S such that SS ′ = Σ−1
F .

So far, we have recovered the information on the common factors. In the next step,
we estimate Θc

g, the factor loading matrix with respect to the common factors.

Step 2: estimation of factor loading matrices on common factors Next, we
proceed to estimate Θc

g, the factor loading matrices with respect to the common factors.
In Step 1, we introduce R̂g ≡ PgRgJT and exploit the following property of R̂g:

R̂g ≈ XgΘ
c
gF

′JT +XgΘ
s
gG

′
gJT .

Because we already have a consistent estimator F̂′ p→ S ′F′JT from Step 1, we might
attempt to recover the information on Θc

g by regressing R̂g on the interaction between
Xg and F̂′.

12



However, such an approach does not accurately isolate XgΘ
c
g because of the country-

specific factors. Even when the country-specific factors are orthogonal to common fac-
tors in the population, the country-specific factors can be correlated to the common
factors over a short horizon. Hence, such regression confounds factor loadings to com-
mon factors with factor loadings to the country-specific factors.5 Hence, we propose
to identify Θs

g first and estimate Θc
g by imposing cross-sectional orthogonality between

XgΘ
s
g and XgΘ

c
g (Assumption 3(ii)).

For that reason, we eliminate the terms related to common factors by projecting R̂g

to the space orthogonal to F̂:

R̃g ≡ R̂g

(
IT − P̂c

)
(2.8)

≈ XgΘ
c
gF

′JT

(
IT − P̂c

)
+XgΘ

s
gG

′
gJT

(
IT − P̂c

)
≈ XgΘ

s
gG

′
gJT

(
IT − P̂c

)
(2.9)

where P̂c = F̂
(
F̂′F̂

)−1

F̂′. Then, given that F̂
p→ JTFS from Step 1, it follows P̂c p→

Pc = JTF (F′JTF)
−1 F′JT . Hence, the first term of RHS in (2.8) will become negligible

and it holds that R̃g ≈ XgΘ
s
gG

′
gJT (IT − Pc). Then, we estimate Θs

g by utilizing
principal component analysis to R̃g.

Theorem 2.3. Let D̂g denote the
(
Ng ×Ks

g

)
matrix, the k-th column of which is

√
Ng

times the eigenvector of R̃gR̃′
g

Ng
corresponding to the k-th largest eigenvalue of R̃gR̃′

g

Ng
, where

R̃g is given by (2.8). Define Θ̂s
g as Θ̂s

g =
(
X′

gXg

)−1
(
X′

gD̂g

)
. Under Assumptions 2

and 3, it holds that Θ̂s
g

p→ Θs
gDg, where Dg is given by Lemma A.7.

The intuition of the above theorem is similar to that of Theorem 2.1. The matrix Dg

in Lemma A.7 is designed to make D′
g

(
Θs′

g X′
gXgΘs

g

Ng

)
Dg converge to an identity matrix

and to let D−1
g

(
G′

gJT (IT − Pc)JTGg

)
D−1′

g be a diagonal matrix. Recall that R̃g con-
verges (as Ng → ∞ ) to

(
XgΘ

s
gDg

) (
D−1

g G′
gJT (IT − Pc)

)
. Therefore, as Ng → ∞

R̃gR̃′
g

Ng
converges to

(
XgΘs

g√
Ng

Dg

)(
D−1

g

(
G′

gJT (IT − Pc)JTGg

)
D−1′

g

)(XgΘs
g√

Ng
Dg

)′

. From

Assumptions 3(i) and a property of Dg, D′
g
Θs′

g X′
gXgΘs

g

Ng
Dg → IKs

g
, so each column of

XgΘs
g√

Ng
Dg can be treated as an eigenvector. Hence, the eigenvector of R̃gR̃′

g

Ng
recovers

5More precisely, we need the orthogonality between (Xg ⊗ F) and (Xg ⊗Gg) .
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XgΘs
g√

Ng
Dg, which in turn justifies rescaling the eigenvector by

√
Ng to obtain D̂g and

regressing Xg on D̂g for Θ̂s
g.

Next, we proceed to estimate Θc
g. Given the consistent estimator Θs

gDg from Theo-
rem 2.3 and the orthogonality between XgΘ

c
g and XgΘ

s
g given by Assumption 3(ii), we

identify Θc
g by regressing demeaned returns on the interaction between Xg and F̂ such

that the estimated XgΘ
c
g is cross-sectionally orthogonal to the estimated XgΘ̂

s
g. The

following theorem establishes that we can recover Θc
g.

Theorem 2.4. Let the (Lg ×Kc) matrix of Θ̂c
g be the solution of the following con-

strained optimization problem:

Θ̂c
g = argmin

Θc
g

∥RgJT −
(
XgΘ

c
g

)
F̂′∥ (2.10)

subject to Θ̂s′
g X

′
gXgΘ

c
g = 0Ks

g×Kc ,

where Θ̂s
g is given by Theorem 2.3. Then, under Assumptions 2 and 3, it holds that

Θ̂c
g

p→ Θc
gS ′−1 for some S such that SS ′ = Σ−1

F .

The problem in the above theorem can be transformed into a conventional ordinary
least square problem with linear equality constraints and the closed form solution is
easily obtained.

Step 3: detecting the market segmentation In the third step, we detect the
market segmentation by revealing whether λc

1 − λc
2 is zero or not. In contrast to the

previous two steps which eliminate risk premia by demeaning, we need to keep the
information of risk premia and hence take the time-series average of returns. Define a
(m× 1) vector A and a (1×m) vector B as 1

T
A1T for a (m× T ) matrix A and 1

T
1′
TB

for a (T ×m) matrix B, respectively. Let R be the (N1 +N2)× 1 vector of
[
R

′
1 R

′
2

]′
.

Note that Rg can be rewritten as

Rg =
(
XgΘ

c
g + Γc

g

) (
λc

g + F
′
)
+
(
XgΘ

s
g + Γs

g

) (
λs

g +G
′
g

)
+ Eg,

= XgΘ
c
gS ′−1S ′

(
λc

g + F
′
)
+ Γg, (2.11)

where ug = Γc
g

(
λc

g + F
′
)
+Γs

g

(
λs

g +G
′
g

)
+Eg +XgΘ

s
g

(
λs

g +G
′
g

)
. From Assumption

2(ii), XgΘ
c
g is orthogonal to the first three terms of ug. Furthermore, Assumption

14



3(ii) confirms the orthogonality of XgΘ
c
g against the last term of ug. By stacking the

expressions of (2.11) over the two countries, we have the

R =

[
R1

R2

]
=

 X1Θ
c
1S ′−1S ′

(
λc

1 + F
′
)

X2Θ
c
2S ′−1S ′

(
λc

2 + F
′
) +

[
Γ1

Γ2

]

=

[
X1Θ

c
1S ′−1

0N2×Kc

]
S ′ (λc

1 − λc
2) +

[
X1Θ

c
1S ′−1

X2Θ
c
2S ′−1

]
S ′
(
λc

2 + F
′
)
+

[
Γ1

Γ2

]
.

