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Exploring drift bias in asymmetric jump 

estimation and its implications for volatility 

forecasting  
 

Abstract 

The intraday log returns of financial assets are conventionally assumed to follow a drift-

diffusion process. While the drift term is ignored by the infill asymptotic theory, under the 

assumption…, it may, in fact, be large for realistic samples of observations. Consequently, the 

volatility estimators relying on assembling intraday logarithm returns may be biased. In an 

extensive simulation study, we show that for the realistic samples the drift component has a 

non-negligible impact on the estimation accuracy of upside and downside volatility estimators, 

which leads to a dramatic bias for the jump asymmetry estimators made from the difference 

between upside and downside volatility estimators. We propose an alternative construction of 

the volatility estimators and observe significant improvements in the estimation accuracy in 

the presence of non-negligible drift. The new jump asymmetry estimators, which are 

constructed from the modified volatility estimators, also have significantly reduced drift bias. 

In an empirical application, we compare the new jump asymmetry estimators with their 

original versions that include drift bias, for forecasting volatility using a sample of 25 years of 

high frequency log returns of the S&P 500 stock price index. The empirical results show that 

the predictability of the original jump asymmetry estimators found in the literature is almost 

exclusively due to drift bias, whereas the new jump asymmetry estimators, which measure the 

jump asymmetry much more precisely, show only limited forecasting power. We show that 

extracting the drift bias from the jump asymmetry estimators results in significant out-of-

sample volatility forecast improvements. 
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1 Introduction 

It is widely believed that asset prices obey an Ito semi-martingale process. In the high-

frequency financial econometrics literature, asset prices are typically modelled as an Ito semi-

martingale process with two main components: drift and diffusion. With locally bounded 

coefficients of drift and volatility (as in the volatility estimation literature), the drift term is 

dominated by the diffusion process. In other words, the price move (or intraday log return) is 

always dominated by the diffusion process if the time interval of the move is small. Because 

the drift component is omittable in the intraday log returns, these volatility estimators, which 

attempt to estimate volatility via an aggregate function of intraday log returns over an 

estimation window (based on the asymptotic theories), are unaffected by the presence of a non-

zero drift. Typical volatility estimators include the Realized Variance (𝑅𝑉) by Andersen and 

Bollerslev (1998), which attempts to measure volatility by aggregating intraday squared log 

returns over an estimation window, the Bipower Variation (𝐵𝑉) by Barndorff-Nielsen and 

Shephard (2004), which attempts to measure volatility without the interference of occasional 

price jumps by aggregating the multiplication of neighbouring intraday absolute log returns 

over an estimation window, and Realized Semivariance (𝑅𝑆 ) by Barndorff-Nielsen et al. 

(2008)), whose positive version (𝑅𝑆+) attempts to measure the upside volatility by aggregating 

positive intraday squared log returns and negative version (𝑅𝑆−) attempts to measure the 

downside volatility by aggregating negative intraday squared log returns over an estimation 

window.  

For the real financial market, there is often only a finite sample of price observations as the 

time interval of the price move is not possible to be infinitesimal in practise. A realistic and 

popular time interval in the literature for intraday log returns is 5 minutes. Recent research by 

Laurent and Shi (2020) shows that the 5-minute interval is not sufficiently small to ensure that 
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the drift component in log returns is ignorable. As a consequence, the volatility estimators, 

built upon aggregated log returns, will capture both volatility and drift components and thus be 

biased in estimating the volatility. For example, 𝑅𝑉 and 𝐵𝑉 based on the 5-minute log returns 

will capture both volatility and drift variation thus overstating the volatility level, and this 

estimation issue has been evidenced by Laurent and Shi (2020). Additionally, although the bias 

of 𝑅𝑆 due to finite sample drift is also expected to be large, existing studies have not yet studied 

the bias due to a nonzero drift in 𝑅𝑆. My first contribution to the literature in this paper is to 

investigate the bias of 𝑅𝑆 in the presence of a nonzero drift via a Monte Carlo study. As 

expected, the results show that the drift is non-zero and the bias of 𝑅𝑆 is not ignorable. 𝑅𝑆+ 

tends to strongly overstate (weakly understate) the upside volatility in the presence of a positive 

(negative) drift. 𝑅𝑆− tends to strongly overstate (weakly understate) the downside volatility in 

the presence of a negative (positive) drift. 

To reduce this finite sample bias of the volatility estimators, Laurent and Shi (2020) 

suggest removing the drift component in the log returns before computing these estimators. In 

other words, they propose computing the volatility estimators on centred log returns as opposed 

to raw log returns. Their theoretical and simulation results suggest that this modification leads 

to a dramatic improvement in the estimation accuracy of volatility, especially when the drift 

deviates far away from zero. However, Laurent and Shi (2020) focus on the 𝑅𝑉  and 𝐵𝑉 

estimators and do not consider semi-variances. To reduce this finite sample bias of 𝑅𝑆+ and 

𝑅𝑆−, We compute the 𝑅𝑆+ and 𝑅𝑆− based on the centred log returns. The Monte Carlo results 

show that this modification leads to a dramatic improvement in the estimation accuracy of 

upside volatility and downside volatility. 

Volatility plays a central role in finance. It is the most important type of market risk and is 

fundamental to asset pricing, portfolio choice, risk management, and financial market 

regulation. Volatility estimators have been used extensively in this field. The finite sample bias 
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of volatility estimation arising from the presence of a non-zero drift is therefore expected to 

have many consequences. For example, Laurent and Shi (2020) demonstrate that the finite 

sample bias of the volatility estimators could lead to the unsatisfactory performance of jump 

detection procedures by Lee and Mykland (2008). There may be other consequences of the 

finite sample bias of the volatility estimators. One consequence, which has not yet been 

explored in the literature, is the unsatisfactory accuracy of estimation of price jumps since 

combinations of the volatility estimators are commonly used for jump estimation (Barndorff-

Nielsen and Shephard, 2004, Barndorff-Nielsen et al., 2008, Christensen et al., 2014).  

We inspect the drift bias of all possible combinations of 𝑅𝑉, 𝐵𝑉, 𝑅𝑆+, and 𝑅𝑆− estimators 

for estimating jumps, based on the simulation results in this chapter, along with the simulation 

results in Laurent and Shi (2020). The inspection results show that only the estimation bias of 

𝑅𝑆+ − 𝑅𝑆−  by Barndorff-Nielsen et al. (2008) for estimating the jump asymmetry (the 

difference between positive jumps and negative jumps) tend to be large, while the biases of 

remaining combinations are generally small. Motivated by this result, we investigate the bias 

of 𝑅𝑆+ − 𝑅𝑆− in detail. Specifically, we conduct a Monte Carlo study for the bias of 𝑅𝑆+ −

𝑅𝑆− in the presence of a nonzero drift under various cases of jump asymmetry. The main 

conclusion is that 𝑅𝑆+ − 𝑅𝑆− will be significantly upward biased due to a positive drift and 

significantly downward biased due to a negative drift.  

To address the finite sample issue of the jump asymmetry estimator, we propose an 

alternative construction of this estimator by the difference between modified 𝑅𝑆+ and 𝑅𝑆−. 

The Monte Carlo study shows that this modified estimator leads to a significant improvement 

in the estimation accuracy in the presence of a non-zero drift. Given this result, we propose 

measuring the jump asymmetry by the modified jump asymmetry estimator and defining the 

drift bias of the original jump asymmetry estimator by the gap between this estimator and its 

modified version. 
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The log prices are contaminated by noise for ultra high-frequency data, which results in an 

additional noise component in the ultra high-frequency log returns. Therefore, the volatility 

estimators including 𝑅𝑉, 𝐵𝑉, 𝑅𝑆+, and 𝑅𝑆− will largely overstate the volatility. To improve 

the estimation of volatility with noisy ultra high-frequency data, one popular method is 

calculating the volatility estimators using pre-averaged returns (Podolskij and Vetter, 2009, 

Jacod et al., 2009, Christensen et al., 2014), which average noisy ultrahigh-frequency log prices 

within an appropriate window. 

Despite the drift of log returns becoming extremely close to zero as the sampling frequency 

increases, the drift of the pre-averaged returns may be of a non-negligible magnitude since the 

pre-averaged returns are fundamentally an average of some low-frequency returns. As a 

consequence, the bias of the noise-modified volatility estimators due to a non-zero drift will 

also be large. To reduce the bias, it is natural to compute these volatility estimators on centred 

pre-averaged returns. As expected, the result of the Monte Carlo study in this paper shows that 

the bias of the noise-modified 𝑅𝑉, 𝐵𝑉, 𝑅𝑆+, and 𝑅𝑆− volatility estimators tend to be large and 

have similar patterns as their original versions, and the bias of the (drift-) modified versions 

are substantially reduced. In addition, the simulation results also show that the drift bias of the 

noise-modified jump asymmetry estimator is large and has similar patterns as its original 

version, and the bias of the noise-modified jump asymmetry estimator which is computed on 

centred pre-averaged return is much smaller. 

The jump asymmetry is one of the most important types of tail risk and is fundamental to 

volatility forecasting, asset pricing, and financial market regulation. The finite sample bias of 

the jump asymmetry estimation arising from the presence of a non-zero drift is therefore 

expected to have many secondary impacts. As an example, we demonstrate in this paper that 

the finite sample bias of the jump asymmetry estimator 𝑅𝑆+ − 𝑅𝑆−  could lead to the 

misleading predictability of the jump asymmetry on future volatility. We show that the 
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predictability of the jump asymmetry estimator 𝑅𝑆+ − 𝑅𝑆−  found in Patton and Sheppard 

(2015) is almost exclusively due to its bias due to a non-zero drift, and the modified estimator, 

which measures the jump asymmetry much more accurately, indicates only limited predictive 

power. Additionally, we show that extracting the drift bias from the 𝑅𝑆+ − 𝑅𝑆−  leads to 

significantly better out-of-sample forecasting accuracy. Finally, these forecasting results are 

consistent for ultra high-frequency data, using noise-modified realized semi-variances. 

The findings of the empirical application in this paper imply that the jump information is 

not important to volatility forecasting, which provides more evidence to a debate in existing 

research on the predictability of jumps (Andersen et al., 2007, Corsi et al., 2010, Corsi and 

Renò, 2012, Santos and Ziegelmann, 2014, Sévi, 2014, Patton and Sheppard, 2015, Prokopczuk 

et al., 2016, Bollerslev et al., 2021, Caporin, 2023). My findings of the prominent predictability 

of drift bias are novel to the literature. 

The rest of this paper is structured as follows. Section 2 revisits volatility estimation for the 

drift-diffusion processes. Section 3 introduces the jump asymmetry estimation for the drift-

diffusion processes. Sections 4 and 5 present the estimation of volatility and jump asymmetry 

for ultra high-frequency data, respectively. Section 6 reports the descriptive statistics for the 

volatility and jump asymmetry estimators applied to the US stock markets. Section 7 shows 

the empirical application of these estimators for volatility forecasting. Section 8 concludes. 
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2 Volatility estimation for drift-diffusion processes 

A conventional assumption is that the logarithmic prices process follows a semi-

martingale with no arbitrage. Specifically, log prices 𝑝𝑡 are assumed to follow a drift-diffusion 

process, 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝜅𝑡𝑑𝜍𝑡 , 1 ≤ 𝑡 ≤, (2.1) 

where 𝜇𝑡  is the drift process, 𝜎𝑡  is the càdlàg stochastic volatility process, 𝑊𝑡  is a standard 

Brownian motion, 𝜅𝑡 represents the random jump size at time 𝑡, and the counting process 𝜍𝑡 

denotes a finite activity counting process with intensity 𝜆𝑡, which may be constant or stochastic 

(e.g., 𝜍𝑡  is an independent Poisson counting process with constant intensity, 𝜆 ), and 𝜅𝑡 

represents the random jump sizes. The price variation or volatility (risk) is defined in this paper 

by the quadratic variation of Equation (2.1), 2 

𝑉𝑡 = ∫ 𝜎𝑡𝑠
2

𝑇

0

+ ∑ 𝜅𝑠
2

1<𝑠≤𝑇

, (2.2) 

where 𝑉𝑡 indicates the quadratic variation, ∫ 𝜎𝑡𝑠
2𝑇

0
 denotes the component of quadratic variation 

due to the continuous part of the price process (or continuous variation, or integrated 

variation)T, ∑ 𝜅𝑠
2

1<𝑠≤𝑇 , which is the summation of squared jumps, denotes the component of 

quadratic variation due to the discontinuous part of the price process (or jump variation), with 

𝜅𝑠  capturing the size of a jump if present. If the signs of jumps are considered, the jump 

variation of Equation (2.2) can be further decomposed based on the positive and negative jumps, 

𝑉𝑡 = ∫ 𝜎𝑡𝑠
2

𝑇

0

+ ∑ 𝜅𝑠
2𝐼(𝜅𝑠 > 0)

1<𝑠≤𝑇

+ ∑ 𝜅𝑠
2𝐼(𝜅𝑠 < 0)

1<𝑠≤𝑇

, (2.3) 

where 𝐼[. ] is an indicator function, ∑ 𝜅𝑠
2𝐼(𝜅𝑠 > 0)1<𝑠≤𝑇  denotes the component of quadratic 

variation due to the discontinuous part of the upside price process (or positive jump variation), 

 
2 This chapter will use the terms volatility and quadratic variation interchangeably.  
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and ∑ 𝜅𝑠
2𝐼(𝜅𝑠 < 0)1<𝑠≤𝑇  denotes the component of quadratic variation due to the discontinuous 

part of the downside price process (or negative jump variation). 

Assume 𝑀 + 1  log prices 𝑝𝑡𝑖
 are observed at equally spaced intervals 0 = 𝑡0 < 𝑡1 < 

𝑡2 … < 𝑡𝑀 = 𝑇 = 1 (within [0, 𝑇], there are overall 𝑀 intervals) for the intraday session of a 

trading day 𝑡 (e.g., 09:30-16:00 for the New York Stock Exchange). The 𝑖th intraday returns 

are calculated by 𝑟𝑡𝑖 = 𝑝𝑡𝑖
− 𝑝𝑡𝑖−1

 thus there are overall 𝑀 intraday returns within [0, T]. This 

paper focuses on volatility for the intraday session and ignores the overnight return, following 

the vast realized volatility literature (Andersen et al., 2007, Corsi, 2009, Bollerslev et al., 2016, 

Duong and Swanson, 2015, Patton and Sheppard, 2015). 

To estimate the quadratic variation 𝑉𝑡  within [0, 𝑇] , Andersen and Bollerslev (1998) 

proposed a Realized Variation or Realized Volatility (RV), which is defined by the aggregation 

of 𝑀 squared intraday returns within [0, 𝑇],  

𝑅𝑉𝑡 = ∑𝑟𝑡𝑖
2

𝑀

𝑖=1

 (2.4) 

They show that the probability limit of 𝑅𝑉 converges to the quadratic variation as the 

number of observations (𝑀) becomes larger and hence each interval gets smaller, 

𝑅𝑉𝑡 = ∑𝑟𝑡𝑖
2

𝑀

𝑖=1

𝑝
→ ∫ 𝜎𝑡𝑠

2
𝑇

0

+ ∑ 𝜅𝑠
2

1<𝑠≤𝑇

,   as 𝑀 → ∞ (2.5) 

To estimate the continuous variation only in the presence of jumps, Barndorff-Nielsen and 

Shephard (2006) proposed Bipower Variation (BV), defined by the summation of appropriately 

scaled cross-products of adjacent high-frequency absolute returns,  

𝐵𝑉𝑡 =
𝜋

2
∑|𝑟𝑡𝑖−1

||𝑟𝑡𝑖|

𝑀

𝑖=2

 (2.6) 
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As noted by Barndorff-Nielsen and Shephard (2006), BV  converges in probability to 

continuous variation if 𝑀 becomes large, 

𝐵𝑉𝑡 =
𝜋

2
∑|𝑟𝑡𝑖−1

||𝑟𝑡𝑖|

𝑀

𝑖=2

𝑝
→ ∫ 𝜎𝑡𝑠

2
𝑇

0

,   as 𝑀 → ∞. (2.7) 

Volatility can also be separated into upside and downside components as proposed by 

Barndorff-Nielsen et al. (2008). The upside part of the volatility enables one to know the 

possibility of prices rising. And the downside part of the volatility enables one to know the risk 

of prices falling. To measure the upside and downside parts of the volatility, Barndorff-Nielsen 

et al. (2008) suggest using the positive realized semi-variance and negative realized semi-

variance, respectively. Specifically, the positive realized semi-variance (𝑅𝑆+) is defined by 

aggregating all positive squared log returns, 

𝑅𝑆𝑡
+ = ∑𝑟𝑡𝑖

2

𝑀

𝑖=1

𝐼(𝑟𝑡𝑖 > 0) (2.8) 

and the negative realized semi-variance (𝑅𝑆−) is defined by aggregating all negative squared 

log returns, 

𝑅𝑆𝑡
+ = ∑𝑟𝑡𝑖

2

𝑀

𝑖=1

𝐼(𝑟𝑡𝑖 > 0). (2.9) 

Additionally, Barndorff-Nielsen et al. (2008) investigate the asymptotic properties of both 

realized semi-variances, relating to the continuous variation and jumps. Specifically, they show 

that as the number of observations (𝑀) increases, the probability limit of the positive realized 

semi-variance converges to one-half of the continuous variation plus the jump variation only 

due to positive jumps (or positive jump variation), 

𝑅𝑆𝑡
+

𝑝
→

1

2
∫ 𝜎𝑡𝑠

2
𝑡

0

+ ∑ 𝜅𝑠
2𝐼(𝜅𝑠 > 0)

1<𝑠≤𝑡

,   as 𝑀 → ∞, (2.10) 
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and the probability limit of the negative realized semi-variance converges to one-half of the 

continuous variation plus the jump variation only due to negative jumps (or negative jump 

variation), 

𝑅𝑆𝑡
−

𝑝
→

1

2
∫ 𝜎𝑡𝑠

2
𝑡

0

+ ∑ 𝜅𝑠
2𝐼(𝜅𝑠 < 0)

1<𝑠≤𝑡

,   as 𝑀 → ∞. (2.11) 

It is important to note that there is no variation due to drift in Equation (2.5) and Equation 

(2.11). This is because as 𝑀 → ∞ the drift component is ignored because … relative to the 

volatility in the intraday log returns. For example, for Equation (2.1), the drift and volatility 

coefficients of the Ito semi-martingale are bounded by stochastic processes. Let Δ𝑀 denote the 

interval between observations, Δ𝑀 = 𝑇/𝑀 . For Δ𝑀 ≤ 𝑡 ≤ 𝑇 and for Δ𝑀 → 0 (or Δ𝑀 → ∞), 

then 

∫ 𝜇𝑠

𝑡

𝑡−Δ𝑀

𝑑𝑠 = 𝑂𝑝(Δ𝑀), (2.12) 

and 

∫ 𝜎𝑠

𝑡

𝑡−Δ𝑀

𝑑𝑊 = 𝑂𝑝(Δ𝑀
1/2

), (2.13) 

where 𝑂𝑝(𝑔(𝑥)) denotes an upper bound (𝑔(𝑥)) on the growth rate of the function. It can be 

seen from Equations (2.9) and (2.10) that the upper bound of drift Δ𝑀 is omittable relative to 

that of the volatility Δ𝑀
1/2

 as 𝑀 → ∞  ( Δ𝑀 Δ𝑀
1 2⁄⁄ = Δ𝑀

1 2⁄
= 1/√𝑀 → 0  as 𝑀 → ∞ ). This 

indicates that drift is much smaller than the volatility as the number of observations becomes 

larger. In other words, the volatility always dominates the intraday returns. 

