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SEGMENTATION PREMIA

Abstract

We present a novel approach to discern discrepancies in compensation for
shared risk factors across different markets by leveraging firm-specific characteris-
tics on factor loadings. Our methodology is tested on simulated factor economies
and a vast dataset of international stock returns. The results demonstrate the ef-
ficacy of our method in both simulated and real-world scenarios. Specifically, we
identify numerous instances where pricing for common risks differs across coun-
tries during certain periods. We also propose a portfolio strategy that capitalizes

on these temporary market segmentations.
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1 Introduction

Market integration has been a key driver of human history, fostering cooperation, and
promoting the exchange of ideas, goods, and services. In his book Sapiens, Harari
(2015) provides a unique perspective on the role of market integration in shaping hu-
man history, arguing that the integration of markets has been a fundamental force
driving human integration. Harari’s views are supported by the evidence from history,
where we see the emergence of vast trade networks that spanned continents, connecting
people and cultures from different regions. The Silk Road is a prime example of such a
network, which linked China, Central Asia, and the Mediterranean world, facilitating
the exchange of goods, technology, and culture.

Agreement on the value of traded assets is a key indicator of market integration.
This agreement can be achieved through the actions of market participants who buy and
sell assets across different regions and cultures. For instance, when the Mediterranean
trade began, Indian merchants might have considered gold to be a useless stone, and it
would have had little value in their local markets. However, Mediterranean merchants
recognized the value of gold and saw an opportunity to buy it at a low price in India
and sell it at a higher price in the Mediterranean region. This trade led to the gradual
convergence of the value of gold across the two geographically segmented areas.

The financial markets have been a valuable test bed for investigating the process
of market integration, given their unique characteristics. Unlike other markets, the
financial markets do not require the physical movement of assets, making them highly
accessible to investors across different regions and countries. Furthermore, the barriers
to cross-country investment have been steadily melting away over the past few decades,
creating new opportunities for investors to participate in global financial markets. As a
result, the financial markets have become an essential tool for testing theories of market
integration and exploring the factors that drive it.

The finance literature has a long history of investigating international market inte-
gration, with many studies focused on analyzing the degree of cross-market correlation
in asset prices and the effectiveness of international portfolio diversification. These
studies have shown that there is a high degree of correlation between asset prices in
different markets, suggesting that the financial markets are highly integrated. Further-

more, these studies have demonstrated that international portfolio diversification can



be an effective way of reducing risk and maximizing returns.

This paper’s primary contribution is the introduction of a novel concept of market
integration, which involves the agreement of common factor prices across two countries,
with the assumption that the returns of each country have a factor structure where
individual stocks can be driven by common as well as country-specific factors. The
proposed method involves three steps:

In the first step, common factors are identified by applying principal component
analysis (PCA) to individual assets in each country, obtaining all systematic factors,
including common and country-specific factors. Canonical correlation analysis (CCA)
is then used to find the combination of within-country factors that maximizes cross-
country co-movement and recovers the true common factors.

In the second step, factor loadings on common factors are measured, which is known
to be a daunting task. The approach used follows Kim, Korajczyk, and Neuhierl (2021),
where the information in firm characteristics is exploited to estimate the factor loadings.
Returns are regressed on the interaction between firm characteristics and common fac-
tors, identifying the linear combination of firm characteristics that explains the returns
through the common factors.

In the last step, the difference in the prices of common risk is identified by using the
classical pricing equation, where the coefficient on factor loadings represents the prices
of risk. A cross-sectional regression of average returns on the estimated factor load-
ing is performed, reflecting the country-specific risk prices and factor randomness. By
subtracting the estimated risk prices, differences in risk prices across countries can be
recovered. This approach cancels out factor randomness and allows comparison of risk
prices even with short time series data. Furthermore, we also show that when there is a
disagreement on risk prices of common factors, one can construct an arbitrage portfolio

that exploits such segmentation.

2 The Model

We consider a pair of two countries, indexed by g = 1,2. We assume that there exists a
large number of securities in each country and the return generating processes for those

individual securities are stable over a short horizont =1, --- T



We specify the return generating process of individual securities in each country g.
The returns of individual stocks in country g follow a K -factor model in which the
factors are unobservable, latent factors. Among K, factors, K¢ factors are common
across the two countries and K factors are country-specific. Thus, it holds that K, =
K¢+ K. In particular, the excess return of i-th asset in country at time ¢ is generated
by the following model: for ¢ =1,2, i=1,--- ,Nyandt=1,--- T,

Ryiv = Bgi (Ag + £1) + 84; (Ag + 8a1) + €qit, (2.1)

where 3/, = [Bgi1 -+ Byire] are the (K¢ x 1) factor loadings of the i-th asset to the
common factors, Ay = {/\gl Ay KC]/ is the (K¢ x 1) vector of risk premium in country
g on the exposure to common systematic factors, f; = [f,1 -+ fyxe] is the (K¢ x 1)
systematic zero-mean common factor realization in period ¢, 8, = [(591-1 591-;(5], is
the (K g X 1) factor loadings of the i-th asset to the country-specific factors in country
g, Ay = [ RS )‘f;Kg], is the (K; X 1) vector of risk premium in country g on the
exposure to country-specific systematic factors, g, = [ggl ggKg}, is the (K g X 1)
systematic zero-mean country-specific factor realization in period ¢, and eg; is the zero-
mean idiosyncratic residual return of asset i at time ¢.! Throughout, we use 0,,, 1,,,
and 0,,x; denote the (m x 1) vectors of zeros and ones and the (m x [) matrix of zeros,
respectively. The return generating process of (2.1) is expressed compactly in matrices:

for g =1,2,

R, =B, (A1 +F') + D, ()17 + G)) +E,, (2.2)
shared acr;srs countries countr;rspeciﬁc

where the (i,t) element of the (N, x T') matrix R, is Ry, the i-th row of the
(Ng x K¢) matrix B, is G;;, the t-th row of the (7" x K¢) matrix F is f{, the i-th row
of the (N, x K;) matrix D, is 8;;, the t-th row of the (T x K;) matrix Gy is gj, and
the (7,t) element of the (N, x T') matrix E, is eg;.

Next, we provide the economic interpretations of (2.2). The first term of RHS in
(2.2) is related to the common factors, i.e. factors that shared across the two countries.

The price of risk for the common factors, is Aj. Our main question is whether the

'We can add a mispricing term to the return generating process (2.1) and derive identical results,
our objective is to identify the market segmentation through differences in the risk compensation and
hence we do not include the mispricing term to simplify the exposition.



compensation to the common factors is identical across the two countries, i.e. is the
compensation for the same risk identical across countries. We therefore index the
prices of risk by ¢ (2.2) as our main empirical question will be if A{ # A§. The bulk of
this section will detail the structure and assumptions on the data generating process,
before we detail our estimation procedure to estimate the difference in the prices of risk
between two countries.

First, let us consider a hypothetical case. If we knew [B, D], the exposures to the
systematic factors in each country, we could have estimated A{17.+F’ from straightfor-
ward cross-sectional regressions in each country under reasonable assumptions.? Then,
we might have recovered any differences in A{ and A§ as the differences in the estimated
)\glép—i-F’ because F’, the random realization of common factors, is cancelled out. How-
ever, it is well known in the literature that beta estimates for a large cross-section over
a short horizon entail substantial estimation errors. Hence, we exploit the intuition
above by extending the approach in Fan et al. (2016) and Kim et al. (2021) to the two
country setup. The crucial difference from Kim et al. (2021) is that we aim to identify
the differences in compensation by extracting the information on the factor loadings in
characteristics while Kim et al. (2021) focuses on extracting the mispricing embedded
in characteristics.