As described before, the residual term of [Γ′
1 Γ′

2]
′ is orthogonal to the infeasible regres-

sors of
[

X1Θ
c
1S ′−1 X1Θ

c
1S ′−1

0N2×Kc X2Θ
c
2S ′−1

]
. Hence, if we have the true values of Θc

1S−1′ and

Θc
1S−1′, we can consistently estimate the coefficients S ′ (λc

1 − λc
2). Instead, we have

Θ̂c
1

p→ Θc
1S and Θ̂c

2

p→ Θc
2S from Theorem 2.4. The next theorem shows that we

can learn about the differences in the risk premia λc
1 − λc

2 by exploiting the feasible
estimators Θ̂c

g from Step 2.

Theorem 2.5. Define λ̂∆ = [IKc 0Kc×Kc ]
(
B̂′B̂

)−1

B̂′R, where the (N1 +N2)× (2Kc)

matrix B̂ is given by
[

X1Θ̂
c
1 X1Θ̂

c
1

0N2×Kc X2Θ̂
c
2

]
. Then, under Assumptions 2 and 3, it holds

that λ̂∆
p→ S ′ (λc

1 − λc
2) .

The above theorem is the punchline of this paper: an investor can identify the
market segmentation by regressing the average returns of the two countries countries
R on B̂, constructed by estimated factor loadings to common factors, and selecting the
first Kc estimated coefficients.

Lastly, we justify our market segmentation test from the perspective of APT by
confirming that once an investor identifies the condition of λc

1 ̸= λc
2, s/he can form a

portfolio which delivers δ = (λc
1 − λc

2)
′ Σ−1

F (λc
1 − λc

2) without any exposure to risks.

Theorem 2.6. Define a portfolio vector ŵ as ŵ = λ̂′
∆ [IKc 0Kc×Kc ]

(
B̂′B̂

)−1

B̂′, where
the (Kc × 1) vector of λ̂∆ and the ((N1 +N2)× (2Kc)) matrix B̂ are given in Theorem
2.5 and R = [R′

1 R′
2]

′. Then, under Assumptions 2 and 3, it holds that ŵR
p→ δ1′

T .

The above theorem reveals some potentially practical benefits from identifying mar-
ket segmentation. An investor can consistently recover the positive profits, should they

15



exist, as the number of securities grows large. Note that the construction of this port-
folio does not require large T. Hence, we can estimate w over one sample and calculate
out-of-sample returns over a subsequent sample.
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A Proofs
———————–

Lemma A.1. Let Lg be a lower triangular matrix such that VΘg = LgL
′
g. From the

eigendecompotion of L′
gΣHgLg, find Ug such that L′

gΣHgLg = UgDU′
g, where D is a

diagonal matrix and U′
gUg = IKg . Define Og as LgUg. Then, it holds

(i) O−1
g VΘgO−1′

g is an identity matrix, and
(ii) O′

gΣHgOg is a diagonal matrix.

Proof First, we show (i) O−1
g VΘgO−1′

g is an identity matrix. Note that O−1
g =

U−1
g L−1

g = U′
gL

−1
g , which in turn gives,

O−1
g VΘgO−1′

g = U′
gL

−1
g VΘgL

−1′
g Ug = U′

gL
−1
g LgL

′
gL

−1′
g Ug

= U′
gUg = IKg ,

where the last equality is from the property of Ug.

We move to the next claim. Note that

O′
gΣHgOg = U′

gL
′
gΣHgLgUg = U′

gUgDU′
gUg = D,

where the second equality is from the eigendecompotion of L′
gΣHgLg and the last equal-

ity is from the property of Ug. This completes the proof of the lemma. □

Proof of Theorem 2.1 The following three steps complete the proof.
Step 1. R̂′

gR̂g

Ng

p→ JTHgVΘgH
′
gJT : From (2.7), we have that

R̂g = j1 + j2 + j3 + j4, (A.1)

where j1 = XgΘgH
′
gJT , j2 = PgΓ

c
gF

′JT , j3 = PgΓ
s
gG

′
gJT , and j4 = PgEgJT . Then,

R̂′
gR̂g

Ng

=
∑

k,l=1,2,3,4

j′kjl
Ng

. (A.2)
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Note that

j′1j1
Ng

= JTHg

Θ′
gX

′
gXgΘg

Ng

H′
gJT

p→ JTHgVΘgH
′
gJT , (A.3)

where the limit is from Assumption 3(i), and that

j′2j2
Ng

=
JTFΓ

c′
gPgΓ

c
gF

′JT

Ng

= JTF
Γc′
gXg

Ng

(
X′

gXg

Ng

)−1 X′
gΓ

c
g

Ng

F′JT
p→ 0T×T , (A.4)

where the limit is from Assumptions 2(i) and 2(ii), and that

j′3j3
Ng

=
JTGgΓ

s′
g PgΓ

s
gG

′
gJT

Ng

= JTGg

Γs′
g Xg

Ng

(
X′

gXg

Ng

)−1 X′
gΓ

s
g

Ng

G′
gJT

p→ 0T×T , (A.5)

where the limit is from Assumptions 2(i) and 2(ii), and that

j′4j4
Ng

=
JTE

′
gPgEgJT

Ng

= JT

E′
gXg

Ng

(
X′

gXg

Ng

)−1 X′
gEg

Ng

JT
p→ 0T×T , (A.6)

where the limit is from Assumptions 2(i) and 2(ii). From (A.3)-(A.6) and the submul-
tiplicativity of Frobenius norm, we have that

∥j
′
1jl
Ng

∥ ≤ ∥ j1√
Ng

∥∥ jl√
Ng

∥ =

√
tr
(
j′1j1
Ng

)
tr
(
j′ljl
Ng

)
p→ 0 (A.7)

for l = 2, 3, 4 and that

∥j
′
kjl
Ng

∥ ≤ ∥ jk√
Ng

∥∥ jl√
Ng

∥ =

√
tr
(
j′kjk
Ng

)
tr
(
j′ljl
Ng

)
p→ 0 (A.8)

for k, l = 2, 3, 4. By plugging (A.3)-(A.8) into (A.2), we confirm the claim of Step 1.
Step 2. The k-th column of JTHgOg, where JTHg is given by Lemma A.1, is the

k-th eigenvector of JTHgVΘgH
′
gJT : Note that

JTHgVΘgH
′
gJT = JTHgOg

(
O−1

g VΘgO−1′
g

)
O′

gH
′
gJT . (A.9)

