Weather Variance Risk Premia

Current Version: October 2023

Abstract

We analyze the information content of a variance risk premia extracted from the weather derivatives contracts written on the local temperature of individual U.S. cities. We term this the Weather Variance Risk Premia (WVRP). By constructing the WVRP measure from the CME's weather futures and options contracts, we examine the role of weather variance risk on bond credit spreads of local corporations and municipalities. Our results indicate informativeness of weather derivatives market as a local risk factor priced in the bond returns of local corporations and municipalities. Our results are robust to controlling state level economic uncertainty measures.

JEL Classification: Q02, G13

Keywords: Weather Variance Risk Premia; Uncertainty; Municipal Bond; Corporate

Bond; Stock Variance Risk Premia; Credit Spreads

1 Introduction

Considerable amount of research have identified that information embedded in the options contracts provide significantly richer understanding of various financial markets. For example, the VIX index constructed from index options is now widely used everywhere by both academics and practitioners. One of the main essence the options contract can help infer is the aggregate investors' risk preference. In particular, risk preferences on higher moments of stock returns are unobtainable without the aid of derivatives contracts.

While the most of focus have been placed in the equity markets so far, in this paper we propose and construct weather uncertainty measures from exchange traded weather Futures contracts and options contracts written on them. Underlying of these contracts are temperature indices of different cities across the U.S. and Europe. Our particular interest is the cost of hedging local temperature fluctuations using the weather options and the benefits of the hedging on local assets such as local firm's stock return volatility and credit spreads (both corporate and municipal). Our analysis is motivated by Carr and Wu (2009) who find that the cost of hedging stock return volatility risk inferred from equity options is higher than the estimate realized volatility (i.e. investors are paying more to hedge stock return volatility risk than risk they are exposed to) and Bollerslev, Tauchen, and Zhou (2009) who find that the market variance risk premia positively predicts U.S. stock index returns. In a similar way, we construct a weather variance risk premia, defined as the difference between weather Futures option implied volatility and the weather Futures volatility, and assess it's impact on the local firms in and around cities where weather derivatives are traded.

To empirically study this, we raise questions concerning the relationship between the weather variance risk premia and its impact on local firms and municipalities. Greater weather variance risk premia indicates investors' risk aversion against local temperature fluctuations.¹ In other words, investors fear that firms and municipalities operating in local

¹The weather derivatives market has become increasingly important in hedging against temperature exposure see Robertson (2023).

area being exposed to natural disaster risk in the future that could severely hurt their future operations. We investigate whether this is true by looking at three main measures: local municipal bond credit spreads, local corporate bond credit spreads, and local corporation's stock return variance risk premia. Bollerslev, Tauchen, and Zhou (2009) and Chen, Doshi, and Seo (2023) find that variance risk premia of stock and bond markets are positively related to the expected returns, respectively. Extrapolating their results, we expect the weather variance risk premia to also play a similar role to the local assets, we expect the weather variance risk premia to contemporaneously positively impact the credit spreads of municipalities and local firms and positively predicting the expected bond returns of municipalities and local firms. To test these predictions, we run both contemporaneous (and predictive) regressions to see whether weather derivatives risk premia positively (negatively) contemporaneously (predicts) the bond credit spreads (and thus positive expected returns).

Our principle findings are that our weather variance risk premia is positively contemporaneously priced in the local cross section of stock return variance risk premia, corporate and municipal bond credit spreads. Our results show a higher cost of hedging temperature volatility leads to a higher current cost of hedging equity volatility uncertainty as well as contemporaneously higher localized corporate and municipal credit spreads. These findings imply that a higher weather variance risk premia is associated with a higher cost of insuring against the changes in the local firm stock cash flow uncertainty induced from weather and hence investors demand lower price for corporate and municipal bonds since it is more costly to insure hence current credit spreads increase. Additionally, we find that our weather variance risk premia is negatively priced in the expected future local cross section of stock return variance risk premia, corporate and municipal bond credit spreads. Our results imply a higher cost of hedging temperature volatility leads to a expected future lower cost of hedging equity volatility uncertainty as well as lower expected future corporate credit spreads, and localized municipal credit spreads. Our results imply the benefits of hedging temperature volatility on the expected local financial economy.

A large literature has been developed and continues to be developed that studies how to measure economic uncertainty and it's impact on the expected real and financial economy.² Recently Baker, Bloom, and Terry (2023) use various measures of disasters to estimate the impact of uncertainty shock impacts on the macro economy. The impact of the local uncertainty shocks has been shown to have a forward looking impact on local stock and corporate bond returns (see Bali, Brown, and Tang (2017) and Bali, Subrahmanyam, and Wen (2021)).

Our paper contributes to three strands of literature: (1) literature on climate and temperature uncertainty, (2) the literature on weather derivatives and (3) variance risk premia. First our paper contributes to the literature on climate and temperature uncertainty, see for instance: Weitzman (2009), Kruttli, Roth Tran, and Watugala (2023), Hain, Koebbel, and Leippold (2023), Barnett, Brock, and Hansen (2021), Bilal and Rossi-Hansberg (2023), Barnett (2023) and Barnett, Brock, and Hansen (2023) as well as many others. Several papers have documented the impact of temperature shocks on macroeconomic output and growth. Acharya et al. (2022) study the premium in the cross section of US stocks and spread component in corporate and municipal bonds for the physical climate risk across all regions in the US (Ginglinger and Moreau (2023) study the impact of physical climate risk in debt structure of firms). Bansal, Kiku, and Ochoa (2021), Barnett (2023) and Donadelli et al. (2022) study the size of the premia required in the cross section of US stocks for temperature changes over the last decades. Our results imply the benefits of the hedging temperature volatility on the local financial economy. Secondly we contribute to the literature on weather

²Baker, Bloom, and Davis (2016) studies the impact of economic policy uncertainty across different nations whereas Baker et al. (2022) measure U.S. state level economic uncertainty.

³For the impact of temperature on economic growth see Bansal, Kiku, and Ochoa (2021), for the US Colacito, Hoffmann, and Pham (2019), as well as across different countries see Dell, Jones, and Olken (2012). For the impact of temperature volatility on growth see Donadelli et al. (2022) as well as Bortolan, Dey, and Taschini (2023) and the impact of heat waves on economic growth see Miller et al. (2021) as well as references therein. For impact on international trade see Jones and Olken (2010).

⁴This literature should not be confused with the impact of climate related *ex-ante disasters* or the literature on flood risk for coastal municipalities. For the impact of climate related *ex-ante disasters* on municipal bond returns see Auh et al. (2023). For the impact of flood risk for coastal municipalities see Bernstein, Gustafson, and Lewis (2019), Baldauf, Garlappi, and Yannelis (2020), Murfin and Spiegel (2020), Goldsmith-Pinkham et al. (2023), Giglio et al. (2023), and references therein.

derivatives, the class of securities whose payoff is contingent on the specific temperature at a particular city.⁵ Several papers in this literature have looked at the impact of the inception of an exchange to trade weather derivatives market on: (i) firm risk management practices in the utilities industry (see Perez-Gonzalez and Yun (2013)), (ii) the impact on the improvement of weather forecasting of government agencies (see Purnanandam and Weagley (2016)), and (iii) the impact of executive compensation for controllable weather risk (see Armstrong, Glaeser, and Huang (2022)). A seminal contribution to the weather derivatives literature is the work of Weagley (2019), who finds that the limited financial intermediary risk bearing capacity increases the the prices of weather derivatives during times of market stress when intermediary capital is constrained. Another section of the weather derivatives literature has focused on how to price weather derivatives beginning with (i) Cao and Wei (2004) and Zhou, Li, and Pai (2019) who price weather derivatives in general equilibrium (ii) Campbell and Diebold (2005), Dorfleitner and Wimmer (2010) Chincarini (2011), and Hardle, Lopez-Cabrera, and Teng (2016) who focus on pricing weather futures (iii) Hardle and Lopez-Cabrera (2012) and Hardle, Lopez-Cabrera, and Teng (2015) who focus on applications of the weather options and futures to the market implied weather risk premia state price density, and (iv) Schlenker and Taylor (2021) who show that weather futures are priced consistently with market expectations about future weather conditions. Our contribution to this literature is that we show the usefulness of the weather derivatives in hedging a large cross section of local temperature variations on the corresponding local underlying firm stock, corporate bonds, and municipal bonds.⁶ Our results imply the benefits of the hedging temperature volatility on the local financial economy.

The third literature that our paper contributes to is the growing literature of the variance

⁵Additionally our work is tangently linked to the stream of literature on catastrophe bonds which are bonds whose payoffs are linked to the occurrence of pre-specified catastrophic events such as hurricanes or tornadoes, however, our weather derivatives are related to the payoff of specific temperatures at city airports. For the literature on catastrophe bonds see Froote (2001), Cummins, Lalonde, and Phillips (2004), Froote and O Connell (2008), Garmaise and Moskowitz (2009), and Tomunen (2023) amongst others.

⁶Our paper differs, but compliments, the findings from Bae et al. (2023) which find, using monthly weather futures options, their measure weather implied volatility increases firm quarterly operating costs by 2%.

risk premia. Since the seminal findings of Carr and Wu (2009) which find that in the cross section of U.S. stocks, the cost of hedging stock volatility risk inferred from equity options is higher than the estimate realized volatility (i.e. investors are paying more to hedge stock volatility risk than risk they are exposed to) and Bollerslev, Tauchen, and Zhou (2009) who show that the variance risk premia positively predicts U.S. stock index returns, a fleury of research has gone into studying different forms of hedging and understanding variance risk across different asset classes.⁷ Additionally Drechsler and Yaron (2011) and Drechsler (2013) have shown important ties of the variance risk premia to understanding uncertainty in the macroeconomic and asset pricing puzzles. To this literature our paper contributes a novel variance risk premia measure (called weather variance risk premia WVRP) that is derived from options on heating and cooling index seasonal strip weather futures.

The temperature and weather outcomes on firm financial performance have been documented in Addoum, Ng, and Ortiz-Bobea (2020), Addoum, Ng, and Ortiz-Bobea (2023), Brown, Gustafson, and Ivanov (2021), Griffin, Lont, and Lubberink (2023), Huynh and Xia (2021), Kirk, Stice, and Stice (2022), Pankratz and Schiller (2023), Pankratz, Bauer, and Derwall (2023), and Zhang (2023). Investor or managerial perceived behaviour to weather events and climate change risk see Busse et al. (2015), Dessaint and Matray (2017), Choi, Gao, and Jiang (2020), Engle et al. (2020), Goetzmann et al. (2020), Alekseev et al. (2022), Lontzek et al. (2023), Ilhan et al. (2023), Sautner et al. (2023), and Kruttli, Roth Tran, and Watugala (2023). Bergman, Iyer, and Thakor (2020) analyze the impact of local weather-driven cash flow shocks on the real and financial sectors.

The rest of this paper is organized as follows: Section 2 outlines the data and empirical

⁷Additionally different measures of variance risk premia have been developed in different asset classes as investors use derivatives different underlying assets to hedge future asset risk. For example variance risk premiums derived using derivatives from interest rate futures bond risk premia developed from U.S. treasury interest rate futures (see Choi, Mueller, and Vedolin (2017)) also corporate bond variance risk premia has been developed using options on credit default swap indices (see Chen, Doshi, and Seo (2023)) as well as see Heston and Todorov (2023) for commodities markets. Additionally see Bakshi and Kapadia (2003), Dew-Becker et al. (2017), Feunou, Jahan-Parvar, and Okou (2018), and Pyun (2019).

⁸Fleming, Kirby, and Ostdiek (2006) find higher comovement of returns and volatilities of commodities during weather sensitive trading periods (also see Hirschleifer and Shumway (2003) and Loughran and Schultz (2004)).

measurement framework, Section 3 presents the main findings, Section 4 provides several robustness checks, and Section 5 concludes with several avenues of future research.

2 Data and Methodology

2.1 Weather Derivatives Data

The Chicago Mercentile Exchange (CME) introduced standardized monthly weather derivative contracts in 1999. In general the monthly weather derivative contract's payoff is based on the average daily temperature taken at the airport weather station at a specific city. For contracts traded on the CME, the specific payoff of the standard monthly temperature contracts are based on either a heating degree day (HDD) index or a cooling degree day (CDD) index for a specific city i during month t. The HDD contracts are listed and traded during the months of the traditional heating season which runs from November through March. Correspondingly, the CDD contracts are listed and traded during the months of the traditional cooling season which runs from May through September.

$$HDD_{i,t} = \sum_{d=1}^{D_t} max[65 - T_{i,d}, 0] \qquad CDD_{i,t} = \sum_{d=1}^{D_t} max[T_{i,d} - 65, 0] \qquad (2.1)$$

where D_t is the number of days in month t, $T_{i,d}$ is the average temperature measured in degrees Fahrenheit of the minimum and maximum temperature for a specific city i on day d. The $\text{HDD}_{i,t}$ ($\text{CDD}_{i,t}$) are the monthly HDD (CDD) indices for a specific city i during month t. The contract price quotes are in unites of \$20 hence the payoffs of the HDD (CDD) indices are $20 \times \text{HDD}_{i,t}$ ($20 \times \text{CDD}_{i,t}$).

The CME also offers standardized seasonal strip HDD and CDD weather derivative contracts. A seasonal strip contract is based on the cumulative HDD or CDD values during a five-month period within the season. Seasonal strip contracts provide the same type of risk exposure as monthly HDD and CDD contracts but offer the convenience of being able

to trade a bundled package of months during the heating or cooling season.

All option contracts on weather futures (monthly and seasonal strip) can only be exercised at contract maturity (i.e. European exercise style) and implied volatility (delta) of each contract price quote is computed using the Black (1976) model. Weather futures options have been used in cross-sectional analysis in Perez-Gonzalez and Yun (2013) and Purnanandam and Weagley (2016). Purnanandam and Weagley (2016) and Weagley (2019), however, these papers have used U.S. monthly temperature futures and options and not the seasonal strips. As noted in Weagley (2019) the main purchasers of weather derivatives are energy and utility companies whereas the liquidity suppliers are financial institutions. Energy and utility companies take a short position in the local temperature futures in order to hedge their risk exposure to small changes in temperature.

Our analysis in this paper will focus on two sets of weather derivatives. The first set will be the seasonal strip options and their underlying seasonal strip HDD and CDD futures of the cities: Atlanta/Georgia (ATL), Chicago/Illinois O'Hare (ORD), Cincinnati/Ohio (CVG), Dallas-Fort Worth/Texas (DFW), Las Vegas/Nevada (LAS), Minneapolis-Saint Paul/Minnesota (MSP), New York Laguardia/New York (LGA), and Sacremento/California (SAC). See Table 1 for more information regarding the specific code used from the CME. The seasonal strip options and futures data set spans from January 2006 to December 2019.

INSERT TABLE 1 HERE

We apply several filters to our seasonal strip futures and seasonal strip options data set before beginning our analysis. We remove option implied volatilities that are (i) missing (ii) zero or (iii) greater than 100%. Additionally we remove futures and options quotes in which open interest is either zero or missing. Table 2 reports the sample statistics of the implied volatility, open interest, remaining days to maturity (d2mat), and remaining time to maturity (in years) for each of the CME Weather derivatives seasonal strip options mentioned. Average seasonal strip option implied volatility ranges from 0.27 to 0.59 and ranges from 0.1 (10th percentile) to 0.91 (90th percentile). The average days to maturity

(d2mat) of the contracts is very similar across all contracts ranging from 92 to 112 days. The average open interest ranges from 706 to 1153 units with range 50 units (10th percentile) to 2500 units (90th percentile).

INSERT TABLE 2 HERE

Our second set of weather derivatives data is the monthly weather futures of the cities/state (airports): Atlanta/Georgia (ATL), Chicago/Illinois O'Hare (ORD), Cincinnati/Ohio (CVG), Dallas-Fort Worth/Texas (DFW), Las Vegas/Nevada (LAS), Minneapolis-Saint Paul/Minnesota (MSP), New York Laguardia/New York (LGA), and Sacremento/California (SAC). We obtain daily prices of monthly weather futures contracts are obtained from Schlenker and Taylor (2021). The monthly futures data set spans from January 2006 to December 2019. Table 3 Panel A reports average daily raw futures returns (monthly futures) per city/state with the returns on the city/state being defined as the HDD futures returns during the November to April months and returns on CDD futures returns during the May to October months. Across all cities the average daily return is negative and close to zero (median is zero) ranging from -0.04 (10th percentile) to 0.04 (90th percentile) being mostly symmetric across cities.

Table 3 Panel B monthly return volatility from daily futures returns per city/state (volatility estimates are annualized). The annualized realized volatility of monthly futures (WRVOL_{c,t} for city/state c at time t) average 0.53 to 0.67 ranging from 0.13 (10th percentile) to 1.93 (90th percentile) exhibiting substantial heterogeneity and large positive skewness across cities.

INSERT TABLE 3 HERE

⁹We thank the authors of Schlenker and Taylor (2021) for making their replication code publicly available on their website Taylor (2021).

$$WRVOL_{s,t} = \begin{cases} \sqrt{\widehat{\mathbb{VAR}}\left(\frac{F_{HDD,s,d} - F_{HDD,s,d-1}}{F_{HDD,s,d-1}}\right)} & \text{if } t = \text{Nov.,...Apr.} \\ \sqrt{\widehat{\mathbb{VAR}}\left(\frac{F_{CDD,s,d} - F_{CDD,s,d-1}}{F_{CDD,s,d-1}}\right)} & \text{if } t = \text{May.,...Oct.} \end{cases}$$
(2.2)

where $F_{HDD,s,d}$ ($F_{CDD,s,d}$) is the weather monthly futures HDD (CDD) contract price on day d for city s which are only available during the months of Nov.,...Apr. (May.,...Oct.) respectively. Where $\sqrt{\widehat{\mathbb{VAR}}(\cdot)}$ is the sample volatility of the daily weather monthly futures HDD (CDD) contract price $F_{HDD,s,d}$ ($F_{CDD,s,d}$) returns computed for each county c, across all days d of the calendar month t. The weather seasonal strip futures realized volatility (WRVOLss_{c,t}) county c at time t is constructed analogously to the weather monthly futures realized volatility except using the weather seasonal strips data.