To that end, we allow the systematic risk [B, D,] to be functions of asset-specific
characteristics in each country. Let x4 = [mgﬂ e xgz-Lg]’ be the (L, x 1) vector of the
characteristics associated with stock i in country g. Then, define the (N, x L,) matrix

of X, the i-th row of which is xj;. We assume the following structure for [B, D]:

B, = Xg@; + Fg (2.3)
and
D, = Xg@f] + F;, (2.4)

where ©F is the (L, x K°) matrix, ©% is the (L, x K;) matrix, and the (IV, x K¢)
matrix, I'y and the (Ng x K ;) matrix, I'] are cross-sectionally orthogonal to the char-
acteristic space of X,. We call the two matrices of ©F and ©F as factor loading matrices

because they relate characteristics to factor loadings to the common and country-specific

2The object of )\gl’T +F’ is closely related to the concept of expost risk premia discussed in Shanken
(1992) and Kim and Skoulakis (2018).



systematic factors, respectively. The two terms of I'j and I} represent the sources of
beta that are not attributable to the characteristics. While the factor loading matrices,
Oy and O can be consistently estimated in the large N /small T setting used here,
consistent estimates of I'y and I'; are not available. Therefore, our procedure does not
attempt to exploit the gammas, just their orthogonality to the characteristics in each
country. Furthermore, although we restrict the relation between factor loadings and
characteristics to be linear, there are various approaches to incorporate non-linearity.
For example, we would have chosen X, to be a large set of characteristics, possibly
containing suitable polynomials of some underlying characteristics, X}. Incorporating
(2.3) and (2.4) into (2.2), we have that:

Ry = (X,00 +T¢) (A1, +F) + (X0 +1%) (A1 + G,) + B, (2.5)

We highlight some advantages of our approach. First, we can learn about beta
through X,07 and X,07 even when data are relatively infrequently observed (such as
monthly) over short horizon (such as a year) by instrumenting characteristics of X,.
This is a strong advantage over other factor loadings extraction methods requiring long
time series or high frequency observations. Second, because we set T" as a short horizon,
the process in (2.5) and can be treated as a local approximation of a conditional model
over a long horizon model. Third, our rolling estimation of (2.5) enables us to study
the temporal relation of characteristics to risk. Many empirical approaches (e.g. Kelly
et al. (2019), Ferson and Harvey (1999), Ghysels (1998)) construct conditional model by
allowing the characteristics to change period-by-period but holding the cross-sectional
relation between characteristics and risk constant, which might not be suitable for
detecting dynamic interplay between firm characteristics and risk. By estimating (2.5)
over rolling-windows, we can learn about the dynamics of X,07 and X,0;. Lastly, we
do not need to necessarily have all important characteristics for risks in (2.5). Because
any information in the missing characteristics is captured by I'j and I';, our model
already incorporates the possibility of misspecifying the set of characteristics. Hence,
if some important characteristics are missing, we may lose some precision but will not
generate spurious results.

Note that the Arbitrage Pricing Theory (APT, Ross (1976)) implies that the com-

pensation for the common risk should be identical across all assets in the economy of



the two countries, which will become clear later. Hence, in an economy without an
arbitrage, it supposes to hold that A{ = AS. Allowing for a market segmentation across

the two countries implies that the norm of A{ — A§ may be nonzero:
Assumption 1. It holds that (A — X§) (A — AS) > 0.

From (2.5), note that X;0f affects R, individual stocks in country 1 by A{ plus a
realization of common factors and that X,0§ affects Ry individual stocks in country 2
by A$ plus a realization of common factors. Hence, we can identify A{ —A§ by observing
the differences in the relation between X;0{ and R4 and that between X,04 and Rs. It
is beyond the scope of this paper to examine the underlying cause of such a disagreement
in compensation.® Also note that Assumption 1 does not imply that markets are always
segmented. The main objective of this paper is to provide a method to detect the market
segmentation if it exists. Furthermore, it will be shown that such information allows us
to form portfolios that yield abnormal returns (if (A — AS) (A — AS) > 0) while not
having any exposure to systematic risk both to the country-specific or common factors.

Next, we assume standard regularity conditions on the characteristics and residual

returns in the two countries.

Assumption 2. In each country g = 1,2, as Ny, — 00, it holds that

. RIRy p X! X .Y . .
(i) =% = Vg, and =+ — Vx,, where Vg, Vx, are positive definite matrices,
g g )
.y XITS p XiTs
99 g_9g
(“) N, — OLgXKca Ng

(i) 5 — m < 1.

P X.Ey P
— OLgXK';a and Ny - OLgXT7

Condition (i) simply states that the cross section of returns and characteristics are not
redundant but well-spread over individual stocks in each country. Condition (ii) imposes
the cross-sectional orthogonality conditions between the characteristics of X, factor
loading regression residuals of I'y and I'j, and residual returns of E, in each country.
Lastly, condition (iii) imposes that the numbers of individual stocks are comparable
across the two countries.

Lastly, we assume mild restrictions to separately identify factor loading matrices
©¢ and ©%. We introduce the (7' x T) matrix Jy = Iy — 21717, which corresponds
to time-series demeaning, and the (T x T') matrix P = J;F (F'J;F) ' F'Jr, which
corresponds to the projection to the demeaned common factors. Also, we let ©, and
H, be [@; @f]] and [F Gf]} , respectively.

3See xxx among many for potential causes of market segmentation.



Assumption 3. In each country g = 1,2, as N, — 00, it holds that
ec/xl X ec C__)c/x/ X es
() Xgeg o - ]!\]fg — - ]g\lfg — GECJIVX;)@; @;/VXQGZ
- eslxl X @c @s/x/ X 95
g ]g\;[gg g g ]%99 g @;/VXQGZ @Z/VXQGZ
Vo, is a (K4 x Ky) positive definite matriz,

9°’X X407
(ii) %%, 0V, 05 = Oy,

= Vg, where

H J-H FIoF FJoH, Xr  YrH,

o) HyJrH, T T g .

(iii) ——= = H J;F  H,IpH, / 5 = Ypu,, where Xy, is a (K, x Kg)
T T EFHg Hy

positive denifite matrix,

(iv) (Ir — P)[G1 Go] is a full rank (T x (K + K3)) matriz.

Condition (i) implies that each column of X,0, provides non-redundant information.
In a similar vein, condition (iii) posits that factor realizations are not redundant in
each country. Later, these limits will explicitly appear for identification restrictions.*
Condition (ii) restricts that X,©¢ are cross-sectionally orthogonal to X,0;. This as-
sumption is without loss of generality. If there is any correlation between X, 07 and
X,409;, the correlated component can be assigned to the country-specific component
X405 by shifting country-specific part accordingly (Connor et al. (2012) and Kim et al.
(2021) utilize a similar orthogonality condition for identification between mispricing
and factor loadings). Condition (iv) implies that each country specific factors across
the two countries are not redudant after orthogonalizing against the common factors.
This condition is natural given that country-specific factors in a country should reflect

some shocks independent of the factors in the other country. Also, this property plays

an important role later in separating common factors from country-specific factors.

