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1 Introduction

Consider the formidable problem of an investor who wants to choose an optimal asset allocation

within her equity portfolio. The literature provides her with a few options: She can opt for a

traditional Markowitz approach (Markowitz, 1952) which requires estimating expected returns,

variances and covariances, with the number of moments to estimate increasing rapidly in the

number of assets. At the other end of the spectrum, she might estimate a low-dimensional

parametric portfolio policy (PPP) (Brandt et al., 2009) but a linear model might not provide

sufficient flexibility. She can also consult a large literature that relates characteristics to expected

returns but even studies that consider a multitude of firm-level characteristics (e.g., Gu et al., 2020)

only investigate expected returns and do not speak to risk as perceived by different investors’

objective functions.

We provide a general solution to the portfolio optimization challenge. In short, we combine

the parametric portfolio policy approach that is well-suited to estimate portfolio weights for any

utility function with the flexibility of feed-forward networks from the machine learning literature.

The resulting approach that we label Deep Parametric Portfolio Policy (DPPP) is well-suited to

accommodate flexible non-linear and interactive relationships between portfolio weights and stock

characteristics, to integrate different utility functions, to deal with leverage or portfolio weight

constraints, and to incorporate transaction costs.

Our results are fourfold. First, our model significantly improves over a standard linear

parametric portfolio policy, with certainty equivalent gains ranging from about 75 basis points

to 276 basis points, depending on the model specification and the incorporation of constraints.

These gains are not limited to specific time periods, suggesting that the relationship between

firm characteristics and investor utility is non-linear and complex. Second, although the DPPP

consistently outperforms the linear model, the performance difference decreases with increased

risk aversion or realistic portfolio constraints such as leverage or weight constraints. In particular,

the benefit of model complexity decreases in an investor’s risk aversion, yet remains economically

significant even for highly risk-averse investors. Third, utility gains arise for a variety of investor

utility functions. While our benchmark investor is a classical constant relative risk aversion

(CRRA) optimizer, our setup easily accommodates other utility functions. We also investigate
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deep parametric portfolio policies for the case of mean-variance utility and for loss aversion, and

we find substantial utility gains in all cases. Last, past return-based stock characteristics turn out

to be more relevant to the portfolio policy than accounting-based characteristics. However, in line

with the existing literature (DeMiguel et al., 2020; Jensen et al., 2022), the relevance of return-based

characteristics decreases when we model transaction costs explicitly in the objective function.

The importance of non-linear modeling of portfolio weights becomes evident when considering

an investor who trades off mean return against return volatility. The investor uses standard one-

dimensional portfolio sorting techniques as pictured in Figure 1. Decile portfolios formed on

short-term reversal or sales-to-price display monotonically increasing mean return.1 At the

same time, the standard deviations of decile portfolios are non-linear in deciles, with top and

bottom decile portfolios having high standard deviations. This leads to extreme portfolios having

comparatively low Sharpe ratios relative to decile portfolios in the middle of the distribution. A

(long-only) investor would therefore potentially be indifferent between investing in any portfolio in

the upper half of the short-term reversal distribution, and she would prefer to invest in portfolios

in the middle of the sales-to-price distribution rather than investing in the extreme portfolios.

Non-linear portfolio policies are able to capture these kinds of relationships.

[FIGURE 1 ABOUT HERE]

To the best of our knowledge, our study is the first to systematically explore how the benefits

of a complex and flexible model vary for investors with different levels of risk aversion or different

utility functions. A natural concern with deep learning models such as ours is their potential to

overfit the historical data. Overfitting leads to less reliable out-of-sample estimates and higher

prediction variance. Since our deep learning approach maximizes the investor objective function

directly (as opposed to than minimizing a statistical objective such as the squared distance between

realized and predicted returns (Moritz and Zimmermann, 2016; Gu et al., 2020)), volatility of

results becomes a systematic part of the optimization of the economic objective. As risk aversion

increases, the variance of portfolio returns becomes more important and leans against overfitting

and thus model complexity. We refer to this mechanism as "economic model regularization"

1We picked these two variables for illustrative purposes as these variables are the most important return- and
fundamental-based variables in Gu et al. (2020).
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(in contrast to purely statistically motivated regularization techniques), and document that, in

line with the outlined mechanism, the outperformance of our model over its linear counterpart

decreases with increased risk aversion (but remains economically meaningful even for high risk

aversion).

Our model can be interpreted as a generalization of the linear parametric portfolio policy

approach. More specifically, we allow portfolio weights to be of one of the arguably most flexible

forms - a neural network. This represents a significant conceptual departure from linear parametric

portfolio policies in two ways: First, by replacing the linear specification with a neural network,

we allow the relation between firm characteristics and weights to be non-linear and we allow

for potential interactions of firm characteristics. Research on using machine learning methods to

predict future returns shows that such flexibility is relevant to model the relationship between

firm characteristics and future returns and can lead to substantial improvements over less flexible

specifications (Moritz and Zimmermann, 2016; Freyberger et al., 2020; Gu et al., 2020). It is

conceivable that such flexibility will also help to model the relation between portfolio weights

and firm characteristics. Second, this flexibility comes at the cost of having to estimate a model

with a high-dimensional parameter vector. This is a deviation from the original motivation

of the parametric portfolio policy literature which aimed to reduce portfolio optimization to a

low-dimensional problem with only a small number of coefficients needing to be estimated. Our

benchmark model has around 5,700 parameters compared to the three parameters that must be

estimated in the application of Brandt et al. (2009). However, Kelly et al. (2022) argue that model

complexity is a virtue for return prediction, and our approach can be viewed as an exploration of

that point in the context of parametric portfolio policies.