Given the properties of Og in Lemma A.1, the claim directly follows. Step 3. Ĥg
p→

JTHgOg: The claim holds due to the continuity of the eigendecomposition. This com-
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pletes the proof of the theorem. □

Lemma A.2. Define Σ̂Hg and Σ̂H12 as H′
gJTHg

T
and H′

1JTH2

T
, respectively, where Hg is

given in Theorem 2.1. Let L̂Hg be a lower triangular matrix such that Σ̂Hg = L̂Hg L̂
′
Hg

for g = 1, 2. From the singular value decomposition of L̂−1
H1
Σ̂H12L̂

′−1
H2

, we have V̂1, V̂2,

and Σ̂ such that

L̂−1
H1
Σ̂H12L̂

′−1
H2

= V̂1Σ̂V̂
′
2, (A.10)

where V̂′
1V̂1 = IK1, V̂′

2V̂2 = IK2, and Σ̂ is a rectangular diagonal matrix with nonneg-
ative diagonal elements in a decreasing order. Let Σ̂kk be the k-th diagonal element of
Σ̂. Then, it holds that
(i) the k-th column of the (K1 ×Kc) matrix Ŵ1 is the k-th column of L̂′−1

H1
V̂1

[
IKc 0Kc×Ks

1

]′
and the k-th lagest eigenvalue of Σ̂−1

H1
Σ̂H12Σ̂

−1
H2
Σ̂′

H12
is
(
Σ̂kk

)2
,

(ii) the k-th column of the (K2 ×Kc) matrix Ŵ2 is the k-th column of L̂′−1
H2

V̂2

[
IKc 0Kc×Ks

2

]′
and the k-th lagest eigenvalue of Σ̂−1

H2
Σ̂′

H12
Σ̂−1

H1
Σ̂H12 is

(
Σ̂kk

)2
.

Proof Recall that Ŵ1 is defined by (a) the k-th column of Ŵ1 is the eigenvector
of Σ̂−1

H1
Σ̂H12Σ̂H2Σ̂

′
H12

corresponding to the k-th largest eigenvalues obtained and (b)
Ŵ′

1Σ̂H1Ŵ1 = IKc .
From L̂−1

H1
Σ̂H12L̂

′−1
H2

= V̂1Σ̂V̂
′
2, we have that

(
L̂−1

H1
Σ̂H12L̂

′−1
H2

)(
L̂−1

H1
Σ̂H12L̂

′−1
H2

)′
=
(
V̂1Σ̂V̂

′
2

)(
V̂1Σ̂V̂

′
2

)′
,

which, in conjunction with V̂′
2V̂2 = IK2 , gives

L̂−1
H1
Σ̂H12L̂

′−1
H2

L̂−1
H2
Σ̂′

H12
L̂′−1

H1
= V̂1Σ̂Σ̂

′V̂′
1,

yielding, along with V̂′
1V̂1 = IK1 , that

Σ̂−1
H1
Σ̂H12Σ̂

−1
H2
Σ̂′

H12
L̂′−1

H1
V̂1 = L̂′−1

H1
V̂1Σ̂Σ̂

′V̂′
1V̂1 = L̂′−1

H1
V̂1Σ̂Σ̂

′,

This shows that the k-th column of L̂′−1
H1

V̂1 is the eigenvector of Σ̂−1
H1
Σ̂H12Σ̂

−1
H2
Σ̂′

H12

corresponding to the eigenvalue in the k-th diagonal element of Σ̂Σ̂′. This confirms the
condition (a) for Ŵ. The condition (b) is satisfied due to that V̂′

1L̂
−1
H1
Σ̂H1L̂

′−1
H1

V̂1 =
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V̂′
1L̂

−1
H1
L̂H1L̂

′−1
H1

L̂′−1
H1

V̂1 = V̂′
1V̂1 = IK1 . Hence, the claim (i) holds.

The claim (ii) follows due to symmetry. This completes the proof of the lemma. □
The next lemma reveals the N -limit behavior of CCA in our setup.

Lemma A.3. Let Vg and LHg be the N-limits of V̂g and L̂Hg , respectively, where
V̂g and L̂Hg are given in Lemma A.2. Let LF be a lower triangular matrix such that
F′JTF

T
= LFL

′
F . Then, it holds that

Vg

[
IKc 0Kc×Ks

g

]′
= L′

Hg
O−1

g

[
IKc 0Kc×Ks

g

]′
L′−1

F R

for a rotation matrix R.

Proof From Theorem 2.1, we have that

L̂−1
H1
Σ̂H12L̂

′−1
H2

p→ L−1
H1
O′

1

(
H′

1JTH2

T

)
O2L

′−1
H2

. (A.11)

From the continuity of singular value decomposition, it also holds that

L−1
H1
O′

1

(
H′

1JTH2

T

)
O2L

′−1
H2

= V1ΣV
′
2, (A.12)

where V′
1V1 = IK1 , V′

2V2 = IK2 , and Σ is a rectangular diagonal matrix with nonneg-
ative diagonal elements in a non-increasing order.

Note that the elements in the diagonal matrix Σ̂ reveal the correlations. Hence,
because F is in both H1 and H2 and country-specific factors are not redundant (As-
sumption 3(iv)), it holds that Σkk = 1 for k = 1, · · · , Kc and Σkk < 1 for k > Kc.

Define Yg as follows:

Yg = L′
Hg
O−1

g

[
IKc 0Kc×Ks

g

]′
L′−1

F R. (A.13)

Then, the claim of the lemma will be shown by confirming that

Y ′
gYg = IKc for g = 1, 2, (A.14)

Y ′
1L

−1
H1
O′

1

(
H′

1JTH2

T

)
O2L

′−1
H2

Y2 = IKc . (A.15)
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First, note that