2.1 Methodology

Our procedure for detecting market segmentation involves Projected-PCA (PPCA) pro-
cedure, projecting returns on cross-sectional information for short time-series samples,
and Canonical Correlation Analysis (CCA), finding a pair of linear combination from
each group (country in our framework) so as to maximize the correlation. Fan et al.

(2016) show that the estimated factor loadings using such an approach converges to the

4Without this restriction, we cannot identify factor loadings functions because of the rotational
indeterminacy of latent factor models. For example, X,0,F, = Xg@gMM_ng for any invertible
matrix M.



true factor loadings as the cross-sectional sample increases, even for small time-series
samples. Kim et al. (2021) extend the PPCA estimator to not only estimate factors,
but also the mispricing function. We propose a method to detect market segmentation
by applying the PPCA estimator along with CCA estimator for a pair of countries.
We achieve the goal of detecting market segmentation in three steps. In the first
step, we estimate (demeaned) common factors F'J7 by applying Asymptotic Principal
Components (APC) to demeaned projected returns in each country, (Connor and Ko-
rajczyk (1986)) and selecting the common factors from CCA. In the second step, we
estimate factor loadings for the common factors X,0¢. To this end, we (i) orthogonal-
ize returns against estimated demeaned common factors F'J; from the first step, (ii)

project the orthogonalized returns on the characteristics and apply APC to obtain the

s

5., and (iil) finally regress demeaned returns on

country specific factor loadings, X,0
the product of demeaned common factors J7F and characteristics X,, revealing X,07.
In the third step, we regress the average returns of two countries, [R; Ry] I?T on the
stacked factor loadings [X;0{ X,05] and the stacked loadings times a country-1 dummy
[X10§ On,x x| Then, it turns out that the coefficients on the second set of regressors
will consistently estimate A{ — A§. Furthermore, if A{ — A§ is not zero, we exploit this
market segmentation across Home and Foreign countries and suggest a portfolio which

delivers the profit of § without any exposure to the systematic risks of either country.

Step 1: estimation of common factors The first step of our procedure is the
estimation of F'Jr (upto rotation) from returns in the two coutries. Recall that the
observed returns in (2.5) are driven both by the risk premium A{ and A;, and realization
of F and H,. Because we want to learn the factor realization not the risk premium in this
step, we eliminate the effect of the risk premium by multiplying J, (: Ir— % lTlT) ,

or demeaning the observed returns:

RyJr = (X405 + 1) (A;1, + F') Ip
+ (X 05 +T5) (M17+ G)) Jr + EgJr
= (X 05 + %) F'Ir + (X,0; + 1) G, Jr + EgJr, (2.6)

where the last equality is from the property of 17.J,r = 1/ (IT —% 1T1’T) =1, —

L1/, = 0. For further isolation of X095 and X0, we project the demeaned returns

10



of (2.1) on the (linear) span of X, by premultiplying by the projection matrix P, =
X, (X;Xg)_1 X} Then, we get

R, =P,R,J; (2.7)
= (PyX, 0! + P,I¢) F'Ip + (PgX, 05 + P,I%) GiJr + PyEgJy
= (X 0% + P,I%) F'Ip + (X,05 + P,I3) GLJr + PEJ7,

where the last equality is from P,X, = X,. Furthermore, exploiting the orthogonality
of I'y and T'j with respect to X, and the limits in Assumption 2(ii), P,I';, P,I';, and
P,E, will become negligible for large N,. Hence, with a large N, it follows that
R, = P,R,J; ~ [X,0 X,0:] [FIr G, Jr] = X,0,H! 7, where O, = [0¢ 6] and
H, = [F G,]. Finally, as in Fan et al. (2016), we estimate H,J7 by applying standard

principal component analysis to ﬁg.

Theorem 2.1. Let ﬁg denote the (T x K,) matriz, the k-th column of which is the
eigenvector of % corresponding to the k-th largest eigenvalue of R]/"VI;Q, where ﬁg s

given by (2.7). Under Assumptions 2 and 3, as N, increases, ﬁg LN ‘JTHgOg, where

the (K, x K,) matriz Oy is given in Lemma A.1.

Note that we identify the (demeaned) factors only up to rotation. We choose

the matrix O, so that 0¥y, O, is an identity matrix and O;'Ve, O,V is a diago-

nal matrix. To provide some intuition of the above theorem, recall that f{g converges
(as N, = o0 ) to X,0,H/Jr = X,0,0, 0! H! Jr. Therefore, ~4

Ng
IrH,0, (0,1 %X2%0, 1) 0, H, 1. Recall the given property of 0,, O;H,J7H,0, =

g N,
Ig,. Furthermore, with Assumption 3(i), O, 1—®9X]9V);9®9

trix as a property of Q4. Hence, with a large Ny, each column of J-H,O, and each
0, X,X,0,
Ng

converges to

Og_l’ converges a diagonal ma-

diagonal element of O;l
R,R,
Ng

(’);1’ can be interpreted as an eigenvector and an

eigenvalue of , respectively. Resorting to these observations, we attempt to re-
cover JrH,O, as stated in Theorem 2.1.

Up to now, we have recovered the factors that are common across the countries
and the country specific factors. In the next steps, we will separate the common from
the country specific factors. The main analytical tool for this purpose is Canonical
Correlation Analysis (CCA). Define the (K3 x K;) matrix i\]Hl, the (K3 x K3) matrix

Ym,, and the (K x Kj) matrix Xp,, as Yy, = —5—, ¥g, = —%—, and Xp, = —5—.

11



Then, we propose an estimator f‘l, constructed as ﬁl\/ﬂ\fl where k-th column of the
(K x K°) matrix W, is the canonical directions associated with the k-th largest eigen-
values obtained from eigen-decomposition of il_{ii Hio i;éi’Hu and W’lﬁ H1W1 = Ig,.
Similarly, we define Fy as HoWy where k-th column of the (K3 x K¢) matrix Wy is
the cannonical directions associated with the k-th largest eigenvalues obtained from
eigen-decomposition of iﬁli}ilzigiimg and ngHQWQ = Ig,. The next theorem
shows that we can recover the linear space generated by the demeaned common factors
from either f‘l or f‘g. [this formulation is from the group factor model by Ghysel. But,

I think the singular value decomposition is simpler. |

Theorem 2.2. Under Assumptions 2 and 3, it holds that f‘g 2 J;FS for some S such
that SS' = %! for g =1,2.

Note that CCA suggests to pair a linear combination of ﬁl with a linear combination
of ﬁg so that the correlation between the linear combinations is maximized. Given that
both ﬁl and ﬁg asymptotically recover the linear space spanned by the common factors
but that the systematic factor of one country cannot recover the country-specific factors
of the other country (Assumption 3(iv)), we can filter out the country-specific factors
by applying CCA to the ﬁl and ﬁg. Then, we use the following corollary to pin down

the estimator for common factors:

Corollary 2.1. Under Assumptions 2 and 3, it holds F (E % (f‘l + f})) 2 I FS for
some S such that S§' = X3

So far, we have recovered the information on the common factors. In the next step,

we estimate Of, the factor loading matrix with respect to the common factors.

Step 2: estimation of factor loading matrices on common factors Next, we
proceed to estimate Of, the factor loading matrices with respect to the common factors.