Building on Brandt et al. (2009), we begin with a benchmark case of a largely unrestricted

portfolio policy. In the benchmark case, an investor who optimizes CRRA utility can take long and

short positions with the only restriction that absolute individual stock positions cannot exceed

three percent of the overall portfolio. Other aspects of the optimization remain unrestricted, in

particular, the investor does not take into account transaction costs or short-selling constraints.

In the benchmark case our network-based portfolio policy improves upon the linear portfolio

policy by 116 to 276 basis points in terms of monthly certainty equivalent return, depending on

the degree of risk aversion. Certainty equivalent differences are larger, the lower the degree of risk
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aversion, consistent with the economic model regularization mechanism outlined above. P-values

for the difference in certainty equivalent between the two approaches increase with increasing

risk aversion. Nonetheless, all differences are still significant at the 1% level and economically

meaningful. The results further indicate that the DPPP induces twice as much monthly turnover

as compared to the PPP. We show that the difference in turnover is due to the DPPP putting

larger weight on past-return based characteristics which imply higher turnover, such as short-term

reversal.

We then explore portfolio strategies based on networks in a more realistic setting, where

investors are subject to various restrictions. We investigate the effects of transaction costs and

leverage constraints on the optimization problem. We observe that network-based policies generate

higher certainty equivalent returns than linear portfolio policies, with increases ranging from

75 to 124 basis points. The decrease in certainty equivalent differences can be attributed to the

additional constraints. For constrained portfolio policies, the importance of past return-based

characteristics decreases, although they remain among the most significant predictors. This is in

line with the findings of DeMiguel et al. (2020), who find that more characteristics are taken into

account when transaction costs are present.

Finally, we find that utility gains are not restricted to CRRA utility investors. Our approach

yields similar results when considering mean-variance or loss aversion preferences. In particular,

in both cases (and for various realistic parameter values) we find that a non-linear portfolio policy

leads to higher utility than a standard linear policy. Benefits of model complexity decrease with

risk aversion for mean-variance preferences, while benefits are more stable for loss-averse investors

over different values of loss aversion.

Overall, our contribution can be summarized as providing a general solution to the parametric

portfolio policy problem that combines recent advances in combining structural economic prob-

lems and machine learning methods (Farrell et al., 2021; Kelly et al., 2022). Our setup seamlessly

incorporates non-linearities in parameters and across firm characteristics. We also demonstrate

how constraints on leverage and transaction costs can easily be added via customization of the

statistical loss function and how such constraints impact portfolios. In particular, although the

DPPP consistently outperforms the linear model, we show that the benefits of a more complex

model diminish as the degree of economic regularization in the form of higher risk aversion and
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additional constraints on the optimization task increases.

1.1 Related Literature

Our work relates to four different strands of the literature. First, we add to a growing literature

that explores the potential of machine learning algorithms in finance (e.g., Heaton et al., 2017; Gu

et al., 2020; Bianchi et al., 2020; Kelly et al., 2022). Studies in this literature typically consider a

prediction task (e.g., predicting stock returns), and optimize a standard statistical loss function

such as the mean squared error (or a related distance metric) between the actual and predicted

values. Predicted values are used to construct portfolio weights (e.g., Gu et al., 2020). In contrast,

we optimize a utility function instead of a common loss function and model portfolio weights

directly as a function of firm characteristics. The use of machine learning algorithms to estimate

coefficients of structural models (in our case portfolio weights) as flexible functions has also been

proposed recently by Farrell et al. (2021).

Second, we extend the literature on one-step portfolio optimization. Specifically, we extend the

parametric portfolio approach by Brandt et al. (2009). While Brandt et al. (2009) argue that it may

be worthwhile to consider non-linear functions and interactions in weight modeling, subsequent

papers that have implemented and extended parametric portfolio policies parameterize portfolio

weights as a linear function of firm characteristics (e.g., Hjalmarsson and Manchev, 2012; Ammann

et al., 2016). DeMiguel et al. (2020) incorporate transaction costs, a larger set of firm characteristics,

and statistical regularization but also stay within the linear framework. Our deep parametric

portfolio policy replaces the linear model with a feed-forward neural network that accounts

for both non-linearity and possible interactions of firm characteristics. In addition, we use a

larger set of firm characteristics than previous studies and explore different utility functions,

constraints, and degrees of risk aversion. Alternative, (machine learning-based) one-step portfolio

optimization approaches include Cong et al. (2021), Butler and Kwon (2021), Uysal et al. (2021),

Chevalier et al. (2022) and Jensen et al. (2022). Each of these differs from ours in one or more

aspects. Cong et al. (2021) propose a reinforcement learning-based approach (as opposed to

our feed-forward framework) and connect to a related literature in computer sciences that puts

additional emphasis on more technical parts of the model implementation. Our study naturally

6



connects to the preceding finance literature, and generalizes the approach of Brandt et al. (2009)

to explicitly analyze differences between a linear and non-linear specification for different utility

functions, constraints, and levels of risk aversion. Butler and Kwon (2021) show that it is possible

to integrate regression-based return predictions into the portfolio optimization by means of a

two-layer neural network, one layer resembling the return prediction and one layer resembling

the weight optimization. However, their results are restricted to a mean-variance setting, while

our approach is flexibly applicable to any type of investor preference. Moreover, our empirical

analysis is about modeling portfolios of stocks based on stock characteristics, whereas they

empirically assess their models on simulated data and commodity future markets. Chevalier

et al. (2022) derive optimal in-sample weights based on investor preferences and subsequently

predict these weights conditional on covariates. This is conceptually different from our approach,

primarily because we do not require the preprocessing step of computing the optimal in-sample

weights. Jensen et al. (2022) take a different approach. They specifically address the issue of

integrating transaction costs into mean-variance portfolio optimization with machine learning.