The weather seasonal strip options average option implied volatility (WIVOLss_{c,t}) across all weather seasonal strip options for city c at time t for each month. We define the weather seasonal strip variance risk premia (WVRPss_{c,t}) for each month t for each city c as the difference between the WIVOLss_{c,t} and WRVOLss_{c,t}.

$$WVRPss_{s,t} = \begin{cases} WIVOLss_{HDD,s,t} - WRVOLss_{HDD,s,t} & \text{if } t = Nov.,...Apr. \\ WIVOLss_{CDD,s,t} - WRVOLss_{CDD,s,t} & \text{if } t = May.,...Oct. \end{cases}$$
(2.3)

where

$$WRVOLss_{HDD,s,t} = \sqrt{\widehat{VAR} \left(\frac{Fss_{HDD,s,d} - Fss_{HDD,s,d-1}}{Fss_{HDD,s,d-1}} \right)}$$

$$WRVOLss_{CDD,s,t} = \sqrt{\widehat{VAR} \left(\frac{Fss_{CDD,s,d} - Fss_{CDD,s,d-1}}{Fss_{CDD,s,d-1}} \right)}$$
(2.4)

where $WRVOLss_{IDD,s,t}$ (WRVOLss_{CDD,s,t}) are the components of the weather seasonal strips realized volatility during the months of Nov.,...Apr. (May.,...Oct.) respectively. The

 $Fss_{HDD,s,d}$ ($Fss_{CDD,s,d}$) is the weather seasonal strip futures HDD (CDD) contract price on day d for city s only available during the months of Nov.,...Apr. (May.,...Oct.) respectively.

INSERT TABLE 4 HERE

Table 4 displays the weather seasonal strip variance risk premia, WVRPss_{c,t}, as well as WIVOLss_{c,t} and WRVOLss_{c,t} for each city. The average WVRPss_{c,t} ranges from 0.27 to 0.59 and ranges from 0.1 (10th percentile) to 0.91 (90th percentile).

2.1.1 Municipal Bond, Corporate bond, and Equity Data

In order to test our weather variance risk premia's hedging impact for each city on it's local economy we obtain (i) county level municipal bonds of the surrounding city airport for each weather derivatives city location (ii) corporate bonds of the firms located in surrounding city airport for each weather derivatives city location (iii) firm variance risk premia of the firms located in surrounding city airport for each weather derivatives city location.

We obtain municipal bond issuance information (CUSIP, amount outstanding, issuance date, and maturity date) from Bloomberg for all of the municipal bonds issued within 100km of the airports of the eight cities we are considering. Municipal bond level transaction data for each bond CUSIP is obtained MRSB via WRDS. MRSB contains all of the municipal bond transactions (date of transaction, price, yield, dollar volume traded) from Jan 3, 2005, to June 30, 2022. We limit our sample to all municipal bonds that were issued from Jan 3, 2005, to June 30, 2022 for our counties of interest described above. We apply several filters to our municipal data set before beginning our analysis. We remove municipal bond trades that have (i) missing or less than one year to maturity (ii) yields that are less than zero or great than 6.65 (iii) missing or zero notional outstanding and (iv) whose trade price is less than 52 or greater than 138 (in order to minimize the impact of outliers).

¹⁰Each city/airport (county) is: Atlanta (Fulton), Chicago O'Hare (Cook and Delpont), Cincinnati/Northern Kentucky (Hamilton and Boone, Kentucky), Dallas-Fort Worth (Dallas and Tarran), Las Vegas (Clark), Minneapolis-Saint Paul (Hennepin), New York Laguardia (Manhattan, Brooklyn, Bronx, Queens, Nassau), and Sacremento (Sacramento county).

INSERT TABLE 5 HERE

Table 5 reports the summary statistics of municipal bond issuance information (CUSIP, amount outstanding, issuance date, and maturity date) from Bloomberg for all of the municipal bonds issued within 100km of the airports of the eight cities we are considering. Municipal bond remaining time to maturity (TTM, in years). The average individual corporate bond credit spreads is 0.02 (%2) and ranges from 1.1e-3 at the 10th percentile to 0.04 at the 90th percentile with an average time to maturity of 9.29 years with duration of 6.17 years.

Pursuant to our use of section 2.1, since our weather derivatives are associated with eight particular airport temperatures, we limit out empirical analysis to the city locations listed in COMPUSTAT city and state information.¹¹ Pirinsky and Wang (2006) find that less than 3% of firms changed corporate headquarters according to COMPUSTAT and Chaney, Sraer, and Thesmar (2012) find that a firm's corporate headquarters is in fact the majority of the company's real-estate holdings. Our equity options data consists of using the 30 day to maturity, equity option delta of 0.5, average call and put implied volatility from the OptionMetrics Volsurface Database.

We obtain the corresponding corporate bonds for the cross-section of firms within the states of our eight cities of interest. Data for corporate bonds is obtained from WRDS corporate bond returns, MFISD. We use the end of the month corporate bond yield. We remove bonds that are convertibles, private placements, rule 144A, financials, asset backed, defaulted, and other filters. Additionally we require that the bonds have trades that are larger than 10,000, traded within months that are consecutive with at most a month gap, have a time to maturity that is longer than one year yet shorter than 30 years, and whose bond price is more than 5 and less than 1000.

¹¹In particular our analysis is confined to the cities of New York, Brooklyn, Staten Island, The Bronx, Long Island City, Queens, Fort Worth, Dallas, Atlanta, Chicago and Evanston, Cincinnati, Las Vegas and North Las Vegas, Saint Paul and Minneapolis, and in California: Sacremento, San Jose, Paolo Alto, Mountain View, Fremont Stockton, and Santa Rosa.

INSERT TABLE 6 HERE

Table 6 reports the summary statistics of individual firm stock variance risk premia (Stock VRP), corporate bond credit spreads (along with time to maturity, duration, amount outstanding) for the cities with surrounding weather derivatives. The average individual firm stock variance risk premia is 0.01 (%1) and ranges from -0.11 at the 10th percentile to 0.12 at the 90th percentile. The average individual corporate bond credit spreads is 0.02 (%2) and ranges from 1.1e-3 at the 10th percentile to 0.04 at the 90th percentile with an average time to maturity of 9.29 years with duration of 6.17 years.

Across all cities, the monthly weather futures realized volatility (WRVOL) is 0.59 and ranges from 0.19 (10th percentile) to 1.33 (90th percentile). Correspondingly the seasonal strips weather futures realized volatility (WRVOLss) is 0.1 and ranges from 0.04 (10th percentile) to 0.19 (90th percentile). The weather seasonal strip options monthly average option implied volatility (WIVOLss) averages 0.44 and ranges from 0.18 (10th percentile) to 0.74 (90th percentile). The resulting monthly weather seasonal strip options variance risk premia WVRPss is 0.29 on average with standard deviation of 0.22 ranges from 0.04 (10th percentile) to 0.61 (90th percentile).

INSERT TABLE 7 HERE

Municipal and corporate bond credit spreads are computed using the risk free interest rate yield curve constructed from Liu and Wu (2022) to match remaining time to maturity to the closest month to maturity risk free interest rate. Since the estimated yield curve data of Liu and Wu (2022) only has estimates of risk free interest rates out to 30 years we drop, however, municipal bonds with time to maturity greater than 30 years represents less than five percent of our sample.

Climate projections are used from the Coupled Model Comparison Project (CMIP) data repository, which contains the model simulated changing temperatures under similar as-

¹²We thank the authors of Liu and Wu (2022) for making their risk free interest rate yield curve estimates publicly available on their website Wu (2023).

sumptions but surveyed across different modeling groups for heterogeneity in assumptions and implementations. Following Schlenker and Taylor (2021) we use on the 5th round CMIP5 archive using predicted climate trends from 2006 to 2019. The data is available daily from NASA NEXGDDP, for the weather station located at each city with traded weather derivatives. Following Schlenker and Taylor (2021) we use the NASA NEX-GDDP Representative Concentration Pathway (RCP) 4.5 warming simulation where the global mean temperature increases by $1.8^{\circ}C$ ($3.2^{\circ}F$) by the year 2100 by assuming an additional energy flux of 4.5 W per meter square.

We obtain daily prices of monthly weather futures contracts are obtained from Schlenker and Taylor (2021).¹³ Using the climate projections we compute the $XDD_{c,t-1}/XDDss_{c,t-1}$ the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t-1.

We control for state level economic uncertainty using the measure of Baker et al. (2022).¹⁴ As an additional robustness test, we control for state level economic uncertainty using the measure of Elkhami, Jo, and Salerno (2023b).¹⁵

Firms reveal some differing levels and different types of exposure they have to climate change via reportings and in company earnings. Sauther et al. (2023) (and Sauther et al. (2022)) create quarterly firm specific metrics of the relative frequency mentioned of different types of climate exposure from company earnings calls. In our robustness tests, we control for the firm level of climate change exposure (CCExposure), the firm risk exposure related to climate change (CCRisk) and the future risk opportunities related to climate change (CCOpportunity R^{Risk}). Additionally we control for the level economic uncertainty in our regressions measured by the EPU_{t-1} (and EJS SEPU_{s,t-1}) the monthly measured state level

¹³We thank the authors of Schlenker and Taylor (2021) for making their replication code publicly available on their website Taylor (2021).

¹⁴We thank the authors for making their state level economic uncertainty measure freely available on their website Bloom (2023).

¹⁵We thank the authors for making their state level economic uncertainty measure freely available on their website Elkhami, Jo, and Salerno (2023a).

¹⁶We thank the authors for making their measure of firm level climate exposure publicly available on their website Sautner (2023).

uncertainty measure of Baker et al. (2022) (Elkhami, Jo, and Salerno (2023b)) for state s at time t respectively.

2.2 Methodology

We test our weather variance risk premia's hedging impact on municipal bond credit spreads, and the local firm variance risk premia as well as the corporate credit spreads of the local firms in and around citites with traded weather derivatives. Additionally we test the impact of all our weather volatility uncertainty measures (WVOL_{s,t}) outlined in Section 2.1: WVOL_{s,t} = {WRVOL_{s,t}, WIVOL_{s,t}, WRVOLss_{s,t}, WVRP_{s,t}}.

In order to measure the contemporaneous impact of the weather volatility uncertainty measures on municipal bond credit spreads, we build on the panel regression specification similar to Acharya et al. (2022) written in equation 2.5.

Muni. Spread_{b,c,t} =
$$\gamma_c + \gamma_t + b_v \cdot \text{WVOL}_{c,t} + \phi \cdot X_{b,c,t} + \epsilon_{b,c,t}$$
 (2.5)

Muni. Spread_{b,c,t} is the credit spread during month t of bond b whose issuer is located in county c. Control variables in Z and X include the bond's time to maturity, and log-bond turnover. We also include bond and time (year quarter) fixed effects. Additionally we control for the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t ($XDD_{c,t}/XDDss_{c,t}$).

We measure the contemporaneous impact of the weather volatility uncertainty measures on corporate bond credit spreads, building on the panel regression specification from Acharya et al. (2022) written in equation 2.6.

Corp. Spread_{b,t} =
$$\gamma_s + \gamma_t + b_v \cdot \text{WVOL}_{c,t} + \phi \cdot X_{b,s,t} + \epsilon_{b,s,t}$$
 (2.6)

Corp. $Spread_{b,t}$ is the credit spread during month t of bond b. Control variables in Z

and X include the bond's time to maturity, bond credit rating, and log-bond turnover.¹⁷ We also include individual corporate bond and time (year quarter) fixed effects. Additionally we control for the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t ($XDD_{c,t}/XDDss_{c,t}$).

We measure the contemporaneous impact of our weather volatility uncertainty measures on firm stock hedging costs, as measured by the individual firm stock variance risk premia, we build on the panel regression specification from Kruttli, Roth Tran, and Watugala (2023)

Stock
$$VRP_{s,t} = \gamma_s + \gamma_t + b_v \cdot WVOL_{c,t} + \phi \cdot X_{s,t} + \epsilon_{s,t}$$
 (2.7)

Stock $VRP_{s,t}$ is the credit spread during month t of stock s. Control variables include the stock variance risk premia. We also include individual firm and time (year quarter) fixed effects. Additionally we control for the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t ($XDD_{c,t}/XDDss_{c,t}$).¹⁸

In order to measure the predictive impact of the weather volatility uncertainty measures $(WVOL_{s,t})$ in equations 2.5, 2.6, and 2.7, we lag by one month all of the variables on the left hand side of each of the three regression equations.

¹⁷The corporate bond credit rating is provided in WRDS Corporate bond returns and takes on a numerical integer values from 1 to 22 where a lower numerical score indicates a higher credit rating such as 1 being AAA. Numerical Credit ratings from 1 to 10 are considered investment grade (AAA to BB-) whereas 11 to 22 (BBB+ and below) are considered high yield or speculative grade.

¹⁸We find similar results when using the $XDD_{c,t}/XDDss_{c,t}$ as the forecasted value of the end of month (seasonal strip) futures contract payoff instead of payoff uncertainty.

3 Main Results

3.1 Contemporaneous Results

3.1.1 Municipal Bond Main Results

We test the impact of the four weather volatility uncertainty measures (WVOL) and their contemporaneous impact on the cross-section of municipal bonds credit spreads whose counties are in close proximity to those cities with corresponding weather derivatives. Table 8 displays the results of the estimation of equation 2.5 with the dependent variable being the municipal bond credit spreads regressed individually and contemporaneously on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively with contemporaneous control variables (bond's time to maturity, and log-bond turnover, $XDD_{c,t}/XDDss_{c,t}$). Note that the regression in column (1) controls for the forecasted value of the end of month futures contract payoff for county c at time t (i.e. $XDDss_{c,t}$) whereas the regressions in Columns (2) to (4) control for the forecasted value of the end of seasonal strip futures contract payoff for county c at time t (i.e. $XDDss_{c,t}$). Panel A reports the results for the full sample of municipal bonds and Panels B and C report the panel regression results for the subsets of municipal bonds with time to maturity less and greater than 15 years respectively.

INSERT TABLE 8 HERE

Panel A of Table 8 shows that the WRVOL, WIVOLss, and WRVOLss are all negatively contemporaneously associated with credit spreads, hence a higher temperature futures volatility is associated with a decreasing credit spread for monthly and seasonal contracts with coefficients (t-statistic) of -1.4e - 3 (-25.66), -1.0e - 3 (-2.09), and -0.01 (-29.03) respectively (all statistically significant at the 1% level). The WVRPss is positively contemporaneously associated with municipal bond credit spreads with coefficient (t-statistic)

¹⁹All regression estimates include fixed effects for the municipal bond individual CUSIP identifier as well as year quarter fixed effects. T-statistics are presented in parentheses under the coefficient estimates

of 0.01 (20.17) (statistically significant at the 1% level). Our results show a higher cost of hedging temperature volatility leads to contemporaneously higher localized municipal credit spreads. These findings imply that a higher weather variance risk premia is associated with a higher cost of insuring against the changes in the local municipal cash flow uncertainty induced from weather and hence investors demand lower price for municipal bonds since it is more costly to insure hence current municipal credit spreads increase.

Table 8 Panel B (C) respectively re-estimates the monthly panel regression equation 2.5 for the subsets of municipal bonds with time to maturity less (greater) than 15 years. In both panels B and C both of WRVOL and WRVOLss (WVRPss) are negatively (positively) contemporaneously associated with municipal bond credit spreads as in the main results in Panel A. In particular WVRPss has a larger positive coefficients on the impact of municipal bond credit spreads with shorter term to maturity than longer term to maturity indicating that investors demand a higher municipal bond price discount for higher cost of insurance in the shorter term than longer term.

3.1.2 Corporate Bond Main Results

Table 9 displays the results of the estimation of equation 2.6 with the dependent variable being the corporate bond credit spreads regressed individually on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively. As in the municipal bond regressions, all control variables (bond's time to maturity, credit rating, and log-bond turnover, $XDD_{c,t}/XDDss_{c,t}$) are contemporaneous.²⁰ Panel A reports the results for the full sample of corporate bonds and Panels B and C report the panel regression results for the subsets of corporate bonds with time to maturity less and greater than 15 years respectively.

²⁰All regression estimates include fixed effects for the corporate bond and year quarter fixed effects. T-statistics are in parentheses and standard errors are computed by clustering at the corporate bond level. Regression in Column (1) controls for the forecasted value of the end of month futures contract whereas the regressions in Columns (2) to (4) control for the forecasted value of the end of seasonal strip futures contract payoff.

INSERT TABLE 9 HERE

Panel A of Table 9 shows that the WRVOL, WIVOLss, and WRVOLss are all negatively contemporaneously associated with corporate credit spreads, hence a higher temperature futures volatility is associated with a decreasing credit spread for monthly and seasonal contracts with coefficients (t-statistic) of -1.1e - 3 (-4.32), -0.01 (-4.16), and -0.01 (-7.3) respectively (all statistically significant at the 1% level). The WVRPss is positively contemporaneously associated with corporate bond credit spreads with coefficient (t-statistic) of 0.01 (5.43) (statistically significant at the 1% level). Our results show a higher cost of hedging temperature volatility leads to contemporaneously higher localized corporate credit spreads. These findings imply that a higher weather variance risk premia is associated with a higher cost of insuring against the changes in the local firm cash flow uncertainty induced from weather and hence investors demand lower price for corporate bonds since it is more costly to insure hence current corporate credit spreads increase.

Table 9 Panel B (C) respectively re-estimates the monthly panel regression equation 2.6 for the subsets of corporate bonds with time to maturity less (greater) than 15 years. In both panels B and C WRVOL, WIVOL, and WRVOLss (WVRPss) are negatively (positively) contemporaneously associated with corporate bond credit spreads as in the main results in Panel A. In particular WVRPss has a larger positive coefficients on the impact of corporate bond credit spreads with shorter term to maturity than longer term to maturity indicating that investors demand a higher corporate bond price discount for higher cost of insurance in the shorter term than longer term.

3.1.3 Stock VRP Main Results

Table 10 displays the results of the estimation of equation 2.7 with the dependent variable being the firm level stock variance risk premium regressed individually on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively.²¹

²¹All regression estimates include fixed effects for the firm and year quarter fixed effects. T-statistics are in parentheses and standard errors are computed by clustering at the firm level. Regression in Column (1)

INSERT TABLE 10 HERE

We find that the WRVOL (WRVOLss) negatively (positively) predicts future firm level stock variance risk premia, hence a higher monthly temperature futures volatility is associated with a decreasing (increasing) firm level stock variance risk premia for both monthly and seasonal contracts with coefficients (t-statistic) of -2.3e - 3 (-2.47) and 0.05 (2.66) respectively. The WIVOLss and WVRPss both negatively predicts future firm level stock variance risk premia with coefficients (t-statistic) of -0.01 (-1.55) and -0.02 (-2.72) respectively. Table 10 panels B and C shows the results of panel regression equation 2.7 with the additional controls for the monthly measured state level uncertainty measure of Baker et al. (2022) (EPU_t) and Elkhami, Jo, and Salerno (2023b) (EJS SEPU_{s,t}) respectively. Individually adding state level measures of economic uncertainty does not change any of the original results of Panel A Table 10. Our results show a higher cost of hedging temperature volatility leads to a higher current cost of hedging equity volatility uncertainty which imply that a higher weather variance risk premia is associated with a higher cost of insuring against the changes in the local firm stock cash flow uncertainty induced from weather and hence investors demand lower price due to the fact that it is more costly to insure.