In Step 1, we introduce f{g = P,R,Jr and exploit the following property of f{g:
R, ~ X,0;F'Jr + X,0;G, J7.

Because we already have a consistent estimator F' % SF'J; from Step 1, we might
attempt to recover the information on Of by regressing ﬁg on the interaction between
X, and F'.

12



However, such an approach does not accurately isolate X ;07 because of the country-
specific factors. Even when the country-specific factors are orthogonal to common fac-
tors in the population, the country-specific factors can be correlated to the common
factors over a short horizon. Hence, such regression confounds factor loadings to com-
mon factors with factor loadings to the country-specific factors.” Hence, we propose
to identify ©] first and estimate ©F by imposing cross-sectional orthogonality between
X,0; and X,0¢ (Assumption 3(ii)).

For that reason, we eliminate the terms related to common factors by projecting R,

to the space orthogonal to F:

R, =R, (IT - 73) (2.8)
~ X, O5F Iy (Tr = P°) + X,0;GIr (Tr — P°)
~X,0;G 7 (Ir — P°) (2.9)

~ ~ o~ ~\ L~ ~ ~
where P¢ = F (F’F) F'. Then, given that F & J;FS from Step 1, it follows P¢ 5
P¢ = J;F (F'J;F) ' F'J;. Hence, the first term of RHS in (2.8) will become negligible
and it holds that f{g ~ Xg0;GLIr (Ir —P¢). Then, we estimate ©; by utilizing

principal component analysis to f{g.

Theorem 2.3. Let D denote the (N X KS) matrix, the k-th column of which is /N,

times the eigenvector of NR" corresponding to the k-th largest eigenvalue of gI:g where
f{g is given by (2.8). Define @5 as @8 = (X’ng) (X’ng). Under Assumptions 2
and 3, it holds that @; N O3 Dy, where Dy is given by Lemma A.7.

The intuition of the above theorem is similar to that of Theorem 2.1. The matrix D,

in Lemma A.7 is designed to make Dj (%) D, converge to an identity matrix
g

and to let D;l (G;JT (Ip — P°) JTGg) D;l’ be a diagonal matrix. Recall that Rg con-

verges (as Ny — oo ) to (X,0:D,) (D, 'GLIr (Ip — P¢)) . Therefore, as N, — o0
/

converges to <i{/g% g) (D (G’ Jr (I7 — P9) I G )D 1/) <)\(/g% g) . From

Assumptions 3(i) and a property of D,, D! GQXKI—?QZD — Ik;, so each column of

RyR,
N,

X4,0 RyR/
\/Q#’D can be treated as an eigenvector. Hence, the eigenvector of ng 2 recovers
g g

®More precisely, we need the orthogonality between (X, ® F) and (X, ® Gy).

13
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v Ng

regressing X, on D, for 3.

D,, which in turn justifies rescaling the eigenvector by /N, to obtain f)g and

Next, we proceed to estimate ©f. Given the consistent estimator ©3D, from Theo-
rem 2.3 and the orthogonality between X,07 and X,0; given by Assumption 3(ii), we
identify O by regressing demeaned returns on the interaction between X, and F such
that the estimated X,©¢ is cross-sectionally orthogonal to the estimated Xg(:)f]. The

following theorem establishes that we can recover Oy.

Theorem 2.4. Let the (L, x K°) matriz of C:)g be the solution of the following con-

strained optimization problem:

0; = arg Héi;n IR, I — (X,0%) F'|| (2.10)

subject to @;’X;Xg@; = Ok xkce,

where @; is given by Theorem 2.3. Then, under Assumptions 2 and 3, it holds that
@; N St for some S such that SS§' = X5

The problem in the above theorem can be transformed into a conventional ordinary
least square problem with linear equality constraints and the closed form solution is

easily obtained.

Step 3: detecting the market segmentation In the third step, we detect the
market segmentation by revealing whether A{ — A§ is zero or not. In contrast to the
previous two steps which eliminate risk premia by demeaning, we need to keep the
information of risk premia and hence take the time-series average of returns. Define a
(m x 1) vector A and a (1 x m) vector B as £ A1y for a (m x T') matrix A and 717.B
for a (T x m) matrix B, respectively. Let R be the (N; 4+ Ny) x 1 vector of [I_{/l EIQ]/.

Note that Eg can be rewritten as

n c c c Enid s s s ral
R, = (X,0% +1T%) (Ag +F ) + (X,07 +1%) (Ag + Gg> +E,,
=X, 0,818 (A + F) + T, (2.11)
where u, = I' ()\; + F’) +T ()\; + Glg) —i—Eg +X,0; <)\; + E;) . From Assumption
2(ii), X,0j is orthogonal to the first three terms of u,. Furthermore, Assumption

14



3(ii) confirms the orthogonality of X,0f against the last term of u,. By stacking the

expressions of (2.11) over the two countries, we have the

- R, X 05818 (A§ + F r,
LRy || X0058718 (A +F I,
[ X,0¢5"! X,0¢8'~! _ r
_ | S A —AG) + | S(£+F)+ L
0N2><Kc Xg@gslfl Iy

As described before, the residual term of [T, I',]" is orthogonal to the infeasible regres-
X081 X081

0N2><Kc X2@§S’_1
OS™Y, we can consistently estimate the coefficients &' (A{ — AS). Instead, we have
@‘{ % 05S and @5 % 058 from Theorem 2.4. The next theorem shows that we

sors of . Hence, if we have the true values of ©¢S~! and

can learn about the differences in the risk premia A{ — A§ by exploiting the feasible

estimators (:); from Step 2.

~ ~ ~\ "1 ~ ___
Theorem 2.5. Define A = [Ixe Oges el (B’B) B'R, where the (N1 + Ny) x (2K°¢)

_ X,0¢ X,65
matriz B is given by I e
Onyxr, X203

that Aa B &' (XS — XS).

. Then, under Assumptions 2 and 3, it holds

The above theorem is the punchline of this paper: an investor can identify the
market segmentation by regressing the average returns of the two countries countries
R on ]§, constructed by estimated factor loadings to common factors, and selecting the
first K¢ estimated coefficients.

Lastly, we justify our market segmentation test from the perspective of APT by
confirming that once an investor identifies the condition of A{ # AS§, s/he can form a

portfolio which delivers § = (A — AS)' Bz (A — A§) without any exposure to risks.

~ ~ ~\ 1 ~
Theorem 2.6. Define a portfolio vector w as W = XNy [Ixe Ogex el (B’B) B', where
the (K© x 1) vector of Aa and the (N, + Ny) x (2K°)) matriz B are given in Theorem
2.5 and R = [R} R})]'. Then, under Assumptions 2 and 3, it holds that WR 2 617,

The above theorem reveals some potentially practical benefits from identifying mar-

ket segmentation. An investor can consistently recover the positive profits, should they

15



exist, as the number of securities grows large. Note that the construction of this port-
folio does not require large 7. Hence, we can estimate w over one sample and calculate

out-of-sample returns over a subsequent sample.
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A  Proofs

Lemma A.1. Let L, be a lower triangular matriz such that Ve, = LgL;. From the
eigendecompotion of LY g Ly, find Uy such that L)Yy L, = U,DU,, where D is a
diagonal matriz and U, U, =1, . Define O, as L,U,. Then, it holds

(i) O, 'Ve,0, Y is an identity matriz, and

(i) Ok, 0y is a diagonal matriz.