They assess several approaches, including a one-step ML-based approach. However, instead of

extending the approach by Brandt et al. (2009) as we do, they derive a closed-form solution to

the problem and implement it empirically using random feature regressions, while we stick to

a feed-forward framework. Moreover, while their focus is the derivation of an efficient frontier

including transaction costs, we explicitly analyze how different types of investor preferences and

constraints affect the benefit of complexity in portfolio optimization.

Third, we contribute to the literature that explicitly analyzes how transaction costs and possibly

other forms of constraints on the optimization impact portfolios (DeMiguel et al., 2020; Jensen

et al., 2022; Detzel et al., 2023). In contrast to Jensen et al. (2022), who also assess the effect

of transaction costs in a one-step optimization setting, we explicitly analyze how transaction

costs and other constraints such as the level of risk aversion, affect differences between a linear

and a complex non-linear model for portfolio optimization. Moreover, they compare different

approaches to derive a superior frontier with respect to transaction costs and to study variable

importance in this setting. We also shed light onto how non-linearities contribute to the portfolio

optimization, and how risk aversion regularizes optimization on top of and beyond the effects of

transaction costs on trading behavior.
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Finally, we relate to the literature that examines which firm characteristics are jointly significant

in explaining expected returns (Fama and French, 2008; Green et al., 2017; Freyberger et al., 2020).

While all of these studies focus on cross-sectional regression models with extensions, Gu et al.

(2020) find that neural networks perform best in predicting mean returns for a large number of

firm characteristics. Our portfolio approach using neural networks considers all moments of the

return distribution beyond the expected return if they are relevant to an investor’s utility function.

Most of this literature ignores various real world constraints such as transaction costs (with

Novy-Marx and Velikov (2016), DeMiguel et al. (2020) and Jensen et al. (2022) being important

exceptions) or weight constraints, whereas we show how our model allows us to seamlessly

integrate transaction costs or other constraints.

2 Model

2.1 Expected Utility Framework and Parametric Portfolio Policies

The starting point of our framework is the parametric portfolio policy model in Brandt et al.

(2009). Consider a universe of Nt stocks that an investor can invest in at each month t ∈ T. Each

stock i is associated with a vector of firm characteristics xi,t and a return ri,t+1 from date t to t + 1.

An investor’s objective is to maximize the conditional expected utility of future portfolio returns

rp,t+1:

max
{wi,t}

Nt
i=1

Et
[
u(rp,t+1)

]
= Et

[
u

(
Nt

∑
i=1

wi,tri,t+1

)]
, (1)

where wi,t is the weight of stock i in the portfolio at date t and u(·) denotes the respective utility

function.

Instead of directly deriving the weights wi,t (as e.g., following the traditional Markowitz

approach), we follow Brandt et al. (2009) and parameterize the weights as a function of firm

characteristics xi,t, i.e.,

wi,t = f (xi,t; θ), (2)

where θ is the coefficient vector to be estimated.

The parameter vector θ remains constant across assets i and periods t, i.e., it maximizes the
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conditional expected utility at every period t. This necessarily implies that θ also maximizes

the unconditional expected utility. Hence, one can estimate θ by maximizing the unconditional

expected utility via the return distribution’s sample analogues:

max
θ

1
T

T

∑
t=1

u
(
rp,t+1(θ)

)
=

1
T

T

∑
t=1

u

(
Nt

∑
i=1

f (xi,t; θ)ri,t+1

)
. (3)

The idea behind parametric portfolio policies is that one may exploit firm characteristics in

order to tilt some benchmark portfolio towards stocks that increase an investor’s utility, so that

f (·) can be expressed as

wi,t = bi,t +
1

Nt
g(xi,t; θ), (4)

where bi,t denotes benchmark portfolio weights such as the equally weighted or value weighted

portfolio and x̂i,t denotes the characteristics of stock i, standardized cross-sectionally to have zero

mean and unit standard deviation in each cross section t.2

Brandt et al. (2009) and the subsequent literature (e.g., DeMiguel et al., 2020) restrict firm

characteristics to affect the portfolio in a linear, additive manner, such that

wi,t = bi,t +
1

Nt
θT x̂i,t. (5)

In essence, our model can be interpreted as a generalization of the linear parametric portfolio

policy approach, as we allow x̂i,t to enter the model flexibly and non-linearly. More specifically, we

allow g(·) in equation (4) to take arguably one of the most flexible forms - a feed-forward neural

network. As discussed in the introduction, this represents a significant conceptual deviation from

the literature in at least two respects: First, by replacing the linear specification with a neural

network, we allow the relationship between firm characteristics and weights to be non-linear, and

we account for potential interactions of firm characteristics, in line with the recent literature that

finds that such flexiblity can be important to predict expected return (Moritz and Zimmermann,