Y ′
gYg = R′L−1

F

[
IKc 0Kc×Ks

g

]′ O−1′
g LHgL

′
Hg
O−1

g

[
IKc 0Kc×Ks

g

]′
L′−1

F R

= R′L−1
F

[
IKc 0Kc×Ks

g

]′ O−1′
g O′

g

(
H′

gJTHg

T

)
OgO−1

g

[
IKc 0Kc×Ks

g

]′
L′−1

F R

= R′L−1
F

(
F′JTF

T

)
L′−1

F R = R′L−1
F LFL

′
FL

′−1
F R = R′R = IKc ,

which confirms (A.14).
Next, note that

Y ′
1L

−1
H1
O′

1

(
H′

1JTH2

T

)
O2L

′−1
H2

Y2

=Y ′
1L

−1
H1
O′

1

(
H′

1JTH2

T

)
O2L

′−1
H2

Y2

=R′L−1
F

[
IKc 0Kc×Ks

1

](H′
1JTH2

T

)[
IKc 0Kc×Ks

2

]′
L′−1

F R

=R′L−1
F

(
F′JTF

T

)
L′−1

F R = R′R = IKc ,

which confirms (A.15). This completes the proof of the lemma. □

Proof of Theorem 2.2 Note that

F̂′
g = Ŵ′

gĤ
′
g =

[
IKc 0Kc×Ks

g

]
V̂′

gL̂
′−1
Hg

Ĥ′
g

p→
[
IKc 0Kc×Ks

g

]
V′

gL
′−1
Hg

O′
gH

′
gJT

= R′L−1
F

[
IKc 0Kc×Ks

g

]′ O′−1
g O′

gH
′
gJT = R′L−1

F F′JT ,

where the second equality is from Lemma A.2, the limit is from Lemma A.3 and The-
orem 2.1 and the third equality is from Lemma A.3.

Finally, set S ′ = R′L−1
F . Note that SS ′ = L′−1

F RR′L−1
F = L′−1

F L−1
F = Σ−1

F . This
completes the proof of the theorem. □

The following several lemmas are useful for the proof of Theorem 2.3.

Lemma A.4. Under Assumptions 2 and 3, as Ng increases, P̂c p→ Pc, where P̂c =

F̂
(
F̂′F̂

)−1

F̂ and Pc = JTF (F′JTF)
−1 F′JT .
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Proof The claim directly follows from F̂
p→ JTFS from Theorem 2.1. This completes

the proof of the lemma. □

Lemma A.5. Let Y be a (N × T ) matrix. Assume that the first K eigenvalues of
Y′Y are distinct and strictly positive. Define F̂ and D such that the k-th column of the
(N ×K) matrix F̂ is the eigenvector of Y′Y corresponding to the k-th largest eigenvalue
of Y′Y and the k-th diagonal element of the (K ×K) diagonal matrix D is the k-th
largest eigenvalue of Y′Y. Define the (N ×K) matrix Λ̂ such that the k-th column of
Λ̂ is the eigenvector of YY′ corresponding to the k-th largest eigenvalue of YY′. Let
Λ̃ = YF̃

(
F̃′F̃

)−1

, where F̃ = F̂D1/2. Then, it holds that

Λ̂ = Λ̃.

Proof This lemma is identical to Lemma 1 of Kim et al. (2021). □

Lemma A.6. Consider the
(
T ×Ks

g

)
matrix Ĝg and the

(
Ks

g ×Ks
g

)
diagonal matrix

∆g such that the k-th column of Ĝg is the eigenvector of R̃′
gR̃g

Ng
corresponding to the k-th

largest eigenvalue, which is the k-th diagonal element of ∆g.

Define D̃g = R̃gG̃g

(
G̃′

gG̃g

)−1

, where G̃g = Ĝg∆
1/2
g . Then, it holds that

(i) D̂g = D̃g

(ii) PgD̂g = D̂g,

where D̂g is given by Theorem 2.3.

Proof Note that R̃gR̃′
g

Ng
=

(
R̃g√
Ng

)(
R̃g√
Ng

)′

and R̃′
gR̃g

Ng
=

(
R̃g√
Ng

)′(
R̃g√
Ng

)
and that

D̃g =
√
Ng

R̃g√
Ng

G̃g

(
G̃′

gG̃g

)−1

. Hence, by setting N = Ng and Y = R̃g√
Ng

, the claim (i)
directly follows from Lemma A.5.

Turn to (ii). Because

PgD̃g = PgR̃gG̃g

(
G̃′

gG̃g

)−1

=PgPgRgJT

(
IT − P̂c

)
F̃s

g

(
F̃s′

g F̃
s
g

)−1

= PgRgJT G̃g

(
G̃′

gG̃g

)−1

=R̃gG̃g

(
G̃′

gG̃g

)−1

= D̃g,

(ii) is also true from (i). This completes the proof of the lemma. □
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Lemma A.7. Let LΘs
g

be a lower triangular matrix such that Θs′
g VXgΘ

s
g = LΘs

g
L′

Θs
g
.

Then, consider the
(
Ks

g ×Ks
g

)
matrix UΘs

g
and the

(
Ks

g ×Ks
g

)
diagonal matrix ∆Θs

g

such that

L′
Θs

g

G′
gJT (IT − Pc)JTGg

T
LΘs

g
= UΘs

g
∆Θs

g
U′

Θs
g
, (A.16)

where ∆Θs
g

is a diagonal matrix and U′
Θs

g
UΘs

g
= IKs

g
. Define Dg as

(
U′

Θs
g
L′

Θs
g

)−1

. Then,
it holds that
(i) D′

g

(
Θs′

g VXgΘ
s
g

)
Dg is an identity matrix and,

(ii) D−1
g

G′
gJT (IT−Pc)JTGg

T
D−1′

g = ∆Θs
g
.

Proof First, we show the claim (i) that D′
g

(
Θs′

g VXgΘ
s
g

)
Dg is an identity matrix.

From UΘs
g
= U′−1

Θs
g
, note that Dg =

(
LΘs

g

)−1′
UΘs

g
, which in turn gives,

D′
g

(
Θs′

g VXgΘ
s
g

)
Dg = U′

Θs
g

(
LΘs

g

)−1 (
Θs′

g VXgΘ
s
g

) (
LΘs

g

)−1′
UΘs

g

= U′
Θs

g

(
LΘs

g

)−1
LΘs

g
L′

Θs
g

(
LΘs

g

)−1′
UΘs

g
= U′

Θs
g
UΘs

g
= IKs

g
,

verifying the claim (i).
We move to the next claim (ii). Note that

D−1
g

G′
gJT (IT − Pc)JTGg

T
D−1′

g = U′
Θs

g
L′

Θs
g

G′
gJT (IT − Pc)JTGg

T
LΘs

g
UΘs

g

=U′
Θs

g
UΘs

g
∆Θs

g
U′

Θs
g
UΘs

g
= ∆Θs

g
,

where the second equality is from (A.16). This completes the proof of the lemma. □

Lemma A.8. It holds that

R̃g√
Ng

= l1 + l2 + l3 + l4,
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where

l1 =
1√
Ng

XgΘ
s
gG

′
gJT

(
IT − P̂c

)
l2 =

1√
Ng

PgΓ
s
gG

′
gJT

(
IT − P̂c

)
l3 =

1√
Ng

(
XgΘ

s
g +PgΓ

c
g

)
F′JT

(
Pc − P̂c

)
l4 =

1√
Ng

PgEgJT

(
IT − P̂c

)
.