The above negligibility of drift requires an infinite number of observations (𝑀 → ∞). 

However, in practice, an infinite number of observations for asset prices is not possible. The 

low-frequency data is often used for volatility estimation. For example, the 5-minute frequency 

data, which defines only 79 observations for US stocks during the intraday trading sessions, is 

often used for volatility estimation, since 5 minutes are preferred to balance the trade-off 
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between the distortion from market microstructure noise and estimation efficiency from an 

increasing number of observations (Andersen et al., 2000, Andersen et al., 2001, Corsi, 2009, 

Park and Linton, 2012), or since ultra high-frequency data for asset prices are not always 

available. Under the low-frequency sampling scheme, the drift is not necessarily ignorable 

compared to that of the volatility in the log returns. For example, for 5-minute frequency 

sampling during the official trading session of the US stock market (78 intraday returns), the 

upper bound of the drift is not ignorable compared to that of the volatility in the log return as 

Δ𝑀 Δ𝑀
1 2⁄⁄ = Δ𝑀

1 2⁄
= 1 √78⁄ = 11.3%. Moreover, as shown by Laurent and Shi (2020), the 

level of drift may be empirically much larger than the level of volatility (e.g., for the US stock 

market). This further supports that the proportion of drift in the intraday log returns is not 

ignorable.  

Motivated by the suggestion that drift is a non-negligible component of the intraday log 

returns for the low-frequency sampling schemes, Laurent and Shi (2020) investigate whether 

this fact leads to bias in the estimation of volatility using the popular RV and BV measures, 

since they are both computed by aggregating intraday returns. To study the drift bias in RV and 

BV, Laurent and Shi (2020) assume that log prices follow a constant drift-diffusion process. 

Specifically, the constant drift-diffusion process assumes that both drift, 𝜇𝑡, and volatility, 𝜎𝑡, 

in Equation (2.1) are constant, 

𝑑𝑝𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝜅𝑡𝑑𝑞𝑡, 1 ≤ 𝑡 ≤ 𝑇, (2.14) 

where 𝜇 is the constant drift parameter and 𝜎 denotes the constant volatility. For the generality 

of the results, they extend the constant drift-diffusion process to a more comprehensive linear 

drift-diffusion process, where the drift coefficient is a linear function of the log prices and the 

diffusion coefficient 𝜎𝑡 is an adapted and cádlág volatility process, 

𝑑𝑝𝑡 = 𝜃𝑝𝑡𝑑𝑡 + 𝜎𝑡d𝑊𝑡 + 𝜅𝑡𝑑𝑞𝑡, 1 ≤ 𝑡 ≤ 𝑇, (2.15) 
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where 𝜃 is a constant parameter. As drift is a linear function of the log price, its magnitude is 

time-varying. Laurent and Shi (2020) suggest measuring the magnitude of linear drift within 

an estimation window by its average (measured by median) within this window, and they show 

that given a fixed sampling frequency the drift is an increasing function of 𝜃 and the initial 

value of the log price of the day. And they also show that the sign of the drift is consistent with 

the sign of 𝜃. 

 Based on the log-returns of the constant and linear drift-diffusion model, Laurent and Shi 

(2020) show that for low-frequency data, RV will inherit the dynamics of the drift sample path 

process in addition to the continuous sample path process and the jump process. Meanwhile, 

BV will inherit the dynamics of drift sample path process in addition to the continuous sample 

path process. Since RV attempts to estimate the continuous variation plus jump variation and 

BV attempts to estimate the continuous variation, the non-zero drifts will result in an upward 

bias of RV and BV for low-frequency data. 

To mitigate the drift bias in volatility estimators under low-frequency data, Laurent and 

Shi (2020) suggest removing the drift component before calculating volatilities or, equivalently, 

computing the volatility estimators on centred log returns. For centring, Laurent and Shi (2020) 

suggest the median, as the median is much less sensitive to jumps, which is assumed to occur 

occasionally by the consensus in the literature. Then, the realized variance and bipower 

variation computed on the returns centred by the median within the estimation window 

(indicated by RV∗ and BV∗, respectively) are defined by, 

𝑅𝑉𝑡
∗ = ∑(𝑟𝑡𝑖 − ℳ𝑡)

2
𝑀

𝑖=1

, (2.16) 

 

𝐵𝑉𝑡
∗ =

𝜋

2
∑|𝑟𝑡𝑖−1

− ℳ𝑡||𝑟𝑡𝑖 − ℳ𝑡|

𝑀

𝑖=2

, (2.17) 



 

23 
 

where ℳ𝑡 = median(𝑟𝑡1 …𝑟𝑡𝑀) denotes the median of 𝑀  log returns for day 𝑡  that are 

involved in the computation of the volatilities for that day. The derivation and simulation 

results by Laurent and Shi (2020) show that in the presence of non-zero drift, the bias of RV∗ 

and BV∗ is extremely close to zero and is ignorable relative to that of RV and BV, respectively. 

Since 𝑅𝑆+  and 𝑅𝑆−  are also calculated using log returns with a non-negligible drift 

component for low-frequency data, the drift bias in 𝑅𝑆+ and 𝑅𝑆− is expected to be large. This 

bias should be substantially reduced by computing 𝑅𝑆+ and 𝑅𝑆− based on centred log returns, 

when the drift component is largely attenuated. The modified realized semi-variances are 

defined as the sum of squared positive or negative returns centred by their median within the 

estimation window,  

𝑅𝑆𝑡
∗,+ = ∑(𝑟𝑡𝑖 − ℳ𝑡)

2
𝑀

𝑖=1

𝐼(𝑟𝑡𝑖 − ℳ𝑡 > 0), (2.18) 

 

𝑅𝑆𝑡
∗,− = ∑(𝑟𝑡𝑖 − ℳ𝑡)

2
𝑀

𝑖=1

𝐼(𝑟𝑡𝑖 − ℳ𝑡 < 0), (2.19) 

where 𝑅𝑆𝑡
∗,+

and 𝑅𝑆∗,−  indicate the modified positive and negative realized semi-variances, 

respectively. Accordingly, the sum of these two modified realized semi-variances (𝑅𝑆∗,+ and 

𝑅𝑆∗,−) equals the modified realized variance, 

𝑅𝑉𝑡
∗ = 𝑅𝑆𝑡

∗,+ + 𝑅𝑆𝑡
∗,−. (2.20) 

The expected bias of 𝑅𝑆+ , 𝑅𝑆− , 𝑅𝑆∗,+  and 𝑅𝑆∗,−  has not yet been considered in the 

literature. Therefore, my investigation provides a novel contribution. To study the bias in 

realised semi-variances in more detail, this paper conducts a Monte Carlo study when the Data-

Generating Process (DGP) is a drift–diffusion process. For the drift–diffusion process, this 

paper only reports the linear version (Equation (2.12)) for two reasons. First, the linear drift-

diffusion process contains a more general volatility dynamic and thus has a wider application 
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than the constant drift-diffusion process. Second, We avoid repetition and save space by 

reporting the results from the constant drift case in Appendix XX. Since the conclusions made 

from both simulation exercises are almost identical, We only report the most relevant 

framework in the chapter.  

Additionally, the biases of the semi-variances are studied only via the simulation in this 

chapter. The exact derivation of the bias of the semivariances under the linear drift–diffusion 

process is rather complicated and left for future research. There is a precedent for this approach 

to research. The Monte Carlo approach without technical derivation has already been applied 

by Laurent and Shi (2020) to gauge the bias of Bipower Variation under a linear drift-diffusion 

process, since the derivation of such bias is also not available due to its complexity. 

Furthermore, the simulation results in the paper are not intended to be comprehensive, but 

rather to reflect a realistic application of the linear drift-diffusion models.  

Following Laurent and Shi (2020), the DGP of the linear drift-diffusion process is defined 

by a discrete version of Equation (2.15), 

𝑝𝑡𝑖
= exp(𝜃Δ𝑀)𝑝𝑡𝑖−1

+ 𝜂𝑡𝑖
+ ∑𝜙𝑡𝑖

𝑗
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

, (2.21) 

where 𝑝𝑡𝑖
 denotes the log price, 𝐼𝑡𝑖

𝑗
 is a dummy variable that randomly assigns the occurrence 

of the 𝑗th jump with corresponding jump size 𝜙𝑡𝑖

𝑗
, 𝑘 indicates the number of jumps, and 𝜂𝑡𝑖

 is 

the diffusive volatility process, which is obtained by the Euler discretization of the continuous 

GARCH(1,1) process by Nelson (1990), 

𝜂𝑡𝑖
= 𝜎𝑡𝑖√Δ𝑀𝜖𝑡𝑖

, 

𝜎𝑡𝑖
2 = 𝜅(𝜔 − 𝜎𝑡𝑖−1

2 )Δ𝑀 + √2𝜆𝜅𝜎𝑡𝑖−1

2 √Δ𝑀𝑣𝑡𝑖
, 
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with 𝜅 > 0, 𝜔 > 0, and 0 < 𝜆 < 1, and 𝜖 and 𝑣 are two independent standard normal random 

variables. As shown by Andersen and Bollerslev (1998), the unconditional variance (𝐸(𝜎𝑡𝑖
2)) 

of this discretized GARCH(1,1) model is 𝜔. 

The expected bias of 𝑅𝑆+ under the DGP is defined by this estimator minus half of the 

unconditional variance and positive jump variation, 

bias of 𝑅𝑆+ = 𝔼{𝑅𝑆𝑡
+ − [

1

2
𝜔 + ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
> 0)

𝑀

𝑖=1

]}, (2.22) 

and the expected bias of 𝑅𝑆− is defined by this estimator minus half of the unconditional 

variance and negative jump variation, 

bias of 𝑅𝑆− = 𝔼{𝑅𝑆𝑡
− − [

1

2
𝜔 + ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
< 0)

𝑀

𝑖=1

]}. (2.23) 

The expected bias of 𝑅𝑆∗,+ under the DGP is defined by this estimator minus half of the 

unconditional variance and positive jump variation, 

bias of 𝑅𝑆∗,+ = 𝔼{𝑅𝑆𝑡
∗,+ − [

1

2
𝜔 + ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
> 0)

𝑀

𝑖=1

]}, (2.24) 

and the expected bias of 𝑅𝑆∗,− is defined by this estimator minus half of the unconditional 

variance and negative jump variation, 

bias of 𝑅𝑆∗,− = 𝔼{𝑅𝑆𝑡
∗,− − [

1

2
𝜔 + ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
< 0)

𝑀

𝑖=1

]}. (2.25) 

The parameter setting in Equation (2.16) is the same as in Laurent and Shi (2020) and 

Andersen and Bollerslev (1998): one negative jump is allowed per day with a size equal to 60% 

of the spot volatility (𝜙𝑡𝑖
1 = −0.6𝜎), 𝜅 = 0.035, 𝜆 = 0.296, 𝜔 = 10−4, the initial volatility for 

the GARCH(1,1) process is set as the unconditional volatility of this process (√𝜔), and 𝑊 and 

𝐵 are independent standard Brownian motions. For the ranges of the values of 𝜃 and 𝑝𝑡0 for 
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determining the drift, this paper follows Laurent and Shi (2020): 𝜃 is set from -0.05 to 0.05, 

the initial log price 𝑝𝑡0 varies from 0 to 7. Besides, We assume that the asset is traded 6.5 hours 

per day as is the case on the NYSE and the Nasdaq stock exchanges (from 9:30am to 4:00pm). 

In other words, there are 23401 1-second simulated log prices over one day. The sampling 

interval is set to 𝛥𝑀 =  1/390 and 𝛥𝑀 =  1/78 for the 1- and 5-minute data, respectively. 

Following Laurent and Shi (2020), the simulations are repeated 104 times and the expectation 

(𝔼) is realized by averaging these repetitions. 

Figure 2.1 plots the expected bias of realized semi-variance estimators (𝑅𝑆+ and 𝑅𝑆−) as 

the red surfaces, along with the modified realized semi-variance estimators (𝑅𝑆∗,+ and 𝑅𝑆∗,−) 

depicted in blue. Recall that the drift of log returns increases with |𝜃| and the initial value 𝑝𝑡0, 

with the sign of the drift consistent with the sign of . There is an upward bias in 𝑅𝑆+ when the 

drift is positive (𝜃 is positive and 𝑝𝑡0 is not zero), and this bias becomes larger as the sampling 

frequency decreases and as the magnitude of the positive drift increases. There is a small 

downward bias in 𝑅𝑆+ when the drift is negative (𝜃 is negative and 𝑝𝑡0 is not zero), but the 

magnitude of this bias is not very sensitive to the changes of the negative drift. Additionally, 

Figure 2.1 shows that the bias in 𝑅𝑆− due to the non-zero drift is symmetrical to that of 𝑅𝑆+: 

there is an upward bias of 𝑅𝑆− for a negative drift, while there is a small downward bias of 

𝑅𝑆+ for the positive drift. As expected, the biases of the modified realized semi-variances are 

much smaller than those of their respective original estimators in finite samples, with the biases 

extremely close to zero. The discrepancy becomes increasingly visible as the drift value 

deviates further away from zero. 
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Figure 2.1. Bias of 𝑅𝑆+ and 𝑅𝑆− under the linear drift-diffusion process. 

Notes: This figure reports the biases of 𝑅𝑆+, 𝑅𝑆−, 𝑅𝑆∗,+, and 𝑅𝑆∗,− under the linear drift-diffusion 

process, with the biases calculated by Equations (2.22), (2.23), (2.24), and (2.25), respectively. 
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3 Jump asymmetry estimation for drift-diffusion processes 

The imprecise estimation of  𝑅𝑉, 𝐵𝑉, 𝑅𝑆+ and 𝑅𝑆− due to a non-zero drift may lead to the 

unsatisfactory accuracy of estimation of price jumps, as the combination of these volatility 

estimators is commonly used for estimating jumps in the literature (Barndorff-Nielsen and 

Shephard, 2004, Barndorff-Nielsen et al., 2008, Christensen et al., 2014). 

The first combination is the difference between 𝑅𝑉 and 𝐵𝑉, which estimates the jump 

variation based on the asymptotic results by Barndorff-Nielsen and Shephard (2004), 

𝑅𝑉𝑡 − 𝐵𝑉𝑡

𝑝
→ ∑ 𝜅𝑠

2

1<𝑠≤𝑇

,   as 𝑀 → ∞. (3.1) 

Since 𝑅𝑉 and 𝐵𝑉 estimators are biased due to a non-zero drift for finite samples, the estimation 

of the jump variation may also be biased. However, as shown by Laurent and Shi (2020), the 

bias in both 𝑅𝑉 and 𝐵𝑉 is positive and comparable in the presence of a non-zero drift. By 

taking the difference of 𝑅𝑉 and 𝐵𝑉, a large proportion of the bias is removed. The drift bias 

thus has a small impact on the estimation of the jump variation. 

The second combination of RV and BV relates to identifying upside and downside jump 

variation. Specifically, this is calculated as the difference between 𝑅𝑆+  and a half of 𝐵𝑉 

(𝑅𝑆+ − 0.5𝐵𝑉), which, according to the asymptotic results of Barndorff-Nielsen et al. (2008), 

estimates the positive jump variation, 

𝑅𝑆𝑡
+ −

1

2
𝐵𝑉𝑡

𝑝
→ ∑ 𝜅𝑠

2𝐼(𝜅𝑠 > 0)

1<𝑠≤𝑡

,   as 𝑀 → ∞. (3.2) 

As both 𝑅𝑆+ and 𝐵𝑉 are biased due to a non-zero drift, the estimation of the jump variation 

may also be biased. However, comparing Figure 1.1 in this paper with Figure 7 by Laurent and 

Shi (2020), the bias of both 𝑅𝑆+ and a half of 𝐵𝑉 are upward and comparable when the drift 

is positive. This indicates that a large proportion of the bias due to a positive drift is eliminated 

when taking the difference between 𝑅𝑆+ and a half 𝐵. 
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Analogously, the third combination is the difference between 𝑅𝑆− and a half of 𝐵𝑉 (or 

𝑅𝑆− − 0.5𝐵𝑉), which estimates the negative jump variation based on the asymptotic results 

by Barndorff-Nielsen et al. (2008), 

𝑅𝑆𝑡
− −

1

2
𝐵𝑉𝑡

𝑝
→ ∑ 𝜅𝑠

2𝐼(𝜅𝑠 < 0)

1<𝑠≤𝑡

,   as 𝑀 → ∞. (3.3) 

As both 𝑅𝑆− and a half of 𝐵𝑉 are biased due to a non-zero drift for the finite sample, the 

estimation of the negative jump variation may also be biased. However, comparing Figure 1.1 

in this paper with Figure 7 by Laurent and Shi (2020), the bias of both 𝑅𝑆− and a half of 𝐵𝑉 

are upward and comparable when the drift is negative. This indicates that a large proportion of 

the bias due to a negative drift cancels out when making the difference between 𝑅𝑆− and a half 

𝐵. 