2016; Freyberger et al., 2020; Gu et al., 2020). Here, our approach explores whether such flexibility

2The 1/Nt term is a normalization that allows the portfolio weight function to be applied to a time-varying number
of stocks. Without this normalization, an increase in the number of stocks with an otherwise unchanged cross-sectional
distribution of characteristics leads to more radical allocations, although the investment opportunities are basically
unchanged.
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also helps to model the relationship between portfolio weights and firm characteristics. Second, this

flexibility comes at the cost of having to estimate a model with a high-dimensional parameter

vector. Thus, it departs from the original motivation of the parametric portfolio policy literature,

which aimed to reduce portfolio optimization to a low-dimensional problem where only a small

number of coefficients need to be estimated. Our benchmark model has about 5,700 parameters

compared to the three parameters that need to be estimated when using Brandt et al. (2009).

2.2 Network architecture

We implement and compare a range of so-called feed-forward networks, a popular network

structure that is prominently used in prediction contexts such as image recognition but has also

recently been applied to stock return prediction. Conceptually, our feed-forward networks are

structured to estimate optimal portfolio weights and as such differ from networks used in pure

prediction contexts in two important ways.

First, the objective of our estimation is to maximize expected utility. Standard use of predictive

modeling (with or without networks) tries to minimize some distance metric (e.g., mean squared

error) between e.g., observed stock returns and predicted stock returns. For example, Gu et al.

(2020) use neural networks to predict stock returns using a penalized mean squared error as the

statistical loss function.

In contrast, we follow Brandt et al. (2009) and directly estimate portfolio weights. More

specifically, we predict portfolio weights by maximizing the unconditional sample analogue of a

utility function as given in equation (3). For example, in our base case, the loss function L that we

aim to minimize with respect to θ is the constant relative risk aversion (CRRA) utility:

L(θ) = − 1
T

T

∑
t=1

(
(1 + rp,t+1(θ)

1−γ

1 − γ

)
, (6)

where γ is the relative risk aversion parameter. Note that minimizing Equation (6) is equivalent to

maximizing CRRA utility.

Second, our loss function requires the portfolio return per period t, so that we need to aggregate

our outputs cross-sectionally in each period. To do so, we maintain the three-dimensional structure

of our data, i.e., we do not treat it as two-dimensional as e.g., Gu et al. (2020) do. Conceptually,
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our models can be depicted as shown in Figure 2.

[FIGURE 2 ABOUT HERE]

In Figure 2, the input data on the left form a cube (or 3D tensor) with dimensions time t,

stocks i and input variables k. Input data are fed into networks with different numbers of hidden

layers.3 In line with equation (4), the output of the neural network is then normalized by 1/Nt

and added to the benchmark portfolio b. The output of the model O is a two-dimensional matrix

with dimensions t × i of portfolio weights for each stock and time period.

Constructing a neural network requires many design choices, including the depth (number

of layers) and width (units per layer) of the model, respectively. Recent literature suggests that

deeper networks can achieve higher accuracy with less width than wider models (Eldan and

Shamir, 2016). However, for smaller data sets a large number of parameters can lead to overfitting

and/or issues in regards to the optimization process. Selecting the best network structure is a

formidable task and not our main objective.4 Instead, we rely on the results of Gu et al. (2020) and

use their most successful model as our benchmark model. We explore robustness of our findings

to changes in both network complexity and network structure in Appendix B.

As discussed in Section 2.1, the network’s output needs to be normalized and can be interpreted

as the deviation from a benchmark portfolio. In our application, the benchmark portfolio is the

equally weighted portfolio in all models. A common alternative would be a value weighted

benchmark portfolio where weights are determined by a stock’s market capitalization. We stick

to the equally weighted benchmark because of empirical evidence that it outperforms other

benchmarks like the value weighted benchmark for longer periods (DeMiguel et al., 2009).

Lastly, we control for unreasonable results and overfitting in terms of portfolio weights by

ex-ante imposing an upper bound on an individual stock’s absolute portfolio weight of |3%|, i.e.,

|wi,t| ≤ 0.03. (7)

3Following Feng et al. (2018) and Bianchi et al. (2020) we only count the number of hidden layers while excluding
the output layer in the remainder of this paper.

4In practice, the task is often approximated by comparing a few different structures and selecting the one with the
best performance.
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In doing so, we ensure that the model performance does not rely too heavily on particular stocks.

We employ a range of different additional regularization techniques that are standard in the deep

learning literature. We give an outline of these techniques and a more detailed description of the

structure of the model including its hyperparameters in Appendix A.

2.3 Data

We use the Open Source Asset Pricing dataset of Chen and Zimmermann (2022). The dataset

contains monthly US stock-level data on 205 cross-sectional stock return predictors, covering the

period from January 1925 to December 2020.

We focus on the period from January 1971 to December 2020, since comprehensive accounting

data is only sparsely available in the years prior to that. In addition, we also only keep common

stocks, i.e., stocks with share codes 10 and 11, and stocks that are traded on the NYSE (exchange

code equal to 1) to ensure that results are not driven by small stocks. We match the data with

monthly stock return data from the Center for Research in Security Prices (CRSP). We drop any

observation with missing return, size and/or a return of less than -100%. We include continuous

firm characteristics from Chen and Zimmermann (2022)’s categories Price, Trading, Accounting and

Analyst, respectively.5

Finally, we follow Gu et al. (2020) and replace missing values with the cross-sectional median

at each month for each stock, respectively. Additionally, similar to Gu et al. (2020) we rank all

stock characteristics cross-sectionally. As in Brandt et al. (2009) and DeMiguel et al. (2020), each

predictor is then standardized to have a cross-sectional mean of zero and standard deviation of

one. Note that each predictor is signed so that a larger value implies a higher expected return.