Proof  First, we show (i) O,;'Ve,O;" is an identity matrix. Note that O,' =

U,'L,' = U,L; ", which in turn gives,

0,;'Ve,0,;" =U/L'Ve, L, "U, = U L_'L,LL_"U,
- UlgUg - IKg,

where the last equality is from the property of U,.

We move to the next claim. Note that

0'%y,0, = UL Sy L,U, = U,U,DU/U, = D,

where the second equality is from the eigendecompotion of L)X, L, and the last equal-

ity is from the property of U,. This completes the proof of the lemma. O

Proof of Theorem 2.1  The following three steps complete the proof.

Step 1. R];V?g S JrHyVe H,J7: From (2.7), we have that

Ry = ji +j2 + js + Ja, (A1)

where jl = Xg@gH;JT, jg = PQFEF/JT, jg = PgF;GIQJT, and j4 = PgEgJT. Then,

R.R JeJi
= D (A.2)
9 kl=1,234 9
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Note that

i 0, X! X,0
leg = JTHQ%;QH;JT 5 JrHy Ve, H,Jr, (A.3)

where the limit is from Assumption 3(i), and that

N, N, SN

g

oy J-FTYP.TF'J X, /X' X,\ ! X'T¢
JaJ2 _ JTT gt gl gt IT | ( ]g\f g) K[ IF'Jr 5 Opxr, (A.4)
g

g

where the limit is from Assumptions 2(i) and 2(ii), and that

Ng_ Ng _TgNg

. - s s S -1 5
J3J3 _ JTGgrg/PfJFQGngT G Fg/X!? (X]/g\fXg> X]%[Pg G| ']T 5 Orxr, (A.5)
g

g

where the limit is from Assumptions 2(i) and 2(ii), and that

g . J-EPE.J EX., /X'X 71X’E
JaJa _ JTHgt gy T:J g g< g g) gJT—>OT><T; <A6)

Ng— Ng TNg Ng Ng

where the limit is from Assumptions 2(i) and 2(ii). From (A.3)-(A.6) and the submul-

tiplicativity of Frobenius norm, we have that

]1]l Ji Ji ji]&) <jl'jz> P,

for [ =2, 3,4 and that

Jdi
H’“||_||

Ik AW
tr| = | tr | =— A.
\/_HH\/_ \/r(Ng>r(Ng)—>0 (A.8)
for k,1 = 2,3,4. By plugging (A.3)-(A.8) into (A.2), we confirm the claim of Step 1.

Step 2. The k-th column of JrH,O,4, where JrH, is given by Lemma A.1, is the
k-th eigenvector of JrH,Ve H;J7: Note that

JrH,Ve,H, Jr = J;H,0, (0, 'Ve,0;") O'H J7. (A.9)

Given the properties of O, in Lemma A.1, the claim directly follows. Step 3. ﬁg LN
JrH,O,4: The claim holds due to the continuity of the eigendecomposition. This com-
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pletes the proof of the theorem. [

S S H/ JrH H/JrH . .
Lemma A.2. Define Xy, and Y, as =272 and ===, respectively, where Hy is

given in Theorem 2.1. Let ng be a lower triangular matriz such that ng = ngiqu
for g = 1,2. From the singular value decomposition of i;ﬁi\lgmi'gj, we have i\/'l, \A/'Q,
and ¥ such that

£ S, = V.8V, (A.10)

where {\7’1{\71 =1k, {\7/2\72 =1g,, and Sisa rectangular diagonal matriz with nonneg-
ative diagonal elements in a decreasing order. Let ikk be the k-th diagonal element of
. Then, it holds that

(1) the k-th column of the (K; x K°¢) matriz V/\\/'l is the k-th column off/gllf/'l [IKC OchKf],
and the k-th lagest eigenvalue of il_{ii]{uil_—[;i\:}{m is (ikk>2 ,

(i) the k-th column of the (Ko x K€) matriz \/7\\72 1s the k-th COQZumn offlgzli\fg [IKC OKCXKS]/
and the k-th lagest eigenvalue of iﬁii}{mi;{ii[{u is (im) .

Proof Recall that W is defined by (a) the k-th column of W, is the eigenvector
of f);ﬁf]Huf}HQi}hQ corresponding to the k-th largest eigenvalues obtained and (b)
\/7\\7’15];11\/7\\71 - IKC-

From il}} 5 an;}}; = V5V, we have that
(LaiSm.ti)) (EaSnaLil) = (ViSV) (ViSV3)
which, in conjunction with \A/"Q\A/'g = Ik,, gives
Ly, S Ly, Ly S, Ly = VIEEVY,
yielding, along with \7/1{}1 = I,, that
S S, S S LV, = LV SSVIV, = LV, 58

This shows that the k-th column of f/gll\Afl is the eigenvector of il_{iimgf}]}ii’fqm
corresponding to the eigenvalue in the k-th diagonal element of 3. This confirms the
condition (a) for W. The condition (b) is satisfied due to that \Af/lfJﬁf]Hlf}}f\Afl =
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\Af’liaimigfi}}fvl = V!V, = I,. Hence, the claim (i) holds.
The claim (ii) follows due to symmetry. This completes the proof of the lemma. [J

The next lemma reveals the N-limit behavior of CCA in our setup.

Lemma A.3. Let V, and Ly, be the N-limits of {\/’g and Ing, respectively, where
i\/g and f;Hg are given in Lemma A.2. Let Lp be a lower triangular matrixz such that
F/JTTF = LpL%. Then, it holds that

Vg [IKC OKCXK‘(‘;}/ == L}{g(’)g_l [IKC OKCXKS}/L/F_IR
for a rotation matriz R.

Proof From Theorem 2.1, we have that

H'J;H,

LSl 5 Lgiof (T ) out (A1)

From the continuity of singular value decomposition, it also holds that
H{J-H
L O (%) O,Ly) = V2V, (A.12)

where ViV = Ik, ViV, =1k, and X is a rectangular diagonal matrix with nonneg-
ative diagonal elements in a non-increasing order.

Note that the elements in the diagonal matrix S reveal the correlations. Hence,
because F is in both H; and Hy and country-specific factors are not redundant (As-
sumption 3(iv)), it holds that 3, =1 for k=1, --- | K¢ and ¥y, < 1 for k > K°.

Define Y, as follows:
Yy =Ly 0" [Txe Ogcerses] L' R (A.13)
Then, the claim of the lemma will be shown by confirming that

VoV = Ige for g =1,2, (A.14)

H' J-H
—) O, = L. (A.15)

yiLgo; (2
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First, note that

ViV, =R'Ly" [Ige chxKg}’ O, "L, Ly O [Ixe OchKg]'L’F‘lR
H! J-H,

— R,L;vl [IKc OKCXK;]/Og_llo‘Ig ( T

) 0,0, [Ixe Oexes) Lp'R
F'J;F

= R'Lj! ( ) Li'R = RL;'LpLELE 'R = R'R = Ik,
which confirms (A.14).
Next, note that
H,J;H
VL 0 (—1 TT 2) 0oL Vs
H/J;H,

=y{L;{10’1( = )OQL;;;%
H/JH,

=R'L;" [Txe Ogexrs] ( =

:R/L;—vl (

) [Ixe Ogexrs] L 'R
F'J;F

) L7'"R =R'R = Ige,
which confirms (A.15). This completes the proof of the lemma. 0J
Proof of Theorem 2.2  Note that
F) = W/ H, = [Ix: Ogexr;| V, L' H,
= [Ixe Ogexrs] VoL 'Oy HY Jp
= R'L" [Ixe Oexr;] O 'OLH,Ip = R'LF' Iy,
where the second equality is from Lemma A.2, the limit is from Lemma A.3 and The-
orem 2.1 and the third equality is from Lemma A.3.
Finally, set 8’ = R'L;'. Note that S§' = L,'RR'L;' = L'L;! = ¥.'. This

completes the proof of the theorem. O

The following several lemmas are useful for the proof of Theorem 2.3.