3.2 Predictive Results

3.2.1 Municipal Bond Main Results

We test the impact of the four weather volatility uncertainty measures (WVOL) and their predictive impact on the cross-section of municipal bonds whose counties are in close proximity to those cities with corresponding weather derivatives. Table 11 displays the results of the estimation of the predictive regression version of equation 2.5 with the dependent variable being the municipal bond credit spreads regressed individually on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively. Each

controls for the forecasted value of the end of month futures contract whereas the regressions in Columns (2) to (4) control for the forecasted value of the end of seasonal strip futures contract payoff.

of the four weather volatility uncertainty measures (WVOL) are one month prior to the municipal bond credit spreads in order to account for the timing of the data becoming available. Additionally all control variables (bond's time to maturity, and log-bond turnover, $XDD_{c,t-1}/XDDss_{c,t-1}$) are lagged by one time period.²² Regression in Column (1) controls for the forecasted value of the end of month futures contract payoff for county c at time t-1 (i.e. $XDD_{c,t-1}$) whereas the regressions in Columns (2) to (4) control for the forecasted value of the end of seasonal strip futures contract payoff for county c at time t-1 (i.e. $XDDss_{c,t-1}$).

INSERT TABLE 11 HERE

Table 11 Panel A finds that both the WRVOL and WRVOLss both positively predicts future credit spreads, hence a higher temperature futures volatility is associated with an expected future increasing credit spread for both monthly and seasonal contracts with coefficients (t-statistic) of 0.4e - 3 (6.41) and 0.01 (12.39) respectively (both statistically significant at the 1% level). The WIVOLss and WVRPss both negatively predicts future municipal bond credit spreads with coefficients (t-statistic) of -4.0e - 3 (-6.94) and -0.01 (-18.13) respectively (both statistically significant at the 1% level). Hence hedging a higher temperature futures volatility is associated with a decreasing expected future municipal bond credit spread (i.e. higher expected future municipal bond price) as indicated by the negative weather variance risk premia.

Table 11 Panel B (C) respectively re-estimates the monthly predictive panel regression version of equation 2.5 for the subsets of municipal bonds with time to maturity less (greater) than 15 years. In both Panels B and C both of WRVOL and WRVOLss, (WIVOLss, and WVRPss) positively (negatively) predicts future municipal bond credit spreads as in Panel A (all of the coefficients (with the exception of WRVOL in the subset of time to maturity greater than 15 years) statistically significant at the 1% level). Both of WRVOL and WRVOLss have

²²All regression estimates include fixed effects for the municipal bond individual CUSIP identifier as well as year quarter fixed effects. T-statistics are presented in parentheses under the coefficient estimates

comparable positive coefficients on the impact of municipal bond credit spreads with shorter term to maturity than longer term to maturity. Both of WIVOLss, and WVRPss have comparable negative coefficients on the impact of municipal bond credit spreads with longer term to maturity than shorter term to maturity.

3.2.2 Corporate Bond Main Results

Table 12 displays the results of the predictive regression version of equation 2.6 with the dependent variable being the corporate bond credit spreads regressed individually on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively. Each of the four weather volatility uncertainty measures (WVOL) are one month prior to the corporate bond credit spreads in order to account for the timing of the data becoming available. As in the municipal bond regressions, all control variables (bond's time to maturity, credit rating, and log-bond turnover, $XDD_{c,t-1}/XDDss_{c,t-1}$) are lagged by one month period.²³

INSERT TABLE 12 HERE

Table 12 Panel A finds all of the WRVOL, WIVOLss, WRVOLss, and WVRPss negatively associated with future corporate credit spreads (only WIVOLss and WVRPss statistically significant at the 1% level), WIVOLss and WVRPss both negatively predicts future corporate credit spreads with coefficients (t-statistic) of -0.01 (-6.16) and -0.01 (-7.29) respectively (both statistically significant at the 1% level).

Table 12 Panel B and C re-estimates monthly predictive panel regression version of equation 2.6 (shown in Panel A) for the subsets of corporate bonds with time to maturity less (greater) than 15 years in Panel B (C) respectively. The coefficient signs of WRVOL,

²³All regression estimates include fixed effects for the corporate bond and year quarter fixed effects. T-statistics are in parentheses and standard errors are computed by clustering at the corporate bond level. Regression in column (1) controls for the forecasted value of the end of month futures contract whereas the regressions in columns (2) to (4) control for the forecasted value of the end of seasonal strip futures contract payoff.

WIVOLss, and WVRPss remain the same for both panels B and C as they were in panel A with statistical significance at the 1% level in Panel B and at the 1% level in Panel C (no statistical significance for WRVOLss is found in either panel B or C as in A). Both of WIVOLss, and WVRPss have comparable size negative coefficients on the impact of corporate credit spreads with shorter term to maturity than longer term to maturity.

3.2.3 Stock VRP Main Results

Table 13 displays the results of the estimation of equation 2.7 with the dependent variable being the firm level stock variance risk premium regressed individually on each of the four weather volatility uncertainty measures displayed in columns (1) to (4) respectively.

We find that the WRVOL (WRVOLss) negatively (positively) predicts future firm level stock variance risk premia, hence a higher monthly temperature futures volatility is associated with a decreasing (increasing) firm level stock variance risk premia for both monthly and seasonal contracts with coefficients (t-statistic) of -2.3e - 3 (-2.47) and 0.05 (2.66) respectively. The WIVOLss and WVRPss both negatively predicts future firm level stock variance risk premia with coefficients (t-statistic) of -0.01 (-1.55) and -0.02 (-2.72) respectively. Our results imply a higher cost of hedging temperature volatility leads to a expected future lower cost of hedging equity volatility uncertainty. Our results imply the benefits of hedging temperature volatility on the expected local financial economy.

INSERT TABLE 13 HERE

Table 13 panels B and C shows the results of monthly predictive panel regression version of equation 2.7 with the additional controls for the monthly measured state level uncertainty measure of Baker et al. (2022) (EPU_t) and Elkhami, Jo, and Salerno (2023b) (EJS SEPU_{s,t}) respectively. Individually adding state level measures of economic uncertainty does not change any of the predictive ability of the weather variance measures original results of Table 13.

3.3 The Case for Resolution in Uncertainty Main Results

Our weather variance risk premia findings in sections 3.1 and 3.2 across the municipal, corporate, and stock asset classes are consistent with a story of a higher cost of hedging temperature volatility leads to contemporaneously higher localized municipal and corporate credit spreads and then decreasing within a months time. These findings imply that a higher weather variance risk premia is associated with a higher cost of insuring against the changes in the local firm cash flow uncertainty induced from weather and hence investors demand lower price for municipal and corporate bonds since it is more costly to insure hence current municipal and corporate credit spreads increase. In the subsequent month, a higher weather variance risk premia is consistent with investors demand higher price for municipal and corporate bonds as compensation for having costly to insure hence current municipal and corporate credit spreads decrease.

INSERT TABLE 14 HERE

Table 14 reports monthly panel regressions with the dependent variable in Panel A (B) being the municipal (corporate) bond credit spreads (at time t) regressed on both WVRPss_{c,t} and WVRPss_{c,t-1} for county c at times t and t-1 respectively. All municipal (corporate) bond control variables are at time t-1. Columns (2), (3), and (4) control for the lag one period credit spread. In both Panel A and B, columns (1) and (2) report the results for the full sample of bonds and whereas in columns (3) and (4) report the panel regression results for the subsets of bonds with time to maturity less and greater than 15 years respectively.

In Panel A, we find that the coefficient of WVRPss_{c,t} is positively associated with a higher municipal bond credit spread with coefficient (t-statistic) of 0.01 (14.79) while the coefficient of WVRPss_{c,t-1} is negatively associated with a higher municipal bond credit spread with coefficient (t-statistic) of -0.01 (-21.01) which is consistent with our findings in sections 3.1 and 3.2 for municipal bonds. Similarly in Panel B, we find that the coefficient of WVRPss_{c,t} is positively associated with a higher corporate bond credit spread with coefficient

(t-statistic) of 0.01 (10.57) while the coefficient of WVRPss_{c,t-1} is negatively associated with a higher corporate bond credit spread with coefficient (t-statistic) of -0.01 (-16.79) which is consistent with our findings in sections 3.1 and 3.2 for corporate bonds. Column (2) adds a control for the lag one period municipal (corporate) bond credit spread which does not affect the main findings.

In both Panels A and B columns (3) and (4) report the panel regression results for the subsets of bonds with time to maturity less and greater than 15 years respectively. In both columns and in both Panels, the coefficient of WVRPss_{c,t} is positively associated with a higher credit spread and the coefficient of WVRPss_{c,t-1} is negatively associated with a higher credit spread and comparing columns (3) and (4) finds that the impact of coefficients of WVRPss_{c,t} and WVRPss_{c,t-1} are larger in magnitude for bonds with time to maturity less than 15 years (in column (3)) when compared to those that have time to maturity greater than 15 years (in column (4)). The findings for subsets of bonds with time to maturity less and greater than 15 years are consistent with our findings in sections 3.1 and 3.2.

4 Robustness Tests

Firms reveal some of their exposure to climate change via earnings call. Sauther et al. (2023) create various measures of the relative frequency. In particular we control for the firm level of climate change exposure (CCExposure), the firm risk exposure related to climate change (CCRisk) and the future risk opportunities related to climate change (CCOpportunity^{Risk}). Table 15 (panels A, B, C) presents the results of panel regression equation 2.7 estimation when controlling for the three different measures of climate change exposure. Individually adding the measures of climate change exposure does not change any of the original results of Table 13.

INSERT TABLE 15 HERE

Table 16 Panels A (B) show the results of estimating panel regression equation 2.6 with

the additional controls for $EPU_{s,t-1}$ (EJS $SEPU_{s,t-1}$) the monthly measured state level uncertainty measure of Baker et al. (2022) (Elkhami, Jo, and Salerno (2023b)) for state s at time t-1 respectively. Adding state level measures of economic uncertainty does not change the predictive ability of the weather variance measures original results of Table 12.

INSERT TABLE 16 HERE

Table 16 Panel B presents the results of panel regression equation 2.6 estimation when controlling for the three different measures of climate change exposure. Individually adding the measures of climate change exposure does not change any of the original results of Table 12.

Additional tests of equations 2.5 (and 2.6) controlling for the persistence of the municipal (corporate) credit spread (i.e. lag one period credit spread) do not change the sign of our results and are available upon request.

5 Conclusion

Despite a developing literature in weather derivatives, temperature changes (and temperature volatility) on asset prices, uncertainty, and variance risk premia, to the best of our knowledge, our paper uniquely contributes to these strands of the literature variance risk premia from options on local temperature futures contracts (the Weather Variance Risk Premia WVRP). Our WVRP measure shows a higher cost of hedging temperature volatility leads to a lower corporate and municipal credit spreads, and individual stock variance risk premia. Our results highlight the importance of the price of weather variance risk in understanding the local financial markets.

Our weather variance risk premia WVRP measure leaves many avenues for potential future research. Of particular interest is the impact of our WVRP on bank loan spreads, number of building contracts, local housing returns, impact on firm supply chains, investor security holdings. However, we leave these avenues for future research exploration.

References

- Acharya, V., T. Johnson, S. Sundaresan, and T. Tomunen. 2022. Is Physical Climate Risk Priced? Evidence from Regional Variation in Exposure to Heat Stress. *Working Paper* 1:1–54.
- Addoum, J. M., D. T. Ng, and A. Ortiz-Bobea. 2020. Temperature shocks and establishment sales. *Review of Financial Studies* 33:1331–66.
- ———. 2023. Temperature Shocks and Industry Earnings News. *Journal of Financial Economics (Forthcoming)* 0:0–.
- Alekseev, M., S. Giglio, Q. Maingi, J. Selgrad, and J. Stroebel. 2022. A Quantity-Based Approach to Constructing Climate Risk Hedge Portfolios. *NBER Working Paper* 1:1–54.
- Armstrong, C. S., A. S. Glaeser, and S. Huang. 2022. Contracting with Controllable Risk. The Accounting Review 97:27–50.
- Auh, J. K., J. Choi, T. Deryugina, and T. Park. 2023. Natural Disasters and Municipal Bonds. Working Paper 1:1–45.
- Bae, J. W., Y. Jeon, S. Szaura, and V. Zurita. 2023. Blame it on the weather: Market implied weather volatility and firm performance. *Working Paper* 1:1–41.
- Baker, S. R., N. Bloom, and S. Davis. 2016. Measuring economic policy uncertainty. *The Quarterly Journal of Economics* 131:1593–636.
- Baker, S. R., N. Bloom, S. Davis, and J. A. Levy. 2022. State-level economic policy uncertainty. *Journal of Monetary Economics* 132:81–99.
- Baker, S. R., N. Bloom, and J. Terry. 2023. Using disasters to estimate the impact of uncertainty. *Review of Economic Studies* 0:1–39.
- Bakshi, G. S., and N. Kapadia. 2003. Delta-Hedged Gains and the Negative Market Volatility Risk Premium. *Review of Financial Studies* 16:527–63.
- Baldauf, M., L. Garlappi, and C. Yannelis. 2020. Does Climate Change Affect Real Estate Prices? Only if You Believe In It. *Review of Financial Studies* 33:1256–95.
- Bali, T. G., S. J. Brown, and Y. Tang. 2017. Is economic uncertainty priced in the cross-section of stock returns? *Journal of Financial Economics* 126:471—489.

- Bali, T. G., A. Subrahmanyam, and Y. Wen. 2021. The macroeconomic uncertainty premium in the corporate bond market. *Journal of Financial Economics* 56:1653—1678.
- Bansal, R., D. Kiku, and M. Ochoa. 2021. Climate Change Risk. *NBER Working Paper* 1:1–57.
- Barnett, M. 2023. Climate Change and Uncertainty: An Asset Pricing Perspective. *Management Science (Forthcoming)* 0:0–.
- Barnett, M., W. Brock, and L. P. Hansen. 2021. Climate Change Uncertainty Spillover in the Macroeconomy. *NBER Working Paper* 1:1–66.
- ———. 2023. Pricing Uncertainty Induced by Climate Change. Review of Financial Studies (Forthcoming) 0:0—.
- Bergman, N. K., R. Iyer, and R. T. Thakor. 2020. The Effect of Cash Injections: Evidence from the 1980s Farm Debt Crisis. *Review of Financial Studies* 33:5092–130.
- Bernstein, A., M. T. Gustafson, and R. Lewis. 2019. Disaster on the horizon: The price effect of sea level rise. *Journal of Financial Economics* 134:253–72.
- Bilal, M., and E. Rossi-Hansberg. 2023. Anticipating Climate Change Across the United States. Working Paper 1:1–52.
- Black, F. 1976. The pricing of commodity contracts. *Journal of Financial Economics* 3:167–79.
- Bloom, N. 2023. Local and National Economic Policy Uncertainty in US States.
- Bollerslev, T., G. Tauchen, and H. Zhou. 2009. Expected Stock Returns and Variance Risk Premia. Review of Financial Studies 22:4463—4492.
- Bortolan, L., A. Dey, and L. Taschini. 2023. Nailing Down Volatile Temperatures: Examining their Effects on Asset Prices. *Working Paper* 1:1–58.
- Brown, J. R., M. T. Gustafson, and I. T. Ivanov. 2021. Weathering Cash Flow Shocks. Journal of Finance 76:1731–72.
- Busse, M. R., D. G. Pope, J. C. Pope, and J. Silva-Risso. 2015. The Psychological Effect of Weather on Car Purchases. *Quarterly Journal of Economics* 130:371–414.
- Campbell, S. D., and F. X. Diebold. 2005. Weather Forecasting for Weather Derivatives. Journal of the American Statistical Association 100:6–16.

- Cao, M., and J. Wei. 2004. Weather Derivatives Valuation and the Market Price of Weather Risk. *Journal of Futures Markets* 24:1065–89.
- Carr, P., and L. Wu. 2009. Variance Risk Premia. Review of Financial Studies 22:1311–41.
- Chaney, C., D. Sraer, and D. Thesmar. 2012. The Collateral Channel: How Real Estate Shocks Affect Corporate Investment. *American Economic Review* 102:2381—2409.
- Chen, S., H. Doshi, and S. Seo. 2023. Synthetic Options and Implied Volatility for the Corporate Bond Market. *Journal of Financial and Quantitative Analysis* 58:1295–325.
- Chincarini, D. 2011. Temperature Surprises: an Empirical Analysis of the Weather Derivatives Market. *Journal of Futures Markets* 31:1–33.
- Choi, D., Z. Gao, and W. Jiang. 2020. Attention to Global Warming. Review of Financial Studies 33:1112–45.
- Choi, H. Y., P. Mueller, and A. Vedolin. 2017. Bond Variance Risk Premiums. *Review of Finance* 21:987–1022.
- Colacito, R., B. Hoffmann, and T. Pham. 2019. Temperature and growth: A panel analysis of the United States. *Journal of Money Credit and Banking* 51:313–68.
- Cummins, J. D., D. Lalonde, and R. D. Phillips. 2004. The basis risk of catastrophic-loss index securities. *Journal of Financial Economics* 71:77–111.
- Dell, M., B. F. Jones, and B. A. Olken. 2012. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. *American Economic Journal: Macroeconomics* 4:66–95.
- Dessaint, O., and A. Matray. 2017. Do managers overreact to salient risks? Evidence from hurricane strikes. *Journal of Financial Economics* 126:97–121.
- Dew-Becker, I., S. Giglio, A. Le, and M. Rodriguez. 2017. The Price of Variance Risk. Journal of Financial Economics 123:225–50.
- Donadelli, M., M. Juppner, N. Paradiso, and C. Schlag. 2022. Temperature Volatility Risk. Working Paper 1:1–55.
- Dorfleitner, G., and M. Wimmer. 2010. The pricing of temperature futures at the Chicago Mercantile Exchange. *Journal of Banking and Finance* 34:1360–70.

- Drechsler, I. 2013. Uncertainty, Time-Varying Fear, and Asset Prices. *Journal of Finance* 68:1843–89.
- Drechsler, I., and A. Yaron. 2011. What's Vol Got to Do with It. Review of Financial Studies 24:1–45.
- Elkhami, R., C. Jo, and M. Salerno. 2023a. Data for Measuring "State-level" Economic Policy Uncertainty.
- ———. 2023b. Measuring "State-level" Economic Policy Uncertainty. *Journal of Financial and Quantitative Analysis (Forthcoming)* 0:1–90.
- Engle, R. F., S. Giglio, B. Kelly, H. Lee, and J. Stroebel. 2020. Hedging Climate Change News. *Review of Financial Studies* 33:1182–216.
- Feunou, B., M. R. Jahan-Parvar, and C. Okou. 2018. Downside variance risk premium. Journal of Financial Econometrics 16:341—383.
- Fleming, J., C. Kirby, and B. Ostdiek. 2006. Information, Trading, and Volatility: Evidence from Weather-Sensitive Markets. *Journal of Finance* 71:2899–930.
- Froote, K. A. 2001. The market for catastrophe risk: a clinical examination. *Journal of Financial Economics* 60:529–71.
- Froote, K. A., and P. G. J. O Connell. 2008. On the pricing of intermediated risks: Theory and application to catastrophe reinsurance. *Journal of Banking and Finance* 32:69–85.
- Garmaise, M. J., and T. J. Moskowitz. 2009. Catastrophic Risk and Credit Markets. *Journal of Finance* 66:657–707.
- Giglio, S., M. Maggiori, D. Rao, J. Stroebel, and A. Weber. 2023. Climate Change and Long-Run Discount Rates: Evidence from Real Estate. *Review of Financial Studies* 34:3527–71.
- Ginglinger, E., and Q. Moreau. 2023. Climate Risk and Capital Structure. *Management Science (Forthcoming)* 0:0–.
- Goetzmann, W. N., D. Kim, A. Kumar, and Q. Wang. 2020. Weather-Induced Mood, Institutional Investors, and Stock Returns. *Review of Financial Studies* 28:73–111.
- Goldsmith-Pinkham, P., M. Gustafson, R. C. Lewis, and M. Schwert. 2023. Sea Level Rise Exposure and Municipal Bond Yields. *Review of Financial Studies (Forthcoming)* 0:1–53.