Finally, the fourth example of combining RV and BV for the estimation of jump variation 

is the calculation of the difference between 𝑅𝑆+ and 𝑅𝑆−. Based on the asymptotic results of 

Barndorff-Nielsen et al. (2008), 𝑅𝑆+ − 𝑅𝑆− estimates the jump asymmetry or the signed jump 

variation, which is the difference between the positive jump variation and negative jump 

variation,  

𝑅𝑆𝑡
+ − 𝑅𝑆𝑡

−
𝑝
→ ∑ 𝜅𝑠

2𝐼(𝜅𝑠 > 0)

1<𝑠≤𝑡

− ∑ 𝜅𝑠
2𝐼(𝜅𝑠 < 0)

1<𝑠≤𝑡

, as 𝑀 → ∞. (3.4) 

The imprecise 𝑅𝑆+ and 𝑅𝑆− estimators are likely to lead to a biased estimation of the signed 

jump variation. Recall that in the presence of a non-zero drift, the bias in 𝑅𝑆+ always has the 

opposite sign to the bias in 𝑅𝑆−. Thus, the bias magnitude of 𝑅𝑆+ − 𝑅𝑆− equals the sum of 

the bias magnitude of 𝑅𝑆+ and 𝑅𝑆−, such that the bias in 𝑅𝑆+ − 𝑅𝑆− cumulates the biases in 

the individual 𝑅𝑆+ and 𝑅𝑆− components. It is notable that the bias in 𝑅𝑆+ − 𝑅𝑆− will be even 

greater than the bias in 𝑅𝑉 since the bias in 𝑅𝑉 adds the bias magnitudes of 𝑅𝑆+ and 𝑅𝑆− 
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(recall 𝑅𝑉 = 𝑅𝑆+ + 𝑅𝑆−) that are of opposite signs. This indicates that the drift bias of 𝑅𝑆+ −

𝑅𝑆− is expected to be substantial for the finite sample. 

Among the four examples above, only the drift bias of the signed jump estimator 𝑅𝑆+ −

𝑅𝑆− seems to be influential for either positive or negative drift. This motivates me to study the 

bias of 𝑅𝑆+ − 𝑅𝑆− in more detail. For presentation purposes, We use the notation 𝐽𝛥 to denote 

signed jumps, 𝑅𝑆+ − 𝑅𝑆− as  

𝐽𝑡
𝛥 = 𝑅𝑆𝑡

+ − 𝑅𝑆𝑡
−. (3.5) 

Since the estimation biases of 𝑅𝑆∗,+ and 𝑅𝑆∗,− are extremely close to zero, the estimation bias 

of the difference between 𝑅𝑆∗,+ and 𝑅𝑆∗,− should be small, thus measuring the signed jump 

variation much more accurately. Therefore, We define a modified signed jump variation 

estimator as the difference between 𝑅𝑆∗,+  and 𝑅𝑆∗,− . We use the notation 𝐽∗,𝛥  to indicate 

𝑅𝑆∗,+ − 𝑅𝑆∗,−, 

𝐽𝑡
∗,Δ = 𝑅𝑆𝑡

∗,+ − 𝑅𝑆𝑡
∗,−. (3.6) 

Again, the biases of 𝐽∗,𝛥 and 𝐽𝛥 are calculated via a Monte Carlo study when the DGP is 

the linear drift–diffusion process defined in Equation (2.21), with the volatility dynamics and 

the settings of all remaining parameters the same as in section 2. The formula for calculating 

the expectation of the bias in 𝐽Δ is defined by 

bias of 𝐽Δ = 𝔼{𝐽𝑡
Δ − 𝐽𝑡

DGP,Δ}, (3.7) 

where 𝐽𝑡
DGP,Δ

 is the calculation of the signed jump variation and is expressed by the difference 

between the aggregation of squared positive jumps and the aggregation of squared negative 

jumps, 

𝐽𝑡
DGP,Δ = ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
> 0)

𝑀

𝑖=1

− ∑∑(𝜙𝑡𝑖

𝑗
)
2
𝐼𝑡𝑖
𝑗

𝑘

𝑗=1

𝐼(𝜙𝑡𝑖

𝑗
< 0)

𝑀

𝑖=1

. (3.8) 

Analogously, the formula for calculating the bias of 𝐽∗,Δ is defined by, 
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bias of 𝐽∗,Δ = 𝔼{𝐽𝑡
∗,Δ − 𝐽𝑡

DGP,Δ}, (3.9) 

Since this section focuses on jump variation, the simulation exercise considers more 

comprehensive settings for including alternative jump components in the linear drift-diffusion 

process. The detailed descriptions are as follows: (1) there is a single large positive jump within 

a day with the size of the jump equal to 150% of the spot volatility, 𝜙𝑡𝑖
1 = 1.5𝜎𝑡𝑖

; (2) there is 

one large negative jump per day with the same size, 𝜙𝑡𝑖
1 = −1.5𝜎𝑡𝑖

; (3) there are two small 

positive jumps within a day and the size of each jump is equal to 60% of the spot volatility, 

𝜙𝑡𝑖

𝑗
= 0.6𝜎𝑡𝑖

, for 𝑗 = 1,2; and (4) there are two small negative jumps within a day of the same 

size, 𝜙𝑡𝑖

𝑗
= −0.6𝜎𝑡𝑖

, for 𝑗 = 1,2. The jump settings in (2) and (4) are identical to those applied 

by Laurent and Shi (2020), whereas the jump settings of (1) and (3) are identical except for the 

opposite jump signs. 

Figure 3.1 depicts the bias of 𝐽Δ and 𝐽∗,Δ (indicated by the red surface and blue surface, 

respectively) under a linear drift-diffusion process and for the four different jump settings. 

Panels (1) - (4) contain the simulation results for the jump settings (1) - (4), respectively. As 

shown in the figure, there is almost no difference between the two estimators if either 𝜃 or 𝑝𝑡0 

equals zero, meaning there is no bias. The bias of 𝐽Δ becomes larger as |𝜃| and 𝑝𝑡0 increase. 

When either 𝜃  or 𝑝𝑡0 are non-zero, the bias can be substantial relative to the signed jump 

variation. For example, for jump setting (1) in the top-left panel, the order of bias of 𝐽Δ is 10−3, 

which is considerable compared to the order of the signed jump variation (10−4) when both 𝜃 

or 𝑝𝑡0 are not zero. For the jump setting (4), the order of bias of 𝐽Δ is 10−3, which is again a 

big amount relative to the order of true signed jumps (10−5) when both 𝜃 or 𝑝𝑡0 are not zero. 

From Figure 3.1 it is also clear that the bias of 𝐽Δ increases as the magnitude of drift (the 

magnitude of 𝜃 and 𝑝𝑡0) increases, and the sign of the bias of 𝐽Δ is the same as the sign of the 

drift. 
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Figure 3.1. Bias of 𝐽𝑡
Δ and 𝐽𝑡

∗,Δ
 under the linear drift-diffusion process. 

 

Notes: Bias of 𝐽Δ is defined by Equation (3.7) and the bias of 𝐽∗,Δ is defined by Equation (3.9). Panel 

(1) shows the bias of 𝐽Δ and 𝐽∗,Δ when the log prices follow Equation (2.21) with one large positive 

jump during a day, 𝜙𝑡𝑖

1 = 1.5𝜎𝑖; Panel (2) reports the bias of 𝐽Δ and 𝐽∗,Δ when the log prices follow 

Equation (2.21) with one large negative jump during a day 𝜙𝑡𝑖

1 = −1.5𝜎𝑖; Panel (3) plots the bias of 𝐽Δ 

and 𝐽∗,Δ when the log prices follow Equation (2.21) with two small positive jumps during a day 𝜙𝑡𝑖

𝑗
=

0.6𝜎𝑡𝑖, for 𝑗 = 1,2; and Panel (4) depicts the bias of 𝐽Δ and 𝐽∗,Δ when the log prices follow Equation 

(2.21) with two small negative jumps during a day 𝜙𝑡𝑖

𝑗
= −0.6𝜎𝑡𝑖, for 𝑗 = 1,2. 

 

 
 

 

Figure 3.1 also shows that the bias in 𝐽∗,Δ is indistinguishable from zero, for non-zero 𝜃 and 

𝑝𝑡0 and for all four jump settings. The gap between the bias of 𝐽Δ and the bias of 𝐽∗,Δ becomes 

visible as 𝜃 and 𝑝𝑡0 move further away from zero. This indicates that the bias of 𝐽∗,Δ is much 

smaller than that of 𝐽Δ in the presence of a non-zero drift.  

Figure 3.2 reports the bias of 𝐽∗,Δ only, with the four jump settings coinciding with the four 

panel, identical to Figure 3.1 above. For all jump scenarios, the order of the bias of 𝐽∗,Δ is 106, 
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which is omittable compared to the order 103 of 𝐽Δ as in Figure 3.2. This implies that the bias 

of the modified signed jump variation estimator is non-zero if there is a non-zero drift, it is 

negligible compared to that of the original estimator. Additionally, Figure 3.2 shows that the 

bias of 𝐽∗,Δ is negligible relative to the signed jump variation. For example, the bias of 𝐽∗,Δ is 

merely around 2 × 106 (2.25⁄ × 10−4) = 0.89% of the signed jump variation for non-zero 𝜃 

and 𝑝𝑡0 in setting (1) where there is one large positive jump. For setting (4), where there are 

two small negative jumps, the bias of 𝐽∗,Δ is only about 3 × 10−6 (7.2⁄ × 10−5) = 4.17% of 

the signed jump variation for nonzero 𝜃 and 𝑝𝑡0. These suggest that 𝐽∗,Δ is always dominated 

by the signed jump variation, thus its drift bias is ignorable. 

 

Figure 3.2. Bias of 𝐽𝑡
∗,Δ

 for linear drift-diffusion process. 
 

Notes: The bias of 𝐽∗,Δ is defined by Equation (3.9). The jump settings in the four panels are consistent 

with those in Figure 3.1. 
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The findings of the Monte Carlo study of the bias of 𝐽Δ and 𝐽∗,Δ suggest the following four 

implications. First, the bias of 𝐽Δ is not negligible in the presence of non-zero (average) drift. 

Second, the bias of 𝐽Δ due to nonzero (average) drift is an increasing function of the size of the 

(average) drift. Third, in the presence of nonzero (average) drift, the bias of 𝐽∗,Δ is negligible 

compared to the bias of 𝐽Δ. Fourth, 𝐽∗,Δ is always dominated by the signed jump variation.  

The first implication suggests that 𝐽Δ as an estimator of signed jump variation may be 

biased by drift. It is important to isolate the drift bias and obtain a more accurate estimator of 

the signed jump variation for those who are interested in the practical use of the signed jump 

variation. For example, a less biased or more accurate estimate for the signed jump variation 

will benefit those who are interested in applying the signed jump variation to predict volatility. 

To separate the drift bias, first combine Equation (3.7) and Equation (3.9), 

𝔼(bias of 𝐽Δ) = 𝔼(𝐽Δ) − [𝔼(𝐽∗,Δ) − 𝔼(bias of 𝐽∗,Δ)]

= 𝔼(𝐽Δ) − 𝔼(𝐽∗,Δ) + 𝔼(bias of 𝐽∗,Δ). 
(3.10) 

Given that the bias of 𝐽∗,Δ  is negligible compared to the bias of 𝐽Δ , 𝔼(bias of 𝐽∗,Δ) ≈ 0 , 

Equation (3.10) becomes 

𝔼(bias of 𝐽Δ) ≈ 𝔼{𝐽Δ − 𝐽∗,Δ}. (3.12) 

Equation (3.12) suggests that the bias of 𝐽Δ can be proxied by the difference between 𝐽Δ and 

𝐽∗,Δ. By using the notation 𝐷𝑡
∆ to indicate the bias of 𝐽Δ, Equation (3.12) is expressed as 

𝐷𝑡
∆ = 𝐽Δ − 𝐽∗,Δ. (3.13) 

And Equation (3.13) can be easily transformed into 

𝐽Δ = 𝐽∗,Δ + 𝐷𝑡
∆. (3.14) 

Equation (3.14) suggests that the signed jump variation estimator (𝐽Δ) can be decomposed into 

the drift-modified signed jump variation estimator (𝐽∗,Δ), which is a proxy for the signed jump 

variation, and a drift bias component (𝐷Δ).
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4 Volatility estimation for ultra-high-frequency data 

Recent studies argue that the 5-minute frequency sampling is too sparse and thus associated 

with substantial data loss, which results in the estimation inefficiency of volatility (Jacod et al., 

2009, Podolskij and Vetter, 2009, Lee and Mykland, 2012, Aït-Sahalia et al., 2012, Hautsch 

and Podolskij, 2013, Christensen et al., 2014). As the estimation inefficiency tends to decrease 

in proportion to the reduced observed increments of the process as the sampling frequency 

decreases, these studies suggest using an ultra-high-frequency sampling scheme (e.g., tick-by-

tick) as a better alternative for estimating volatility. However, for the ultra-high frequency 

sampling, prices are often contaminated by noise, induced by microstructure effects, that arise 

from market imperfections such as bid-ask spreads and price discreteness (e.g., Niederhoffer 

and Osborne, 1966, Roll, 1984, Black, 1986). These noise-contaminated prices invalidate the 

asymptotic properties of volatility estimators (see Bandi and Russell (2008) or Hansen and 

Lunde (2006) among others). To reduce the bias in volatility estimation for noisy ultra-high 

frequency prices, noise-modified estimators are commonly applied in these studies (Hautsch 

and Podolskij, 2013). 

One might expect that with ultra-high frequency data, the drift component will be extremely 

close to zero, meaning that the drift bias in volatility estimators should be negligible. In other 

words, the drift bias measured as the discrepancy between the original volatility estimator and 

the modified estimator based on centred log returns will diminish. We show in this section that 

this is not true for the noise-modified volatility estimators built upon Christensen et al. (2014).3 

Assume that the log price, 𝑝𝑡𝑖
, is contaminated by noise, such that observed noisy price, 𝑝𝑡𝑖

⋄ , 

are expressed as 

 
3 Laurent and Shi (2020) study the drift bias of the noise-modified volatility estimators introduced by Podolskij 

and Vetter (2009), which are also based on the pre-averaged returns. This chapter focuses on the volatility 

estimators recommended by Christensen et al. (2014) since they are designed to estimate the jumps.  
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𝑝𝑡𝑖
⋄ = 𝑝𝑡𝑖

 + 𝑢𝑡𝑖
, with 0 < 𝑡𝑖 < , (4.1) 

where 𝑢𝑡𝑖
 is a noise process with mean zero and variance 𝑞2, is independent of 𝑝𝑡𝑖

, and is 

serially correlated with order 𝑠 − 1 . Therefore, the noisy log prices can be obtained by 

combining the noise process with the constant drift–diffusion process (Equation (3.10)), and 

We term this the constant drift–diffusion plus noise process. A linear drift–diffusion plus noise 

process of the noisy log prices is obtained similarly by combining the noise process with the 

linear drift–diffusion process (Equation (3.11)). 

To make inferences about volatility using noisy ultra-high frequency prices, Christensen 

et al. (2014) suggest making use of the pre-averaging approach, which was proposed by Jacod 

et al. (2009) and Podolskij and Vetter (2009). Intuitively, this approach locally smooths the 

observed price series, 𝑝𝑡𝑖
⋄ , so that the microstructure component 𝑢𝑡𝑖

 (almost) disappears under 

averaging. Returns to this pre-averaged price series can then be used to construct noise 

consistent measures of the jump variation components. To implement pre-averaging, 

Christensen et al. (2014) suggest calculating returns on the log prices that are pre-averaged in 

a local neighbourhood of 𝐻 observations, 

𝑟𝑡𝑖
⋄ =

1

𝐻
( ∑ 𝑝𝑡𝑖+𝑗

⋄

𝐻−1

𝑗=𝐻 2⁄

− ∑ 𝑝𝑡𝑖+𝑗

⋄

𝐻/2−1

𝑗=0

), (4.2) 

where 𝐻 = ⌈𝜃√𝑀⌉  with the parameter 𝜃 = 2  following Christensen et al. (2014). From 

Equation (4.2), it can be seen that this pre-averaged return is essentially the average of returns 

at 𝐻/2 − 1 frequency, which can be much lower than the ultra-high frequency. For example, 

for the 6.5-hour trading session at a 1-second frequency, the pre-averaging window is 𝐻 =

⌈2√23400⌉ = 305 seconds ≈ 5 minutes. From Equation (4.2), it can be seen that the pre-

averaged return 𝑟𝑡𝑖
⋄  is the average of 2.5-minute frequency returns, where drift may not be small. 