Also, under Assumptions 2 and 3, as Ng increases, it holds that

l′1l1
p→ (IT − Pc)JTGgD−1′

g D−1
g G′

gJT (IT − Pc) ,

where Dg is given in Lemma A.7, and that for i = 2, 3, 4,

l′ili
p→ 0T×T .

Proof From (2.7) and (2.8), we have that

R̃g = R̂g

(
IT − P̂c

)
= PgRgJT

(
IT − P̂c

)
=
(
PgXgΘ

c
g +PgΓ

c
g

)
F′JT

(
IT − P̂c

)
+
(
PgXgΘ

s
g +PgΓ

s
g

)
G′

gJT

(
IT − P̂c

)
+PgEgJT

(
IT − P̂c

)
= XgΘ

s
gG

′
gJT

(
IT − P̂c

)
+PgΓ

s
gG

′
gJT

(
IT − P̂c

)
+
(
XgΘ

c
g +PgΓ

c
g

)
F′JT

(
Pc − P̂c

)
+PgEgJT

(
IT − P̂c

)
,

where the second equality is from F′JT (IT − Pc) = 0Kc×T . Hence, it holds that

R̃g√
Ng

= l1 + l2 + l3 + l4, (A.17)

where l1, l2, l3 and l4 are defined above.
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Next, we move to the limits of l′ili for i = 1, · · · , 4. Note that

l′1l1 =
(
IT − P̂c

)
JTGgD−1′

g D′
g

Θs′
g X

′
gXgΘ

s
g

Ng

DgD−1
g G′

gJT

(
IT − P̂c

)
p→ (IT − Pc)JTGgD−1′

g D−1
g G′

gJT (IT − Pc) (A.18)

where the limit is from Assumption 3(i) and Lemmas A.4 and A.7. Also, note that

l′2l2 =
(
IT − P̂c

)
JTGgC2G

′
gJT

(
IT − P̂c

)
,

where

C2 =
Γs′
g Xg

Ng

(
X′

gXg

Ng

)−1 X′
gΓ

s
g

Ng

p→ 0Ks
g×Ks

g ,

from Assumptions 2(i) and 2(ii), which, in conjunction with Lemma A.4, gives

l′2l2
p→ 0T×T . (A.19)

Note that
l′3l3 =

(
Pc − P̂c

)
JTFC3F

′JT

(
Pc − P̂c

)
, (A.20)

where

C3 =
Θc

g
′X′

gXgΘ
c
g

Ng

+
Θc

g
′X′

gΓ
c
g

Ng

+

+
Γc′
gXgΘ

c
g

Ng

+
Γc′
gXg

Ng

(
X′

gXg

Ng

)−1 X′
gΓ

c
g

Ng

p→ Θc
g
′VXgΘ

c
g (A.21)

from Assumptions 2(i), 2(ii), and 3(i). Plugging (A.21) into (A.20) along with Lemma
A.4 gives the following:

l′3l3
p→ 0T×T . (A.22)

Lastly, note that
l′4l4 =

(
IT − P̂c

)
JTC4JT

(
IT − P̂c

)
, (A.23)

25



where

C4 =
E′

gXg

Ng

(
X′

gXg

Ng

)−1 X′
gEg

Ng

p→ 0T×T (A.24)

from Assumptions 2(i) and 2(ii). Plugging (A.24) into (A.23) along with Lemma A.4
gives the following:

l′4l4
p→ 0T×T . (A.25)

The expression (A.17) along with the limits (A.18), (A.19), (A.22), and (A.25),
completes the proof of the lemma. □

Lemma A.9. Under Assumptions 2 and 3, it holds that

R̃′
gR̃g

Ng

p→ (IT − Pc)JTGgD−1′
g D−1

g G′
gJT (IT − Pc) ,

where Hg is given by Lemma A.7.

Proof From Lemma A.8, it holds that

R̃′
gR̃g

Ng

=
4∑

i,j=1

l′ilj,

which gives
R̃′

gR̃g

Ng

− l′1l1 =
∑

∼(i=j=1)

l′ilj. (A.26)

Note that for i = 1, 2, 3, 4 and j = 2, 3, 4, it holds that

∥l′ilj∥ ≤ ∥li∥ · ∥lj∥ =
√

tr (l′ili) tr
(
l′jlj
) p→ 0, (A.27)

where the first inequality is from the submultiplicativity of Frobenius norm and the
limit is from Lemma A.8. Hence, it follows that

∥
∑

∼(i=j=1)

l′ilj∥ ≤
∑

∼(i=j=1)

∥l′ilj∥
p→ 0, (A.28)
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where the first inequality is from triangle inequality and the limit is from (A.27).
Lastly, from (A.26) and (A.26), it follows that

∥
R̃′

gR̃g

Ng

− l′1l1∥
p→ 0,

which in junction with Lemma A.8 confirms the claim of the lemma. This completes
the proof of the lemma. □

Proof of Theorem 2.3 The following five steps complete the proof of Θ̂s
g

p→ Θs
gDg.

Consider D̃g, G̃g, Ĝg and ∆g defined in Lemma A.6 and Dg and ∆Θs
g

from Lemma A.7.
Define G as (IT − Pc)JTGgD−1′

g T−0.5∆−0.5
Θs

g
.

Step 1. Ĝg
p→ G and ∆g

p→ T∆Θs
g
: From Lemma A.7, it holds that

G ′G =∆−0.5
Θs

g
T−0.5D−1

g G′
gJT (IT − Pc)JTGgD−1′

g T−0.5∆−0.5
Θs

g

=∆−0.5
Θs

g
T−0.5T∆Θs

g
T−0.5∆−0.5

Θs
g

= IKs
g

(A.29)

and that

D−1
g G′

gJT (IT − Pc)G = D−1
g G′

gJT (IT − Pc)JTGgD−1′
g T−0.5∆−0.5

Θs
g

= T 0.5∆0.5
Θs

g
,

which in turn gives that

G ′ (IT − Pc)JTGgD−1′
g D−1

g G′
gJT (IT − Pc)G = T∆Θs

g
, (A.30)

which is a diagonal matrix from Lemma A.6. Hence, from (A.29) and (A.30), each
column of G is an eigenvector of (IT − Pc)JTGgD−1′

g D−1
g G′

gJT (IT − Pc) , which is the
limit of R̃′

gR̃g

Ng
from Lemma A.9. Because the k-th column of Ĝg is an eigenvector of

R̃′
gR̃g

Ng
, corresponding to the k-th eigenvalue or the k-th diagonal element of ∆g, the