- Griffin, P. A., D. H. Lont, and M. Lubberink. 2023. The Nonlinear Effects of Extreme Temperature Heat Spells on Financial Performance. *Working Paper* 1:1–56.
- Hain, L., J. F. Koebbel, and M. Leippold. 2023. Bounding the Impact of Hazard Interdependence on Climate Risk. *Working Paper* 1:1–49.
- Hardle, W. K., and B. Lopez-Cabrera. 2012. The Implied Market Price of Weather Risk. *Applied Mathematical Finance* 19:59–95.
- Hardle, W. K., B. Lopez-Cabrera, and H. W. Teng. 2015. State price densities implied from weather derivatives. *Insurance: Mathematics and Economics* 64:106–25.
- ———. 2016. Localizing Temperature Risk. *Journal of the American Statistical Association* 111:1491–508.
- Heston, S. L., and K. Todorov. 2023. Exploring the Variance Risk Premium Across Assets. Working Paper 1:1–38.
- Hirschleifer, D., and T. Shumway. 2003. Goodday Sunshine Stock Returns and the Weather. Journal of Finance 58:1009–32.
- Huynh, T. D., and Y. Xia. 2021. Climate Change News Risk and Corporate Bond Returns. Journal of Financial and Quantitative Analysis 56:1985–2009.
- Ilhan, E., P. Krueger, Z. Sautner, and L. Starks. 2023. Climate Risk Disclosure and Institutional Investors. *Review of Financial Studies* 36:2617–50.
- Jones, B. F., and B. A. Olken. 2010. Climate shocks and exports. *American Economic Review* 100:454–9.
- Kirk, M., D. Stice, and H. Stice. 2022. The Real Effects of Weather on Firm Performance, Analyst Forecasts, and Stock Prices. Working Paper 1:1–64.
- Kruttli, M. S., B. Roth Tran, and S. W. Watugala. 2023. Pricing Poseidon: Extreme Weather Uncertainty and Firm Return Dynamics. *Working Paper* 1:1–103.
- Liu, Y., and J. C. Wu. 2022. Reconstructing the Yield Curve. *Journal of Financial Economics* 142:1395–425.
- Lontzek, T., W. Pohl, K. Schmedders, W. Thalhammer, and O. Wilms. 2023. Asset Pricing with Disagreement about Climate Risks. *Working Paper* 1:1–47.

- Loughran, T., and P. Schultz. 2004. Weather, Stock Returns, and the Impact of Localized Trading Behavior. *Journal of Financial and Quantitative Analysis* 39:343–64.
- Miller, W. K., B. Chua, A. Coggins, and M. Mohtadi. 2021. Heat Waves, Climate Change, and Economic Output. *Journal of the European Economic Association* 19:2658–94.
- Murfin, J., and M. Spiegel. 2020. Is the Risk of Sea Level Rise Capitalized in Residential Real Estate? *Review of Financial Studies* 33:1217–55.
- Pankratz, N., R. Bauer, and J. Derwall. 2023. Climate Change, Firm Performance, and Investor Surprises. *Management Science (Forthcoming)* 0:1–47.
- Pankratz, N., and C. Schiller. 2023. Climate Change and Adaptation in Global Supply Chain Networks. *Review of Financial Studies (Forthcoming)* 0:1–80.
- Perez-Gonzalez, A., and H. Yun. 2013. Risk Management and Firm Value: Evidence from the Weather Derivatives. *Journal of Finance* 68:2143–76.
- Pirinsky, C., and Q. Wang. 2006. Does Corporate Headquarters Location Matter for Stock Returns? *Journal of Finance* 61:1991–2015.
- Purnanandam, A., and D. Weagley. 2016. Can markets discipline government agencies? Evidence from the weather derivatives market. *Journal of Finance* 71:303–34.
- Pyun, S. 2019. Variance Risk in Aggregate Stock Returns and Time-Varying Return Predictability. *Journal of Financial Economics* 132:150–74.
- Robertson, H. 2023. Use of weather derivatives surges as extreme climate events rock the globe. Reuters.
- Sautner, Z. 2023. The Climate Change Lab.
- Sautner, Z., L. V. Lent, G. Vilkov, and R. Zhang. 2022. Firm-level Climate Change Exposure.

 Management Science (Forthcoming) 0:1–55.
- ——. 2023. Firm-level Climate Change Exposure. Journal of Finance (Forthcoming) 0:1–110.
- Schlenker, W., and C. A. Taylor. 2021. Market Expectations of a Warming Climate. *Journal of Financial Economics* 71:627–40.
- Taylor, C. 2021. Replication of Market Expectations of a Warming Climate.

- Tomunen, T. 2023. Failure to Share Natural Disaster Risk. Working Paper Boston College 1:1–103.
- Weagley, D. 2019. Financial Sector Stress and Risk Sharing: Evidence from the Weather Derivatives Market. *Review of Financial Studies* 32:2456–97.
- Weitzman, M. L. 2009. On Modelling and Interpreting the Economics of Catastrophic Climate Change. *Review of Economics and Statistics* 91:1–19.
- Wu, C. J. 2023. Yield Data.
- Zhang, L. 2023. Operating Exposure to Weather, Earnings Predictability, and Analyst Forecast. Working Paper 1:1–58.
- Zhou, R., J. S. Li, and J. Pai. 2019. Pricing temperature derivatives with a filtered historical simulation approach. *European Journal of Finance* 25:1462–84.

 Table 1 CME Weather Derivatives Data Details

Options		Futures			
Option Series	CME Code	Futures Series	CME Code		
Atlanta HDD NOV Seasonal Strip Options	11 <i>X</i>	Atlanta HDD NOV Seasonal Strip Futures	H1X		
Atlanta CDD MAY Seasonal Strip Options	21K	Atlanta CDD MAY Seasonal Strip Futures	K1K		
Chicago HDD NOV Seasonal Strip Options	12X	Chicago HDD NOV Seasonal Strip Futures	H2X		
Chicago CDD MAY Seasonal Strip Options	22K	Chicago CDD MAY Seasonal Strip Futures	K2K		
Cincinnati HDD NOV Seasonal Strip Options	13X	Cincinnati HDD NOV Seasonal Strip Futures	H3X		
Cincinnati CDD MAY Seasonal Strip Options	23K	Cincinnati CDD MAY Seasonal Strip Futures	K3K		
Dallas HDD NOV Seasonal Strip Options	15X	Dallas HDD NOV Seasonal Strip Futures	H5X		
Dallas CDD May Seasonal Strip Options	25K	Dallas CDD MAY Seasonal Strip Futures	K5K		
Las Vegas HDD NOV Seasonal Strip Options	10X	Las Vegas HDD NOV Seasonal Strip Futures	H0X		
Las Vegas CDD MAY Seasonal Strip Options	20K	Las Vegas CDD MAY Seasonal Strip Futures	K0K		
Minneapolis HDD NOV Seasonal Strip Options	34X	Minneapolis HDD NOV Seasonal Strip Futures	HQX		
Minneapolis CDD MAY Seasonal Strip Options	44K	Minneapolis CDD MAY Seasonal Strip Futures	KQK		
New York HDD NOV Seasonal Strip Options	14X	New York HDD NOV Seasonal Strip Futures	H4X		
New York CDD MAY Seasonal Strip Options	24K	New York CDD MAY Seasonal Strip Futures	K4K		
Sacremento CDD May Seasonal Strip Options	45K	Sacramento CDD MAY Seasonal Strip Futures	KSK		
Sacramento HDD NOV Seasonal Strip Options	35X	Sacramento HDD NOV Seasonal Strip Futures	HSX		

Notes: The first column shows the Chicago Mercantile Exchange (CME) Weather derivatives Options and Futures contracts codes. the options seasonal strip contract is based on the cumulative HDD or CDD values during a five-month period within the season.

Table 2 Seasonal Strips Futures Options Summary Statistics

Atlanta HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	12956	0.16	0.16	0.08	3.35	0.08	0.11	0.19	0.21		
Open Interest	12956	968	750	802	1	250	250	1250	2250		
Time to Maturity (TTM)	12956	0.26	0.24 0.15		0.35	0.35 0.06		0.37	0.46		
Chicago HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	8500	0.15	0.12	0.09	1.47	0.06	0.09	0.16	0.3		
Open Interest	8500	958	500	976	2	50	250	1250	2250		
Time to Maturity (TTM)	8500	0.23	0.21	0.14	0.35	0.06	0.06 0.12		0.43		
Cincinnatti HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	3949	0.28	0.29	0.08	-0.2	0.16	0.24	0.33	0.37		
Open Interest	3949	1149	1000	733	1	250	750	1500	2000		
Time to Maturity (TTM)	3949	0.22	0.22	0.11	0.13	0.07	0.14	0.31	0.37		
Dallas HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	11608	0.15	0.15	0.06	0.39	0.09	0.11	0.19	0.23		
Open Interest	11608	899	750	694	1	250	300	1250	2000		
Time to Maturity (TTM)	11608	0.23	0.23	0.13	0.21	0.06	0.13	0.34	0.42		
	Las	Vegas 1	HDD (CD	D) NOV (M	IAY) Season	al Strip Opt	ions				
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	4800	0.1	0.07	0.06	2.66	0.04	0.06	0.11	0.18		
Open Interest	4800	1490	1250	1278	1	250	500	2500	3000		
Time to Maturity (TTM)	4800	0.2	0.19	0.13	0.52	0.04	0.1	0.29	0.37		
		Min	neapolis H	IDD NOV S	easonal Stri	p Options					
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	8291	0.16	0.13	0.1	1.39	0.07	0.1	0.19	0.33		
Open Interest	8291	849	750	585	1	250	250	1250	1500		
Time to Maturity (TTM)	8291	0.23	0.22	0.14	0.23	0.05	0.12	0.34	0.43		
New York HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	20596	0.15	0.14	0.06	0.59	0.08	0.11	0.19	0.23		
Open Interest	20596	1095	750	937	2	250	250	1500	2500		
Time to Maturity (TTM)	20596	0.26	0.26	0.15	0.25	0.07	0.14	0.38	0.47		
Sacramento HDD (CDD) NOV (MAY) Seasonal Strip Options											
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.		
Implied Volatility	2499	0.16	0.16	0.05	0.13	0.09	0.12	0.19	0.22		
Open Interest	2499	1380	1000	962	1	250	500	2000	2250		
Time to Maturity (TTM)	2499	0.23	0.21	0.14	0.37	0.06	0.12	0.34	0.44		

Note: This table reports the sample statistics of the implied volatility, open interest, and remaining time to maturity (in years) for each of the CME Weather derivatives seasonal strip options mentioned in Table 1.

Table 3 Futures Returns Summary Statistics

Panel A: Daily Raw Futures Returns (monthly non seasonal futures only)										
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.	
All	39405	-0.4e - 3	0.00	0.06	0.55	-0.04	-0.01	0.01	0.03	
CA	4451	-1.4e - 3	0.00	0.06	-0.91	-0.04	-0.01	0.01	0.04	
GA	5123	0e - 3	0.00	0.05	0.9	-0.04	-0.01	0.01	0.04	
IL	5077	-0.4e - 3	0.00	0.06	-0.07	-0.04	-0.01	0.01	0.04	
MN	4478	0.8e - 3	0.00	0.07	1.7	-0.04	-0.01	0.01	0.03	
NV	4854	-1.3e - 3	0.00	0.06	0.56	-0.03	-0.01	0.01	0.03	
NY	5162	-0.2e - 3	0.00	0.06	0.38	-0.03	-0.01	0.01	0.03	
OH	5119	-0.1e - 3	0.00	0.05	0.39	-0.04	-0.01	0.01	0.04	
TX	5141	-0.7e - 3	0.00	0.06	0.62	-0.04	-0.01	0.01	0.04	
	Panel B: Monthly Futures Return Volatility (monthly non seasonal futures only)									
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.	
All	1637	0.59	0.42	0.48	1.49	0.18	0.27	0.74	1.33	
CA	185	0.6	0.45	0.45	1.34	0.19	0.32	0.76	1.31	
GA	213	0.56	0.44	0.39	1.53	0.19	0.3	0.72	1.04	
IL	211	0.63	0.39	0.54	1.32	0.2	0.26	0.83	1.62	
MN	186	0.67	0.36	0.6	1.16	0.18	0.24	0.94	1.93	
NV	200	0.53	0.36	0.44	1.37	0.13	0.22	0.7	1.15	
NY	215	0.54	0.37	0.47	1.93	0.18	0.27	0.58	1.28	
OH	213	0.6	0.45	0.46	1.57	0.2	0.29	0.71	1.29	
TX	214	0.58	0.46	0.45	1.48	0.19	0.27	0.72	1.27	

Note: Panel A reports average daily raw futures returns (monthly futures) per city/state with the returns on the city/state being defined as the HDD futures returns during the November to April months and returns on CDD futures returns during the May to October months. Panel B monthly return volatility from daily futures returns per city/state. In this table reports the city/state (airports) used in our analysis are: Atlanta/Georgia (ATL), Chicago/Illinois O'Hare (ORD), Cincinnati/Ohio (CVG), Dallas-Fort Worth/Texas (DFW), Las Vegas/Nevada (LAS), Minneapolis-Saint Paul/Minnesota (MSP), New York Laguardia/New York (LGA), and Sacremento/California (SAC).