Therefore, the drift can still be large in the pre-averaged returns.  
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Based on the pre-averaged return 𝑟𝑡𝑖
⋄ , Christensen et al. (2014) suggest that the noise-

modified 𝑅𝑉 and 𝐵𝑉 (indicated by 𝑁𝑅𝑉 and 𝑁𝐵𝑉, respectively) are calculated as follows,  

𝑁𝑅𝑉𝑡 =
𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

𝜃2𝜓𝐻
, (4.3) 

 

𝑁𝐵𝑉𝑡 =
𝑀

𝑀 − 2𝐻 + 2

1

𝐻𝜓𝐻

𝜋

2
∑ |𝑟𝑡𝑖

⋄ ||𝑟𝑡𝑖+𝐻

⋄ |

𝑀−2𝐻+2

𝑖=1

−
�̂�𝑡

2

𝜃2𝜓𝐻
, 

 

(4.4) 

where 𝜓𝐻 = (1 + 2𝐻−2)/12 and �̂�𝑡
2 𝜃2𝜓𝐻⁄  is a bias correction, which compensates for any 

residual microstructure noise that may remain after pre-averaging. �̂�𝑡
2 denotes the estimator for 

the noise variance given by 

�̂�𝑡
2 =

1

2(M − 1)
∑|𝑟𝑡𝑖

⋄ ||𝑟𝑡𝑖−1

⋄ |

𝑀

𝑖=2

. 
(4.5) 

Recall that 𝑅𝑉 can be decomposed into 𝑅𝑆+ and 𝑅𝑆−, respectively, based on decomposing 

the sign of returns. Analogously, based on splitting the sign of the pre-averaged returns, 𝑁𝑅𝑉 

may also be appropriately decomposed into the noise-modified 𝑅𝑉+ and 𝑅𝑉− (indicated by 

𝑁𝑅𝑉+ and 𝑁𝑅𝑉−),  

𝑁𝑅𝑉𝑡
+ =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2
𝐼(𝑟𝑡𝑖

⋄ > 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

2𝜃2𝜓𝐻
, (4.6) 

 

𝑁𝑅𝑉𝑡
− =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ |
2
𝐼(𝑟𝑡𝑖

⋄ < 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

2𝜃2𝜓𝐻
. (4.7) 

For simplicity, We assume equally half bias-correction (�̂�𝑡
2 2𝜃2𝜓𝐻⁄ ) for 𝑁𝑅𝑉+ and 𝑁𝐵𝑉− 

such that the bias correction drops out when taking the difference between 𝑁𝑅𝑉+ and 𝑁𝑅𝑉−. 

Since the drift can be large in the pre-averaged returns, the biases of the noise-modified 

volatility estimators are expected to be large in the presence of a non-zero drift. Since the pre-

averaged returns are simple averages of low-frequency returns, the biases of the noise-modified 

volatility estimators are expected to have similar patterns as those of the original volatility 
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estimators.4 To reduce such drift bias, We modify the 𝑁𝑅𝑉 and 𝑁𝐵𝑉 estimators (indicated by 

𝑁𝑅𝑉∗ and 𝑁𝐵𝑉∗) by computing 𝑁𝑅𝑉 and 𝑁𝐵𝑉 on centred pre-averaged returns, 

𝑁𝑅𝑉𝑡
∗ =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄|

2
𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

𝜃2𝜓𝐻
, (4.8) 

 

𝑁𝐵𝑉𝑡
∗ =

𝑀

𝑀 − 2𝐻 + 2

1

𝐻𝜓𝐻

𝜋

2
∑ |𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄||𝑟𝑡𝑖+𝐻

⋄ − ℳ𝑡
⋄|

𝑀−2𝐻+2

𝑖=1

−
�̂�𝑡

2

𝜃2𝜓𝐻
, 

 

(4.9) 

where ℳ𝑡
⋄ = median(𝑟𝑡1

⋄ …𝑟𝑡𝑀
⋄ )  denotes the median of 𝑀 − 𝐻 + 2  pre-averaged returns 

involved in the computation of the volatilities of day 𝑡. We also modify the 𝑁𝑅𝑉+ and 𝑁𝑅𝑉− 

estimators (indicated by 𝑁𝑅𝑉∗,+ and 𝑁𝑅𝑉∗,−) by computing 𝑁𝑅𝑉+ and 𝑁𝑅𝑉− (including the 

indicator function) on centred pre-averaged returns, 

𝑁𝑅𝑉𝑡
∗,+ =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄|

2
𝐼(𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄ > 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

2𝜃2𝜓𝐻
, (4.10) 

 

𝑁𝑅𝑉𝑡
∗,− =

𝑀

𝑀 − 𝐻 + 2

1

𝐻𝜓𝐻
∑ |𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄|

2
𝐼(𝑟𝑡𝑖

⋄ − ℳ𝑡
⋄ < 0)

𝑀−𝐻+2

𝑖=1

−
�̂�𝑡

2

2𝜃2𝜓𝐻
, (4.11) 

Due to the use of centred pre-average returns, the biases of these modified volatility estimators 

due to a non-zero drift are expected to be small. 

As in section 3 above, the biases are defined by the difference between these volatility 

estimators and the volatility (or volatility and jumps) they attempt to estimate. We compute the 

bias of noise-modified volatility estimators and respective modified versions, via Monte Carlo 

simulations with 104 replications of the DGP (2.21&4.1) and with the parameter settings as in 

section 3. The sampling frequency is at 1 second as in Laurent and Shi (2020). Following 

Laurent and Shi (2020), the noise follows an independent and identically distributed process 

(i.e., 𝑠 =  1), and the volatility of the noise is set 𝑞 = 0.1%. Figure 4.1 depicts the bias of 

 
4 Alternative ultra high frequency volatility estimators that may be subject to the drift bias are the sub-sampled 

volatility estimators proposed by Zhang et al. (2005). This is because the sub-sampled volatility estimators are 

computed by the average of the volatility estimators computed on some sub-samples of low frequency data. 
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noise-modified volatility estimators and respective modified versions. As expected, for the 

𝑁𝑅𝑉 and 𝑁𝐵𝑉 estimators, We observe patterns similar to those in Figures 6 & 7 by Laurent 

and Shi (2020). While the estimation accuracy of the original volatility estimator deteriorates 

substantially as |𝜃| and 𝑝𝑡0 deviate from zero, the new estimator is much more accurate. For 

the 𝑁𝑅𝑉+ and 𝑁𝑅𝑉− estimators, We observe patterns similar to Figure 3.1 by this chapter. 

While the estimation accuracy of the original semi-variance deteriorates asymmetrically as 𝜃 

and 𝑝𝑡0 deviate from zero, the new estimator is much more accurate. 

Figure 4.1. The bias of the noise-modified estimators  

under the linear drift–diffusion process. 
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5 Jump asymmetry estimation for ultra-high-frequency data 

Section 4 shows that the patterns of the drift biases of the ultra high frequency noise-

modified volatility estimators are similar to those of lower frequency volatility estimators. 

Therefore, one can again conclude that the drift bias of the signed jump estimator 𝑁𝑅𝑆+ −

𝑁𝑅𝑆− tend to be significant, while other jump estimators 𝑁𝑅𝑉 − 𝑁𝐵𝑉, 𝑁𝑅𝑆+ − 0.5𝑁𝐵𝑉, and 

𝑁𝑅𝑆− − 0.5𝑁𝐵𝑉 have a much smaller drift bias. This again motivates me to study the drift 

bias of 𝑁𝑅𝑆+ − 𝑁𝑅𝑆− in more detail. Let 𝑁𝐽𝛥 indicate 𝑁𝑅𝑆+ − 𝑁𝑅𝑆−, 

𝑁𝐽Δ = 𝑁𝑅𝑆+ − 𝑁𝑅𝑆−, (5.1) 

Again, We expect that 𝑁𝐽Δ which are computed using the centred pre-averaged returns should 

have a small bias even though the drift is non-zero. The modified version of 𝑁𝐽Δ that uses 

centred returns is indicated by 𝑁𝐽∗,Δ, 

𝑁𝐽∗,Δ = 𝑁𝑅𝑆∗,+ − 𝑁𝑅𝑆∗,−. (5.2) 

For illustration, this section again visualizes the bias in 𝑁𝐽Δ by using the same simulation 

setting as in section 4. The expected bias of 𝑁𝐽Δ is calculated as 

bias of 𝑁𝐽Δ = 𝔼{𝑁𝐽∗,Δ − 𝐽𝑡
DGP,Δ}, (5.3) 

where 𝐽𝑡
DGP,Δ

 is defined previously in Equation (3.8). And the expected bias of 𝑁𝐽∗,Δ  is 

calculated by 

bias of 𝑁𝐽∗,Δ = 𝔼{𝑁𝐽∗,Δ − 𝐽𝑡
DGP,Δ}. (5.4) 

Figure 4.3 depicts the bias of 𝑁𝐽Δ and 𝑁𝐽∗,Δ (indicated by the red surface and blue surface, 

respectively). Figure 4.3 shows that the bias of 𝑁𝐽Δ is large compared to the size of true signed 

jumps, when drift is non-zero. For example, for the jump setting (1) and (2) and for nonzero 

drift, the order of bias of 𝑁𝐽Δ is 10−3, which is considerable compared to the order of the 

signed jump variation (10−4). And for the jump setting (3) and (4) and for nonzero drift, the 
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order of bias of 𝑁𝐽Δ is 10−3, which is again considerable relative to the order of true signed 

jumps (10−5).   

Figure 5.1. Bias of 𝑁𝐽𝑡
Δ and 𝑁𝐽𝑡

Δ∗,
 for linear drift-diffusion process. 

 

Notes: Bias of 𝑁𝐽Δ is defined by Equation (5.3) and the bias of 𝑁𝐽∗,Δ is defined by Equation (5.4). 

 

 
 

Figure 5.1 demonstrates the bias of 𝑁𝐽Δ  and 𝑁𝐽∗,Δ  for ultrahigh frequency data. We 

observe patterns very similar to those in Figures 3.3 and 3.4. The estimation accuracy of the 

original signed jump variation estimator deteriorates substantially as drift deviates from zero, 

and the sign of the bias of 𝑁𝐽Δ is consistent with the sign of the drift. In contrast, the new 

estimator is much more accurate, with the bias of the estimator 𝑁𝐽∗,Δ negligible relative to both 

the bias of 𝑁𝐽Δ and the size of the signed jump variation. 

Combining Equation (5.3) and Equation (5.4), one can obtain, 

𝔼(bias of 𝑁𝐽Δ) = 𝔼(𝑁𝐽Δ) − 𝔼(𝑁𝐽∗,Δ) + 𝔼(bias of 𝑁𝐽∗,Δ). (5.5) 

Given that the bias of 𝑁𝐽∗,Δ is negligible compared to the bias of 𝑁𝐽Δ, 𝔼(bias of 𝑁𝐽∗,Δ) ≈ 0, 

Then, Equation (5.5) becomes, 

𝔼(bias of 𝑁𝐽Δ) ≈ 𝔼{𝑁𝐽Δ − 𝑁𝐽∗,Δ}. (5.6) 

Let 𝑁𝐷Δ indicate the bias of 𝑁𝐽Δ, Equation (5.6) suggests that the bias of 𝑁𝐽Δ approximately 

equals to the sum of 𝑁𝐽∗,Δ and 𝑁𝐷Δ, 
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𝑁𝐽Δ = 𝑁𝐽∗,Δ + 𝑁𝐷𝑡
∆. (5.7) 
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6 Data Description 

We present the results for US stock markets, to investigate empirical evidence for non-

negligible drift bias in the signed jump variation estimator. Exchange-traded funds (ETFs) have 

been constructed to be a broad representation of the overall stock market and have been applied 

by previous literature as the market portfolio proxies (e.g., Barigozzi et al., 2014, Patton and 

Sheppard, 2015, Fan et al., 2016, Gao et al., 2018). Therefore, this paper uses SPDR S&P 500 

Growth ETF (SPY) as the proxy for the US stock market. SPY is a broad proxy of the stock 

market based on a market capitalization of 500 large companies traded on the New York Stock 

Exchange (NYSE) and Nasdaq stock exchange. We begin this section with a brief discussion 

of the data sources, followed by descriptive statistics of the resulting measures for volatility, 

signed jumps and drift bias for these assets. 

We obtain the tick-by-tick SPY from Tick Data Inc. The sample period is from January 2, 

1997, to September 21, 2021, with a total of 𝑛 = 6222 days. As in Barndorff‐Nielsen et al. 

(2009) and Patton and Sheppard (2015), SPY tick data is cleaned according to the following 

rules: 

1. Transactions outside 9:30:00 to 16:00:00 were removed. 

2. Transactions with a 0 price or volume were removed. 

3. Only retain the transaction prices from the most active exchange of each day (the 

transaction prices from other exchanges were dropped). 

4. Only transaction prices from regular trades were retained (with prices related to 

irregular trades removed). The classification details of regular and irregular trades can 

be found on the official website of Tick Data Inc: https://www.tickdata.com/. 

5. If multiple transactions have the same timestamp, use the median price. 
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6. Delete transaction prices related to corrected trades. The details of corrected trades can 

be found on the official website of Tick Data Inc. 

This paper focuses on price volatility during the intraday session of a trading day. Thus, 

overnight returns are excluded. And this avoids the need to adjust prices for splits or dividends. 

After cleaning, the Tick-by-Tick transaction prices of SPY are then sampled at 5-minute 

frequency, and the log return based on the 5-minute prices is used for calculating the low-

frequency estimators including 𝑅𝑉, 𝐵𝑉, 𝐽Δ, 𝐽∗,Δ, and 𝐷Δ. The bipower variation may be biased 

due to the correlation in the adjacent returns induced by the microstructure noise, even for the 

5-minute frequency (Andersen et al., 2007, Huang and Tauchen, 2005). To reduce such bias, 

the estimator for bipower variation 𝐵𝑉 defined in Equation (2.6) was modified by averaging 

its multiple “skip” versions. The “skip-𝑞” 𝐵𝑉 estimator is defined as, 

𝐵𝑉𝑡
q

=
𝜋

2
∑ |𝑟𝑡𝑖−1−𝑞

| |𝑟𝑡𝑖|

𝑀

𝑖=q+2

. (5.1) 

Note that when 𝑞 = 0, the “skip-𝑞” 𝐵𝑉 is identical to the usual 𝐵𝑉. This paper estimates the 

continuous variation by an averaged version of skip-𝑞  𝐵𝑉  estimator, which is defined by 

averaging the skip-0 through skip-4 𝐵𝑉 estimators, 

𝐵𝑉𝑡 =
1

4
∑ 𝐵𝑉𝑡

q

4

𝑞=0

. (5.2) 

This averaged version of skip-𝑞 𝐵𝑉 estimator is able to balance the trade-off between locality 

(𝑞 = 0) and robustness to market microstructure noise (𝑞 = 4) (Patton and Sheppard, 2015). 

Table 6.1 reports descriptive statistics of various estimators with the 5-minute frequency 

data. The statistics include the quantile at 0.25, median, mean, quantile at 0.75, and standard 

deviation. The first panel contains the descriptive statistics of volatility estimators. As this 

panel shows, the average value of daily RV for the SPY was 1.063, which is fairly close to the 



 

45 
 

levels of constant volatility and unconditional volatility assumed in the simulations study (The 

unconditional volatility of GARCH denotes the volatility of the population, and GARCH 

updates the conditional volatility in the sample to be trending toward the unconditional 

volatility). This indicates that the parameter settings of the simulations in this paper are 

consistent with the real market data. The second panel contains the descriptive statistics of the 

original signed jump variation estimators 𝐽Δ, 𝐽+ and 𝐽− from Patton and Sheppard (2015) (with 

𝐽+ = 𝐽Δ𝐼(𝐽Δ > 0) and 𝐽− = 𝐽Δ𝐼(𝐽Δ < 0)) while the third panel contains the modified signed 

jump variation estimators 𝐽∗,Δ , 𝐽∗,+  and 𝐽∗,−  (with 𝐽+ = 𝐽∗,Δ𝐼(𝐽∗,Δ > 0) and 𝐽− = 𝐽∗,Δ𝐼(𝐽∗,Δ <

0) ). Comparing the original estimators 𝐽Δ , 𝐽+ , and 𝐽−  with the corresponding modified 

estimators 𝐽∗,Δ, 𝐽∗,+, and 𝐽∗,−, the mean of the original estimator is systematically more negative. 

This indicates that the original estimators are downward biased, on average.  

Table 6.1. Data descriptive statistics 
 

Notes: This table contains the descriptive statistics of various volatility estimators with 5-

minute frequency SPDR S&P 500 ETF prices from 1997 January to 2021 September. The 

descriptive statistics include the quantile at 0.25, median, mean, quantile at 0.75, and 

standard deviation. The first panel contains the volatility estimators including Realized 

Variance (𝑅𝑉), and Bi-power Variation (𝐵𝑉). The second panel contains the original signed 

jump variation estimators following Patton and Sheppard (2015), including the signed jump 

variation estimator (𝐽Δ), the positive jump variation estimator 𝐽+ = 𝐽Δ𝐼(𝐽Δ > 0), and the 

negative jump variation estimators 𝐽− = 𝐽Δ𝐼(𝐽Δ < 0) . The third panel contains the 

modified signed jump variation estimators, including the modified signed jump variation 

estimator (𝐽∗,Δ), the modified positive jump variation estimator 𝐽+ = 𝐽∗,Δ𝐼(𝐽∗,Δ > 0), and 

the modified negative jump variation estimators 𝐽− = 𝐽∗,Δ𝐼(𝐽∗,Δ < 0). The fourth panel 

contains the drift biases, including the drift bias (𝐷Δ ), the positive drift bias 𝐷+ =

𝐷∗,Δ𝐼(𝐷∗,Δ > 0), and the negative drift bias 𝐷− = 𝐷∗,Δ𝐼(𝐷∗,Δ < 0).  

   𝑄0.25 Median Mean  𝑄0.75 St. dev. 

Volatility estimators 

 𝑅𝑉 0.227 0.505 1.063 1.097 2.259 

 𝐵 0.210 0.473 1.018 1.061 2.142 

Signed jump variation estimators 

 𝐽Δ -0.078 0.001 0.011 0.073 0.661 

 𝐽+ 0.025 0.072 0.219 0.178 0.769 

 𝐽− -0.214 -0.080 -0.200 -0.029 0.436 

Modified signed jump variation estimators 

 𝐽∗,Δ -0.067 -0.002 0.036 0.070 0.742 

 𝐽∗,+ 0.026 0.073 0.246 0.196 0.926 

 𝐽∗,− -0.169 -0.064 -0.166 -0.023 0.414 
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Drift biases 

 𝐷Δ -0.088 0.011 -0.033 0.068 0.515 

 𝐷+ 0.029 0.061 0.154 0.144 0.356 

 𝐷− -0.253 -0.100 -0.256 -0.043 0.581 

 

The bottom panel of Table 6.1 reports the descriptive statistics of the drift bias 𝐷Δ, with 

the positive drift bias defined by 𝐷+ = 𝐷Δ𝐼(𝐷Δ > 0) and then negative drift bias defined by 

𝐷− = 𝐷Δ𝐼(𝐷Δ < 0) also reported. First, the results show that the drift bias indeed has positive 

and negative signs, as found in the Monte Carlo study. Second, the results show that the drift 

bias in the signed jump variation estimator is empirically not small. For example, the mean of 

the negative drift bias 𝐷− is -0.256. This magnitude is greater than the level of the mean of 

both modified signed jump variation estimators 𝐽∗,+ and 𝐽∗,−. The empirical evidence of large 

drift bias in the signed jump variation estimator corroborates the simulation results in section 

3. 