Our final dataset contains 157 predictors for a total of 5,154 firms. Each month, the dataset

contains a minimum of 1,213, a maximum of 1,855 and an average of 1,422 firms. Table C.1 in the

Appendix lists the included predictors by original paper. The three columns in the table describe

the update frequency of each predictor, the predictor category and the economic category, both

taken from Chen and Zimmermann (2022).

5All characteristics are calculated at a monthly frequency. For variables that are updated at a lower frequency, the
monthly value is simply the last observed value. We assume the standard lag of six months for annual accounting
data availability and a lag of one quarter for quarterly accounting data availability. For IBES, we assume that earnings
estimates are available by the end date of the statistical period. For other data, we follow the respective original research
in regards to availability.
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2.4 Out-of-sample testing strategy

Following Brandt et al. (2009) and Gu et al. (2020), we use an expanding window strategy to

generate out-of-sample results. More specifically, we split our data into a training sample used to

estimate the model, a validation sample used to tune the hyperparameters of the model and a test

sample used to evaluate the out-of-sample performance of the model.

We initially train the model on the first 20 years of the dataset, validate it on the following

five years and evaluate its out of-sample-performance on the 12 months following the validation

window. We then recursively increase the training sample by one year. Each time the training

sample is increased, we refit the entire model while holding the size of the validation and test

window fixed. The result is a sequence of out-of-sample periods corresponding to each expanding

window, in our case 25 in total. This corresponds to a total out-of-sample period of 300 months.

Note that this approach ensures that the temporal ordering of the data is maintained. The testing

strategy is depicted graphically in Figure 3.

[FIGURE 3 ABOUT HERE]

2.5 Model interpretation

Machine learning models are notoriously difficult to interpret and neural networks are no

exception. Nevertheless, in our application, understanding the estimated relation between input

(firm characteristics) and output (estimated portfolio weights) is essential in order to shed light on

the relation between firm characteristics and utility. Moreover, such an understanding allows us

to compare our results to the existing literature. We provide three ways of interpreting the models

and of identifying the most important predictors among the plethora of variables that enter our

models.

First, we calculate variable importance in the model as the decrease in model performance

when a particular variable is missing from the model, as conceptually introduced by Breiman

(2001). That is, for every period, we set all values of the variable of interest to zero while holding

the remaining variables fixed. We then calculate the utility loss as compared to the original

model in every out-of-sample period and take the average across all models. For the sake of
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comparability, we scale the average utility losses across all variables for each model so that they

add up to one. As a result, we are able to rank the variables according to the average utility loss

that occurs if they are excluded from the model.

Second, we evaluate the sensitivity of the model output to each variable. Typically, partial

dependence plots provide an assessment of the variables of interest over a range of values. At each

value of the variable, the model is evaluated while the remaining variables remain unchanged,

and the results are then averaged across the cross-section. However, since the sum of all weights

in each cross-section is equal to one and thus the mean weight prediction is always the same,

applying this method to parametric portfolio policies does not yield reasonable results. To

circumvent this problem, we apply our own algorithm: when assessing the sensitivity with respect

to variable k, we set the values of the remaining variables to zero, i.e., their median. This means

that effectively, we reduce our input data to the variable of interest. We then predict out-of-sample

portfolio weights based on the estimated model and the manipulated data. Subsequently, we

plot the weights as a function of input variable k. We interpret the behavior of predicted weights

conditional on values of k as the marginal sensitivity of weights (i.e., its partial dependence) with

respect to k.

Third, we evaluate the extent to which non-linearity contributes to the estimated DPPP. Put

differently, we assess the extent to which different forms of non-linearity play a role when

optimizing portfolios conditional on firm characteristics. To do so, we estimate a linear surrogate

model in which we regress the out-of-sample weight predictions from our DPPP on all firm

characteristics. This allows us to assess the extent to which a simple linear model is capable of

ex-post explaining the predicted weights. In a next step, we estimate a second surrogate model,

this time including all possible two-way interactions, i.e., allowing for non-linearity in variables.

This allows us to assess to which extent non-linearity in variables plays a role in regards to

predicting weights. We attribute the remaining unexplained portion of predicted DPPP weights to

the effect of non-linearity in functional form.6

6In addition, we report the portfolio characteristics of the ex-post fitted surrogate models during the out-of-sample
periods in Table C.6 in the Appendix. Inter alia, this enables us to assess to which extent non-linearity with respect to
weight predictions translates into utility differences.
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3 Results

3.1 Benchmark case

Table 1 reports the empirical results in our benchmark setting, i.e., for a CRRA-maximizing

investor and not accounting for transaction costs or leverage constraints in the optimization

task.7 We compare our DPPP with its linear counterpart for different degrees of relative risk

aversion.8 Analogous to Brandt et al. (2009), we provide results as follows: We report (1) the

monthly certainty equivalent return of the utility generated by each portfolio strategy, (2) the

distributional properties of the monthly portfolio weights, (3) the distributional properties of the

monthly portfolio returns, and (4) the monthly alphas of the strategies against a Fama-French

six-factor model.