Table 4 Seasonal Strips Variance Measures Summary Statistics

Nobs Mean Median Std. Dev. Skewness 10th Petl. 25th Petl. 75th Petl. 0.1402					A	tlanta, GA				
Note	State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
RVOLSS 7.0 0.1163 0.1096 0.0676 0.5479 0.0294 0.0742 0.151 0.2235 TSTEAR WYRPSS Mosb Mean Median Std. Dev Sewness 10th Pct. 25th Pct. 75th Pct. 90th Pct. WYRPSS 59 0.1249 0.0299 0.0653 0.1439 −0.0568 −0.0235 0.0737 0.0996 WYOLSS 59 0.1511 0.129 0.0901 1.2561 0.0429 0.0562 0.1523 0.3406 RVOLSS 59 0.1249 0.0901 1.2561 0.0429 0.0562 0.1523 0.3406 WWRPS 36 0.9256 0.07 0.1231 −1.4752 0.0116 0.0367 0.1962 0.0261 WIVOLS 36 0.8261 0.3 0.0749 −1.4752 0.0116 0.0367 0.0417 WYRPS 36 0.8261 0.3 0.0749 −1.4752 0.01187 0.0161 0.0241	WVRPss	68	0.0416	0.0405	0.0815	0.1834	-0.0811	-0.0099	0.0974	0.1402
State	WIVOLss	69	0.1611	0.1433	0.0841	2.6535	0.079	0.1194	0.1826	0.2427
State	RVOLss	70	0.1163	0.1096	0.0676	0.5479	0.0294	0.0742	0.151	0.2235
WVRPss 59 0.0262 0.0269 0.0653 0.4349 -0.0568 -0.0235 0.0737 0.0996 WIVOLss 59 0.1511 0.120 0.0908 1.4863 0.0649 0.0926 0.1765 0.3406 RVOLss 59 0.1249 0.1029 0.0901 1.2561 0.0429 0.0562 0.1523 0.3025 State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 36 0.9261 0.07 0.1231 -1.4752 0.0116 0.0367 0.1962 0.2614 WVRDss 36 0.2681 0.3 0.0798 3.1185 0.0653 0.1074 0.2242 0.2479 RVOLss 44 0.1753 0.1018 80.1098 0.1949 0.2316 0.3398 0.3779 State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. <td></td> <td></td> <td></td> <td></td> <td>(</td> <td>Chicago, IL</td> <td></td> <td></td> <td></td> <td></td>					(Chicago, IL				
Nob Nob	State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
Nobs	WVRPss	59	0.0262	0.0269	0.0653	0.4349	-0.0568	-0.0235	0.0737	0.0996
State	WIVOLss	59	0.1511	0.12	0.0908	1.4863	0.0649	0.0926	0.1765	0.3406
State N obs Mean Median Std. Dev. Skewness 10th Pct. 25th Pctl. 75th Pctl. 90th Pct. WVRPs 36 0.925 0.07 0.1231 -1.4752 0.0116 0.0367 0.1962 0.2614 WIVOLss 44 0.1753 0.1706 0.0998 3.1185 0.0653 0.1074 0.2242 0.2479 RVOLss 44 0.1753 0.1706 0.098 3.1185 0.0653 0.1074 0.2242 0.2479 State N Obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 63 0.1551 0.0141 0.0527 0.7628 0.1049 0.1227 0.1997 0.2431 RVOLss 63 0.151 0.0511 0.0527 1.0433 0.0649 0.0221 0.1402 0.1943 RVOLss 33 0.151 0.0557 0.0671 1.0433 0.064 0.0821 0.1699	RVOLss	59	0.1249	0.1029	0.0901	1.2561	0.0429	0.0562	0.1523	0.3025
WVRPss 36 0.0925 0.07 0.1231 -1.4752 0.0116 0.0367 0.1962 0.2614 WIVOLss 36 0.2861 0.3 0.0749 -0.1736 0.1879 0.2316 0.3398 0.3779 RVOLss 4 0.1753 0.106 0.1098 3.1185 0.0653 0.1074 0.2242 0.2479 State N obs Mean Median Std. Dev Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 63 0.0505 0.0413 0.0758 0.7341 -0.0123 0.0192 0.0761 0.1437 WIVOLss 65 0.1651 0.1511 0.0527 0.7628 0.1049 0.1227 0.1997 0.2431 RVOLss 63 0.151 0.1614 0.0557 1.0433 0.06 0.0821 0.1402 0.1437 WVRPss 32 0.025 0.0055 0.0671 1.8094 -0.0267 -0.0057 0.0392 0.0918 <td colspan="10">Cincinnatti, OH</td>	Cincinnatti, OH									
WIVOLss 36 0.2861 0.3 0.0749 0.1736 0.1879 0.2316 0.3398 0.3779 RVOLss 44 0.1753 0.1760 0.1098 3.1185 0.0653 0.1074 0.2422 0.2479 RVOLss Very Pressor Very Pressor Very Pressor Very Pressor 10th Pect 25th Pect 75th Pect 90th Pect WVRPss 63 0.0505 0.0413 0.0758 0.7341 -0.0123 0.0192 0.1940 0.1247 WVRPss 65 0.1651 0.1511 0.0527 0.7628 0.1049 0.1227 0.1997 0.2431 RVOLss 63 0.151 0.1014 0.0557 1.0433 0.06 0.0821 0.1402 0.1943 RVOLss 32 0.025 0.0555 0.0671 1.8094 -0.0267 -0.0057 0.0182 0.0194 0.0547 0.0547 0.0659 0.0194 0.0453 0.3418 0.0391 0.06 0.1104 0.1584							10th Pctl.			90th Pctl.
Nobs Mean Median Std. Dev. Skewness 10th Pct. 25th Pct. 75th Pct. 90th Pct.	WVRPss		0.0925		0.1231	-1.4752	0.0116	0.0367		0.2614
State Nobs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl.	WIVOLss	36	0.2861	0.3	0.0749	-0.1736	0.1879	0.2316	0.3398	0.3779
State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 63 0.0505 0.0413 0.0758 0.7341 -0.0123 0.0192 0.0761 0.1437 WIVOLss 65 0.1651 0.1511 0.0557 1.0433 0.06 0.0821 0.1997 0.2431 RVOLss 8 0.1151 0.01557 1.0433 0.06 0.0821 0.1402 0.1943 Laveyas, NV State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 32 0.0267 0.0654 1.6251 0.0547 0.0635 0.169 0.1853 RVOLss 33 0.111 0.0845 0.0664 1.6251 0.0547 0.0635 0.169 0.1853 RVOLss 36 0.0589 0.0788 0.0784 0.5868 -0.0314 0.0098	RVOLss	44	0.1753	0.1706	0.1098	3.1185	0.0653	0.1074	0.2242	0.2479
WVRPss 63 0.0505 0.0413 0.0758 0.7341 -0.0123 0.0192 0.0761 0.1437 WIVOLss 65 0.1651 0.1511 0.0527 0.7628 0.1049 0.1227 0.1997 0.2431 RVOLss 63 0.1151 0.0104 0.0557 1.0433 0.06 0.0821 0.1402 0.1943 TSUS TSUS TSUS TSUS TSUS 0.0821 0.1402 0.1943 WIVOLss 32 0.025 0.0055 0.0671 1.8094 -0.0267 -0.0057 0.0392 0.0918 WIVOLss 32 0.025 0.0559 0.0664 1.6251 0.0547 0.0635 0.169 0.1853 RVOLss 32 0.0867 0.0784 0.0453 0.3418 0.0391 0.06 0.169 0.1853 RVOLss 56 0.0559 0.0528 0.0784 0.5868 -0.0314 0.0098 0.0968 0.1425	Dallas, TX									
WIVOLss 65 0.1651 0.1511 0.0527 0.7628 0.1049 0.1227 0.1997 0.2431 RVOLss 63 0.1151 0.1014 0.0557 1.0433 0.06 0.0821 0.1402 0.1943 Last Vegas, NV State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 32 0.025 0.0055 0.0671 1.8094 −0.0267 −0.0057 0.0392 0.0918 WVOLss 33 0.111 0.0845 0.0664 1.6251 0.0547 0.0635 0.169 0.1853 RVOLss 32 0.0867 0.0784 0.0453 0.3418 0.0391 0.06 0.104 0.1584 WVRPss 56 0.0559 0.0528 0.0784 0.5868 −0.0314 0.0098 0.0968 0.1425 WIVOLss 57 0.1155 0.0815 0.0839 1.2747 0.046	State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
RVOLss 63 0.1151 0.1014 0.0557 1.0433 0.06 0.0821 0.1402 0.1943 State N obs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 32 0.025 0.0055 0.0671 1.8094 -0.0267 -0.0057 0.0392 0.0918 WIVOLss 33 0.111 0.0845 0.0664 1.6251 0.0547 0.0635 0.169 0.1853 RVOLss 32 0.0867 0.0787 0.0453 0.3418 0.0391 0.06 0.1104 0.1584 RVOLss 32 0.0867 0.0787 0.0453 0.3418 0.0391 0.06 0.1104 0.1584 WVRPss 56 0.0559 0.0528 0.0784 0.5868 -0.0314 0.0098 0.0968 0.1425 WIVOLss 59 0.1677 0.1383 0.0945 1.4251 0.0748 0.1075 0.1261 0.0262 <td>WVRPss</td> <td>63</td> <td>0.0505</td> <td>0.0413</td> <td>0.0758</td> <td>0.7341</td> <td>-0.0123</td> <td>0.0192</td> <td>0.0761</td> <td>0.1437</td>	WVRPss	63	0.0505	0.0413	0.0758	0.7341	-0.0123	0.0192	0.0761	0.1437
State Nobs Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 32 0.025 0.0671 1.8094 -0.0267 -0.0057 0.0392 0.0392 0.0392 0.0392 0.0392 0.0635 0.169 0.1853 RVOLss 32 0.0875 0.0645 0.0453 0.3418 0.0391 0.06 0.1104 0.1584 NOLss Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl. WVRPss 56 0.0559 0.0819 0.0839 1.2747 0.046 0.0582 0.1261 0.2629 NVOLss Mean Median Std. Dev. Skewness 10th Pctl. 25th Pctl. 75th Pctl. 90th Pctl.										

Note: This table reports the sample statistics of the weather seasonal strip futures realized volatility (WRVOLss_{c,t}), average option implied volatility (WIVOLss_{c,t}), and the weather variance risk premia (WVRPss_{c,t}, the difference between the WIVOLss_{c,t} and WRVOLss_{c,t}) for each month t for each city c as outlined in Section 2.1.

Table 5 Municipal Bonds Summary Statistics

				All	States				
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	1823869	0.02	0.02	0.01	0.51	0.01	0.02	0.03	0.04
TTM	1823869	13.18	12.02	6.93	0.53	4.93	7.7	17.83	23.78
Amt. Out.	1823869	56272704.64	19770000.00	143147241.00	9.74	1465000.00	5420000.00	51675000.00	124145000.00
Muni. CS.	1823869	3.4e - 3	1.7e - 3	0.01	1.19	-0.01	-2.6e - 3	0.01	0.02
				Cali	fornia				
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	453909	0.02	0.02	0.01	0.52	0.01	0.01	0.03	0.04
TTM	453909	12.59	11.28	6.83	0.72	4.79	7.41	16.58	23.41
Amt. Out.	453909	77546285.78	34675000.00	212631965.00	9.24	3410000.00	9815000.00	77840000.00	134570000.00
Muni. CS.	453909	0.7e - 3	-0.3e - 3	0.01	1.06	-0.01	-4.1e - 3	4.1e - 3	0.01
					orgia				
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	115270	0.02	0.02	0.01	0.19	0.01	0.01	0.03	0.04
TTM	115270	12.6	11.39	6.68	0.62	4.84	7.35	16.95	22.52
Amt. Out.	115270	29969858.75	17025000.00	55206324.81	5.72	2160000.00	5000000.00	32510000.00	58420000.00
Muni. CS.	115270	1.5e - 3	0.7e - 3	0.01	0.5	-0.01	-3.2e - 3	0.01	0.01
					inois				
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	304445	0.03	0.03	0.02	0.17	0.01	0.02	0.04	0.06
TTM	304445	13.63	12.94	6.8	0.36	5.11	8.11	18.59	23.32
Amt. Out.	304445	63057898.86	15000000.00	128033437.00	3.58	1030000.00	3450000.00	51365000.00	169505000.00
Muni. CS.	304445	0.01	0.01	0.01	0.54	-2.3e - 3	2.1e - 3	0.02	0.03
					nesota	10.1 7			
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	44571	0.02	0.02	0.01	0.36	0.01	0.01	0.03	0.03
TTM	44571	10.67	9.66	5.65	0.89	4.2	6.49	13.98	18.19
Amt. Out.	44571	7274898.18	3130000.00	11316215.71	2.6	365000.00	995000.00	7370000.00	19985000.00
Muni. CS.	44571	1.8e - 3	0.6e - 3	0.01	1.66	-5e - 3	-2.6e - 3	4.6e - 3	0.01
- Ct - t	NT I		M 1:		York	10/1 D /1	05/1 D /1	75/1 D /1	00/1 D /1
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	638503	0.02	0.02	0.01	0.2	0.01	0.02	0.03	0.04
TTM	638503	14.05	13.1	7.17	0.36	5.18	8.27	19.33	24.78
Amt. Out.	638503	63082160.67	27965000.00	124455150.00	6.16	3630000.00	12020000.00	59775000.00	150000000.00
Muni. CS.	638503	2.6e - 3	1.5e - 3	0.01	0.92	-0.01	-2.8e - 3	0.01	0.01
Stato	Nobe	Moon	Modian	Std. Dev.	hio	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
State	N obs 43532	Mean 0.02	Median 0.02	0.01	Skewness 0.14	0.01	0.02	0.03	0.04
yield vw	I								
TTM Amt. Out.	43532 43532	12.49 9523497.68	11.05 4750000.00	6.81 16527040.82	$0.69 \\ 5.09$	4.75 680000.00	7.2 1635000.00	16.85 10000000.00	23.05 21120000.00
	43532								
Muni. CS.	45552	2.9e - 3	2.2e - 3	0.01	0.58 exas	-4.8e - 3	-1.8e - 3	0.01	0.01
State	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
yield vw	223639	0.02	0.02	0.01	0.21	0.01	0.01	0.03	0.04
TTM	223639	12.19	10.88	6.63	0.21	4.65	7.1	16.24	22.18
Amt. Out.	223639	12.19	10.88 4415000.00	6.63 56852061.87	0.73 8.25	4.05 630000.00	1495000.00	13470000.00	28905000.00
Muni. CS.	223639	1.9e - 3	1.2e - 3	0.01	1.09	-4.8e - 3	-2.2e - 3	0.01	0.01
muiii. CS.	223039	1.9e - 3	1.2e - 3	0.01	1.09	-4.0e - 3	-2.2e - 3	0.01	0.01

Note: This table reports the summary statistics of municipal bond issuance information (CUSIP, amount outstanding, issuance date, and maturity date) from Bloomberg for all of the municipal bonds issued within 100km of the airports of the eight cities we are considering. Each city/airport (county) is: Atlanta (Fulton), Chicago O'Hare (Cook and Delpont), Cincinnati/Northern Kentucky (Hamilton and Boone, Kentucky), Dallas-Fort Worth (Dallas and Tarran), Las Vegas (Clark), Minneapolis-Saint Paul (Hennepin), New York Laguardia (Manhattan, Brooklyn, Bronx, Queens, Nassau), and Sacremento (Sacramento county). Municipal bond remaining time to maturity (TTM, in years).

Table 6 Stock, Option, Corporate Bond, Balance Sheet Summary Statistics

Variable	N obs	Mean	Median	Std. Dev.	Skewness	10th Pctl.	25th Pctl.	75th Pctl.	90th Pctl.
skewness	229367	0.06	0.05	0.07	2.72	0.02	0.03	0.08	0.12
stock VRP	184602	0.01	0.01	0.17	-0.75	-0.11	-0.04	0.05	0.12
EDF	329828	0.08	0e - 3	0.2	3.12	0e - 3	0e - 3	0.01	0.26
Asset Volatility (EDF)	331018	0.48	0.39	0.34	2.69	0.19	0.26	0.59	0.9
RVOL ssFret	75192	0.1	0.09	0.06	1.12	0.04	0.06	0.12	0.18
RVOL Fret	343597	0.59	0.43	0.47	1.48	0.19	0.28	0.74	1.33
WIVOL	105636	0.44	0.4	0.2	0.57	0.18	0.29	0.58	0.74
WVRP	51981	0.29	0.27	0.22	0.67	0.04	0.09	0.4	0.61
$\operatorname{sum} \operatorname{XDDi}$	271110	406.63	352.97	290.28	1.13	84.77	199.06	536.98	825.76
sum CDDi	135488	290.77	269.19	184.87	0.46	55.18	140.96	426.55	533.54
$\operatorname{sum}\ HDDi$	135622	522.37	462.37	327.87	0.77	153.32	270.41	711.04	986.21
sum XDDssi	263247	2585.98	2190.11	1517.41	1.19	1056.95	1600.45	3197.16	4880.6
Corp Bond Ret (EOM)	417123	0.01	4.1e - 3	0.04	3.61	-0.02	-4.2e - 3	0.02	0.03
CORP TMT	417123	9.29	6.21	8.17	1.19	1.9	3.34	11.92	24.31
DURATION	415978	6.17	5.07	4.05	0.91	1.81	3.01	8.22	12.71
Corp Bond Ret (L5M)	324156	0.01	3.8e - 3	0.03	3.79	-0.02	-3.7e - 3	0.01	0.03
Corp Rating	396681	7.92	7.00	3.16	0.96	5.00	6.00	9.00	13.00
Corp Bid Ask Spread	374208	0.01	4.1e - 3	0.01	30.81	1.1e - 3	2.2e - 3	0.01	0.01
Corp CS	268652	0.02	0.01	0.03	9.9	3.1e - 3	0.01	0.02	0.04
Corp Amount Out.	417105	593030.76	400000.00	657336.31	2.94	40000.00	200000.00	750000.00	1299750.00

Note: This table reports the summary statistics of individual firm stock variance risk premia (Stock VRP), corporate bond credit spreads, corporate bond time to maturity (TTM) from CRSP, OptionMetrics VolSurface, and WRDS Corporate Bond Returns respectively. we limit out empirical analysis to the city locations listed in COMPUSTAT city and state information. In particular our analysis is confined to the cities of New York, Brooklyn, Staten Island, The Bronx, Long Island City, Queens, Fort Worth, Dallas, Atlanta, Chicago and Evanston, Cincinnati, Las Vegas and North Las Vegas, Saint Paul and Minneapolis, and in California: Sacremento, San Jose, Paolo Alto, Mountain View, Fremont Stockton, and Santa Rosa. WRVOL $_{c,t}$ (WRVOLss $_{c,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOLss $_{c,t-1}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOLss $_{c,t}$ and WRVOLss $_{c,t}$ for county c at time t

Table 7: Correlations

						C	orrelation	ons					
Variable Names	WRVOLss	WRVOL	WVRP	XDD	XDDss	CS	TMT	RATING	log(AO/Vol)	EPU	log(OIss)	log(optOIss)	SEPU
WRVOLss	1.00	0.34	-0.47	-0.03	-0.13	-0.02	0.01	0.00	-0.01	-0.01	0.14	0.12	-0.11
WRVOL	0.34	1.00	-0.28	-0.45	-0.41	0.01	0.00	0.00	-0.01	-0.12	0.06	0.00	-0.04
WVRP	-0.47	-0.28	1.00	0.21	0.27	0.06	0.01	0.07	0.02	0.2	-0.51	0.15	0.2
XDD	-0.03	-0.45	0.21	1.00	0.91	0.01	0.01	-0.02	0.02	0.19	-0.18	0.21	0.07
XDDss	-0.13	-0.41	0.27	0.91	1.00	0.01	0.01	-0.01	0.01	0.21	-0.22	0.25	0.1
CS	-0.02	0.01	0.06	0.01	0.01	1.00	-0.02	0.4	-0.03	0.16	0.07	0.05	0.12
TMT	0.01	0.00	0.01	0.01	0.01	-0.02	1.00	-0.03	0.11	-0.02	-0.04	0.00	0.00
RATING	0.00	0.00	0.07	-0.02	-0.01	0.4	-0.03	1.00	-0.12	-0.06	-0.13	-0.04	0.02
log(AO/Vol)	-0.01	-0.01	0.02	0.02	0.01	-0.03	0.11	-0.12	1.00	-0.02	0.00	-0.04	-0.03
EPU	-0.01	-0.12	0.2	0.19	0.21	0.16	-0.02	-0.06	-0.02	1.00	0.1	0.1	0.42
log(OIss)	0.14	0.06	-0.51	-0.18	-0.22	0.07	-0.04	-0.13	0.00	0.1	1.00	-0.17	-0.11
log(optOIss)	0.12	0.00	0.15	0.21	0.25	0.05	0.00	-0.04	-0.04	0.1	-0.17	1.00	0.05
SEPU	-0.11	-0.04	0.2	0.07	0.1	0.12	0.00	0.02	-0.03	0.42	-0.11	0.05	1.00

Notes: Table contains pooled correlations between all control and weather derivatives measures from Table 6. The sample period is monthly observations from January 2006 to December 2019.