claim holds due to the continuity of eigen-decomposition.
Step 2. G̃g

p→ (IT − Pc)JTGgD−1′
g : From Step 1, it holds that

G̃g = Ĝg∆
0.5
g

p→GT 0.5∆0.5
Θs

g

=(IT − Pc)JTGgD−1′
g T−0.5∆−0.5

Θs
g
T 0.5∆0.5

Θs
g
= (IT − Pc)JTGgD−1′

g .
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Step 3. G̃g

(
G̃′

gG̃g

)−1 p→ (IT − Pc)JTGgD−1′
g T−1∆−1

Θs
g
: It holds that

G̃g

(
G̃′

gG̃g

)−1

p→ (IT − Pc)JTGgD−1′
g

(
D−1

g G′
gJT (IT − Pc)JTGgD−1′

g

)−1

=(IT − Pc)JTGgD−1′
g T−1

(
D−1

g

G′
gJT (IT − Pc)JTGg

T
D−1′

g

)−1

=(IT − Pc)JTGgD−1′
g T−1∆−1

Θs
g
,

where the limit is from Step 2 and the last equality is from Lemma A.7.
Step 4. D−1

g G′
gJT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1 p→ IKs
g
: From Step 3 and Lemmas A.4

and A.7,

D−1
g G′

gJT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

p→D−1
g

G′
gJT (IT − Pc)JTGg

T
D−1′

g ∆−1
Θs

g
= IKs

g
.

Step 5. Θ̂s
g

p→ Θs
gDg: Note that D̃g in Lemma A.6 is expressed using (2.7) as follows:

D̃s
g = R̃gG̃g

(
G̃′

gG̃g

)−1

= R̂g

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

=
(
XgΘ

s
gDg +PgΓ

s
gDg

)
D−1

g G′
gJT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

+
(
XgΘ

c
g +PgΓ

c
g

)
F′JT

(
Pc − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

+PgEgJT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

,

where the last equality is from F′JT (IT − Pc) = 0Kc×T . Hence, it follows that

Θ̂s
g =

(
X′

gXg

)−1
(
X′

gD̂
s
g

)
=
(
X′

gXg

)−1
(
X′

gD̃
s
g

)
=

(
Θs

gDg +

(
X′

gΓ
s
g

Ng

)
Dg

)
D−1

g G′
gJT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

+

(
Θc

g +
X′

gΓ
c
g

Ng

)
F′JT

(
Pc − P̂c

)
G̃g

(
G̃′

gG̃g

)−1

+

(
X′

gXg

Ng

)−1(X′
gEg

Ng

)
JT

(
IT − P̂c

)
G̃g

(
G̃′

gG̃g

)−1 p→ Θs
gDg,
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where the limit is from Assumptions 2(i) and 2(ii) and Lemma A.4 and Steps 3 and 4.
This completes the proof of the theorem. □

Lemma A.10. The minimization problem in Theorem 2.4 has the following closed form
solution:

vec
(
Θ̂c

g

)
= (X′X)

−1
X′y − (X′X)

−1
Z′
(
Z (X′X)

−1
Z′
)−1

Z (X′X)
−1

X′y,

where y = vec (RgJT ) , X =
(
F̂⊗Xg

)
, and Z = IKc ⊗

(
Θ̂s′

g X
′
gXg

)
.

Proof Note that

∥RgJT −
(
XgΘ

c
g

)
F̂′∥ = ∥vec

(
RgJT −

(
XgΘ

c
g

)
F̂′
)
∥ (A.31)

= ∥vec (RgJT )−
(
F̂⊗Xg

)
vec
(
Θc

g

)
∥,

where the second equality is from the property of vectorize operator. Also, note that
the constraint of Θ̂s′

g X
′
gXgΘ

c
g = 0Ks

g×Kc is equivalent to(
IKc ⊗

(
Θ̂s′

g X
′
gXg

))
vec
(
Θc

g

)
= 0Ks

g ·Kc . (A.32)

Hence, from (A.31) and (A.32), the original minimization problem can be reformulated
as

Θ̂c
g = argmin

Θ,λ

(
y −Xvec

(
Θc

g

))′ (
y −Xvec

(
Θc

g

))
+ λ′Zvec

(
Θc

g

)
, (A.33)

where y = vec (RgJT ) , X =
(
F̂⊗Xg

)
, and Z = IKc ⊗

(
Θ̂s

gX
′
gXg

)
. Then, the first

order conditions of (A.33) are

[
2X′X Z′

Z 0

] vec
(
Θ̂c

g

)
λ̂

 =

[
2X′y

0

]
,

which yields  vec
(
Θ̂c

g

)
λ̂

 =

[
2X′X Z′

Z 0

]−1 [
2X′y

0

]
.
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Lastly, standard matrix inversion gives

vec
(
Θ̂c

g

)
= (X′X)

−1
X′y − (X′X)

−1
Z′
(
Z (X′X)

−1
Z′
)−1

Z (X′X)
−1

X′y.

This completes the proof of the lemma. □

Lemma A.11. Under Assumptions 2 and 3, it holds that

X′y

Ng

p→
(
(S ′F′JTFS)⊗VXg

)
vec
(
Θc

gS−1′)+ ((S ′F′JTGg)⊗
(
VXgΘ

s
g

))
vec
(
IKs

g

)
,

X′X

Ng

p→ (S ′F′JTFS)⊗VXg ,

Z

Ng

p→ IKc ⊗
(
D′

gΘ
s′
g VXg

)
,

where y, X, and Z are given in Lemma A.10.

Proof From (2.6),

RgJT =
(
XgΘ

c
g + Γc

g

)
F′JT +

(
XgΘ

s
g + Γs

g

)
G′

gJT + EgJT

=
(
XgΘ

c
g + Γc

g

)
F′JT +

(
XgΘ

s
g + Γs

g

)
G′

gJT + EgJT

= XgΘ
c
gS−1′S ′F′JT + Γc

gF
′JT +

(
XgΘ

s
g + Γs

g

)
G′

gJT + EgJT ,

which yields

y = vec (RgJT ) = ((JTFS)⊗Xg) vec
(
Θc

gS−1′)+ ((JTF)⊗ Γc
g

)
vec (IKc)

+
(
(JTGg)⊗

(
XgΘ

s
g + Γs

g

))
vec
(
IKs

g

)
+ (JT ⊗ Eg) vec (IT ) . (A.34)

By combining the expression of y in (A.34) and that of X in Lemma A.10, along with the
properties of Kronecker product that (A⊗B)′ = (A′ ⊗B′) and (A⊗B) (C⊗D) =
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(AC)⊗ (BD), we have that

X′y

Ng

=

((
F̂′JTFS

)
⊗
(
X′

gXg

Ng

))
vec
(
Θc

gS−1′)+ ((F̂′JTF
)
⊗
(
X′

gΓ
c
g

Ng

))
vec (IKc)

+

((
F̂′JTGg

)
⊗
(
X′

gXg

Ng

Θs
g +

X′
gΓ

s
g

Ng

))
vec
(
IKs

g

)
+

((
F̂′JT

)
⊗
(
X′

gEg

Ng

))
vec (IT )

p→
(
(S ′F′JTFS)⊗VXg

)
vec
(
Θc

gS−1′)+ ((S ′F′JTGg)⊗
(
VXgΘ

s
g

))
vec
(
IKs

g

)
,

where the limit is from Assumptions 2(i) and 2(ii) and Theorem 2.2. This confirms the
first claim of the lemma.