Our main finding is that for each level of risk aversion, the DPPP outperforms the PPP. The

guaranteed monthly return across out-of-sample periods that an investor would require to achieve

the same expected utility as the respective portfolio policy, i.e., the certainty equivalent, is higher

for the DPPP than for the PPP for every level of risk aversion considered. For example, if we

set the risk aversion parameter to two, the certainty equivalent associated with the DPPP is 276

basis points higher than that of the PPP (0.0669 vs 0.0393). The differences are statistically and

economically significant in every case.9 This shows that using a more complex model that accounts

for predictor interactions and non-linearities leads to significant utility gains for investors.

However, the outperformance of the DPPP compared to the PPP decreases with increasing

risk aversion from around 276 (γ = 2) to 116 (γ = 20) basis points. Put differently, as risk

aversion increases, the benefit of model complexity decreases. We attribute this to the fact that

as risk aversion increases, the model’s prediction variance is penalized to a stronger extent. In

a sense, risk aversion serves as an economic regularization parameter that empirically has an

effect comparable to statistical regularization methods, i.e., a reduction in model complexity, in

7Results also hold compared against an equally-weighted and a value-weighted portfolio benchmark, are robust to
changing the network architecture, and to the use of a long-only constraint, see Appendix B.

8To ensure comparability between the linear and deep parametric portfolio policy we differ slightly from Brandt
et al. (2009) in that the linear model includes l1-regularization and early stopping, similar to the deep model. A more
detailed description is given in Appendix A.

9We follow DeMiguel et al. (2022) and construct one-sided p-values from 10,000 bootstrap samples using the
stationary bootstrap method of Politis and Romano (1994) with an average block size of five and the procedure of
Ledoit and Wolf (2008). This method is also used when assessing the statistical significance of utility and Sharpe ratio
differences between the deep and the linear parametric portfolio policy hereafter.
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order to penalize variance of outcomes. We provide empirical evidence for this claim in 3.3 when

estimating partial dependence and surrogate models.

Table 1 provides further insight into the average distributional characteristics of portfolio

weights. Regardless of the degree of risk aversion we assume, the average absolute DPPP weights

are larger than the PPP weights, e.g. 0.69% versus 0.53% for γ = 2. However, for investors with

a risk aversion of γ = 2 and γ = 5, the absolute maximum and minimum portfolio weights are

lower in the DPPP case, while the opposite is true for investors with a higher degree of risk

aversion. Nevertheless, both PPP and DPPP portfolio weights become more moderate as risk

aversion increases. Consistent with this finding, portfolio leverage decreases with increasing

risk aversion for both the DPPP (447% for γ = 2 to 186% for γ = 20) and the PPP (335% for

γ = 2 to 115% for γ = 20). However, regardless of investor risk aversion, the DPPP approach

results in higher leverage than the PPP approach. Since we do not impose any constraints on

leverage or transaction costs in our benchmark setting, short selling and portfolio turnover are

unrealistically high.10 Moreover, the average monthly turnover of the DPPP is consistently more

than twice that of the PPP. However, it decreases with increasing risk aversion in both cases. More

precisely, the average monthly turnover of the DPPP (PPP) ranges from 879% (380%) for the least

risk-averse investor to 408% (163%) for the most risk-averse investor. We address this in section

3.2 by including a penalty term for transaction costs and a constraint on leverage in our objective

function.

Turning to the distribution of out-of-sample portfolio returns, we find that the DPPP yields 308

to 190 basis points higher average returns than the PPP, depending on the degree of risk aversion.

This comes at the cost of 10-25% higher return volatility than the PPP. These results translate into

annualized Sharpe ratios of the DPPP that are 30-50% higher than the annualized Sharpe ratios

of the PPP, depending on the level of risk aversion. Regardless of the level of risk aversion, the

difference in the annualized Sharpe ratio is significant at the 5% level. The distribution of DPPP

returns is positively skewed, while the distribution of PPP returns is negatively skewed. Thus, the

DPPP has positive tails while the PPP has negative tails. As the kurtosis indicates, the distribution

of DPPP returns has much fatter tails than that of PPP returns for risk aversions of γ = 2 (14.0481

10Turnover is defined as ∑ |wi,t − w+
i,t−1|, where w+

i,t−1 is the portfolio before rebalancing at time t, i.e. w+
i,t−1 =

wi,t−1 ∗ (1 + ri,t).
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versus 1.2734) and γ = 5 (4.9609 versus 1.3766). For higher degrees of risk aversion, the kurtosis

of both portfolio return distributions remains at a platykurtic level below three with thin tails.

The bottom set of rows reports the alphas and their standard errors with respect to a six-factor

model that adds a momentum factor to the Fama-French five-factor model. Both the DPPP and

PPP alphas are highly significant for each level of risk aversion considered. However, the alphas

of the DPPP are significantly larger than those of the PPP. These large unexplained returns can

be partially attributed to the highly levered nature of the active portfolios. Thus, the alphas of

both portfolios consistently decrease with increasing risk aversion and hence decreasing leverage.

More specifically, the PPP alpha decreases from 3.3% (γ = 2) to 1.2% (γ = 20), and the DPPP

alpha decreases from 6.5% (γ = 2) to 3% (γ = 20).