Table 8 Municipal Bond Credit Spreads and WVRP (Contemporaneous)

	Panel A: Full	Sample		
Variable	(1)	(2)	(3)	(4)
WRVOL _{c,t}	-1.4e - 3		(-)	()
	(-25.66)			
$WIVOLss_{c,t}$, ,	-1e - 3		
-,-		(-2.09)		
$WRVOLss_{c,t}$		` /	-0.01	
			(-29.03)	
$WVRPss_{c,t}$			()	0.01
				(20.17)
$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
11221/1122001	(-10.37)	(-3.08)	(2.02)	(0.62)
TTM_t	-4.2e - 3	-3.1e - 3	-3.7e - 3	-3.6e - 3
1 1 1/11	(-16.44)	(-12.98)	(-15.65)	(-15.43)
log(AmtOut/DollVolume),	-0.2e - 3	-0.2e - 3	-0.2e - 3	-0.2e - 3
$\log(\text{TimeOut/Don Volume})_t$		(-13.86)	(-13.96)	(-13.88)
R^2	(-13.02)			
	81.07	81.17	81.47	81.32
N obs	59, 117	62,748	62,748	62,748
Fixed Effects				
Bond CUSIP	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
	Panel B: TT	M < 15		
Variable	(1)	(2)	(3)	(4)
$\overline{\text{WRVOL}_{c,t}}$	-1.6e - 3			
	(-29.42)			
$WIVOLss_{c,t}$,	1.2e - 3		
		(2.27)		
$WRVOLss_{c,t}$		(=-=-)	-0.01	
Witt Oldsc,t			(-34.79)	
$WVRPss_{c,t}$			(-34.19)	0.01
$VVVICFSS_{c,t}$				(26.65)
VDD /VDD	0- 2	0- 2	0- 2	(26.65)
$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
TT 16	(-16.64)	(-8.79)	(-1.28)	(-3.6)
TTM_t	-4.3e - 3	-2.8e - 3	-3.6e - 3	-3.7e - 3
	(-16.21)	(-11.68)	(-15.18)	(-15.22)
$\log(\text{AmtOut/DollVolume})_t$	-0.3e - 3	-0.3e - 3	-0.3e - 3	-0.3e - 3
	(10 1)	(-18.81)	(-18.99)	(-18.81)
	(-18.1)			
R^2	84.9	84.77	85.36	85.12
N obs	. ,	84.77 37, 056	85.36 $37,056$	
	84.9			85.12
N obs	84.9			85.12
N obs Fixed Effects	84.9 34,451	37,056	37,056	85.12 37,056
N obs Fixed Effects Bond	84.9 34,451 Y	37,056 Y	37,056 Y	85.12 37,056 Y
N obs Fixed Effects Bond	84.9 34,451 Y	37,056 Y Y	37,056 Y	85.12 37,056 Y
N obs Fixed Effects Bond	84.9 34,451 Y Y	37,056 Y Y $M > 15$	37,056 Y Y	85.12 37,056 Y Y
N obs Fixed Effects Bond Year x Quarter Variable	84.9 34,451 Y Y Panel C: <i>TT</i>	37,056 Y Y	37,056 Y	85.12 37,056 Y
N obs Fixed Effects Bond Year x Quarter	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	37,056 Y Y $M > 15$	37,056 Y Y	85.12 37,056 Y Y
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline Variable \\ \hline WRVOL_{c,t} \\ \hline \end{tabular}$	84.9 34,451 Y Y Panel C: <i>TT</i>	37,056 Y Y (2)	37,056 Y Y	85.12 37,056 Y Y
N obs Fixed Effects Bond Year x Quarter Variable	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	$ \begin{array}{c} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \end{array} $	37,056 Y Y	85.12 37,056 Y Y
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \\ Variable \\ \hline WRVOL_{c,t} \\ WIVOLss_{c,t} \\ \hline \end{tabular}$	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	37,056 Y Y (2)	37,056 Y Y (3)	85.12 37,056 Y Y
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline Variable \\ \hline WRVOL_{c,t} \\ \hline \end{tabular}$	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	$ \begin{array}{c} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \end{array} $	37,056 Y Y (3)	85.12 37,056 Y Y
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline Variable \\ WRVOL_{c,t} \\ WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline \end{tabular}$	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	$ \begin{array}{c} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \end{array} $	37,056 Y Y (3)	85.12 37,056 Y Y (4)
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \\ Variable \\ \hline WRVOL_{c,t} \\ WIVOLss_{c,t} \\ \hline \end{tabular}$	$ \begin{array}{c} 84.9 \\ 34,451 \end{array} $ Y Y $ \begin{array}{c} Y \\ Y \\ \hline (1) \\ -1.1e - 3 \end{array} $	$ \begin{array}{c} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \end{array} $	37,056 Y Y (3)	85.12 37,056 Y Y Y (4)
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline \end{tabular}$	84.9 34,451 Y Y Panel C: <i>TT</i> (1) -1.1e - 3 (-11.5)	$ \begin{array}{r} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \\ (-1.65) \end{array} $	37,056 Y Y (3) -0.01 (-11.15)	85.12 37,056 Y Y Y (4) 4.1e - 3 (7.37)
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline Variable \\ WRVOL_{c,t} \\ WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ Panel C: TT \\ \hline (1) \\ -1.1e - 3 \\ (-11.5) \\ \\ \\ 0e - 3 \\ \end{array}$	$ \begin{array}{r} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline -1.6e - 3 \\ (-1.65) \\ \end{array} $	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \\ -0.01 \\ (-11.15) \\ \\ 0e-3 \\ \end{array}$	85.12 37,056 Y Y Y (4) 4.1e - 3 (7.37) 0e - 3
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ \hline Panel C: TT \\ \hline (1) \\ -1.1e - 3 \\ (-11.5) \\ \\ \hline \\ 0e - 3 \\ (-2.16) \\ \end{array}$	$ \begin{array}{c} 37,056 \\ Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ -1.6e - 3 \\ (-1.65) \\ \\ 0e - 3 \\ (1.54) \end{array} $	$\begin{array}{c} 37,056 \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ (-0.01 \\ (-11.15) \\ 0e - 3 \\ (2.86) \\ \end{array}$	85.12 37,056 Y Y Y (4) 4.1e - 3 (7.37) 0e - 3 (2.63)
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ Y \\ Y \\ \hline \\ \hline (1) \\ -1.1e - 3 \\ (-11.5) \\ \\ 0e - 3 \\ (-2.16) \\ -4e - 3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline \hline M>15 \\ \hline (2) \\ \hline -1.6e-3 \\ (-1.65) \\ \hline \\ 0e-3 \\ (1.54) \\ -3.1e-3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ -0.01 \\ (-11.15) \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \end{array}$ (4) $\begin{array}{c} 4.1e-3\\ (7.37)\\ 0e-3\\ (2.63)\\ -3.4e-3\\ \end{array}$
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ \hline Panel C: TT \\ \hline (1) \\ -1.1e - 3 \\ (-11.5) \\ \\ \hline \\ 0e - 3 \\ (-2.16) \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline \hline M>15 \\ \hline (2) \\ \hline -1.6e-3 \\ (-1.65) \\ \hline \\ 0e-3 \\ (1.54) \\ -3.1e-3 \\ (-7.28) \\ \end{array}$	$\begin{array}{c} 37,056 \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ (-0.01 \\ (-11.15) \\ 0e - 3 \\ (2.86) \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \\ \hline \\ (4)\\ \\ \end{array}$
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ Y \\ Y \\ \hline \\ \hline (1) \\ -1.1e - 3 \\ (-11.5) \\ \\ 0e - 3 \\ (-2.16) \\ -4e - 3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline -1.6e - 3 \\ (-1.65) \\ \hline \\ 0e - 3 \\ (1.54) \\ -3.1e - 3 \\ (-7.28) \\ -0.1e - 3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \\ (-0.01 \\ (-11.15) \\ \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \end{array}$ (4) $\begin{array}{c} 4.1e-3\\ (7.37)\\ 0e-3\\ (2.63)\\ -3.4e-3\\ \end{array}$
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline TTM_t \\ \hline log(AmtOut/DollVolume)_t \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ \hline (1) \\ -1.1e-3 \\ (-11.5) \\ \\ \hline \\ 0e-3 \\ (-2.16) \\ -4e-3 \\ (-8.64) \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline \hline M>15 \\ \hline (2) \\ \hline -1.6e-3 \\ (-1.65) \\ \hline \\ 0e-3 \\ (1.54) \\ -3.1e-3 \\ (-7.28) \\ \end{array}$	$\begin{array}{c} 37,056 \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ -0.01 \\ (-11.15) \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \\ \hline \\ (4)\\ \\ \end{array}$
$\begin{tabular}{ll} N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline TTM_t \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ \hline (1) \\ -1.1e-3 \\ (-11.5) \\ \\ 0e-3 \\ (-2.16) \\ -4e-3 \\ (-8.64) \\ -0.1e-3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline -1.6e - 3 \\ (-1.65) \\ \hline \\ 0e - 3 \\ (1.54) \\ -3.1e - 3 \\ (-7.28) \\ -0.1e - 3 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \\ (-0.01 \\ (-11.15) \\ \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \end{array}$
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \\ \hline Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline TTM_t \\ \hline log(AmtOut/DollVolume)_t \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ \hline (1) \\ -1.1e-3 \\ (-11.5) \\ \\ 0e-3 \\ (-2.16) \\ -4e-3 \\ (-8.64) \\ -0.1e-3 \\ (-1.9) \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline \hline M>15 \\ \hline (2) \\ \hline -1.6e-3 \\ (-1.65) \\ \hline \\ 0e-3 \\ (1.54) \\ -3.1e-3 \\ (-7.28) \\ -0.1e-3 \\ (-2.31) \\ \end{array}$	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ (-0.01 \\ (-11.15) \\ \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ (-2.37) \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \end{array}$
$\frac{\text{N obs}}{\text{Fixed Effects}}$ $\frac{\text{Bond}}{\text{Year x Quarter}}$ $\frac{\text{Variable}}{\text{WRVOL}_{c,t}}$ $\frac{\text{WIVOLss}_{c,t}}{\text{WRVOLss}_{c,t}}$ $\frac{\text{WRVOLss}_{c,t}}{\text{XDD}_i/\text{XDDss}_i}$ $\frac{TTM_t}{\text{log(AmtOut/DollVolume)}_t}$	84.9 34,451 Y Y Y (1) -1.1e - 3 (-11.5) 0e - 3 (-2.16) -4e - 3 (-8.64) -0.1e - 3 (-1.9) 80.71	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline \\ -1.6e - 3 \\ (-1.65) \\ \hline \\ 0e - 3 \\ (1.54) \\ -3.1e - 3 \\ (-7.28) \\ -0.1e - 3 \\ (-2.31) \\ 80.73 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ (-11.15) \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ (-2.37) \\ 80.84 \\ \end{array}$	4.1e - 3 (7.37) 0e - 3 (2.63) -3.4e - 3 (-7.94) -0.1e - 3 (-2.32) 80.78
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \hline \\ Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline TTM_t \\ \hline log(AmtOut/DollVolume)_t \\ \hline R^2 \\ N obs \\ \hline \end{tabular}$	84.9 34,451 Y Y Y (1) -1.1e - 3 (-11.5) 0e - 3 (-2.16) -4e - 3 (-8.64) -0.1e - 3 (-1.9) 80.71	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline \\ -1.6e - 3 \\ (-1.65) \\ \hline \\ 0e - 3 \\ (1.54) \\ -3.1e - 3 \\ (-7.28) \\ -0.1e - 3 \\ (-2.31) \\ 80.73 \\ \end{array}$	$\begin{array}{c} 37,056 \\ \\ Y \\ Y \\ \hline \\ (3) \\ \hline \\ (-11.15) \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ (-2.37) \\ 80.84 \\ \end{array}$	4.1e - 3 (7.37) 0e - 3 (2.63) -3.4e - 3 (-7.94) -0.1e - 3 (-2.32) 80.78
$\begin{tabular}{ll} \hline N obs \\ \hline Fixed Effects \\ Bond \\ Year x Quarter \\ \hline \hline \hline \\ Variable \\ \hline WRVOL_{c,t} \\ \hline WIVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WRVOLss_{c,t} \\ \hline WVRPss_{c,t} \\ \hline XDD_i/XDDss_i \\ \hline TTM_t \\ \hline log(AmtOut/DollVolume)_t \\ \hline R^2 \\ N obs \\ \hline Fixed Effects \\ \hline \end{tabular}$	$\begin{array}{c} 84.9 \\ 34,451 \\ \\ Y \\ Y \\ \hline \\ Panel C: TT \\ \hline (1) \\ -1.1e-3 \\ (-11.5) \\ \\ \hline \\ 0e-3 \\ (-2.16) \\ -4e-3 \\ (-8.64) \\ -0.1e-3 \\ (-1.9) \\ \hline \\ 80.71 \\ 24,666 \\ \\ \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline M > 15 \\ \hline (2) \\ \hline -1.6e - 3 \\ (-1.65) \\ \hline \\ 0e - 3 \\ (1.54) \\ -3.1e - 3 \\ (-7.28) \\ -0.1e - 3 \\ (-2.31) \\ \hline 80.73 \\ 25,692 \\ \hline \end{array}$	$\begin{array}{c} 37,056 \\ \hline Y \\ Y \\ \hline \\ (3) \\ \hline \\ -0.01 \\ (-11.15) \\ \hline \\ 0e-3 \\ (2.86) \\ -3.5e-3 \\ (-8.16) \\ -0.1e-3 \\ (-2.37) \\ \hline \\ 80.84 \\ 25,692 \\ \\ \end{array}$	$\begin{array}{c} 85.12\\ 37,056\\ \\ Y\\ Y\\ \end{array}$

Note: This table reports monthly panel regressions with the dependent variable being the municipal bond credit spreads (at time t) regressed on t. WRVOL $_{c,t}$ (WRVOL $_{s,c,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOL $_{sc,t}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOL $_{sc,t}$ and WRVOL $_{sc,t}$ for county c at time t. $XDD_{c,t}/XDDss_{c,t}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t. Municipal bond controls include the remaining time to maturity (TTM, in years) and the log(AmtOut/DollVolume) $_{i,t}$ which is the log-ratio of the bond outstanding over the amount of dollar traded volume of the bond i at time t. All regression estimates include fixed effects for the municipal bond individual CUSIP identifier as well as year quarter fixed effects. Panel A reports the results for the full sample of municipal bonds and Panels B and C report the panel regression results for the subsets of municipal bonds with time to maturity less and greater than 95 years respectively. T-statistics are presented in parentheses under the coefficients.

Table 9 Corporate Credit Spreads and WVRP (Contemporaneous)

Pamel A: Pull Sumple		1 4 5 11	G 1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(-)	(e)	(4)
WIVOLssc.t			(2)	(3)	(4)
WIVOLssc,t	$WRVOL_{c,t}$				
WRVOLssc.t		(-4.32)			
WKVCLSsc,t 0.01 (-7.3) 0.01 (-5.43) WVRPsc,t	$WIVOLss_{c,t}$		-0.01		
WVRPss _{ct} (−1,3) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,6) (−3,3) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,7) (−			(-4.16)		
WVRPss _{ct} (−1,3) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,4) (−3,6) (−3,3) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,6) (−3,7) (−	$WRVOLss_{c,t}$			-0.01	
WYRPss_ct				(-7.3)	
Note of the properties of	WVRPss .			()	0.01
XDD _I /XDDss _i 0e-3 (-4.82) (-2.04) (-1.94) (-0.68) 0.06 (-0.82) (-0.24) (-1.94) (-0.68) 0.06 (-0.83) (-0.28) (-0.28) (-0.28) 0.01 (-0.69) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (-0.34) (-0.28) 0.01 (-0.24) (-0.34) (-0.28) (-0.34) (-0.26) 0.00 (-0.23) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.34) (-0.26) 0.00 (-0.24) (-0.24) (-0.24) (-0.26) 0.00 (-0.24) (-0.24) (-0.24) (-0.26) 0.00 (-0.24) (-0.24) (-0.24) (-0.24) 0.00 (-0.24) (-0.24) (-0.24) (-0.24) 0.00 (-0.24) (-0.24) (-0.24) (-0.24) 0.00 (-0.24) (-0.24) (-0.24) (-0.24) (-0.24) 0.01 (-0.24) (-0.24) (-0.24) (-0.24) (-0.24) (-0.24) 0.01 (-0.24) (-0.	** * 101 550c,t				
TTM _t -0.6e - 3 0.7e - 3 -0.2e - 3 Rating _t 0.01 (0.01) (0.01) 0.01 log(AmtOut/DollVolume) _t 0e - 3 0.00 -0.1e - 3 0.00 Ref (2.049) (-0.23) (-0.34) (-0.26) R² 67.12 67.26 67.29 67.27 Nobs 56.687 56.949 56.949 56.949 Fixed Effects 56.687 56.949 56.949 56.949 Bond Y Y Y Y Year x Quarter Y Y Y Y St. Clustering: Bond Y Y Y Y WRVOLse. -1.3e - 3 (-0.01) (-0.01) (-0.01) WRVOLse. -1.3e - 3 (-0.01) (-0.01) (-0.01) (-0.01) WRVDLse. -1.3e - 3 (-0.01) (-0.01) (-0.02) (-0.02) WRVDLse. -1.4e - 3 0.6e - 3 0e - 3 0e - 3 0e - 3 Athing. (-0.	VDD /VDDoo	0. 2	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ADD_i/ADDss_i$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mm) (
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TTM_t				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(-0.51)	(0.16)	(0.93)	(-0.28)
log(AmtOut/DollVolume) log(AmtOut/DollV	$Rating_t$	0.01	0.01	0.01	0.01
log(AmtOut/DollVolume) log(AmtOut/DollV		(64.28)	(9.37)	(9.39)	(9.38)
R² (-0.49) (-0.23) (-0.34) (-0.26) R² 67.12 67.26 67.29 67.27 Nobs 56.687 56,949 56,949 56,949 Fixed Effects Bond Y Y Y Y Year x Quarter Y	log(AmtOut/DollVolume).				
R2 67.12 67.26 67.29 67.27 N obs 56.687 56,949 56,949 56,949 Fixed Effects Bond Y	log(i inico de/ Bon volume) _t				
Nobs 56.687 56,949 56,949 56,949 Fixed Effects Bond Y	D2				
Pixed Effects Pixed Effect					
$ \begin{array}{ c c c c } Bond & Y & Y & Y & Y \\ Year x Quarter & Y & Y & Y & Y \\ \hline & Y & Y & Y & Y & Y \\ \hline & & & & & & & & & & & & & & & & & &$		56.687	56, 949	56, 949	56, 949
Year x Quarter Y	Fixed Effects				
SE. Clustering: Bond Y Y Y Variable (1) (2) (3) (4) WRVOL $_{c,t}$ -1.3 e - 3 (-4.1) -0.01 -0.02 -0.02 WRVOLss $_{c,t}$ -0.01 -0.02 -0.02 WRVOLss $_{c,t}$ -0.6 -0.02 -0.01 WRVRPSs $_{c,t}$ -0.6 -0.02 (-7.7) WRPDi/XDDss $_t$ 0e-3 0e-3 0e-3 0e-3 XDDi/XDDss $_t$ (0e-3) 0.8e-3 1.4e-3 0.4e-3 Ratingt 0.01 0.02 0.02 0.02	Bond	Y	Y	Y	Y
SE. Clustering: Bond Y Y Y Variable (1) (2) (3) (4) WRVOL $_{c,t}$ -1.3 e - 3 (-4.1) -0.01 -0.02 -0.02 WRVOLss $_{c,t}$ -0.01 -0.02 -0.02 WRVOLss $_{c,t}$ -0.6 -0.02 -0.01 WRVRPSs $_{c,t}$ -0.6 -0.02 (-7.7) WRPDi/XDDss $_t$ 0e-3 0e-3 0e-3 0e-3 XDDi/XDDss $_t$ (0e-3) 0.8e-3 1.4e-3 0.4e-3 Ratingt 0.01 0.02 0.02 0.02	Year x Quarter	Y	Y	Y	Y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J.L. Clustering, Dond				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I	Panel B: TT	M < 15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(3)	(4)
$\begin{tabular}{ c c c c c c c c } WIVOLss_{e,t} & -0.01 & -0.02 & -$			(2)	(3)	(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WRVOL_{c,t}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-4.1)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WIVOLss_{c,t}$		-0.01		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(-3.99)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WRVOLss _{at}		, ,	-0.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11101 O 2555e,t				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WWDDag			(1.1)	0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$VV V \Gamma \Gamma SS_{c,t}$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-4.89)	(-2.11)	(-2.09)	(-0.93)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TTM_{\star}	. ,			. ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1111				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Datina		, ,	, ,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$hating_t$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log(\text{AmtOut/DollVolume})_t$	-0.2e - 3	-0.2e - 3	-0.2e - 3	-0.2e - 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-2.16)	(-2.02)	(-2.2)	(-2.06)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R^2	67.73	67.83	67.86	67.83
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N obs				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11,020	10,000	10,000	10,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.7	3.7	3.7	3.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year x Quarter	Y	Y	Y	Y
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S.E. Clustering: Bond	Y	Y	Y	Y
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Panel C: TT	M > 15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. /	(2)	(3)	(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WRVOL_{c,t}$	-0.5e - 3	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	(-2.38)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WIVOLSS .	()	-3e - 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WIV O Losc,t				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HIDIOI		(-1.80)	4.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WRVOLss_{c,t}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(-3.07)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$WVRPss_{c,t}$				1.5e - 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VDD_{\cdot}/VDD_{00}	00 2	00 2	00 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Lambda DD_{i}/\Lambda DD88_{i}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm.) (
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TTM_t				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-2.11)	(-1.91)	(-1.74)	(-2.04)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Rating_t$	1.9e - 3	1.9e - 3		1.9e - 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>				
	log(AmtOut/DollVolume)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$10_{8}(\text{Anni Out}/\text{Don volume})_{t}$				
N obs 11,758 11,860 11,860 11,860 Fixed Effects Bond Y Y Y Year x Quarter Y Y Y Y	D2				
	N obs	11,758	11,860	11,860	11,860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Y	Y	Y	Y
·					
D.E. Ordsterling, DOILD I I I	•				
	D.L. CIUSTEINE, DOILG	1	1	1	1

Note: This table reports monthly panel regressions with the dependent variable being the corporate bond credit spreads (at time t) regressed on t. WRVOL $_{c,t}$ (WRVOLss $_{c,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOLss $_{c,t}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOLss $_{c,t}$ and WRVOLss $_{c,t}$ for county c at time t. $XDD_{c,t}/XDDss_{c,t}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t. Corporate bond controls include the remaining time Φ maturity (TTM, in years) and the credit rating of bond i at time t. All regression estimates include bond fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by bond.