Lemma A.4. Under Assumptions 2 and 3, as N, increases, pe L Pc, where Pe =

~ [~ ~\ 1 ~
F (F'F) F and P° = J;F (F'3;F) " FJ.
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Proof The claim directly follows from FL5J rFS from Theorem 2.1. This completes
the proof of the lemma. O

Lemma A.5. Let Y be a (N xT) matriz. Assume that the first K eigenvalues of
Y'Y are distinct and strictly positive. Define F and D such that the k-th column of the
(N x K) matrix F is the eigenvector of Y'Y corresponding to the k-th largest eigenvalue
of Y'Y and the k-th diagonal element of the (K x K) diagonal matriz D is the k-th
largest eigenvalue of Y'Y . Define the (N x K) matrix A such that the k-th column of
A is the eigenvector of YY' corresponding to the k-th largest eigenvalue of YY'. Let
A=YF (f"f‘>_1 , where F = FD'2. Then, it holds that

A=A

Proof This lemma is identical to Lemma 1 of Kim et al. (2021). O

Lemma A.6. Consider the (T X K;) matrix ég and the (KéS X K;) diagonal matrix
A, such that the k-th column of Gg is the eigenvector of R]lgvfg{"
largest eigenvalue, which is the k-th diagonal element of A,.

~ O U | - .
Define Dy = R,G, (GyG, ), where Gy = G,Ay%. Then, it holds that

(i) Dy =D,

(i1) P,D, =D,,

where f)g is given by Theorem 2.3.

~ ~ ~ ~ 4 ~, = ~ ! ~
proof Nt 55 = () () ont 56 = () () o

corresponding to the k-th

]59 =, /Ng%ég (é;ég>_ . Hence, by setting N = N, and Y = \;{]‘\’]—g, the claim (i)

directly follows from Lemma A.5.

Turn to (ii). Because

ng)g = Pgﬁgég (égé!l)l
_P,P,R,J; <IT _ 730) ﬁ; (ﬁz’fé) o P,R,J;G, (é’gég>—1
:ﬁgég (é;ég> - f)g’

(i) is also true from (i). This completes the proof of the lemma. O
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Lemma A.7. Let Les be a lower triangular matriz such that 0, Vx,0; = LGZL/@;'
Then, consider the (KS X Kg) matriz Ugs and the (Kg]9 X K;) diagonal matriz A@S
such that

G Iy (Ir — P°) JrG
T

Lo, “Lo; = Uey Ao, U, (A.16)

where Ao, is a diagonal matriz and Ug, Ues = Ix;. Define Dy as < ’@Sng)_ . Then,
it holds that
(i) D, (@;’ng@;) D, is an identity matriz and,

) ye1 G I (Ir—P)I -Gy 1)
(i) D, 7 D,V = Aes.

Proof  First, we show the claim (i) that D) (05 Vy,©%) D, is an identity matrix.
From Ue. = Uggl, note that D, = (L@;)_ll Ug;, which in turn gives,

D, (6;Vx,0;) Dy = Ug; (Ley) (6 Vx,0;) (Le;) " U
= U, 5 (L@S)_l Lo I@; (Le)g)_ll Ug; = /er@; = Iks,

verifying the claim (i).

We move to the next claim (ii). Note that
G,Jr (Ir —P°) JrG

T
=Ug; Uy Ao Ug, Ue; = Aoy,

G Ir (Ir — P°) J1G
T

—1 9~N—1r ! / g

where the second equality is from (A.16). This completes the proof of the lemma. O
Lemma A.8. It holds that

R,

=L+ l+13+ 1,

E
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where

1 _
b= X85 Ir (1 - 7°)
g9
1 s/ De
b= PTG, (17 - )
1 _
ls = —= (X,0; + P,I5) F'Ir (P°— )
V g
1 AC
b= 5P (1 - 7).
g

Also, under Assumptions 2 and 3, as Ny increases, it holds that
lih 5 (Ir — P°) J+G,D, "D, G Ir (Ir — P°),
where D, is given in Lemma A.7, and that fori = 2,3,4,
Ll 5 Opyr.

Proof From (2.7) and (2.8), we have that

R, = R, (Ir - P°) = P,R,Jr (Tr - P)

= (PyX, 05+ PyT5) FIr (I — P°) + (P,X,0; + P,I';) Gy 7 (Ir — P°)
+PEJr (Ir — P°)

= X,0;G 7 (I - P°) + PG (1r — P°)

+(X,05+ P,I) i (P = ) 4+ P,E Iy (1 — ).

where the second equality is from F'Jr (I7 — P¢) = Ogexr. Hence, it holds that

R
=1y + Iy + I3+ Ly, (A.17)

VNy

where [y, 5,13 and [4 are defined above.
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Next, we move to the limits of ll; for : = 1,--- 4. Note that

R @s/X/ X @s -
i = (Ir - P°) IrG, D, D) D, D Gy T (1 - )
5 (Ir — P°) J+G,D, "D, ' G/ Iy (I — P°) (A.18)

where the limit is from Assumption 3(i) and Lemmas A.4 and A.7. Also, note that
Ly = (IT _ 73> 3:G,C,G Iy <IT . 73) ,

where

S _1 S
. IYX, (X/X,\ ' X.Is
Y, N, N,

g g g

£> OKngKg,
from Assumptions 2(i) and 2(ii), which, in conjunction with Lemma A.4, gives
Bly 2 Opyr. (A.19)

Note that
Il = (730 - 73) 3 FCF Iy <PC - 73> , (A.20)

where

| OyXX,05  OyXiry

’ Ng Ng +
X, 0c IX, /X'X,\ 'X'TIe
g 9~g g g 99 g g P c/ c
20V O A21
+ Ng + Ng ( Ng ) Ng g Xg g ( )

from Assumptions 2(i), 2(ii), and 3(i). Plugging (A.21) into (A.20) along with Lemma
A4 gives the following:

I3 2 Opyr. (A.22)
Lastly, note that

Il = (IT - 73> J:CuJp (IT - 73) , (A.23)
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where

2 Opyr (A.24)

C, = g
N, \ N, N,

g

EX, (X;Xg>1 X'E,

from Assumptions 2(i) and 2(ii). Plugging (A.24) into (A.23) along with Lemma A.4

gives the following:
Uy 5 0pyr. (A.25)

The expression (A.17) along with the limits (A.18), (A.19), (A.22), and (A.25),

completes the proof of the lemma. O

Lemma A.9. Under Assumptions 2 and 3, it holds that

R.R,

g
Ng

5 (Ir — P°) J+G,D, VD, ' G/ Ir (Ir — P°),
where H, is given by Lemma A.7.