The cleaned Tick-by-Tick transaction prices of SPY are used to compute the pre-averaged 

returns, which are then used for calculating the noise-modified estimators, including 𝑁𝑅𝑉, 

𝑁𝐵𝑉, 𝑁𝐽Δ, 𝑁𝐽∗,Δ and 𝑁𝐷Δ. The sample shrinks to the recent decade (from 2010 January to 

2021 September) to ensure that the SPY is sufficiently active for ultrahigh-frequency data. 

Table 6.2 reports the descriptive statistics of these noise-modified estimators. The statistics 

include the quantile at 0.25, median, mean, quantile at 0.75, and standard deviation. The first 

panel reports the noise-modified volatility estimators. The second panel contains the noise-

modified signed jump variation estimators 𝑁𝐽Δ , 𝑁𝐽+ and 𝑁𝐽−  (with 𝑁𝐽+ = 𝑁𝐽Δ𝐼(𝑁𝐽Δ > 0) 

and 𝑁𝐽− = 𝑁𝐽Δ𝐼(𝑁𝐽Δ < 0)) while the third panel contains the modified noise-modified signed 

jump variation estimators 𝑁𝐽∗,Δ, 𝑁𝐽∗,+ and 𝑁𝐽∗,− (with 𝑁𝐽+ = 𝑁𝐽∗,Δ𝐼(𝑁𝐽∗,Δ > 0) and 𝑁𝐽− =

𝑁𝐽∗,Δ𝐼(𝑁𝐽∗,Δ < 0)). Comparing the estimators 𝑁𝐽Δ , 𝑁𝐽+ , and 𝑁𝐽−  with the corresponding 

modified estimators 𝑁𝐽∗,Δ , 𝑁𝐽∗,+ , and 𝑁𝐽∗,− , the mean of the original estimator is 
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systematically more negative. This indicates that the noise-modified signed jump variation 

estimators are downward biased on average in the presence of non-zero drift with ultrahigh-

frequency data.  

Table 6.2. Data descriptive statistics 

 

Note: This table contains the descriptive statistics of various estimators with ultrahigh-

frequency SPDR S&P 500 ETF prices from 2010 January to 2021 September. The 

descriptive statistics include the quantile at 0.25, median, mean, quantile at 0.75, and 

standard deviation. The first panel contains the volatility estimators including the noise-

modified Realized Variance (𝑁𝑅𝑉), the noise-modified Bi-power Variation (𝑁𝐵𝑉). The 

second panel contains the original signed jump variation estimators, including the noise-

modified signed jump variation estimator (𝑁𝐽Δ), the noise-modified positive jump variation 

estimator 𝑁𝐽+ = 𝑁𝐽Δ𝐼(𝑁𝐽Δ > 0) , and the noise-modified negative jump variation 

estimators 𝑁𝐽− = 𝑁𝐽Δ𝐼(𝑁𝐽Δ < 0). The third panel contains the modified noise-modified 

signed jump variation estimators, including the modified noise-modified signed jump 

variation estimator (𝑁𝐽∗,Δ), the modified noise-modified positive jump variation estimator 

𝑁𝐽+ = 𝑁𝐽∗,Δ𝐼(𝑁𝐽∗,Δ > 0) , and the modified noise-modified negative jump variation 

estimators 𝑁𝐽− = 𝑁𝐽∗,Δ𝐼(𝑁𝐽∗,Δ < 0). The fourth panel contains the noise-modified drift 

biases, including the noise-modified drift bias (𝑁𝐷Δ), the noise-modified positive drift bias 

𝑁𝐷+ = 𝑁𝐷∗,Δ𝐼(𝑁𝐷∗,Δ > 0) , and the noise-modified negative drift bias 𝑁𝐷− =

𝑁𝐷∗,Δ𝐼(𝑁𝐷∗,Δ < 0). 

   𝑄0.25 Median Mean  𝑄0.75 St. dev. 

Volatility estimators 

 𝑁𝑅𝑉 0.159 0.295 0.624 0.591 1.546 

 𝑁𝐵𝑉 0.159 0.298 0.641 0.604 1.613 

Signed jump variation estimators 

 𝑁𝐽Δ -0.017 0.002 0.004 0.021 0.097 

 𝑁𝐽+ 0.007 0.019 0.043 0.042 0.105 

 𝑁𝐽− -0.046 -0.019 -0.040 -0.007 0.063 

Modified signed jump variation estimators 

 𝑁𝐽∗,Δ -0.015 0.000 0.014 0.017 0.167 

 𝑁𝐽∗,+ 0.006 0.017 0.060 0.046 0.191 

 𝑁𝐽∗,− -0.033 -0.015 -0.032 -0.006 0.124 

Drift biases 

 𝑁𝐷Δ -0.019 0.003 -0.010 0.022 0.165 

 𝑁𝐷+ 0.008 0.018 0.041 0.040 0.138 

 𝑁𝐷− -0.071 -0.025 -0.074 -0.008 0.173 

 

The bottom panel of Table 6.2 reports the descriptive statistics of noise-modified drift bias 

𝑁𝐷Δ, with the noise-modified positive drift bias defined by 𝑁𝐷+ = 𝑁𝐷Δ𝐼(𝑁𝐷Δ > 0) and the 

noise-modified negative drift bias defined by 𝑁𝐷− = 𝑁𝐷Δ𝐼(𝑁𝐷Δ < 0) also reported. First, 

the non-zero descriptive statistics of 𝑁𝐷+ and 𝑁𝐷− show that the noise-modified drift bias 
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𝑁𝐷Δ indeed has positive and negative signs, as found in the Monte Carlo study. Second, the 

results show that the drift bias in the noise-modified signed jump variation estimator is 

empirically not small. For example, the mean of the noise-modified negative drift bias 𝑁𝐷− is 

-0.074. This magnitude is greater than the level of the mean of both modified noise-modified 

signed jump variation estimators 𝐽∗,+ and 𝐽∗,−. The empirically large drift bias in the noise-

modified signed jump variation estimator corroborates the finding in section 5. 
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7 Empirical applications 

Forecasting price volatility allows us to predict how prices may vary in the future, which is 

important for investors and the financial industry involved with asset pricing (Black and 

Scholes, 1973), derivative pricing (Duffie et al., 2000), asset allocation (Merton, 1969), and 

risk management (Christoffersen and Diebold, 2000). One of the most popular predictors for 

forecasting volatility is probably the jump asymmetry or the signed jumps variation. The 

empirical finding by Patton and Sheppard (2015) shows that the signed jump variation has a 

negative and statistically significant effect on future volatility, and this finding is based on the 

use of the signed jump variation estimator 𝐽Δ.  

Based on a long-memory dependence volatility forecasting model framework introduced 

by Corsi (2009), We first show in this section that the predictability of the estimator 𝐽Δ is 

mostly due to its drift bias 𝐷Δ, while the predictability of the modified estimator 𝐽∗,Δ, which 

estimate the signed jump variation in a much more accurate manner, is only limited. Then, We 

show that with ultra-high-frequency data, similar findings can be obtained by exploring the 

drift bias in the noise-modified signed jump variation estimator 𝑁𝐽Δ. Finally, We show the 

economic importance of extracting the drift bias from the 𝐽Δ and 𝑁𝐽Δestimators, in terms of the 

out-of-sample volatility forecasting accuracy. 

 

7.1 Volatility forecasting application 

7.1.1 Volatility forecasting models 

A large volume of empirical studies has shown the predictive importance of long-memory 

dependence in financial market volatility. The long-memory dependence of volatility is 

typically characterized by an autocorrelation that is decaying slowly with the increase of the 

lag between volatility observations. Several different parametric autoregressive conditional 
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heteroskedasticity and stochastic volatility models have been proposed in the literature to 

capture this stylized fact (Robinson, 1991, Ding et al., 1993, Baillie et al., 1996, e.g., Andersen 

and Bollerslev, 1997, Breidt et al., 1998). The long-memory volatility dependence is also found 

in empirical observations for realized volatilities in subsequent research, and this similarly 

motivated the estimation of long-memory type ARFIMA models for realized volatilities in 

Areal and Taylor (2002), Andersen et al. (2003), Thomakos and Wang (2003), Pong et al. 

(2004), Koopman et al. (2005), and Deo et al. (2006) among others.  

This paper eschews the above complicated fractionally integrated long-memory models 

and depends instead on the simple-to-estimate Heterogeneous autoregressive (HAR) class of 

volatility models proposed by Corsi (2009). The HAR formulation is based on a 

straightforward extension of the so-called Heterogeneous ARCH, or HARCH, class of models 

analysed by Müller et al. (1997), in which the conditional variance of the discretely sampled 

returns is parameterized as a linear function of the lagged squared returns over the identical 

return horizon together with the squared returns over longer and/or shorter return horizons. 

Although the HAR structure does not formally model long memory, the mixing of relatively 

few volatility components is capable of reproducing a remarkably slow volatility 

autocorrelation decay that is almost indistinguishable from that of a hyperbolic (long-memory) 

pattern over the most empirically relevant forecast horizon. Specifically, the HAR  model 

presented by Corsi (2009) is defined as follows: 

𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑉𝑡 + 𝛽𝑤 (
1

5
∑𝑉𝑡−𝑖

4

𝑖=0

) + 𝛽𝑚  (
1

22
∑𝑉𝑡−𝑖

21

𝑖=0

) + 𝜖𝑡+1, (7.1) 

where V  denotes the volatility measure being forecasted, typically 𝑅𝑉.  𝑉𝑡  denotes current 

volatility, which is the 1-day lagged value with respect to 𝑉𝑡+1. The remaining terms represent 

the average volatility over the past 5 days, 
1

5
∑ 𝑉𝑡−𝑖

4
𝑖=0 , and the past 22 days, 

1

22
∑ 𝑉𝑡−𝑖

21
𝑖=0 . 𝜖𝑡 is 

the disturbance. The predictors in this HAR model have some overlap. Specifically, the past 5-
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day average volatility 
1

5
∑ 𝑉𝑡−𝑖

4
𝑖=0  includes the past 1-day volatility 𝑉𝑡 , and the past 22-day 

average volatility 
1

22
∑ 𝑉𝑡−𝑖

21
𝑖=0  includes the average from the shorter 5-day lagged volatility 

∑ 𝑉𝑡−𝑖
4
𝑖=0 . To reduce the overlap between these predictors, the HAR model used throughout this 

paper adopts the non-overlapping reparameterization of the HAR model suggested by Patton 

and Sheppard (2015), 

𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑉𝑡 + 𝛽𝑤 (
1

4
∑𝑉𝑡−𝑖

4

𝑖=1

) + 𝛽𝑚  (
1

17
∑𝑉𝑡−𝑖

21

𝑖=5

) + 𝜖𝑡+1, (7.2) 

where 
1

4
∑ 𝑉𝑡−𝑖

4
𝑖=1  does not include the average volatility over lags 2 to 5 and 

1

17
∑ 𝑉𝑡−𝑖

21
𝑖=5  

denotes the average volatility over lags 6 and 22. For the low-frequency data, e.g., 5 minutes, 

the volatility may be proxied by RV (𝑉 = 𝑅𝑉). Using 𝑅𝑉 as the proxy for volatility, the HAR 

model becomes 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑑 𝑅𝑉𝑡 + 𝛽𝑤𝑅𝑉̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1, (7.3) 

where 𝑅𝑉̅̅ ̅̅
𝑤,𝑡 =

1

4
∑ 𝑅𝑉𝑡−𝑖

4
𝑖=1  and 𝑅𝑉̅̅ ̅̅

𝑚,𝑡 =
1

17
∑ 𝑅𝑉𝑡−𝑖

21
𝑖=5 . 

The HAR model can be estimated by the Ordinary Least Square method (OLS) if the errors, 

𝜖𝑡, are independent, normally distributed, and have fixed volatility over sample days. However, 

the error term appears to change across the sample period in accordance with the level of the 

volatility (Patton and Sheppard, 2015), therefore, estimation by OLS has the disadvantage that 

the resulting estimates focus primarily on fitting periods of high volatility and place little 

weight on low volatility periods. To overcome this, Patton and Sheppard (2015) suggest a 

Weighted Least Squares (WLS) method to estimate the model. The WLS method attempts to 

provide a more efficient alternative to OLS by putting different weights on errors. Specifically, 

the WLS method puts relatively less weight on errors which are likely to have a large variance 

and more weight on errors which are likely to have a small variance. As for the weights, Patton 

and Sheppard (2015) suggest using the inverse of the fitted value of the HAR model estimated 



 

52 
 

by the OLS method. This idea is motivated by the positive relationship between the variance 

of residuals and the level of the fitted values of the HAR model estimated by the OLS method. 

Given the advantages of the WLS method, we will use the WLS method to estimate the models 

throughout this chapter. The statistical inference on the coefficient estimates is based on the 

Newey–West Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors 

proposed by Newey and West (1987). The full technical details describing the calculations of 

the WLS model estimation are provided in the Appendix. 

Specification 1: To explore the impact of the signed jump variation on future volatility, 

Patton and Sheppard (2015) formulate a model by substituting the current realized variance 𝑅𝑉 

in Equation (7.3) with the current signed jump variation estimator (𝐽𝛥) and Bi-power variation 

estimator (𝐵), 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽∆  𝐽𝑡
∆ + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.4) 

We term this model the signed jump, 𝐽𝛥, model in this chapter.  

Specification 2: To determine whether the coefficient on positive jump variation differs 

from that of negative jump variation, and thus whether the impact of jumps is driven more by 

the positive or negative jump variation, Patton and Sheppard (2015) extend the 𝐽𝛥 model by 

replacing the signed jump variation estimator, 𝐽𝛥, with its decomposition, 𝐽𝛥 = 𝐽+ + 𝐽−, with 

𝐽+ = 𝐽𝛥𝐼(𝐽𝛥 > 0) and 𝐽− = 𝐽𝛥𝐼(𝐽𝛥 < 0), 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽+  𝐽𝑡
+ + 𝛽𝐽−  𝐽𝑡

− + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1. (7.5) 

We term this model the 𝐽± model in this chapter.  

Specification 3: Recall that the signed jump variation estimator can be decomposed into 

the modified signed jump variation estimator (the signed jump variation proxy) and a drift bias 

component (𝐽𝛥 = 𝐽∗,𝛥 + 𝐷𝛥). To investigate the impact of the signed jump variation and the 

drift bias on future volatility, We formulate a new model by replacing the 𝐽𝛥 component in the 

JΔ model with 𝐽∗,𝛥 + 𝐷𝛥, 
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𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽∗,∆  𝐽𝑡
∗,∆ + 𝛽𝐷Δ𝐷𝑡

∆ + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1. (7.6) 

We term this model the 𝐽∗,𝛥𝐷𝛥 model. 

Specification 4: 𝐽∗,Δ can be decomposed into the positive and negative components: 𝐽∗,Δ =

𝐽∗,+ + 𝐽∗,− , where 𝐽∗,+ = 𝐽∗,Δ(𝐽∗,Δ > 0)  and 𝐽∗,− = 𝐽∗,Δ(𝐽∗,Δ < 0) . And 𝐷𝛥  can also be 

decomposed into positive and negative components: 𝐷𝛥 = 𝐷+ + 𝐷−, where 𝐷+ = 𝐷𝛥(𝐷𝛥 >

0) and 𝐷− = 𝐷𝛥(𝐷𝛥 < 0) (Recall that implication (b) in section 3 suggests that the drift bias 

𝐷𝛥 may have positive and negative signs). Therefore, 𝐽Δ can be separated into four components, 

𝐽𝑡
Δ = 𝐽𝑡

∗,+ + 𝐽𝑡
∗,− + 𝐷𝑡

+ + 𝐷𝑡
−. (7.7) 

By replacing 𝐽Δ in Equation (7.4) with this decomposition, We formulate a new model, defined 

as, 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐽∗,+  𝐽𝑡
∗,+ + 𝛽𝐽∗,−  𝐽𝑡

∗,− + 𝛽𝐷+  𝐷𝑡
+ + 𝛽𝐷−  𝐷𝑡

− + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅
𝑤,𝑡

+ 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. 

(7.8) 

We term this model the 𝐽∗,±𝐷± model. 

 

7.1.2 In-sample estimation results 

The first four columns of the upper panel of Table 7.1 report the in-sample estimation 

results of the 𝐽𝛥, 𝐽±, 𝐽∗,𝛥𝐷𝛥, and 𝐽∗,±𝐷± models, as detailed in Specifications (1) to (4) above, 

formalised by Equations () to (), respectively. The results show that there are three main 

patterns of the coefficient estimates of the 𝐽𝛥  and 𝐽±  models. The first pattern is that the 

estimates of 𝛽𝐶, 𝛽𝑤, and 𝛽𝑚 , the coefficients on 𝐵𝑉, 𝑅𝑉𝑤, and 𝑅𝑉𝑚, are also all positive and 

significant at the 5% level. This pattern evidences the stylized fact of volatility persistence, 

which has been found in a large volume of literature (e.g., Corsi (2009) and Andersen et al. 