Table 10 Stock VRP and the WVRP (Contemporaneous)

	Panel A · 1	Full Sample						
Variable	(1)	(2)	(3)	(4)				
WRVOL _{c,t}	4.6e - 3	(2)	(0)	(1)				
	(3.99)							
$WIVOLss_{c,t}$		0.01						
		(0.23)						
$WRVOLss_{c,t}$			-0.01					
			(-0.61)					
$WVRPss_{c,t}$				0.03				
				(2.16)				
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00				
	(2.16)	(-0.34)	(-1.36)	(-0.24)				
R^2	42.41	78.76	74.87	78.94				
N obs	58,499	21,881	25,350	21,722				
Fixed Effects								
Firm	Y	Y	Y	Y				
Year x Quarter	Y	Y	Y	Y				
S.E. Clustering: Firm	Y	Y	Y	Y				
Panel B: Full Sample and control for EPU								
Variable	(1)	(2)	(3)	(4)				
WRVOL _{c,t}	0.01	(2)	(0)	(1)				
WILL OLC,t	(4.27)							
$WIVOLss_{c,t}$	(1.21)	0.01						
1111 O 200c,t		(0.34)						
$WRVOLss_{c,t}$		(0.0-)	-0.01					
С,Е			(-0.57)					
$WVRPss_{c,t}$,	0.03				
1130				(2.23)				
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00				
,	(1.72)	(-0.71)	(-1.97)	(-0.81)				
EPU_t	0.01	0.01	0.01	0.01				
	(3.8)	(2.77)	(3.18)	(2.77)				
R^2	42.43	78.77	78.76	74.87				
N obs	58,499	21,881	25,350	21,722				
Fixed Effects								
Firm	Y	Y	Y	Y				
Year x Quarter	Y	Y	Y	Y				
S.E. Clustering: Firm	Y	Y	Y	Y				
D 10 E	1.0. 1	1 , 10	Did debi	т.				
Panel C: Ful								
Variable	(1)	(2)	(3)	(4)				
$WRVOL_{c,t}$	4.6e - 3 (3.98)							
$WIVOLss_{c.t}$	(0.90)	0.01						
WIVOLSS _{c,t}		(0.24)						
$WRVOLss_{c,t}$		(0.24)	-0.01					
WIW OLDSc,t			(-0.61)					
$WVRPss_{c,t}$			(-0.01)	0.03				
VV VICI SSC,t				(2.15)				
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00				
	(2.08)	(-0.32)	(-1.37)	(-0.22)				
EJS SEPU $_t$	1.5e - 3	-0.8e - 3	-0.4e - 3	-0.9e - 3				
	(0.85)	(-0.27)	(-0.14)	(-0.3)				
R^2	42.41	78.76	74.88	78.94				
N obs	58, 499	21,881	25, 350	21,722				
Fixed Effects	,	,	,	, .				
Firm	Y	Y	Y	Y				
Year x Quarter	Y	Y	Y	Y				
S.E. Clustering: Firm	Y	Y	Y	Y				

Note: This table reports monthly panel regressions with the dependent variable being the firm level stock variance risk premia (at time t) regressed on t. WRVOL $_{c,t}$ (WRVOL $_{sc,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOLss $_{c,t}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOLss $_{c,t}$ and WRVOLss $_{c,t}$. $XDD_{c,t}/XDDss_{c,t}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t. All regression estimates include firm fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by firm.

Table 11 Municipal Bond Credit Spreads and WVRP (Predictive)

Pa	anel A: Full	Sample		
Variable	(1)	(2)	(3)	(4)
$WRVOL_{c,t-1}$	0.4e - 3		(-)	
	(6.46)			
$WIVOLss_{c,t-1}$		-4e - 3		
WINNE		(-6.94)	0.04	
$WRVOLss_{c,t-1}$			(10.20)	
WWDDaa			(12.39)	0.01
$WVRPss_{c,t-1}$				-0.01 (-18.13)
$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
11221/1122001	(15.26)	(10.64)	(8.66)	(4.98)
TTM_{t-1}	-3.4e - 3	-3.3e - 3	0.2e - 3	0.2e - 3
	(-13.15)	(-12.69)	(2.68)	(3.9)
$\log(\mathrm{AmtOut/DollVolume})_{t-1}$	-0.1e - 3	-0.1e - 3	-0.1e - 3	-0.1e - 3
	(-3.96)	(-3.93)	(-4.55)	(-4.31)
R^2	80.56	80.82	80.77	80.84
N obs	55, 294	58, 769	58, 769	58, 769
Fixed Effects	V	V	V	V
Bond CUSIP	Y Y	Y Y	Y Y	Y Y
Year x Quarter	1	1	1	1
p	anel B: TTA	M < 15		
Variable	(1)	(2)	(3)	(4)
$\overline{\text{WRVOL}_{c,t-1}}$	0.9e - 3	(2)	(0)	(1)
	(13.15)			
$WIVOLss_{c,t-1}$	(/	-0.01		
-,		(-9.63)		
$WRVOLss_{c,t-1}$			0.01	
			(11.85)	
$WVRPss_{c,t-1}$				-0.01
**************************************				(-15.62)
$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
TTM_{t-1}	(13.98)	(6.06)	(6.01)	(3.35)
IIM_{t-1}	0.3e - 3 (4.54)	0.3e - 3 (4.91)	0.3e - 3 (4.43)	0.3e - 3 (5.44)
$\log(\mathrm{AmtOut/DollVolume})_{t-1}$	-0.1e - 3	0e - 3	0e - 3	0e - 3
1-8((-2.98)	(-2.88)	(-3.03)	(-2.93)
R^2	84.66	84.71	84.74	84.79
N obs	32,358	34,837	34,837	34,837
Fixed Effects				
Bond	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
	1.0 7771			
	anel C: TTA		(0)	(4)
Variable	(1) $0.2e - 3$	(2)	(3)	(4)
$WRVOL_{c,t-1}$	0.2e - 3 (1.59)			
$WIVOLss_{c,t-1}$	(1.09)	-0.01		
WIVOESS _{c,t-1}		(-5.44)		
$WRVOL_{SS_{c,t-1}}$		(0.44)	0.01	
			(6.86)	
$WVRPss_{c,t-1}$			()	-0.01
-,- -				(-9.31)
$XDD_i/XDDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
	(7.13)	(4.13)	(5.51)	(3.6)
TTM_{t-1}	0e - 3	0e - 3	0e - 3	0.1e - 3
1. (A - (O - (/D) 137 1)	(-0.21)	(0.18)	(0.01)	(0.65)
$\log(\text{AmtOut/DollVolume})_{t-1}$	-0.1e - 3	-0.1e - 3	-0.1e - 3	-0.1e - 3
R^2	(-2.84)	(-2.91)	(-2.91)	$\frac{(-2.75)}{70.0}$
N obs	79.66 $22,936$	79.84 $23,932$	79.86 $23,932$	79.9 $23,932$
Fixed Effects	22, 300	40, 304	40, 304	20, 302
Bond	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
·				

Note: This table reports monthly panel regressions with the dependent variable being the municipal bond credit spreads (at time t) regressed on t-1. WRVOL $_{c,t-1}$ (WRVOLss $_{c,t-1}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t-1. Similarly WIVOLss $_{c,t-1}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t-1 and WVRPss $_{c,t-1}$ is the difference between the WIVOLss $_{c,t-1}$ and WRVOLss $_{c,t-1}$ for county c at time t-1. $XDD_{c,t-1}/XDDss_{c,t-1}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t-1. Municipal bond controls include the remaining time to maturity (TTM, in years) and the log(AmtOut/DollVolume) $_{i,t-1}$ which is the log-ratio of the bond outstanding over the amount of dollar traded volume of the bond i at time t-1. All regression estimates include fixed effects for the municipal bond individual CUSIP identifier as well as year quarter fixed effects. Panel A report t results for the full sample of municipal bonds and Panels B and C report the panel regression results for the subsets of municipal bonds with time to maturity less and greater than 15 years respectively. T-statistics are presented in parentheses under the coefficients.

Table 12 Corporate Credit Spreads and WVRP (Predictive)

D	1 A. T11 (S1-		
	anel A: Full :		(2)	(4)
Variable	-0.2e - 3	(2)	(3)	(4)
$WRVOL_{c,t-1}$				
HIRIOT.	(-1.64)	0.01		
${\rm WIVOLss}_{c,t-1}$		-0.01		
		(-6.61)		
$WRVOLss_{c,t-1}$			-0.2e - 3	
			(-0.16)	
$WVRPss_{c,t-1}$				-0.01
				(-7.29)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
	(-1.76)	(-4.12)	(-2.03)	(-2.18)
TTM_{t-1}	0.2e - 3	0.7e - 3	0.6e - 3	0.7e - 3
	(0.68)	(1.61)	(1.37)	(1.66)
$Rating_{t-1}$	3.7e - 3	0.01	0.01	0.01
5:1	(8.75)	(8.59)	(8.58)	(8.58)
$\log(\mathrm{AmtOut/DollVolume})_{t-1}$	0.2e - 3	-0.3e - 3	-0.3e - 3	-0.3e - 3
$\log(\min(Out)/Don(Volume)_{t-1})$	(2.32)	(-1.62)	(-1.61)	(-1.59)
R^2				
	76.21	67.52	67.5	67.51
N obs	165, 747	56,013	56, 013	56,013
Fixed Effects				
Bond	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Bond	Y	Y	Y	Y
P	anel B: TTA	I < 15		
Variable	(1)	(2)	(3)	(4)
$WRVOL_{c,t-1}$	-1.6e - 3		(-)	- ()
	(-4.48)			
WINOI	(-4.40)	0.01		
$WIVOLss_{c,t-1}$		-0.01		
		(-6.47)		
$WRVOLss_{c,t-1}$			-1e - 3	
			(-0.52)	
$WVRPss_{c,t-1}$				-0.01
				(-6.98)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
	(-3.22)	(-4.25)	(-2.32)	(-2.33)
TTM_{t-1}	0.8e - 3	1e - 3	0.9e - 3	1.1e - 3
	(1.18)	(1.63)	(1.38)	(1.68)
$Rating_{t-1}$	0.01	0.01	0.01	0.01
1tdbvilgt=1	(8.34)	(8.32)	(8.3)	(8.3)
$\log(\mathrm{AmtOut/DollVolume})_{t-1}$	-0.6e - 3	-0.6e - 3	-0.6e - 3	-0.6e - 3
$\log(\text{AintOut/Doilvoidine})_{t-1}$			(0.55)	(0.54)
R^2	(-2.55)	(-2.56)	(-2.55)	(-2.54)
	68.49	68.66	68.63	68.65
N obs	44,130	44,284	44,284	44,284
Fixed Effects				
Bond	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Bond	Y	Y	Y	Y
-				
P	anel C: TTA	I > 15		
			(3)	(4)
Variable	(1)	I > 15 (2)	(3)	(4)
	(1) $-0.5e - 3$		(3)	(4)
Variable WRVOL $_{c,t-1}$	(1)	(2)	(3)	(4)
Variable	(1) $-0.5e - 3$	(2)	(3)	(4)
Variable $ \begin{aligned} & \text{WRVOL}_{c,t-1} \\ & \text{WIVOLss}_{c,t-1} \end{aligned} $	(1) $-0.5e - 3$	(2)		(4)
Variable WRVOL $_{c,t-1}$	(1) $-0.5e - 3$	(2)	2.1e - 3	(4)
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \\ \text{WIVOLss}_{c,t-1} \\ \\ \text{WRVOLss}_{c,t-1} \end{array}$	(1) $-0.5e - 3$	(2)		
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \\ \text{WIVOLss}_{c,t-1} \\ \\ \text{WRVOLss}_{c,t-1} \end{array}$	(1) $-0.5e - 3$	(2)	2.1e - 3	-0.01
Variable $\begin{aligned} & \text{WRVOL}_{c,t-1} \\ & \text{WIVOLSS}_{c,t-1} \\ & \text{WRVOLSS}_{c,t-1} \\ & \text{WVRPsS}_{c,t-1} \end{aligned}$	(1) $-0.5e - 3$	(2)	2.1e - 3	
$\begin{aligned} & \text{Variable} \\ & \text{WRVOL}_{c,t-1} \\ & \text{WIVOLss}_{c,t-1} \\ & \text{WRVOLss}_{c,t-1} \end{aligned}$	(1) $-0.5e - 3$	(2)	2.1e - 3	-0.01
Variable $\begin{aligned} & \text{WRVOL}_{c,t-1} \\ & \text{WIVOLSS}_{c,t-1} \\ & \text{WRVOLSS}_{c,t-1} \\ & \text{WVRPsS}_{c,t-1} \end{aligned}$	$ \begin{array}{c} (1) \\ -0.5e - 3 \\ (-2.31) \end{array} $	(2) -0.01 (-2.73)	2.1e - 3 (1.37)	-0.01 (-3.99) 0.00
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \\ \text{WIVOLss}_{c,t-1} \\ \\ \text{WRVOLss}_{c,t-1} \\ \\ \text{WVPPss}_{c,t-1} \\ \\ \\ \text{XDD}_i/\text{XDDss}_i \end{array}$	(1) -0.5e - 3 (-2.31) 0.00 (0.2)	(2) -0.01 (-2.73) 0.00 (0.35)	2.1e - 3 (1.37) 0.00 (1.82)	-0.01 (-3.99) 0.00 (1.24)
Variable $\begin{aligned} & \text{WRVOL}_{c,t-1} \\ & \text{WIVOLSS}_{c,t-1} \\ & \text{WRVOLSS}_{c,t-1} \\ & \text{WVRPsS}_{c,t-1} \end{aligned}$	(1) -0.5e - 3 (-2.31) 0.00 (0.2) -0.3e - 3	$ \begin{array}{c} (2) \\ -0.01 \\ (-2.73) \\ \end{array} $ $ \begin{array}{c} 0.00 \\ (0.35) \\ -0.3e - 3 \\ \end{array} $	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \end{array}$	-0.01 (-3.99) 0.00 (1.24) $-0.3e - 3$
Variable WRVOL $c,t-1$ WIVOLSS $c,t-1$ WRVOLSS $c,t-1$ WVRPSS $c,t-1$ $XDD_i/XDDSS_i$ TTM_{t-1}		(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83)	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \end{array}$	$\begin{array}{c} -0.01 \\ (-3.99) \\ 0.00 \\ (1.24) \\ -0.3e - 3 \\ (-0.81) \end{array}$
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \\ \text{WIVOLss}_{c,t-1} \\ \\ \text{WRVOLss}_{c,t-1} \\ \\ \text{WVPPss}_{c,t-1} \\ \\ \\ \text{XDD}_i/\text{XDDss}_i \end{array}$	(1) -0.5e - 3 (-2.31) 0.00 (0.2) -0.3e - 3 (-1.01) 1.6e - 3		$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \end{array}$	-0.01 (-3.99) 0.00 (1.24) $-0.3e - 3$ (-0.81) $1.5e - 3$
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \text{WIVOLSS}_{c,t-1} \\ \text{WRVOLSS}_{c,t-1} \\ \text{WVRPSS}_{c,t-1} \\ \text{X}DD_i/XDDss_i \\ \\ TTM_{t-1} \\ Rating_{t-1} \end{array}$	(1) -0.5e - 3 (-2.31) 0.00 (0.2) -0.3e - 3 (-1.01) 1.6e - 3 (3.54)	(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46)	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ \end{array}$	$\begin{array}{c} -0.01 \\ (-3.99) \\ 0.00 \\ (1.24) \\ -0.3e - 3 \\ (-0.81) \\ 1.5e - 3 \\ (3.45) \end{array}$
Variable WRVOL $c,t-1$ WIVOLSS $c,t-1$ WRVOLSS $c,t-1$ WVRPSS $c,t-1$ $XDD_i/XDDSS_i$ TTM_{t-1}		(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ \end{array}$	$\begin{array}{c} -0.01 \\ (-3.99) \\ 0.00 \\ (1.24) \\ -0.3e - 3 \\ (-0.81) \\ 1.5e - 3 \\ (3.45) \\ 0.00 \end{array}$
$\begin{tabular}{lll} & \begin{tabular}{lll} & \begin{tabular}{lll}$		(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25)	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \end{array}$	-0.01 (-3.99) 0.00 (1.24) -0.3e - 3 (-0.81) 1.5e - 3 (3.45) 0.00 (-0.21)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} (1) \\ -0.5e - 3 \\ (-2.31) \\ \\ \\ 0.00 \\ (0.2) \\ -0.3e - 3 \\ (-1.01) \\ 1.6e - 3 \\ (3.54) \\ 0.00 \\ (-0.18) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ (-0.75) \\ \\ (-0.75) \\ ($	(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25) 70.53	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \hline 70.51 \end{array}$	$\begin{array}{c} -0.01\\ (-3.99)\\ 0.00\\ (1.24)\\ -0.3e-3\\ (-6.81)\\ 1.5e-3\\ (3.45)\\ 0.00\\ (-0.21)\\ 70.55 \end{array}$
$\begin{tabular}{lll} \hline Variable & WRVOL_{c,t-1} \\ WRVOLSS_{c,t-1} & WRVOLSS_{c,t-1} \\ WRVOLSS_{c,t-1} & WVRPSS_{c,t-1} \\ XDD_i/XDDSs_i & \\ TTM_{t-1} & Rating_{t-1} \\ \log(\mathrm{AmtOut/DollVolume})_{t-1} & R^2 \\ N & \mathrm{obs} \\ \hline \end{tabular}$		(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25)	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \end{array}$	$\begin{array}{c} -0.01 \\ (-3.99) \\ 0.00 \\ (1.24) \\ -0.3e - 3 \\ (-0.81) \\ 1.5e - 3 \\ (3.45) \\ 0.00 \\ (-0.21) \end{array}$
$\begin{tabular}{lll} & \begin{tabular}{lll} & \begin{tabular}{lll}$	$\begin{array}{c} (1) \\ -0.5e - 3 \\ (-2.31) \\ \\ \\ 0.00 \\ (0.2) \\ -0.3e - 3 \\ (-1.01) \\ 1.6e - 3 \\ (3.54) \\ 0.00 \\ (-0.18) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ (-0.75) \\ \\ (-0.75) \\ ($	(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25) 70.53	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \hline 70.51 \end{array}$	$\begin{array}{c} -0.01\\ (-3.99)\\ 0.00\\ (1.24)\\ -0.3e-3\\ (-6.81)\\ 1.5e-3\\ (3.45)\\ 0.00\\ (-0.21)\\ 70.55 \end{array}$
$\begin{tabular}{lll} & \begin{tabular}{lll} & \begin{tabular}{lll}$	$\begin{array}{c} (1) \\ -0.5e - 3 \\ (-2.31) \\ \\ \\ 0.00 \\ (0.2) \\ -0.3e - 3 \\ (-1.01) \\ 1.6e - 3 \\ (3.54) \\ 0.00 \\ (-0.18) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ \\ (-0.75) \\ (-0.75) \\ \\ (-0.75) \\ ($	(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25) 70.53	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \hline 70.51 \end{array}$	$\begin{array}{c} -0.01\\ (-3.99)\\ 0.00\\ (1.24)\\ -0.3e-3\\ (-6.81)\\ 1.5e-3\\ (3.45)\\ 0.00\\ (-0.21)\\ 70.55 \end{array}$
$\begin{tabular}{lll} & \begin{tabular}{lll} & \begin{tabular}{lll}$	$\begin{array}{c} (1) \\ -0.5e - 3 \\ (-2.31) \\ \end{array}$ $\begin{array}{c} 0.00 \\ (0.2) \\ -0.3e - 3 \\ (-1.01) \\ 1.6e - 3 \\ 3 \\ (3.54) \\ 0.00 \\ (-0.18) \\ \hline 70.53 \\ 11,624 \\ \end{array}$	$ \begin{array}{c} -0.01 \\ (-2.73) \\ \hline \\ 0.00 \\ (0.35) \\ -0.3e - 3 \\ (-0.83) \\ 1.5e - 3 \\ (3.46) \\ 0.00 \\ (-0.25) \\ \hline \\ 70.53 \\ 11,729 \\ \end{array} $	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \hline 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \hline 70.51 \\ 11,729 \\ \end{array}$	$\begin{array}{c} -0.01 \\ (-3.99) \\ 0.00 \\ (1.24) \\ -0.3e - 3 \\ (-0.81) \\ 1.5e - 3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ \hline 70.55 \\ 11,729 \end{array}$
$\begin{array}{l} \text{Variable} \\ \text{WRVOL}_{c,t-1} \\ \text{WIVOLSS}_{c,t-1} \\ \text{WRVOLSS}_{c,t-1} \\ \text{WVRPSS}_{c,t-1} \\ \text{X}DD_i/XDDss_i \\ \\ TTM_{t-1} \\ Rating_{t-1} \\ \log(\text{AmtOut/DollVolume})_{t-1} \\ \frac{R^2}{N} \text{ Obs} \\ \text{Fixed Effects} \\ \text{Bond} \end{array}$	(1) -0.5e - 3 (-2.31) 0.00 (0.2) -0.3e - 3 (-1.01) 1.6e - 3 (3.54) 0.00 (-0.18) 70.53 11,624	(2) -0.01 (-2.73) 0.00 (0.35) -0.3e - 3 (-0.83) 1.5e - 3 (3.46) 0.00 (-0.25) 70.53 11,729	$\begin{array}{c} 2.1e-3 \\ (1.37) \\ \\ 0.00 \\ (1.82) \\ -0.3e-3 \\ (-0.96) \\ 1.5e-3 \\ (3.45) \\ 0.00 \\ (-0.21) \\ 70.51 \\ 11,729 \\ \end{array}$	$\begin{array}{c} -0.01\\ (-3.99)\\ 0.00\\ (1.24)\\ -0.3e-3\\ (-0.81)\\ 1.5e-3\\ (3.45)\\ 0.00\\ (-0.21)\\ 70.55\\ 11,729\\ \end{array}$