Proof From Lemma A.8, it holds that

R'R,
g-r9 /
N Z Lils,
g ij=1
which gives o
R/ R
- Lolih= ) Ul (A.26)
g ~(i=j=1)

Note that for ¢ = 1,2,3,4 and j = 2, 3,4, it holds that

LI < - 51 = \/tr (1) tr (155) 0, (A.27)

where the first inequality is from the submultiplicativity of Frobenius norm and the

limit is from Lemma A.8. Hence, it follows that

Y uul< Yol 2o, (A.28)

~(i=j=1) ~(i=j=1)
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where the first inequality is from triangle inequality and the limit is from (A.27).
Lastly, from (A.26) and (A.26), it follows that

RR
|22 = By o,

g

which in junction with Lemma A.8 confirms the claim of the lemma. This completes

the proof of the lemma. O

Proof of Theorem 2.3 The following five steps complete the proof of @; N O;D,.
Consider Dy, G4, G, and A, defined in Lemma A.6 and D, and A@; from Lemma A.7.
Define G as (I — P°) JTGgD;I’T*‘)ﬁAg)gﬁ.
Step 1. ég % G and Ay LN T'Ags: From Lemma A.7, it holds that
G'G :Aég'STio'SDgilGngT (Ir — P°) JTGQD;“T*O'E’A(;;'E’
=0g: T~ TAg, T Agy”® = I, (A.29)

and that
D'G.Ir (Ir —P9)G =D, 'GIr (Ip — P°) JTGgD;l’T’MAég'E’ = T0'5A%g,
which in turn gives that
G' (Ir — P) IrGyD, "D, G Ir (Ir — P) G = TAes, (A.30)
which is a diagonal matrix from Lemma A.6. Hence, from (A.29) and (A.30), each
column of G is an eigenvector of (Ir — P¢) JrG,D, "D, G} Jr (Iy — P°), which is the

limit of RJQVR" from Lemma A.9. Because the k-th column of ég is an eigenvector of
g

R],g\,r:g , corresponding to the k-th eigenvalue or the k-th diagonal element of A,, the

claim holds due to the continuity of eigen-decomposition.
Step 2. ég L Iy — PO JrGyD,": From Step 1, it holds that

= (Iy — P%) J1 G, D, "T~ P AGTOP AL = (I — P*) IrG, D, .
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~ ~ o~ —1
Step 3. Gy (G4 Gy) 2 (Ir — P?) J7G, D, "T 1 Agk: Tt holds that

- — -1
G, (¢,G,)
& (IT — 776) JTGQD;1/ (D;IG;JT (IT - Pc> JTG9D51/>_

G Jr (Ip — P°) I G -
= (Ir — P9) I1G,D; VT (Dgl g T(TT ) Jr ng1’>

1

=(Ip — P°) JTGng—l’T—lA(gg,

where the limit is from Step 2 and the last equality is from Lemma A.7.

~ ~ o~ -1
Step 4. D, 'Gydr (Tr = P) Gy (G4 G, ) 5 Li;: From Step 3 and Lemmas A4
and A.7,

D,'Gydr (Tr = P°) G, (GG, ) o
Gy (Tp — P9) J1G,

y4
—>Dg -

-1 A—-1 __

Step 5. @Z RS ©,D,: Note that ]59 in Lemma A.6 is expressed using (2.7) as follows:

D; - R,G, (G,G,) =R, (L -7)G,(Gq,)

= (X,0;D, + P,[3D,) D, Gy dr (1 — ) G, (GG ) B
+ (X,05 + P,I) F'Jy (7?0 - 73> G, (é;ég)l
+P,E,Ir (I - 79) G, (GG, ) o

where the last equality is from F'Jp (Ip — P¢) = Ogexr. Hence, it follows that

Ng
(o X pn (-2 (60)
g
() ) rloo)
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where the limit is from Assumptions 2(i) and 2(ii) and Lemma A.4 and Steps 3 and 4.
This completes the proof of the theorem. O

Lemma A.10. The minimization problem in Theorem 2.4 has the following closed form

solution:

-1

vec (@C) — (X'X) ' X'y — (X'X)"' Z/ (z (X'X)™! z’) Z(X'X)" X'y,

9
where y = vec (RyJr), X = (f‘ ® Xg> ,and Zo=Tge ® <(:)Z’X;Xg> :
Proof Note that

IRy I — (X,05) F'|| = [[vec (RgJT ~ (X,05) ﬁ) [ (A.31)
= |[vec (R,J7) — (ﬁ ® Xg) vec (€2) [,

where the second equality is from the property of vectorize operator. Also, note that

the constraint of C:);’X;Xg@g = Op;x e is equivalent to
(T @ (8X,X, ) ) vee (0) = O 1 (A.32)

Hence, from (A.31) and (A.32), the original minimization problem can be reformulated

as

~

O¢f = arg I(I_)llil (y — Xvec (@g))/ (y — Xvec (@;)) + XNZvec (@;) : (A.33)

g

where y = vec (R,Jr), X = (f‘ ® Xg> ,and Z = Ige ® <@§X’9X9> . Then, the first

order conditions of (A.33) are

[2X’X zf] vec (@;) B [2X’y]

Z 0 0

>)

which yields

vec (©° ox'x 7] [ oXly
Oz

Z 0 0

>)
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Lastly, standard matrix inversion gives
N -1
vec (@;) — (X'X) ' X'y — (X'X)' 2 (z (X'X)™! Z/> Z (X'X) " X'y,
This completes the proof of the lemma. 0
Lemma A.11. Under Assumptions 2 and 3, it holds that
X'y

Ng
X/

= ((S'F'ITFS) @ Vi, ) vee (0587") + ((S'F'IrGy) © (Vx,05)) vee (Ixs)

il

5 (SF'I;FS) @ Vy,,

b2|N%2

5 Ige ® (D0 Vy,),
where y, X, and Z are given in Lemma A.10.
Proof From (2.6),

R,Jr = (X0, + 1) F'Ir + (X0 +T3) GiJr + EgJr
= (X900 +T5) F'Ip + (X,0; +T5) G, Jr + E,J7
= X, 0.8 VS F I + TiF Ip + (X, 05 +T%) Gl Jr + EgJr,

which yields

y = vec (RyJr) = (J7FS) ® X)) vee (0:857Y) + ((JrF) @ I vec (Ixe)
+ ((I1Gy) ® (X405 +T5) ) vee (Ixs) + (Jr @ Ey) vec (Ir) . (A.34)

By combining the expression of y in (A.34) and that of X in Lemma A.10, along with the
properties of Kronecker product that (A ® B)' = (A’®@ B’) and (A® B) (C® D) =
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(AC) ® (BD), we have that

}](\;y <(f"JTFS> (X]i{g)) vee (0557 + ((ﬁ'JTF) ® <X]f[—1;’)) vee ()
+ ((F IrG,) (XN}; o + %)) vee (Ix:)
+(( 7J /ggg))vec(IT)
= ((SFITFS) ® Vi, ) vee (0587Y) + ((SF'IrGy) ® (Vix,05)) vee (Ix;) |

where the limit is from Assumptions 2(i) and 2(ii) and Theorem 2.2. This confirms the
first claim of the lemma.