(2007)). The second pattern is that the estimate of 𝛽𝐽∆, which relates to the variable measuring 

signed jumps, 𝐽𝛥, is negative and statistically significant at 5% level, which is consistent with 
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Patton and Sheppard (2015). This indicates that days dominated by negative jumps lead to 

higher future volatility, while days with positive jumps lead to lower future volatility, but this 

interpretations relies on 𝐽𝛥  being an accurate measure for the signed jump variation. If 𝐽𝛥 

contains bias, we should be more careful when linking this finding to the predictability of the 

signed jump variation. The third pattern is that for the estimates of both 𝛽𝐽+ and 𝛽𝐽−, which 

separate the effects of  𝐽+ and 𝐽−, are negative and statistically significant at the 5% level, with 

𝛽𝐽− larger in absolute magnitude than 𝛽𝐽+, which is also consistent with Patton and Sheppard 

(2015). If 𝐽+ and 𝐽− are accurate measures of …, this finding indicates that the increase in 

future volatility is larger following a negative jump than the decrease in future volatility 

following a positive jump. If the 𝐽+ and 𝐽− estimators contain bias, one should not use this 

finding to indicate the predictability of the signed jumps.  

Table 7.1. Model in-sample estimation and out-of-sample forecasting 
 

Notes: The upper panel of the table provides the in-sample parameter estimates and measure of fit 

(𝑅2) for the 𝐽𝛥, 𝐽±, 𝐽∗,𝛥𝐷𝛥, 𝐽∗,±𝐷±, 𝐷𝛥, and 𝐷± models (Specifications (1) to (6)). The bottom panel 

contains the MSE, MAE, and QLIKE losses of these models for evaluating their out-of-sample 

forecasting accuracy. The superscript (a) indicates that the model significantly outperforms the 𝐽𝛥 

model for the out-of-sample forecast accuracy based on the DMW test at the two-tail 5% significance 

level. The superscript (b) indicates that the model significantly outperforms the 𝐽± model for the out-

of-sample forecast accuracy based on the DMW test at the two-tail 5% significance level. 

 

  𝐽𝛥 𝐽± 𝐽∗,𝛥𝐷𝛥 𝐽∗,±𝐷± 𝐷𝛥 𝐷± 

In-sample estimation 

𝛽𝐽∆  -0.705      

 (-2.47)      

𝛽𝐽+   -0.204     

 
 (-8.55)     

𝛽𝐽−   -0.941     

 
 (-4.86)     

𝛽𝐽∗,Δ    -0.716    

 
  (-0.99)    

𝛽𝐷Δ    -0.903  -0.623  

 
  (-2.19)  (-5.96)  

𝛽𝐽∗,+     -0.518   

 
   (-1.69)   

𝛽𝐽∗,−     -0.149   

 
   (-0.83)   

𝛽𝐷+     -0.250   

 
   (-1.62)   
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𝛽𝐷−     -1.183  -1.160 

 
   (-5.86)  (-6.24) 

𝛽𝐶  0.595 0.533 0.572 0.550 0.555 0.481 

 (16.12) (13.62) (16.38) (10.14) (16.97) (13.46) 

𝛽𝑤  0.308 0.292 0.323 0.286 0.303 0.286 

 (6.80) (8.34) (5.51) (8.19) (8.14) (8.01) 

𝛽𝑚  0.084 0.090 0.086 0.099 0.098 0.106 

 (3.41) (3.87) (2.82) (3.99) (4.13) (4.41) 

R2 0.582 0.585 0.587 0.595 0.558 0.566 

Out-of-sample forecast 

MSE × 107 0.264 0.245 0.230 0.322 0.240 0.204 

MAE × 104 0.468 0.459 0.456 0.492 0.452 0.439a,b 

QLIKE 0.194 0.185 0.203 0.232 0.179 0.170a,b 

 

Since the simulation study of this paper found a large bias in 𝐽𝛥, 𝐽+, and 𝐽−, one should not 

link the findings of 𝐽𝛥 , 𝐽+ , and 𝐽−  to the predictability of the signed jump variation. The 

estimation results for 𝐽∗,𝛥𝐷𝛥 and 𝐽∗,±𝐷± models, where much more accurate estimators (𝐽∗,𝛥,, 

𝐽∗,+, and 𝐽∗,−) are modelled, and should be preferred to indicate the predictability of the signed 

jump variation. 

The third column of the upper panel of Table 7.1 contains the results of the 𝐽∗,𝛥𝐷𝛥 model. 

The results show that the estimate of 𝛽𝐽∗,∆ (the coefficient of 𝐽∗,∆) is not statistically significant 

at the 5% level. This reveals that the days dominated by positive or negative jumps do not lead 

to a change in the level of future volatility, when the signed jumps are modified for drift bias. 

This result is quite different from that of Patton and Sheppard (2015), who found that days 

dominated by negative jumps lead to higher future volatility, and days with positive jumps lead 

to lower future volatility. But, this result is consistent with other studies which find only limited 

predictability of jumps in forecasting future volatility (Andersen et al., 2007, Sévi, 2014, Santos 

and Ziegelmann, 2014, Prokopczuk et al., 2016, Caporin, 2023, Bu et al., 2023). Via a signed 

jump variation estimator, modified to mitigate the influence of drift bias (the 𝐽∗,∆ estimator), 

this paper finds that signed jumps indeed do not help predict future volatility. 
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Besides, it can also be seen from the estimation results of the 𝐽∗,𝛥𝐷𝛥 model that the estimate 

of 𝛽𝐷Δ (the coefficient of the drift bias) is negative and statistically significant at the 5% level. 

This result has three implications. First, the predictability of the signed jump variation estimator 

𝐽𝛥 is almost exclusively due to its drift bias. Second, days with negative drift bias lead to higher 

future volatility and days with positive drift bias lead to lower future volatility. Third, as drift 

is an increasing function of the drift bias, this result also implies that days dominated by 

negative drifts lead to higher future volatility, and days with positive drifts lead to lower future 

volatility. These three implications are novel findings in the literature and ones that cannot be 

detected without disentangling drift bias from the signed jump variation estimators.  

The final column of Table 7.1 contains the estimation results of the 𝐽∗,±𝐷± model. As the 

results show, the estimates of both 𝛽𝐽+  and 𝛽𝐽−  (the coefficients of modified positive jump 

variation estimators and modified negative jump variation estimators, respectively) are not 

statistically significant at the 5% level. This again indicates that future volatility cannot be 

predicted by either positive or negative jumps.  

The results of the 𝐽∗,±𝐷± model also shows that the estimate of 𝛽𝐷+  (the coefficient of 

positive drift bias) is negative but not statistically significant at the 5% level, and the estimate 

of 𝛽𝐷− (the coefficient of negative drift bias) is statistically significant at 5% level and negative. 

The coefficient on the negative drift bias is larger in magnitude than on the positive drift bias, 

indicating that the increase in future volatility is larger in magnitude following a negative drift 

bias than the decrease in future volatility following a positive drift bias. The insignificant 

coefficient of the positive drift bias suggests that the impact of the positive drift bias on future 

volatility is limited. 

The final row in the upper panel of Table 7.1 reports 𝑅2 for measuring the goodness of fit 

of the models. The details for calculating 𝑅2 are attached in the Appendix. As the results show, 
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the 𝑅2of the 𝐽∗,𝛥𝐷𝛥 model is greater than that of the 𝐽𝛥 model, and the 𝑅2of the 𝐽∗,±𝐷± model 

is greater than that of the 𝐽± model. This indicates that the models with drift bias disentangled 

from the original signed jump variation estimator lead to better in-sample goodness of fit. 

Motivated by the limited in-sample evidence for the modified signed jump variation 

estimator, We formulate the following 𝐷𝛥 model by removing the 𝐽∗,𝛥 component from the 

𝐽∗,𝛥𝐷𝛥 model.  

Specification 5: the 𝐷𝛥 model: 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐷Δ𝐷𝑡
∆ + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.9) 

Motivated by the limited in-sample evidence of 𝐷+ , 𝐽∗,+ , 𝐽∗,−  components, We 

formulate the following 𝐷− model by removing the 𝐷+, 𝐽∗,+, 𝐽∗,− components from the 𝐽∗,±𝐷± 

model. 

Specification 6: the 𝐷− model: 

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝐷−  𝐷𝑡
− + 𝛽𝐶  𝐵𝑉𝑡 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.10) 

The final two columns of the upper panel of Table 7.1 represent the in-sample estimation 

results for the 𝐷𝛥 and 𝐷− models. As shown by the results, the estimates of 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚 

(for 𝐵𝑉, 𝑅𝑉𝑤, and 𝑅𝑉𝑚) are also all positive and significant at the 5% level for both the 𝐷𝛥 and 

𝐷− models, again indicating the stylized fact of the volatility persistence. Besides, both 𝛽𝑑Δ of 

the 𝐷𝛥 model and 𝛽𝑑−  of the 𝐷− model are negative and significant at the 5% level, again 

indicating the negative impact of the drift bias and the negative drift bias on future volatility. 

 

7.1.3 Out-of-sample forecast results 

This Section compares the six models defined in section 7.12 (Specifications (1)-(6)), in 

terms of their out-of-sample performances. The out-of-sample analysis is the only way to gauge 
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the forecasting performance (Giot and Laurent, 2007) and to interpret the additional predictive 

performance of new variables. In this chapter, the out-of-sample forecast is based on a rolling 

window of 500 observations over the full forecasting period. Thus, 𝑛 − 500 forecasts, 𝐹𝑡, for 

𝑡 = 501,… , 𝑛, are obtained from each model. Due to estimation errors in the predictors (e.g., 

𝑅𝑉, 𝐵𝑉, 𝐽Δ, 𝐷Δ), the models (Specifications (1)-(6)) may occasionally produce implausibly 

large or small forecasts. Thus, to make the forecast analysis in this paper more realistic, We 

apply an ‘‘insanity filter’’ (IF), as suggested by Swanson and White (1997), to the forecasts for 

all of these models. The IF substitutes the forecast with the unconditional mean within the 

estimation window if the forecasts are outside the interval between the minimum and maximum 

forecasting target (𝑉) of this window. The insanity filter is commonly applied in the influential 

studies on volatility forecasting (e.g., Patton and Sheppard, 2015, Bollerslev et al., 2016, 

Bollerslev et al., 2018). 

The evaluation criteria of forecasting accuracy rely on the loss functions. Not all functions 

are unbiased for evaluating the volatility forecasting accuracy due to the fact that volatility can 

only be measured by a proxy that is imperfect in nature (Patton, 2011). Among various loss 

functions, Patton (2011) finds that Squared Error (SE) and Quasi-likelihood (QLIKE) loss 

functions are unbiased in the presence of an imperfect volatility proxy. For this reason, this 

paper considers the SE and QLIKE loss functions for evaluating the forecasting accuracy of 

the models. Additionally, for robustness purposes, We also considers the Absolute Error (AE) 

loss function. The AE, SE, and QLIKE loss functions are standard methodologies in the 

volatility forecasting literature (e.g., Sévi, 2014, Patton and Sheppard, 2015, Liu et al., 2015, 

Bollerslev et al., 2016, Andersen et al., 2021). 

The SE, AE, and QLIKE loss functions are defined by, 

SEt = (𝑅𝑉𝑡 − 𝐹𝑡)
2, (7.11) 
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AE𝑡 = |𝑅𝑉𝑡 − 𝐹𝑡|, (7.12) 

and 

QLIKEt =
𝑅𝑉𝑡

𝐹𝑡
− ln

𝑅𝑉𝑡

𝐹𝑡
− 1, (7.13) 

respectively, where 𝑡 = 501,… , 𝑛. 𝑉𝑡 indicates the volatility (e.g., measured by 𝑅𝑉) at day 𝑡, 

and 𝐹𝑡 indicate the volatility forecast from a particular model based on the 500 observations 

before day 𝑡. Smaller SEt, AEt, and QLIKEt indicate more accurate forecasts. Based on the 

rolling window, SEt, AEt, and QLIKEt for 𝑡 = 501,… , 𝑛 are produced for each model. The 

mean value of SEt , AEt , and QLIKEt  for 𝑡 = 501,… , 𝑛  are used to indicate the general 

forecasting accuracy of the model for 𝑡 = 501,… , 𝑛. We term the mean value of SEt, AEt, and 

QLIKEt by MSE, MAE, and QLIKE, respectively. A model with a smaller mean value of the 

loss function, relative to another model, indicates more precise forecasts on average. 

However, the difference in the mean loss function of the two models may arise by chance, 

since the mean value of the loss function is calculated on a sample (e.g., the mean of SEt is 

computed on the sample of 𝑡 = 501,… , 𝑛) as opposed to the population. To reduce the 

uncertainty of the results, this paper uses hypothesis testing to make probabilistic statements 

about the population of the difference in the mean loss function of two models. The hypothesis 

testing is based on the Diebold-Mariano-West (DMW) test statistic developed by Diebold and 

Mariano (1995) and West (1996), with adjustment to the Newey-West Heteroskedasticity and 

Autocorrelation Consistent (HAC) standard errors proposed by Newey and West (1987).5  The 

DMW  test has been widely applied to key forecast literature for testing the statistical 

significance of model forecast accuracy (Patton, 2011, Sévi, 2014, Patton and Sheppard, 2015, 

Andersen et al., 2021). 

 
5 The DMW results in this chapter were obtained using the robust_loss_1 function from Andrew Patton's Matlab code page, 

http://public.econ.duke.edu/~ap172/ 
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To implement the DMW test, we first define 𝑑𝑡 as the difference between the loss functions 

from two separate models, 

𝑑𝑡 = ℒt
A − ℒt

B, (7.14) 

where ℒt
A denotes a loss function calculated on the forecast by model A and ℒt

B denotes the 

same loss function, but calculated on the forecast by model B. The null hypothesis is that the 

expectation of 𝑑𝑡 equals zero, H0: 𝐸(𝑑𝑡) = 0. That is, the forecast accuracy of models A and 

B is identical. The alternative hypothesis is that the expectation of 𝑑𝑡 does not equal zero, H0:  

𝐸(𝑑𝑡) ≠ 0. That is, the forecast accuracy of models A and B is different. To obtain the DMW 

test statistic for testing these hypotheses, 𝑑𝑡 is first calculated on the sample (𝑡 = 501,… , 𝑛) 

then regressed on one, 𝑑𝑡 = 𝜑0 ∙ 1 + 𝜀𝑡. And the HAC 𝑡-statistics of the coefficient 𝜑0 is the 

DMW statistic.  

If the DMW  statistic exceeds a positive threshold (e.g., 1.96 for a two-sided 5% 

significance level), the null hypothesis is rejected, indicating that the forecast accuracy of 

model B is significantly better than that of model A. In other words, a positive test statistic 

reflects a larger loss function for model A than model B. Analogously, if the DMW statistic 

exceeds a negative threshold (e.g., -1.96 for a two-sided 5% significance level), the null 

hypothesis is rejected, indicating that the forecast accuracy of model B is significantly inferior 

to that of model A. If the DMW  statistic does not exceed either the positive or negative 

threshold, the null hypothesis is not rejected, indicating that the forecast accuracy of model A 

is not significantly different from that of model B. 

The lower panel of Table (7.1) reports the MSE, MAE, and QLIKE losses of the models 

as described by Specifications (1) to (6), for evaluating the out-of-sample forecasting accuracy 

of these models. The superscript (a) indicates that the model significantly outperforms the 𝑁𝐽𝛥 

model for the out-of-sample forecast accuracy, based on the DMW test at the two-tail 5% 

significance level. The superscript (b) indicates that the model significantly outperforms the 
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NJ± model for the out-of-sample forecast accuracy, based on the DMW test at the two-tail 5% 

significance level. As the results show, the mean loss functions of the 𝐷𝛥 model and the 𝐷± 

model, with few exceptions, are generally lower than those of the 𝐽∗,ΔDΔ model and 𝐽∗,±D± 

model, respectively. This indicates that the signed jump variation and its sign decomposition 

do not help to forecast volatility according to out-of-sample evaluation. (recall that the only 

difference between the 𝐷𝛥 model and the 𝐽∗,ΔDΔ model is the signed jump variation component 

and the only difference between the 𝐷±  model and the 𝐽∗,±D±  model is the positive and 

negative jump variation components). The limited out-of-sample evidence of signed jump 

variation and its sign decomposition corresponds to the limited in-sample evidence found in 

the previous section.  

Additionally, the mean loss functions of both the 𝐷𝛥 model and the 𝐷± model are smaller 

compared to their counterparts, the 𝐽𝛥 model and the 𝐽± model. Moreover, based on the DMW 

test results, the 𝐷± model significantly outperforms both of the 𝐽𝛥 model and the 𝐽± model 

according to the MAE and QLIKE loss functions. The superiority of the 𝐷𝛥 and 𝐷± models 

over the 𝐽𝛥  and 𝐽±  models indicates the economic importance of extracting the drift bias 

component and its sign decomposition from the signed jump variation estimator, as measured 

by the out-of-sample volatility forecasting performance analysis. 

 

7.2 Volatility forecasting with ultra-high-frequency data 

 

7.2.1 Volatility forecasting models 

To model volatility with ultra-high-frequency data, the volatility models defined by 

Specifications (1) to (4) are modified by replacing all variables with their noise-modified 

versions as defined in section 6. These noise-modified models are defined by the following 

Specifications (7) to (10). 
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Specification 7: This model is the noise-modified 𝐽𝛥 model, which exploits the impact of 

noise-modified signed jump variation estimator on future volatility for ultra-high-frequency 

data,  

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐽∆  𝑁𝐽𝑡
∆ + 𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.15) 

We term this model the 𝑁𝐽𝛥 model in this chapter.  

Specification 8: This model is the noise-modified 𝐽± model, which exploits the impact of 

noise-modified positive and negative jump variation estimators on future volatility for ultra-

high-frequency data, 

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐽∗,+  𝑁𝐽𝑡
∗,+ + 𝛽𝑁𝐽∗,−  𝑁𝐽𝑡

∗,− + 𝛽𝑁𝐷+  𝑁𝐷𝑡
+ + 𝛽𝑁𝐷−  𝑁𝐷𝑡

−

+𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤 𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1.
 (7.16) 

We term this model the 𝑁𝐽± model in this chapter.  