Note: This table reports monthly panel regressions with the dependent variable being the corporate bond credit spreads (at time t) regressed on t-1. WRVOL $_{c,t-1}$ (WRVOL $_{s,t-1}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t-1. Similarly WIVOL $_{s,t-1}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t-1 and WRP $_{s,t-1}$ is the difference between the WIVOL $_{s,t-1}$ and WRVOL $_{s,t-1}$ for county c at time t-1. $XDD_{c,t-1}/XDDss_{c,t-1}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time c-1. Corporate bond controls include the remaining time to maturity (c) maturity (c) and the credit rating of bond c at time c). Panel A reports the results for the full sample of municipal bonds and Panels B and C report the panel regression results for the subsets of municipal bonds with time to maturity less and greater than 15 years respectively. All regression estimates include bond fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by bond.

Table 13 Stock VRP and the WVRP (Predictive)

	D 1 A D 1	1.0. 1		
Variable	Panel A: Ful (1)	(2)	(3)	(4)
WRVOL _{c,t}	-2.3e - 3	(2)	(9)	(4)
WIWOLc,t	(-2.47)			
$WIVOLss_{c,t}$	(',	-0.02		
C.j.v		(-1.16)		
$WRVOLss_{c,t}$			0.04	
			(4.08)	
$WVRPss_{c,t}$				-0.05
VDD /VDD	0.00	0.00	0.00	(-5.07)
$XDD_i/XDDss_i$	0.00 (-2.94)	0.00 (-1.62)	$0.00 \\ (-0.57)$	0.00 (-1.82)
$StockVRP_t$	0.67	0.67	0.68	0.67
5 to 5 to 7 101 t	(33.21)	(26.5)	(28.62)	(26.6)
R^2	68.72	87.44	85.01	87.52
N obs	57,784	21,586	25,030	21,429
Fixed Effects				
Firm	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Firm	Y	Y	Y	Y
Panel R. Fr	ıll Sample a	nd control	for EPH	
Variable	(1)	(2)	(3)	(4)
WRVOL _{c,t}	-2.2e - 3	(4)	(9)	(1)
· - t.yt	(-2.33)			
$WIVOLss_{c,t}$	` ′	-0.01		
		(-1)		
$WRVOLss_{c,t}$			0.04	
WW.DD			(4.07)	
$WVRPss_{c,t}$				-0.05
$XDD_i/XDDss_i$	0.00	0.00	0.00	(-4.89) 0.00
$\Lambda DD_i/\Lambda DDss_i$	0.00 (-3.14)	0.00 (-2.13)	$0.00 \\ (-1.51)$	(-2.46)
$StockVRP_t$	0.67	0.67	0.68	0.67
2	(33.18)	(26.45)	(28.57)	(26.55)
EPU_t	2.8e - 3	0.01	0.01	0.01
	(2.06)	(3.18)	(4.43)	(2.85)
R^2	68.73	87.45	85.02	87.53
N obs	57, 784	21,586	25,030	21,429
Fixed Effects	v	v	37	37
Firm Voor v Ouerter	Y Y	Y Y	Y Y	Y Y
Year x Quarter S.E. Clustering: Firm	Y	Y	Y	Y
D.L. Clastering. 1 iiii			-	
Panel C: Full	Sample and	control for	r EJS SEPU	
Variable	(1)	(2)	(3)	(4)
$\overline{\mathrm{WRVOL}_{c,t}}$	-2.3e - 3			
******	(-2.46)			
$WIVOLss_{c,t}$		-0.01		
WDVOLGG		(-1.13)	0.04	
$WRVOLss_{c,t}$			0.04 (4.05)	
$WVRPss_{c,t}$			(4.00)	-0.05
201 DDc,t				(-4.91)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
,	(-2.85)	(-1.39)	(-0.46)	(-1.62)
$StockVRP_t$	0.67	0.67	0.68	0.67
	(33.21)	(26.49)	(28.62)	(26.59)
$\mathrm{EJS}\;\mathrm{SEPU}_t$	-1.5e - 3	-0.01	-3.7e - 3	-0.01
R^2	(-1.33)	(-2.89)	(-1.92)	(-2.63)
N obs	68.72 57,784	87.45 21,586	85.01 25,030	87.53 21,429
Fixed Effects	01,104	21,000	20,000	21,423
Firm	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Firm	Y	Y	Y	Y

Note: This table reports monthly panel regressions with the dependent variable being the firm level stock variance risk premia (at time t+1) regressed on t. WRVOL $_{c,t}$ (WRVOLss $_{c,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOLss $_{c,t}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOLss $_{c,t}$ and WRVOLss $_{c,t}$. $XDD_{c,t}/XDDss_{c,t}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t. All regression estimates include firm fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by firm.

Table 14 Resolution of Uncertainty of Municipal and Corporate Credit Spreads

Panel A: N	Municipal Ci	redit Spread	łe	
Variable	(1)	(2)	(3)	(4)
WVRPss _{c,t}	0.01	0.01	0.01	4.2e - 3
W VIU $SS_{c,t}$	(14.79)	(18.03)	(23.54)	(6.83)
WWDDaa	-0.01	-0.01	-0.01	-0.01
$WVRPss_{c,t-1}$				
$XDD_i/XDDss_i$	(-21.01)	(-24.65)	(-23.59)	(-11.53)
$ADD_i/ADDss_i$	0e - 3	0e - 3	0e - 3	0e - 3
TTM	(0e - 3)	(-0.89)	(-4.3)	(1.2)
TTM_{t-1}	0.2e - 3	0.2e - 3	0.2e - 3	0.3e - 3
1 (4 +0 +/D 1117.1)	(3.55)	(3.59)	(3.62)	(2.09)
$\log(\mathrm{AmtOut/DollVolume})_{t-1}$	-0.1e - 3	0e - 3	0e - 3	0e - 3
C.C.	(-4.46)	(-0.55)	(0.57)	(-1.4)
CS_{t-1}		0.24	0.19	0.21
D2		(55.64)	(32.2)	(30.68)
R^2	81.37	82.58	85.69	81.57
N obs	52,642	52,642	31,010	21,632
Fixed Effects				
Bond	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Bond	Y	Y	Y	Y
D 1D (7	111. 0	1	
	Corporate Ci			
Variable	(1)	(2)	(3)	(4)
$WVRPss_{c,t}$	0.01	0.01	0.01	4.2e - 3
	(10.57)	(14.28)	(21.42)	(5.37)
$WVRPss_{c,t-1}$	-0.01	-0.01	-0.01	-0.01
	(-16.79)	(-19.71)	(-18.15)	(-9.39)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
	(0.00)	(-0.84)	(-4.48)	(1.14)
TTM_{t-1}	0.2e - 3	0.2e - 3	0.2e - 3	0.3e - 3
	(2.32)	(2.21)	(2.18)	(1.22)
$\log(\text{AmtOut/DollVolume})_{t-1}$	-0.1e - 3	0.00	0.00	0.00
	(-2.97)	(-0.39)	(0.47)	(-0.93)
CS_{t-1}		0.24	0.19	0.21
		(15.72)	(8.15)	(10.68)
R^2	83.4	84.47	86.93	83.95
N obs	52,642	52,642	31,010	21,632
Fixed Effects	-			

Note: This table reports monthly panel regressions with the dependent variable in Panel A (B) being the municipal (corporate) bond credit spreads (at time t) regressed on both WVRPss_{c,t} and WVRPss_{c,t-1} for county c at times t and t-1 respectively. All bond control variables are at time t-1. Columns (2), (3), and (4) control for the lag one period credit spread. In both Panel A and B, columns (1) and (2) report the results for the full sample of bonds and whereas in columns (3) and (4) report the panel regression results for the subsets of bonds with time to maturity less and greater than 15 years respectively. All regression estimates include bond fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by bond.

Υ

Y

Υ

Bond

Year x Quarter

S.E. Clustering: Bond

Table 15 Robustness: Stock VRP and the WVRP (Predictive)

Panel A:	Full Samp	ole and cor	ntrols	
Variable	(1)	(2)	(3)	(4)
$\overline{\text{WRVOL}_{c,t-1}}$	-2e - 3	(-)	(9)	(-)
	(-2.16)			
$WIVOLss_{c,t-1}$		-0.01		
$WRVOLss_{c.t-1}$		(-1.59)	0.05	
WINVOLSS $_{c,t-1}$			(2.83)	
$WVRPss_{c,t-1}$			(2.00)	-0.02
4,0				(-2.93)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
a. Lump	(-2.78)	(-1.61)	(-1.01)	(-0.05)
Stock VRP_t	0.66 (28.3)	0.6 (11.08)	0.67 (20.57)	0.5 (12.51)
EPU_t	3.6e - 3	3.8e - 3	0.01	2.4e - 3
21 01	(2.68)	(1.94)	(2.24)	(0.8)
cc risk ew_t	0.08	5.49	1.64	2.17
	(0.04)	(1.75)	(0.52)	(0.7)
R^2	73.05	91.81	92.16	96.36
N obs	53,924	21, 156	15, 189	9,976
Fixed Effects Firm	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Firm	Y	Y	Y	Y
	Full Samp			7.3
Variable	(1)	(2)	(3)	(4)
$WRVOL_{c,t-1}$	-2e - 3 (-2.16)			
$WIVOLss_{c,t-1}$	(-2.10)	-0.01		
**************************************		(-1.6)		
$WRVOLss_{c,t-1}$, ,	0.05	
			(2.83)	
$WVRPss_{c,t-1}$				-0.02
$XDD_i/XDDss_i$	0.00	0.00	0.00	(-2.9)
$ADD_i/ADDss_i$	0.00 (-2.79)	0.00 (-1.62)	0.00 (-1.01)	0.00 (-0.04)
Stock VRP_t	0.66	0.6	0.67	0.5
-	(28.3)	(11.08)	(20.57)	(12.52)
EPU_t	3.6e - 3	3.8e - 3	0.01	2.4e - 3
	(2.67)	(1.96)	(2.24)	(0.8)
cc expo ew_t	-0.19 (-0.62)	-0.48 (-0.87)	1.64 (0.52)	-1 (-0.94)
R^2	73.05	91.81	92.16	96.36
N obs	53,924	21, 156	15, 189	9,976
Fixed Effects	,	,	,	
Firm	Y	Y	Y	Y
Year x Quarter	Y	Y	Y	Y
S.E. Clustering: Firm	Y	Y	Y	Y
Panel C:	Full Samp	ole and cor	ntrols	
Variable	(1)	(2)	(3)	(4)
$\overline{\text{WRVOL}_{c,t-1}}$	-2e - 3	. /		. /
	(-2.16)			
$WIVOLss_{c,t-1}$		-0.01		
$WRVOLss_{c,t-1}$		(-1.6)	0.05	
WIW OLSS $_{c,t-1}$			(2.84)	
$WVRPss_{c,t-1}$			(=)	-0.02
·-,e1				(-2.89)
$XDD_i/XDDss_i$	0.00	0.00	0.00	0.00
G. L. VIDE	(-2.78)	(-1.62)	(-1.01)	(-0.05)
Stock VRP_t	(28.21)	(11.08)	(20.55)	(19.5)
EPU_t	(28.31) 3.6e - 3	(11.08) 3.8e - 3	(20.55) 0.01	(12.5) 2.4e - 3
. ~ .	(2.68)	(1.96)	(2.23)	(0.81)
op risk ew_t	-6.5	-5.35	-29.22	-34.85
	(-1.21)	(-0.65)	(-2.7)	(-2.5)
R^2	73.05	91.81	92.16	96.36
N obs	53,924	21, 156	15, 189	9,976
Fixed Effects	Y	Y	Y	Y
H'irm				1
Firm Year x Quarter				Y
Firm Year x Quarter S.E. Clustering: Firm	Y Y	Y Y	Y Y	Y Y

Note: This table reports monthly panel regressions with the dependent variable being the firm level stock variance risk premia (at time t+1) regressed on t. WRVOL $_{c,t}$ (WRVOL $_{sc,t}$) is the weather futures realized volatility of the monthly (seasonal strip) futures contracts for county c at time t. Similarly WIVOLss $_{c,t}$ is the weather seasonal strip options monthly average option implied volatility for county c at time t and WVRPss $_{c,t}$ is the difference between the WIVOLss $_{c,t}$ and WRVOLss $_{c,t}$ for county c at time t. $XDD_{c,t}/XDDss_{c,t}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t. All regression estimates include firm fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by firm.

Table 16 Robustness: Corporate Credit Spreads and WVRP (Predictive)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{R^2}$ 64.85 65.2 65.2 65.2
R^2 64.85 65.2 65.2 65.2
7-107 7-10
N obs 56,013 52,999 52,999 52,999
Fixed Effects
Bond Y Y Y
Year x Quarter Y Y Y Y
Panel B: Full Sample and controls
*
WVRPss _{c,t-1} -0.01 -0.01 -0.01 -0.01 -0.01
(-4.85) (-4.76) (-4.84) (-4.76)
VDD /VDD 0- 2 0- 2 0- 2
$XDD_i/XDDss_i$ $0e-3$ $0e-3$ $0e-3$ $0e-3$ $0e-3$
(-1.79) (-2.48) (-2.51) (-2.46)
(-1.79) (-2.48) (-2.51) (-2.46) TTM_{t-1} $0.7e-3$ $1.1e-3$ $1.1e-3$ $1.1e-3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: This table reports monthly panel regressions with the dependent variable being the corporate bond credit spreads (at time t) regressed on t-1. WVRPss $_{c,t-1}$ is the difference between the WIVOLss $_{c,t-1}$ and WRVOLss $_{c,t-1}$ for county c at time t-1. $XDD_{c,t-1}/XDDss_{c,t-1}$ is the forecasted value of the end of month (seasonal strip) futures contract payoff for county c at time t-1. Corporate bond controls include the remaining time to maturity (TTM, in years) and the credit rating of bond i at time t-1. Panel A reports the results for the full sample of corporate bonds and Panels B and C report the panel regression results for the subsets of corporate bonds with time to maturity less and greater than 15 years respectively. All regression estimates include bond fixed effects and year quarter fixed effects. T-statistics are in parentheses under the coefficients with standard errors clustered by bond.