The next two limits are straightforward. From Theorem 2.2 and Assumption 2(i),
it holds that

X′X

Ng

=
(
F̂′F̂

)
⊗
(
X′

gXg

Ng

)
p→ (S ′F′JTFS)⊗VXg ,

which confirms the second claim. Also, note that

Z

Ng

= IKc ⊗
(
Θ̂s′

g

X′
gXg

Ng

)
p→ IKc ⊗

(
D′

gΘ
s′
g VXg

)
,

from Theorem 2.3 and Assumption 2(i). This completes the proof of the lemma. □

Lemma A.12. Under Assumptions 2 and 3, it holds that

(X′X)
−1

X′y
p→ vec

(
Θc

gS−1′)+ ((S ′−1 (F′JTF)
−1

(F′JTGg)
)
⊗Θs

g

)
vec
(
IKs

g

)
,

and that

(X′X)
−1

Z′
(
Z (X′X)

−1
Z′
)−1

Z (X′X)
−1

X′y

p→
((

S ′−1 (F′JTF)
−1

(F′JTGg)
)
⊗Θs

g

)
vec
(
IKs

g

)
(A.35)

where y, X, and Z are given in Lemma A.10.
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Proof From Lemma A.11 and the property of Kronecker product that (A⊗B)−1 =

(A−1 ⊗B−1) , (
X′X

Ng

)−1
p→ (S ′F′JTFS)−1 ⊗V−1

Xg
, (A.36)

which in conjunction with the limit of X′y
Ng

in Lemma A.11 gives

(X′X)
−1

X′y =

(
X′X

Ng

)−1
X′y

Ng

p→vec
(
Θc

gS−1′)+ (((S ′F′JTFS)−1
(S ′F′JTGg)

)
⊗Θs

g

)
vec
(
IKs

g

)
=vec

(
Θc

gS−1′)+ ((S−1 (F′JTF)
−1

(F′JTGg)
)
⊗Θs

g

)
vec
(
IKs

g

)
. (A.37)

This confirms the first claim of the lemma.
For the next claim, we first identify the limits of Z

Ng

(
X′X
Ng

)−1
X′y
Ng

, Z
Ng

(
X′X
Ng

)−1
Z′

Ng
,

and
(

X′X
Ng

)−1
Z′

Ng
and then combine the limits. From (A.37) and the limit of Z

Ng
in

Lemma A.11,
Z

Ng

(
X′X

Ng

)−1
X′y

Ng

p→ p1 + p2, (A.38)

where

p1 =
(
IKc ⊗

(
D′

gΘ
s′
g VXg

))
vec
(
Θc

gS−1′) ,
p2 =

((
S−1 (F′JTF)

−1
(F′JTGg)

)
⊗
(
D′

gΘ
s′
g VXgΘ

s
g

))
vec
(
IKs

g

)
(A.39)

Note that

p1 = vec
((
D′

gΘ
s′
g VXgΘ

c
g

))
= 0Ks

g ·Kc , (A.40)

where the first equality is from a property of vectorize operator and the last equality is
from Assumption3(ii). Also, by applying Lemma A.7 to (A.39), we have that

p2 =
((

S−1 (F′JTF)
−1

(F′JTGg)
)
⊗D−1

g

)
vec
(
IKs

g

)
. (A.41)

32



By plugging (A.40) and (A.41) into (A.38), we have that

Z

Ng

(
X′X

Ng

)−1
X′y

Ng

p→
((

S−1 (F′JTF)
−1

(F′JTGg)
)
⊗D−1

g

)
vec
(
IKs

g

)
. (A.42)

Next, we move to Z
Ng

(
X′X
Ng

)−1
Z′

Ng
and

(
X′X
Ng

)−1
Z′

Ng
. From the limit of Z

Ng
in Lemma

A.11 and (A.36), note that

Z

Ng

(
X′X

Ng

)−1
Z′

Ng

p→ (S ′F′JTFS)−1 ⊗
(
D′

gΘ
s′
g VXgΘ

s
gDg

)
= (S ′F′JTFS)−1 ⊗ IKs

g
, (A.43)

where the last equality is from Lemma A.7, and that(
X′X

Ng

)−1
Z′

Ng

p→ (S ′F′JTFS)−1 ⊗Dg. (A.44)

Lastly, combining (A.42), (A.43) and (A.44) yields the last claim of the lemma.
This completes the proof of the lemma. □

Proof of Theorem 2.4 It suffices to show that vec
(
Θ̂c

g

)
p→ vec

(
Θc

gS−1′) . Lemma
A.10 reformulate the solution in Theorem 2.4. Furthermore, from Lemma A.12, we
have that

vec
(
Θ̂c

g

)
= (X′X)

−1
X′y − (X′X)

−1
Z′
(
Z (X′X)

−1
Z′
)−1

Z (X′X)
−1

X′y

p→ vec
(
Θc

gS−1′)+ ((S ′−1 (F′JTF)
−1

(F′JTGg)
)
⊗Θs

g

)
vec
(
IKs

g

)
−
((

S ′−1 (F′JTF)
−1

(F′JTGg)
)
⊗Θs

g

)
vec
(
IKs

g

)
= vec

(
Θc

gS−1′) .
This completes the proof of the theorem. □

The following lemma is useful for the proofs of Theorems 2.5 and 2.6.

Lemma A.13. Under Assumptions 2 and 3, as N1 and N2 increase,

(
B̂′B̂

)−1

B̂′R
p→

[
S ′ (λc

1 − λc
2)1

′
T

S ′ (λ1
21

′
T + F′)

]
,
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where R is the (N1 +N2)× T matrix of [R′
1 R′

1]
′ and B̂ is given in Theorem 2.5.