The next two limits are straightforward. From Theorem 2.2 and Assumption 2(i),

it holds that X X'X
= (ﬁf) ® < 2 g) 2 (SFIFS) @ Vy,,

g g

which confirms the second claim. Also, note that

Z ~ X'X
g I . @3/ g g D, I . D/ @S/V
N, Ke @ ( 9N — 1k ( X9)7

g

from Theorem 2.3 and Assumption 2(i). This completes the proof of the lemma. [

Lemma A.12. Under Assumptions 2 and 3, it holds that
(X'X) "' Xy B vec (0557Y) + ((3’—1 (F'JF) " (F'JTGg)) ® @;) vee (L)
and that

(X'X)"'Z' (z (X'X) ! z’) Tz (xX) " XYy

5 (871 (F3rF) " (FI2Gy) ) @ 0; ) vee (1) (A.35)

where y, X, and Z are given in Lemma A.10.
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Proof From Lemma A.11 and the property of Kronecker product that (A ® B) ' =
(A~ @B,

/ —1
(%VX> % (S'FIrFS) " @ Vy!, (A.36)
g

which in conjunction with the limit of XN—,y in Lemma A.11 gives
g

N, N

_ XX\ ' x/
(X'X) ' X'y = ( ) i’
g g

Bivee (0557Y) + (((SFILFS) ™ (SFIrG,)) @ 6;) vee (L)

g

—vec (€557 + ((5—1 (F'JF)! (F’JTG9)> ® @;) vee (Tigs) - (A.37)

This confirms the first claim of the lemma.

’ -1 & ’ -1 ’
For the next claim, we first identify the limits of N% (%) }](ng, ng (%) ff—g,

’ -1,
and <ﬁ> Z and then combine the limits. From (A.37) and the limit of N% in

NQ Ng
Lemma A.11,
Z (X'X\ "Xy ,
v () A hmen A2
where
1= (Ige ® (D’g@z’VXg)) vec (638_1’) ,
P2 = ((8—1 (F/JTF)_l (F/JTG9)> & (D;@;/VXQG)Z)) vec (IK;) (A39)
Note that
p1 = vec ((D;@;/VXQG);)) = OK;K% (A40)

where the first equality is from a property of vectorize operator and the last equality is

from Assumption3(ii). Also, by applying Lemma A.7 to (A.39), we have that

pr= (S (FIF) " (F37G,)) @ D) vee (L) (A.A1)
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By plugging (A.40) and (A.41) into (A.38), we have that

Z X/X -1 le » . ) . / ,
Fg( v ) L (87 FIF) T (FIG,)) @D vee (L) . (A42)

g g

—1 -1
z (X'X z/ X'X z . Z .
Next, we move to N ( N, ) Ny and (Tg) Ny From the limit of N, in Lemma

A.11 and (A.36), note that

Z /X'X\ '7Z
Ng NQ Ng

5 (SFIFS)” ® (D)0 Vx,0:D,) = (SFIFS)™ @I, (A.43)

where the last equality is from Lemma A.7, and that

N N

g g

X'X\ " Z _
( ) — 5 (S'FIFS) ' @D, (A.44)

Lastly, combining (A.42), (A.43) and (A.44) yields the last claim of the lemma.
This completes the proof of the lemma. O

Proof of Theorem 2.4 It suffices to show that vec <@!‘;) L vec (@;S_l’ ) . Lemma
A.10 reformulate the solution in Theorem 2.4. Furthermore, from Lemma A.12, we
have that

vee (8) = (X%X) " Xy - (XX) 2 (2(X%) ' Z) " 2(XX) " Xy
2 vec (©:87Y) + ((8’_1 (F'JF)! (F/JTGQ)) ® @Z) vec (IK‘S)
~ (7 ®308) " (F13:G,) ) ©6;) vee (Tig) = vee (55,

g

This completes the proof of the theorem. O

The following lemma is useful for the proofs of Theorems 2.5 and 2.6.

Lemma A.13. Under Assumptions 2 and 3, as N1 and Ny increase,

S (AT = A9 17
S' (ALl + F)

)

o~ ~\ —1 <
(B’B) BR 2
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where R is the (Ny + Ny) x T matriz of [R} R}] and B is given in Theorem 2.5.
Proof From (2.5), R, can be rewritten as
R, = X,00 (A1} + F') + ug, (A.45)

where
u, =Ty (A1 + F') + (X,0; +T;) (Aj17 + Gy) + E,. (A.46)

Then, stacking (A.45) over g = 1,2, we rewrite R as

_— R, | [ Xi0587VS (A{1) + F) | h
'R, X,0587VS (AS1), + F') I,
[ X,0:57Y X,0¢8Y
— | S =X)L+ | 7 S (A1 + F) |
0N2><Kc XQ@%S_ ! 2
[ XS X058 | [ SIS = X9 1y e (A7)
Onpxree  XoO5S™V S (X515 + F) Iy
Hence, using (A.47), we have that
BR _ [ oyXFes oy XiXigis-1 S (Af — X5) 1
N Oy OIS OIS + 657220587V | | 8/ (A1, + F)
@gf/xllrl ]
T e (A.48)
05722
From (A.46), note that
~ X'u ~ X'Te
@cg_gze)cﬂ AC]_/ +F/
g Ng g Ng ( g=T )
. X'X _ X!Te _ X'E
c 979 s c 9" g s c 99
v (B e 8 ) (ot ) 4 8

2 57109V y, 08 = O,
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where the limit is from Assumptions 2(ii) and Theorem 2.4 and the last equality is from

Assumption 3(ii). Hence, along with Assumption 2(iii), it follows that

~. X’u1 Nl/\c X’u1

@1IIT = W@{ ]ifl £> 0K¢><T>

~ X' N1\ ~,X5u

652 = (1-#)@;’ 22 Opcenr,
2

which along with Assumptions 2(i) and 2(iii) gives

B'R S (XS — XS) 1
5 vy (Af = X5) 17 (A.49)
N S" (As14 + F)
where
TL1871®§/VX165871 nlS’l’@‘{’Vxl@fS’l’
V — S—l@c/v @cs—ll . A5O
B nl‘Sil@i/VXl@isil/ (77,1 1 YXiV ( )
+(1 = n)S 'OV, 0585 7Y)
Also, from Assumptions 2(i) and 2(iii) and Theorem 2.4, we have that
B'B oy XiXigeg-v o XiXige g1 )
N - Achllxl cQ—1/ ACX/1X1 cQ—1/ ACX/2X2 cQ—1/ - VB’ (A51)
07 =618 Of =015 + O5=3~05S

where Vg is given by (A.50). Finally, combining (A.49) and (A.51), we have that

~ ~\ —1 ~
(ﬁ/ﬁ) ap _ (B’B) BR , [ §'(\—X)1;

S (A1 + F)

?

N N

which completes the proof of the lemma. OJ

Proof of Theorem 2.5 From Lemma A.13, we have that

Aa = [Tree Ocer s (ﬁ’ﬁ)l BR = [Txe Oerrce] (ﬁ'ﬁ)l (BR) 1,7
S'(AF = A5) 1y

P
_> I c 0 c c
e Ol |, (AL + F)

17/T = 8" (XS — XS).
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This completes the proof of the theorem.
Proof of Theorem 2.6 From Lemma A.13 and Theorem 2.5, we have that

~ ~ ~\ 1 ~
FR = Ny [Ixe Ocorrce] (B/B) B'R
(AL — A3 17
S (AL + F)
= (XS = XS) SS (XS — ) 1y = 1.

L (X = A9)' S Tiee Oercee]

This completes the proof of the theorem.
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