[TABLE 1 ABOUT HERE]

3.2 Transaction costs and leverage

In the unconstrained benchmark setting both average turnover and leverage are unreasonably

high, both for the PPP and the DPPP. We next compare both approaches in a more realistic

scenario that explicitly accounts for transaction costs and sets a maximum leverage constraint in

the optimization task.

To account for transaction costs, we follow DeMiguel et al. (2020) and add the following

penalty term to the optimization problem:

TC = Et[
Nt

∑
i=1

|κi,t(wi,t − w+
i,t−1)|], (8)

where w+
i,t−1 is the portfolio weight before rebalancing and κi,t are transaction costs for stock i at

time t. Our transaction cost estimates come from Chen and Velikov (2021).11 Thus, we define

transaction costs κi,t as the effective half bid-ask spread.

The leverage constraint is constructed analogously to our weight constraint in Equation (7).

The penalty is constructed such that the gross leverage cannot exceed 100% in a single period in

11We thank the authors for making an updated version of the data available.
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model training.12 This constraint is formulated for every period t as

Nt

∑
i=1

wi I(wi < 0) ≥ −1 (9)

for each period, where I(wi < 0) is a vector where an element is one if the corresponding portfolio

weight is smaller than zero and zero otherwise.

Table 2 shows the results of the constrained optimization process for CRRA investors with

different degrees of risk aversion. Even when imposing realistic constraints, the DPPP outperforms

the PPP, regardless of the level of risk aversion. The difference in monthly certainty equivalent

between the two approaches is reduced to to 75 to 124 basis points, depending on the degree of

risk aversion. This suggests that similar to the risk aversion parameter, the transaction cost penalty

and the maximum leverage constraint can be seen as additional economical regularization terms,

which lead to a decrease in model complexity.13 We provide empirical evidence for this claim in

3.3 when estimating partial dependencies and surrogate models. The p-values of the differences

in monthly certainty equivalent increase as risk aversion increases, and for γ = 20, the difference

is no longer significant at the 1% level. This is consistent with increased risk aversion leaning

against model complexity and serving as an economically motivated regularization parameter

as discussed above. The constraints lead to more realistic portfolios: Leverage is below 100%

for all portfolios and turnover is reduced significantly to 47 to 54% for the PPP and 111 to 171%

for the DPPP, depending on the degree of risk aversion. Despite its larger turnover, the DPPP

yields notably larger returns net of transaction costs, with similar standard deviations of portfolio

returns and significantly higher Sharpe ratios. The maximum and minimum positions of both

approaches are less extreme than in the unconstrained case and thus also more realistic. The

alphas of the estimated models are much smaller than in the benchmark scenario, but still highly

significant.

[TABLE 2 ABOUT HERE]

12Ang et al. (2011) show that the average gross leverage of hedge fund companies amounts to 120% in the period
after the financial crisis 2007-2008. We use a slightly more conservative number of a maximum leverage of 100%.

13Note that we report the certainty equivalent for the expected utility net of transaction costs and hence a decrease
of the respective certainty equivalent trivially follows to some extent.
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The main results in Table 1 and Table 2 are visually summarized in Figure 4, which shows the

cumulative performance of portfolio returns over time for both the PPP and the DPPP, all degrees

of risk aversion, and with and without transaction cost and leverage constraints. The figure shows

that the DPPP consistently outperforms the PPP by a substantial margin in all specifications.

Figure 4 also shows some important time-series patterns in performance. First, we see that the

benchmark portfolios are more robust than the constrained portfolios during the dot-com bubble

in 2000, the global financial crisis in 2008, and the COVID-19 crash in 2020. Second, we see that

the returns of the higher risk aversion portfolios are more robust during these periods.

[FIGURE 4 ABOUT HERE]

3.3 Variable importance, partial dependence and surrogate models

In this section, we analyze estimated models with the tools discussed in section 2.5.

Variable importance

In Figure 5 we compare the most important clusters of variables (such as "earnings-related", or

"risk-related") according to the economic category specified in the Open Source Asset Pricing data

set by Chen and Zimmermann (2022).14 The figure displays the nine most important clusters and

subsumes all other clusters under "other" for the benchmark and constrained case and across all

degrees of risk aversion, respectively.15 The size of the area corresponds to the relative importance

of the cluster within that specific model. We report the results for the DPPP and PPP model,

respectively.

For the DPPP, we find that in both the unconstrained and the constrained setting, the majority

of the most important predictors are related to past returns. Short-term reversal is the most

important single variable in both models, mirroring the findings in Moritz and Zimmermann

(2016) and Gu et al. (2020), while the momentum cluster is more important overall.16

In the unconstrained benchmark case, we find that about 75% of the total importance is

associated with the top nine clusters. We also find that momentum and short-term reversals

14Table C.1 in the Appendix shows the economic category of each anomaly variable, based on Chen and Zimmermann
(2022).

15The clusters are ranked according to the importance in the DPPP benchmark model.
16Note that the short-term reversal cluster consists of the short-term reversal characteristic only.
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account for ∼40% of the importance, which is consistent across different degrees of risk aversion.

Overall, we do not find large differences across different degrees of risk aversion in terms of

cluster importance per model.