Proof From (2.5), Rg can be rewritten as

Rg = XgΘ
c
g

(
λc

g1
′
T + F′)+ ug, (A.45)

where
ug = Γc

g

(
λc

g1
′
T + F′)+ (XgΘ

s
g + Γs

g

) (
λs

g1
′
T +G′

g

)
+ Eg. (A.46)

Then, stacking (A.45) over g = 1, 2, we rewrite R as

R =

[
R1

R2

]
=

[
X1Θ

c
1S−1′S ′ (λc

11
′
T + F′)

X2Θ
c
2S−1′S ′ (λc

21
′
T + F′)

]
+

[
Γ1

Γ2

]

=

[
X1Θ

c
1S−1′

0N2×Kc

]
S ′ (λc

1 − λc
2)1

′
T +

[
X1Θ

c
1S−1′

X2Θ
c
2S−1′

]
S ′ (λc

21
′
T + F′) +

[
Γ1

Γ2

]

=

[
X1Θ

c
1S−1′ X1Θ

c
1S−1′

0N2×Kc X2Θ
c
2S−1′

][
S ′ (λc

1 − λc
2)1

′
T

S ′ (λc
21

′
T + F′)

]
+

[
Γ1

Γ2

]
. (A.47)

Hence, using (A.47), we have that

B̂′R

N
=

[
Θ̂c′

1
X′

1X1

N
Θc

1S−1′ Θ̂c′
1
X′

1X1

N
Θc

1S−1′

Θ̂c′
1
X′

1X1

N
Θc

1S−1′ Θ̂c′
1
X′

1X1

N
Θc

1S−1′ + Θ̂c
2
X′

2X2

N
Θc

2S−1′

][
S ′ (λc

1 − λc
2)1

′
T

S ′ (λc
21

′
T + F′)

]

+

[
Θ̂c′

1
X′

1Γ1

N

Θ̂c
2
X′

2Γ2

N

]
(A.48)

From (A.46), note that

Θ̂c
g

X′
gug

Ng

= Θ̂c
g

X′
gΓ

c
g

Ng

(
λc

g1
′
T + F′)

+

(
Θ̂c

g

X′
gXg

Ng

Θs
g + Θ̂c

g

X′
gΓ

s
g

Ng

)(
λs

g1
′
T +G′

g

)
+ Θ̂c

g

X′
gEg

Ng

p→ S−1Θc′
gVXgΘ

s
g = 0Kc×T ,
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where the limit is from Assumptions 2(ii) and Theorem 2.4 and the last equality is from
Assumption 3(ii). Hence, along with Assumption 2(iii), it follows that

Θ̂c′
1

X′
1u1

N
=

N1

N
Θ̂c′

1

X′
1u1

N1

p→ 0Kc×T ,

Θ̂c
2

X′
2u2

N
=

(
1− N1

N

)
Θ̂c′

1

X′
2u2

N2

p→ 0Kc×T ,

which along with Assumptions 2(i) and 2(iii) gives

B̂′R

N

p→ VB

[
S ′ (λc

1 − λc
2)1

′
T

S ′ (λc
21

′
T + F′)

]
, (A.49)

where

VB =


n1S−1Θc′

1VX1Θ
c
1S−1 n1S−1′Θc′

1VX1Θ
c
1S−1′

n1S−1Θc′
1VX1Θ

c
1S−1′ (n1S−1Θc′

1VX1Θ
c
1S−1′

+(1− n1)S−1Θc′
2VX2Θ

c
2S−1′)

 . (A.50)

Also, from Assumptions 2(i) and 2(iii) and Theorem 2.4, we have that

B̂′B̂

N
=

[
Θ̂c′

1
X′

1X1

N
Θc

1S−1′ Θ̂c
1
X′

1X1

N
Θc

1S−1′

Θ̂c′
1
X′

1X1

N
Θc

1S−1′ Θ̂c
1
X′

1X1

N
Θc

1S−1′ + Θ̂c
2
X′

2X2

N
Θc

2S−1′

]
p→ VB, (A.51)

where VB is given by (A.50). Finally, combining (A.49) and (A.51), we have that

(
B̂′B̂

)−1

B̂R =

(
B̂′B̂

N

)−1
B̂′R

N

p→

[
S ′ (λc

1 − λc
2)1

′
T

S ′ (λ1
21

′
T + F′)

]
,

which completes the proof of the lemma. □

Proof of Theorem 2.5 From Lemma A.13, we have that

λ̂∆ = [IKc 0Kc×Kc ]
(
B̂′B̂

)−1

B̂′R = [IKc 0Kc×Kc ]
(
B̂′B̂

)−1 (
B̂′R

)
1T/T

p→ [IKc 0Kc×Kc ]

[
S ′ (λc

1 − λc
2)1

′
T

S ′ (λ1
21

′
T + F′)

]
1T/T = S ′ (λc

1 − λc
2) .
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This completes the proof of the theorem. □

Proof of Theorem 2.6 From Lemma A.13 and Theorem 2.5, we have that

ŵR = λ̂′
∆ [IKc 0Kc×Kc ]

(
B̂′B̂

)−1

B̂′R

p→ (λc
1 − λc

2)
′ S [IKc 0Kc×Kc ]

[
S ′ (λc

1 − λc
2)1

′
T

S ′ (λ1
21

′
T + F′)

]
= (λc

1 − λc
2)

′ SS ′ (λc
1 − λc

2)1
′
T = δ1′

T .

This completes the proof of the theorem. □

36



References
Connor, G., M. Hagmann, and O. Linton (2012). Efficient semiparametric estimation

of the Fama–French model and extensions. Econometrica 80(2), 713–754.

Connor, G. and R. A. Korajczyk (1986). Performance measurement with the arbitrage
pricing theory: A new framework for analysis. Journal of Financial Economics 15(3),
373–394.

Fan, J., Y. Liao, and W. Wang (2016). Projected principal component analysis in factor
models. Annals of Statistics 44, 219–254.

Ferson, W. E. and C. R. Harvey (1999). Conditioning variables and the cross section
of stock returns. Journal of Finance 54(4), 1325–1360.

Ghysels, E. (1998). On stable factor structures in the pricing of risk: do time-varying
betas help or hurt? Journal of Finance 53(2), 549–573.

Harari, Y. N. (2015). Sapiens: A Brief History of Humankind. Harper Perennial.

Kelly, B., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model
of risk and return. Journal of Financial Economics 134, 501–534.

Kim, S., R. A. Korajczyk, and A. Neuhierl (2021). Arbitrage Portfolios. Review of
Financial Studies 34(6), 2813–2856.

Kim, S. and G. Skoulakis (2018). Ex-post risk premia estimation and asset pricing
tests using large cross sections: The regression-calibration approach. Journal of
econometrics 204(2), 159–188.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic
Theory 13(3), 341–360.

Shanken, J. (1992). On the estimation of beta-pricing models. The review of financial
studies 5(1), 1–33.

37


	Introduction
	The Model
	Methodology

	Proofs 