Specification 9: Recall from Equation (4.20) that the noise-modified signed jump variation 

estimator can be decomposed into the drift-modified noise-modified signed jump variation 

estimator (the better signed jump variation proxy) and a drift bias component (𝑁𝐽𝛥 = 𝑁𝐽∗,𝛥 +

𝑁𝐷𝛥). To investigate the impact of the signed jump variation and the drift bias on future 

volatility for ultra-high-frequency data, We formulate a new model by replacing the 𝑁𝐽𝛥 

component in the 𝑁𝐽𝛥 model with this decomposition, 

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐽∗,∆  𝑁𝐽𝑡
∗,∆ + 𝛽𝑁𝐷Δ𝑁𝐷𝑡

∆ + 𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤  𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1,  (7.17) 

We term this model the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 model. 

Specification 10: 𝑁𝐽∗,Δ can be decomposed into the positive and negative components: 

𝑁𝐽∗,Δ = 𝑁𝐽∗,+ + 𝑁𝐽∗,− , where 𝑁𝐽∗,+ = 𝑁𝐽∗,Δ(𝑁𝐽∗,Δ > 0)  and 𝑁𝐽∗,− = 𝑁𝐽∗,Δ(𝑁𝐽∗,Δ < 0) . 

Recall that the drift bias 𝑁𝐷𝛥 may have positive and negative signs. Thus, 𝑁𝐷𝛥 can also be 

decomposed into positive and negative components: 𝑁𝐷𝛥 = 𝑁𝐷+ + 𝑁𝐷− , where 𝑁𝐷+ =
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𝑁𝐷𝛥(𝑁𝐷𝛥 > 0)  and 𝑁𝐷− = 𝑁𝐷𝛥(𝑁𝐷𝛥 < 0) . Therefore, 𝑁𝐽Δ  is separated into four 

components, 

𝑁𝐽𝑡
Δ = 𝑁𝐽𝑡

∗,+ + 𝑁𝐽𝑡
∗,− + 𝑁𝐷𝑡

+ + 𝑁𝐷𝑡
−. (7.18) 

By replacing 𝑁𝐽𝑡
Δ in Equation (5.15) with this decomposition, We formulate a new model, 

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐽∗,+  𝑁𝐽𝑡
∗,+ + 𝛽𝑁𝐽∗,−  𝑁𝐽𝑡

∗,− + 𝛽𝑁𝐷+  𝑁𝐷𝑡
+ + 𝛽𝑁𝐷−  𝐷𝑁𝑡

−

+𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤 𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑚,𝑡 + 𝜖𝑡+1.
 (7.19) 

We term this model the NJ∗,±ND± model. 

 

7.2.2 In-sample estimation results 

Table 7.2 reports in-sample estimation results of Specification (7) to (10) for the ultra-high-

frequency SPY data. As the results show, across all of these models the coefficients 𝛽𝑑, 𝛽𝑤, 

and 𝛽𝑚 (for 𝑁𝐵𝑉, 𝑁𝑅𝑉𝑤, and 𝑁𝑅𝑉𝑚, respectively) are all positive and significant at the 5% 

level. This corroborates the persistence of volatility previously found under the 5-minute 

frequency scheme. Still, for the 𝑁𝐽𝛥 and 𝑁𝐽± models, the coefficients 𝛽𝑁𝐽∆, 𝛽𝑁𝐽+ and 𝛽𝑁𝐽− (of 

𝑁𝐽∆ , 𝑁𝐽+ , and 𝑁𝐽− ) are negative and significant at the 5% level (𝛽𝑁𝐽+  is somewhat not 

significant but still has a negative sign). This finding reflects that the signed jumps estimators 

exhibit a leverage effect on future volatility under ultra-high frequency. 

For the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 model, the estimate of 𝛽𝑁𝐽∗,∆ (the coefficient on 𝑁𝐽∗,∆) is not statistically 

significant at the 5% level, while 𝛽𝑁𝐷Δ (the coefficient on 𝑁𝐷Δ) is negative and significant at 

the 5% level. This indicates that the signed jump variation component of 𝑁𝐽𝛥 only has a limited 

impact, and the predictability of 𝑁𝐽𝛥  is almost exclusively due to its drift bias (recall that 

𝑁𝐽𝛥 = 𝑁𝐽∗,∆ + 𝑁𝐷Δ). This finding is consistent with the corresponding low-frequency 𝐽∗,𝛥𝐷𝛥 

model, which showed that the predictability of the signed jump variation estimator 𝐽∆ is driven 

by its drift bias. 
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For the 𝑁𝐽∗,±𝑁𝐷± model, 𝛽𝑁𝐽∗,+ , 𝛽𝑁𝐽∗,− , and 𝛽𝑁𝐷∗,+  (the coefficients on 𝑁𝐽∗,+, 𝑁𝐽∗,− and 

𝑁𝐷∗,+, respectively) are not statistically significant at the 5% level, while only 𝛽𝑁𝐷∗,−  (the 

coefficients on 𝑁𝐷∗,−) is negative and significant at the 5% level. This indicates that the 

predictability of 𝑁𝐽𝛥 is mainly attributed to its negative drift bias, as opposed to the positive or 

negative jump variations. This finding, which is revealed under noisy ultra-high frequency data, 

is consistent with that previously discovered from the corresponding low-frequency 𝐽∗,±𝐷± 

model (recall that the results of 𝐽∗,±𝐷± model shows that the predictability of 𝐽𝛥 is due to its 

negative drift bias).  

Table 7.2. Model in-sample estimation results and out-of-sample forecasting performance 

with ultrahigh-frequency data 
 

Notes: The upper panel of the table provides the in-sample parameter estimates and measure of fit 

(𝑅2) of the 𝑁𝐽𝛥, 𝑁𝐽±, 𝑁𝐽∗,𝛥𝑁𝐷𝛥, 𝑁𝐽∗,±𝑁𝐷±, 𝑁𝐷𝛥, and 𝑁𝐷± models (Specifications (7) to (12)). 

The bottom panel contains the MSE, MAE, and QLIKE losses of these models for evaluating their 

out-of-sample forecasting accuracy. The superscript (a) indicates that the model significantly 

outperforms the 𝐽𝛥 model for the out-of-sample forecast accuracy based on the DMW test at the two-

tail 5% significance level. The superscript (b) indicates that the model significantly outperforms the 

𝐽±  model for the out-of-sample forecast accuracy based on the DMW test at the two-tail 5% 

significance level. 

 
 𝑁𝐽𝛥 𝑁𝐽± 𝑁𝐽∗,𝛥𝑁𝐷𝛥 𝑁𝐽∗,±𝑁𝐷± 𝑁𝐷𝛥 𝑁𝐷± 

In-sample estimation results 

 𝛽𝑁𝐽∆ -0.447      
 (-2.16)      

 𝛽𝑁𝐽+  0.160     
 

 (0.57)     

 𝛽𝑁𝐽−  -1.795     
 

 (-2.93)     

 𝛽𝑁𝐽∗,Δ 
  -0.280    

 
  (-1.18)    

 𝛽𝑁𝐷Δ   -0.900  -0.753  
 

  (-3.57)  (-3.53)  

 𝛽𝑁𝐽∗,+    -0.085   
 

   (-0.19)   

 𝛽𝑁𝐽∗,−    -0.613   
 

   (-1.57)   

 𝛽𝑁𝐷+    0.473   
 

   (1.23)   

 𝛽𝑁𝐷−    -2.035  -1.690 
 

   (-4.14)  (-4.76) 

 𝛽𝐶 0.684 0.623 0.641 0.532 0.638 0.559 
 (15.24) (10.90) (14.86) (9.16) (14.52) (11.02) 

 𝛽𝑤 0.206 0.217 0.229 0.213 0.226 0.229 
 (5.87) (6.21) (6.32) (6.28) (6.19) (6.51) 
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 𝛽𝑚 0.024 0.024 0.028 0.030 0.029 0.031 
 (1.17) (1.22) (1.37) (1.55) (1.41) (1.51) 

R2 0.742 0.747 0.743 0.758 0.743 0.752 

Out-of-sample forecast 

MSE(OOS) × 107 0.080 0.093 0.094 0.094 0.072 0.080 

MAE(OOS) × 104 0.253 0.265 0.273 0.265 0.252 0.249 

 QLIKE(OOS) 0.185 0.218 0.217 0.194 0.176a,b 0.168a,b 

 

Turning to the in-sample goodness of fit (𝑅2) of the 𝑁𝐽𝛥, 𝑁𝐽±, 𝑁𝐽∗,𝛥𝑁𝐷𝛥, and 𝑁𝐽∗,±𝑁𝐷± 

models reported in the final row of the upper panel of Table (7.2), the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 and 𝑁𝐽∗,±𝑁𝐷± 

models have greater 𝑅2 than the 𝑁𝐽𝛥 and 𝑁𝐽∗,±𝑁𝐷± models, respectively. This indicates that 

for ultra-high-frequency data, the model with the drift bias disentangled from the noise-

modified signed jump variation estimator leads to better in-sample goodness of fit. This finding 

is consistent with that of the corresponding models using data sampled at the 5-minute 

frequency, specifically, the 𝐽∗,𝛥𝐷𝛥 and 𝐽∗,±𝐷± models have greater 𝑅2 than the 𝐽𝛥 and 𝐽∗,±𝐷± 

models, respectively.  

Motivated by the limited in-sample evidence of the 𝑁𝐽∗,𝛥  estimator, We formulate the 

following 𝑁𝐷𝛥 model by removing the 𝑁𝐽∗,𝛥 component from the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 model. 

Specification 11: the NDΔ model: 

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐷Δ𝑁𝐷𝑡
∆ + 𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.20) 

Motivated by the limited in-sample evidence of the 𝑁𝐷+, 𝑁𝐽∗,+, 𝑁𝐽∗,− components, We 

formulate the following 𝑁𝐷− model by removing the 𝑁𝐷+, 𝑁𝐽∗,+, 𝑁𝐽∗,− components from the 

𝑁𝐽∗,±𝑁𝐷± model. 

Specification 12: the ND− model: 

𝑁𝑅𝑉𝑡+1 = 𝛽0 + 𝛽𝑁𝐷−  𝑁𝐷𝑡
− + 𝛽𝐶  𝑁𝐵𝑉𝑡 + 𝛽𝑤 𝑁𝑅𝑉̅̅ ̅̅ ̅̅

𝑤,𝑡 + 𝛽𝑚 𝑁𝑅𝑉̅̅ ̅̅ ̅̅
𝑚,𝑡 + 𝜖𝑡+1. (7.21) 

The final two columns of the upper panel of Table 7.2 represents the in-sample estimation 

results for the 𝑁𝐷𝛥 and 𝑁𝐷− models. As shown by the results, the estimates of 𝛽𝐶, 𝛽𝑤, and 𝛽𝑚 

(for 𝑁𝐵𝑉, 𝑁𝑅𝑉𝑤, and 𝑁𝑅𝑉𝑚) are also all positive and significant at the 5% level for both the 
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𝑁𝐷𝛥 and 𝑁𝐷− models, again indicating the stylized fact of the volatility persistence. Besides, 

both 𝛽𝑁𝐷Δ of the 𝑁𝐷𝛥 model and 𝛽𝑁𝐷− of the 𝑁𝐷− model are negative and significant at the 

5% level, again indicating the negative impact of the drift bias and the negative drift bias on 

future volatility. 

 

7.2.3 Out-of-sample forecast results 

The lower panel of Table 7.2 reports the MSE, MAE, and QLIKE losses of the models as 

described by Specifications (7) to (12), for evaluating out-of-sample forecasting accuracy. The 

superscript (a) indicates that the model significantly outperforms the 𝑁𝐽𝛥 model for the out-of-

sample forecast accuracy based on the DMW test at the two-tail 5% significance level. The 

superscript (b) indicates that the model significantly outperforms the NJ± model for the out-of-

sample forecast accuracy based on the DMW test at the two-tail 5% significance level. As the 

results show, the 𝑁𝐷𝛥 model and the 𝑁𝐷± model performs better than the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 model 

and 𝑁𝐽∗,±𝑁𝐷± model, respectively, according to their out-of-sample accuracy. In detail, the 

mean loss functions of the 𝑁𝐷𝛥  model and the 𝑁𝐷±  model are lower than those of the 

𝑁𝐽∗,𝛥𝑁𝐷𝛥  model and 𝑁𝐽∗,±𝑁𝐷±  model, respectively. The better performance of the 𝑁𝐷𝛥 

model and the 𝑁𝐷± model compared to the 𝑁𝐽∗,𝛥𝑁𝐷𝛥 model and 𝑁𝐽∗,±𝑁𝐷± model indicate 

that the signed jump variation and its sign decomposition do not help forecast volatility, when 

evaluated by out-of-sample forecast accuracy, for ultra-high-frequency data (recall that the 

only difference between the 𝑁𝐷𝛥  model and the 𝑁𝐽∗,𝛥𝑁𝐷𝛥  model is the modified noise-

modified signed jump variation component and the only difference between the 𝑁𝐷± model 

and the 𝑁𝐽∗,±𝑁𝐷±  model is the modified noise-modified positive and the modified noise-

modified negative jump variation components). The limited out-of-sample evidence of signed 
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jump variation and its sign decomposition corresponds to the limited in-sample evidence found 

in Section 7.2.2. 

Additionally, the results also show that the 𝑁𝐷𝛥 and 𝑁𝐷± models are superior to the 𝑁𝐽𝛥 

and NJ±  model. Specifically, the mean loss function of either the 𝑁𝐷𝛥  model or the 𝑁𝐷± 

model are smaller than those of both of the 𝑁𝐽𝛥 model and the 𝑁𝐽± model. Moreover, based 

on the DMW test results, the 𝑁𝐷± model is significantly superior to both of the 𝑁𝐽𝛥 model and 

the 𝑁𝐽± model for the QLIKE loss function. The superiority of the 𝑁𝐷𝛥 and 𝑁𝐷± models over 

the 𝑁𝐽𝛥  and 𝑁𝐽±  model indicates the economic importance of extracting the drift bias 

component and its sign decomposition from the noise-modified signed jump variation 

estimator under ultra-high-frequency data, in terms of the out-of-sample volatility forecasting 

precision.
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8 Conclusion 

The simulations of this paper reveal that with a rather low but realistic sampling frequency 

(e.g., 5 min), the bias due to a non-zero drift is also large in the realized semi-variances. When 

the signs of the realized semi-variance and the drift are equal, the realized semi-variances tend 

to overestimate the half volatility in the presence of a non-zero drift, and the bias increases with 

the magnitude of the drift. When the signs of the realized semi-variance and the drift are 

different, the realized semi-variances tend to underestimate the half volatility in the presence 

of a non-zero drift, and the bias is not sensitive to the variation of the drift. Moreover, despite 

the drift becoming extremely close to zero as the sampling frequency increases, my simulations 

show that the volatility estimators of Christensen et al. (2014), which are robust to 

microstructure noise and designed for ultra-high-frequency data, suffer from the same problem 

due to the use of pre-averaged returns. Consequently, the procedures derived from these 

volatility estimators such as the jump asymmetry estimation of Barndorff-Nielsen et al. (2008) 

have unsatisfactory performance in finite samples if log prices have a non-zero drift.  

We propose an alternative construction of the jump asymmetry estimator, following the 

centring procedure of Laurent and Shi (2020). The simulations for the modified jump 

asymmetry estimator reveal dramatic improvement in the estimation accuracy. The newly 

proposed jump asymmetry estimator, along with its original version, is applied to high 

frequency log returns of the S&P 500 for the period from 1997 to 2021. From the results, We 

observe that the drift bias is empirically large and has positive or negative signs, which is 

consistent with the simulations. Furthermore, We apply these estimators to forecast volatility 

via the HAR volatility forecasting model framework by Corsi (2009). The results show that the 

predictive power of the jump asymmetry estimator previously found in Patton and Sheppard 

(2015) is almost exclusively due to drift bias in the presence of a non-zero drift. The modified 
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jump asymmetry estimators, which measure the jump asymmetry much more precisely, only 

exhibit limited predictability. We show that disentangling the drift bias from the jump 

asymmetry estimator also leads to significantly more accurate out-of-sample volatility 

forecasts. 
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Appendix 

This section explains the motivation and calculation of using the Weighted Least Square 

(WLS) estimation method in this chapter. For the illustration, We consider the estimation of 

the 𝐽𝛥 model as an example. The traditional method for estimating the 𝐽𝛥 model relies on the 

Ordinary Least Square (OLS) method (e.g., Andersen et al., 2007, Corsi, 2009). To implement 

this method, for example, for the 𝐽𝛥 model, first substitute the realized measures from the 

sample into this model, 

𝑅𝑉23 = 𝛽0 + 𝛽𝑗∆  𝐽22
∆ + 𝛽𝑑 𝑅𝑉22 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,22 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,22 + 𝜖23, 

𝑅𝑉24 = 𝛽0 + 𝛽𝑗∆  𝐽23
∆ + 𝛽𝑑 𝑅𝑉23 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,23 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,23 + 𝜖24, 

⋮ 

𝑅𝑉𝑛 = 𝛽0 + 𝛽𝑗∆  𝐽𝑛−1
∆ + 𝛽𝑑 𝑅𝑉𝑛−1 + 𝛽𝑤 𝑅𝑉̅̅ ̅̅

𝑤,𝑛−1 + 𝛽𝑚 𝑅𝑉̅̅ ̅̅
𝑚,𝑛−1 + 𝜖𝑛. 

Note that the dependent variable starts from 𝑅𝑉23  as the calculation of the respective 

independent variable 𝑅𝑉̅̅ ̅̅
𝑚,𝑡  requires a minimum of past 21 observations. The matrix 

presentation of above equations is, 

[
 
 
 
 
𝑅𝑉23

𝑅𝑉24

⋮
⋮

𝑅𝑉𝑛 ]
 
 
 
 

=

[
 
 
 
 
 
1 𝐽22

∆ 𝑅𝑉22 𝑅𝑉̅̅ ̅̅
𝑤,22 𝑅𝑉̅̅ ̅̅

𝑚,22

1 𝐽23
∆ 𝑅𝑉23 𝑅𝑉̅̅ ̅̅

𝑤,23 𝑅𝑉̅̅ ̅̅
𝑚,23

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1 𝐽𝑛−1

∆ 𝑅𝑉𝑛−1 𝑅𝑉̅̅ ̅̅
𝑤,𝑛−1 𝑅𝑉̅̅ ̅̅

𝑚,𝑛−1]
 
 
 
 
 

[

𝛽0

𝛽d

𝛽w

𝛽m

] +

[
 
 
 
 
𝜖23

𝜖24

⋮
⋮
𝜖𝑛 ]

 
 
 
 

. (A. 1) 

This can be rewritten more simply as: 

𝑦 = 𝑋𝛽 + 𝜖, (A. 2) 
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where 𝑦 =

[
 
 
 
 
𝑅𝑉23

𝑅𝑉24

⋮
⋮

𝑅𝑉𝑛 ]
 
 
 
 

, 𝑋 =

[
 
 
 
 
 
1 𝐽22

∆ 𝑅𝑉22 𝑅𝑉̅̅ ̅̅
𝑤,22 𝑅𝑉̅̅ ̅̅

𝑚,22

1 𝐽23
∆ 𝑅𝑉23 𝑅𝑉̅̅ ̅̅

𝑤,23 𝑅𝑉̅̅ ̅̅
𝑚,23

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1 𝐽𝑛−1

∆ 𝑅𝑉𝑛−1 𝑅𝑉̅̅ ̅̅
𝑤,𝑛−1 𝑅𝑉̅̅ ̅̅

𝑚,𝑛−1]
 
 
 
 
 

, 𝛽 = [

𝛽0

𝛽d

𝛽w

𝛽m

], and 𝜖 =

[
 
 
 
 
𝜖23

𝜖24

⋮
⋮
𝜖𝑛 ]

 
 
 
 

. 

The OLS estimator of 𝛽 (�̂�𝑂𝐿𝑆) is the solution to minimize the sum of squared residuals defined 

by, 

(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽), 

and the solution of this minimization problem is  

�̂�𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑦. (A. 3) 

The residuals based on above OLS solution of coefficients (𝑒𝑂𝐿𝑆) are defined by, 

𝑒𝑂𝐿𝑆  = 𝑦 − 𝑋�̂�𝑂𝐿𝑆, (A. 4) 

The fitted value (or predicted value) of 𝑦 is defined by, 

�̂�𝑂𝐿𝑆 =

[
 
 
 
 
𝑅�̂�23

𝑂𝐿𝑆

𝑅�̂�24
𝑂𝐿𝑆

⋮
⋮

𝑅�̂�𝑛
𝑂𝐿𝑆]

 
 
 
 

= 𝑋�̂�𝑂𝐿𝑆. (A. 5) 

One important (Gauss-Markov) assumption of Ordinary Least Square (OLS) is that the 

conditional variance of the disturbances should be fixed across the sample period (or 

homoskedasticity). For example, the OLS for the 𝐽𝛥 model assumes the conditional variance 

of the disturbances of the 𝐽𝛥 model to be fixed across the sample period, that is, E(𝜖𝜖′|𝑋) =

𝜎2𝐼, where 𝜎2 is the level of conditional variance and is fixed, and 𝐼 indicates the identity 

matrix of size 𝑛 − 22. However, as documented in the literature (e.g., Corsi et al., 2008, Patton 

and Sheppard, 2015), the assumption of homoskedasticity may be not realistic as the variance 

of the disturbances of the HAR model may vary substantially across the sample period (or 

heteroskedasticity) and is correlated its lagged value (or autocorrelation). For example, the 



 

79 
 

disturbances of the HAR model around 2008 financial crisis are generally greater than other 

tranquil periods (due to volatility changes much more dramatically during this period). To 

check if heteroskedasticity is present, the left panel of Figure A.1 reports the scatter plot of 

residuals (𝑒𝑂𝐿𝑆) and fitted value (�̂�𝑂𝐿𝑆) for the 𝐽𝛥 model estimated by the OLS method for the 

SPY sample of this chapter. 6 As the panel shows, the spread of the residuals is increasing as 

the fitted values changes. This implies that the level of the conditional volatility of the 

disturbances is likely to change dramatically across the sample period and increases with the 

level of the fitted values.  

Figure A.1. The scatter plots for residuals and fitted value for the 𝐽𝛥 model 

Notes: The left panel reports the scatter plot of residuals (𝑒𝑂𝐿𝑆) and fitted value (�̂�𝑂𝐿𝑆) for the 𝐽𝛥 model estimated 

by the Ordinary Least Square (OLS) method. The residuals (𝑒𝑂𝐿𝑆) and fitted value (�̂�𝑂𝐿𝑆) are obtained by Equation 

(A.4) and Equation (A.5), respectively. The right panel reports the scatter plot of weighted residuals (𝑒𝑊𝐿𝑆
𝑤 ) and 

fitted value (�̂�𝑊𝐿𝑆) for the 𝐽𝛥  model estimated by the Weighted Least Square (WLS) method. The weighted 

residuals (𝑒𝑊𝐿𝑆
𝑤 ) and fitted value (�̂�𝑊𝐿𝑆) are obtained by Equation (A.9) and Equation (A.10), respectively. The 

data used for computing these residuals and fitted values is SPDR S&P 500 ETF from 1997 to 2021. 

 

Since the level of the conditional volatility of the disturbances possibly changes across the 

sample period and is consistent with the level of the fitted values, estimation by OLS has the 

disadvantage that the resulting estimates focus primarily on fitting periods of high RV and place 

little weight on low RV periods. To overcome this, Weighted Least Squares (WLS) may be a 

 
6 Here, I only report the results for the 𝐽Δ model in Figure A.1. But I confirm that the results for the remaining 

models lead to similar patterns. 
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solution. WLS attempts to provide a more efficient alternative to OLS by putting upon less 

weight to disturbances which are likely to have a large variance and more weight to 

disturbances which are likely to have a small variance. If each weight 𝑤  is inversely 

proportional to the conditional variance of the corresponding disturbances, then the WLS 

estimator is more efficient than the OLS estimator. Motivated by the positive relationship 

between the volatility of the residuals and the level of OLS fitted values, Patton and Sheppard 

(2015) suggest using the inverse of the OLS fitted values as the weights. Specifically, for the 

𝐽𝛥  model, first obtain the OLS fitted value �̂�𝑂𝐿𝑆  from Equation (A.5). Then calculate the 

weights by the inverse value of each element in �̂�𝑂𝐿𝑆. The matrix form of the weights is defined 

by the matrix with the weights on the diagonal and zeroes everywhere else, 

𝑊 =

[
 
 
 
1/𝑅�̂�23

𝑂𝐿𝑆 0 ⋯ 0

0 1 𝑅�̂�24
𝑂𝐿𝑆⁄ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1/𝑅�̂�𝑛

𝑂𝐿𝑆]
 
 
 

. (A. 6) 

Finally, based on the weights 𝑊, the WLS estimator of 𝛽 (�̂�𝑊𝐿𝑆) is the solution to the 

minimization problem of weighted sum of squared residuals, 

(𝑦 − 𝑋𝛽)′𝑊(𝑦 − 𝑋𝛽), 

and the solution of this minimization problem is  

�̂�𝑊𝐿𝑆 = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑦. (A. 7) 

The residuals (𝑒𝑊𝐿𝑆
𝑤 ) based on above WLS estimated coefficients �̂�𝑊𝐿𝑆 are defined by, 

𝑒𝑊𝐿𝑆 = 𝛼𝑊(𝑦 − 𝑋�̂�𝑊𝐿𝑆), (A. 8) 

and the weighted residuals (𝑒𝑊𝐿𝑆
𝑤 ) are defined by, 

𝑒𝑊𝐿𝑆
𝑤 = 𝛼𝑊(𝑦 − 𝑋�̂�𝑊𝐿𝑆), (A. 9) 
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where the component 𝛼 = 1/[1 (𝑛 − 22)⁄ ∑ 𝑤𝑗
𝑛−22
𝑗=1 ]  (with 𝑤𝑗  indicating the 𝑗 th diagonal 

elements of the 𝑊  matrix) is a scale which ensures that the average weight equals one 

(1 (𝑛 − 22)⁄ ∑ {𝛼𝑤𝑗}
𝑛−22
𝑗=1 = 1), and this facilitates comparing the WLS weighted residuals 𝑒𝑊𝐿𝑆

𝑤  

with the above OLS (unweighted) residuals 𝑒𝑂𝐿𝑆.  

The fitted value (or predicted value) of 𝑦 is defined by, 

�̂�𝑊𝐿𝑆 =

[
 
 
 
 
𝑅�̂�23

𝑊𝐿𝑆

𝑅�̂�24
𝑊𝐿𝑆

⋮
⋮

𝑅�̂�𝑛
𝑊𝐿𝑆]

 
 
 
 

= 𝑋�̂�𝑊𝐿𝑆. (A. 10) 

To check if heteroskedasticity is reduced for weighted WLS residuals 𝑒𝑊𝐿𝑆
𝑤 , the right panel 

of Figure A.1 reports the scatter plot of weighted WLS residuals (𝑒𝑊𝐿𝑆
𝑤 ) and fitted value (�̂�𝑊𝐿𝑆) 

for the HAR model estimated by the WLS method. 7 Comparing the left panel with the right 

panel, the deviation of the weighted WLS residuals (𝑒𝑊𝐿𝑆
𝑤 ) is much smaller than that of the 

OLS residuals (𝑒𝑂𝐿𝑆) as the fitted values changes. This implies that the heteroskedasticity of 

the weighted disturbances is reduced across the sample period. Motivated by the superiority of 

such WLS estimation method in terms of treating the heteroskedasticity of disturbances, We 

use apply this WLS estimation method for estimating all models throughout this chapter. 

The population of coefficients 𝛽 is unknown and the estimate of these coefficients (e.g., 

�̂�𝑊𝐿𝑆) is used for testing certain hypotheses about the population of coefficients 𝛽. To explore 

the impact of the predictors on the future realized volatility is weak or strong, this paper tests 

the null hypothesis that the population of coefficient 𝛽 is zero and alternative hypothesis that 

the population of coefficient 𝛽 is not zero. To test these hypotheses, the distribution (type of 

probability distribution, mean, variance) of �̂�𝑊𝐿𝑆  must be known. To obtain the type of 

 
7 Here, I only report the results for the 𝐽𝛥 model in Figure A.1. But I confirm that the results for the remaining 

models in this chapter lead to similar patterns. 
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probability distribution of �̂�𝑊𝐿𝑆 , first obtain a formulation of �̂�𝑊𝐿𝑆  by Equation (A.7) and 

Equation (A.2),  

�̂�𝑊𝐿𝑆 = 𝛽 + (𝑋′𝑊𝑋)−1𝑋′𝑊𝜖, (A. 11) 

From Equation (8.11), it can then be seen that the type of probability distribution of �̂�𝑊𝐿𝑆 is 

consistent with that of disturbances 𝜖 . As often, the type of probability distribution of 

disturbances 𝜖  is assumed to be (multivariate) normal. Therefore, the type of probability 

distribution of the WLS estimated coefficients �̂�𝑊𝐿𝑆 is also a multivariate normal distribution. 

From Equation (A.11), it can also be easily calculated that the mean of the distribution of �̂�𝑊𝐿𝑆 

(𝐸(�̂�𝑊𝐿𝑆)) equals 𝛽, 

𝐸(�̂�𝑊𝐿𝑆) = 𝛽 (A. 12) 

(Note that 𝐸((𝑋′𝑊𝑋)−1𝑋′𝑊𝜖) = (𝑋′𝑊𝑋)−1𝑋′𝑊𝐸(𝜖) = 0  as one of the Gauss-Markov 

assumptions states that the disturbances average out to 0 for any values of 𝑋). From Equation 

(A.11), the variance-covariance of the coefficients �̂�𝑊𝐿𝑆 is 𝐸 ((�̂�𝑊𝐿𝑆 − 𝛽)(�̂�𝑊𝐿𝑆 − 𝛽)′) and 

can be obtained by substituting �̂�𝑊𝐿𝑆 with 𝛽 + (𝑋′𝑊𝑋)−1𝑋′𝑊𝜖, 

𝐸 ((�̂�𝑊𝐿𝑆 − 𝛽)(�̂�𝑊𝐿𝑆 − 𝛽)′) = (𝑋′𝑊𝑋)−1𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋(𝑋′𝑊𝑋)−1. (A. 13) 

The proportion 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 in the middle of the right-hand side of above Equation 

(A.13) need to be estimated (Equation (A.13) is also known as the ‘sandwich’ estimator with 

two (𝑋′𝑊𝑋)−1 as upper and lower breads and 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 as meat in the middle). To 

estimate the ‘meat’ proportion 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 , We use the heteroskedasticity and 

autocorrelation consistent (HAC) estimator by Newey and West (1987). The HAC estimator is 

robust to estimation bias due to the heteroskedasticity and autocorrelation of the variance of 

disturbances. Specifically, the HAC estimator for 𝑋′𝑊𝐸(𝜖𝜖′)𝑊′𝑋 is given by, 



 

83 
 

𝑋′𝑊𝐸(𝜖𝜖′)𝑊′ =
𝑛

𝑛 − 𝑘
∑ (𝑤𝑗𝑒𝑊𝐿𝑆,𝑗)

2
𝑥𝑗

′

𝑛−22

𝑗=1

𝑥𝑗

+
𝑛

𝑛 − 𝑘
∑(1 −

𝑙

𝐿 + 1
)

𝐿

𝑙=1

∑ 𝑤𝑗𝑤𝑗−𝑙𝑒𝑊𝐿𝑆,𝑗𝑒𝑊𝐿𝑆,𝑗−𝑙(𝑥𝑗
′𝑥𝑗−𝑙 + 𝑥𝑗−𝑙

′ 𝑥𝑗)

𝑛−22

𝑗=𝑙+1

 

(A. 14) 

where 𝑥𝑗 is the 𝑗th row of the 𝑋 matrix, 𝑒𝑊𝐿𝑆,𝑗 is the 𝑗th row of the 𝑒𝑊𝐿𝑆 vector, 𝑤𝑗 is the 𝑗th 

diagonal elements of the 𝑊 matrix, and 𝑘 is the number of predictors (including the constant) 

in the model (e.g., 𝑘 = 4 for the JΔ model), and 𝐿 is the number of lags for compensating the 

estimation bias risen by the autocorrelation. Following Corsi and Renò (2012), We set the 

number of lags 𝐿 equal to 2(ℎ + 1), where ℎ is the lead length (or the forecast horizon) of the 

dependent variable of the model (e.g., for the 𝐽𝛥  model, 𝐿 = 4 as ℎ = 1). By substituting 

Equation (A.14) to Equation (A.13), the HAC variance-covariance matrix for �̂�𝑊𝐿𝑆  can be 

obtained. We use notation 𝑉𝐶�̂�𝐻𝐴𝐶 to indicate this HAC variance-covariance matrix.  

In summary, the results of the distribution information on �̂�𝑊𝐿𝑆  show that �̂�𝑊𝐿𝑆  is 

distributed multivariate normal with mean equal to 𝛽 and variance-covariance matrix equal to 

𝑉𝐶�̂�HAC. Then, the test statistics 𝛵𝑠𝑡𝑎𝑡 for testing the hypotheses about the coefficients 𝛽 are 

calculated by 𝛵𝑠𝑡𝑎𝑡 = �̂�𝑊𝐿𝑆 ⊘ diag(𝑉𝐶�̂�𝐻𝐴𝐶), where “⊘” indicates the Hadamard division 

(Hadamard division a binary operation that takes in two matrices of the same dimensions and 

returns a matrix of the divided corresponding elements), “diag” denotes the Matrix-to-vector 

diag operator (e.g., diag(𝑉𝐶�̂�HAC) returns a vector of the diagonal entries of 𝑉𝐶�̂�HAC). For 

the HAR model, the population of the coefficients 𝛽 and 𝛵𝑠𝑡𝑎𝑡 can be presented by, 

𝛽 = [

𝛽0

𝛽d

𝛽w

𝛽m

] and 𝛵𝑠𝑡𝑎𝑡 =

[
 
 
 
𝑇𝑠𝑡𝑎𝑡,0

𝑇𝑠𝑡𝑎𝑡,𝑑

𝑇𝑠𝑡𝑎𝑡,𝑤

𝑇𝑠𝑡𝑎𝑡,𝑚]
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Based on this formulation of 𝛽 and 𝛵𝑠𝑡𝑎𝑡, the hypotheses for each of the coefficients in the 

matrix 𝛽 can be tested based on the corresponding test statistic in the matrix 𝛵𝑠𝑡𝑎𝑡. For example, 

one can test the null & alternative hypotheses of 𝛽d by the value of 𝑇𝑠𝑡𝑎𝑡,𝑑. If 𝑇𝑠𝑡𝑎𝑡,𝑑 is larger 

than 1.96, the false positive (or the probability of mistaken rejection of a null hypothesis) is 

smaller than 0.05 (two-tail). The probability of false positive is based on the p-value that 

corresponds to 𝑡 =  1.96  with degree of freedom df =  𝑛 − 22 − 𝑘  = 6222 − 22 − 4  = 

6196 for the student 𝑡-distribution is approximately 0.05 (As often, to account for small sample 

bias, standard normal distribution is often replaced with the student 𝑡-distribution). As the risk 

of false positive is small, one can reject the null hypothesis that the population of 𝛽d is zero 

thus accept the alternative hypothesis that the population of 𝛽d is different from zero.  

The goodness of fit of a statistical model describes how well it fits a set of observations. 

To measure the goodness of fit, this paper uses the coefficient of determination, denoted 𝑅2. 

𝑅2 is defined by, 

𝑅2 = 1 −
∑ (𝑦𝑗 − �̂�𝑊𝐿𝑆,𝑗)

2𝑛−22
𝑗=1

∑ (𝑦𝑗 −
1

𝑛 − 22 
∑ 𝑦𝑗

𝑛−22
𝑗=1 )

2
𝑛−22
𝑗=1

 
(A. 15) 

where 𝑦𝑗 is the 𝑗th row of the 𝑦 matrix and �̂�𝑊𝐿𝑆,𝑗 is the 𝑗th row of the �̂�𝑊𝐿𝑆 matrix. 

 