Turning to the DPPP in the constrained setting, the figure shows that the importance of

short-term reversal is much lower than in the unconstrained benchmark case. This is an intuitive

result, since trading conditional on short-term reversal implies high turnover. Thus, if turnover

is penalized by introducing transaction costs, short-term reversal inevitably loses some of its

importance, consistent with DeMiguel et al. (2020) and Jensen et al. (2022). Interestingly, other

characteristics based on past returns, such as the momentum cluster, do not lose importance when

constraints are included. The other clusters also remain similarly important in the constrained

model. Again, we do not find large differences across different degrees of risk aversion in terms

of cluster importance per model.

Next, we turn to the linear PPP. Again, in both settings, we find that the majority of the most

important predictors is related to past returns. Short-term reversal is the most important cluster in

the unconstrained models, but it becomes the least important one when constraints are imposed.

This is in contrast to the results of the non-linear DPPP, for which the short-term reversal cluster

still bears notable importance in the constrained setting. We also observe that the importance of

the momentum variables decreases with increasing risk aversion in both settings, albeit stronger

in the constrained one. Moreover, in the constrained setting, the importance of valuation-related

variables increases significantly. This is consistent with valuation-based information being less

volatile than past-return based information.

[FIGURE 5 ABOUT HERE]

Finally, Figure 6 shows the 40 most important individual characteristics for the deep and linear

models for the benchmark and constrained cases and across all levels of risk aversion. In line with

our results above, the majority of the most important predictors are related to past returns, with

short-term reversal being the most important variable for both models, and more prominently so

in the DPPP case. As past-return based variables typically imply higher turnover, this is consistent

with the higher turnover of the DPPP as compared to the linear PPP reported above. Moreover,
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consistent with the results of DeMiguel et al. (2020), we find that the importance of the variables is

generally much more balanced across variables for the constrained models. Table 2 shows that the

constraints lead to a more diversified portfolio, partially reflected by the more even importance of

firm characteristics.

[FIGURE 6 ABOUT HERE]

Partial dependence

Figure 7 depicts the marginal association between DPPP portfolio weights and input variables

for the benchmark setting, the constrained setting and across different risk aversions, respectively.

We examine the sensitivity with respect to three fundamental variables, namely the book-to-

market ratio (BM), liquid assets (cash), and quarterly return on assets (roaq), as well as an

analyst variable, namely earnings forecast revisions per share (AnalystRevision), and four past

return-based variables, namely 12-month momentum (Mom12m), short-term reversal (STreversal),

seasonal momentum (MomSeason), and intermediate momentum (IntMom). Recall that each

predictor is signed, so that a larger value implies a higher expected return. To assess whether the

marginal association of the deep model is more in line with the actual risk and return associated

with each characteristic than a linear model, we include the overall Sharpe ratio for each decile

portfolio sorted on each of the characteristics.

In the unconstrained benchmark case, the DPPP weights are mostly non-linearly related to the

characteristics. This is in line with the fact that Sharpe ratios are generally not linearly increasing

in characteristic deciles, as this is indicative for the fact that utility is not linearly increasing in

characteristic deciles. The DPPP captures these patterns. For example, weights associated with

earnings forecast revisions per share (AnalystRevision) and intermediate momentum (IntMom),

as well as the book-to-market ratio (BM), decrease in higher deciles as the Sharpe ratio decreases.

We find a similar but less pronounced pattern for the other characteristics as well. Turning to

differences across different degrees of risk aversion in the benchmark setting, we find that the

degree of non-linearity in the marginal association between portfolio weights and characteristics

decreases as risk aversion increases. This confirms the reasoning that increasing risk aversion

leads to a decrease in model complexity. In line with the findings in regards to importance,
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short-term reversal exhibits the most pronounced marginal effect, as indicated by the steepness of

the depicted relationship.

When introducing transaction costs and a leverage constraint to the setting, the marginal

relationships turn mostly linear. Again, this confirms the reasoning that additional constraints

serve as regularization parameters which reduce model complexity, similar to, increasing the

degree of risk aversion. Notably, differences in the marginal relationships across different degrees

of risk aversion are less pronounced in the constrained case. Consistent with the findings on

importance, the differences in marginal association are less pronounced across characteristics.

This serves as further evidence that more characteristics matter under transaction costs as also

shown by DeMiguel et al. (2020).

In summary, these results confirm that imposing constraints and increasing risk aversion lead

to a convergence of the linear PPP and the more complex DPPP. We dive deeper into this in the

next step, in which we estimate surrogate models to more thoroughly disentangle the degrees to

which (non-)linearity plays a role in the different settings.

[FIGURE 7 ABOUT HERE]

Surrogate model

Surrogate modeling allows us to disentangle the contributions of non-linearity with respect to

the predictions as well as the utility gains of the deep parametric portfolio policy as compared

to the linear parametric portfolio policy. Figure 8 shows the adjusted R2s of a linear surrogate

model for the out-of-sample predicted weights of the DPPP in the different settings on the 50

most important characteristics in each model, respectively. The surrogate model with interactions

is an extension to the aforementioned surrogate which additionally includes all possible two-way

interactions between the characteristics included.

In line with the previous findings, the results highlight that the importance of non-linearity is

less prevalent for higher degrees of risk aversion. More specifically, the simple linear surrogate

model explains about 60-80% of the variation in predicted portfolio weights for γ = 20, while

the R2 ranges between 50-70% for the other degrees of risk aversion. This underscores that

risk aversion acts as an economic regularization parameter, in that it reduces model complexity.
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Adding interactions has two effects in particular. First, the range in-between which the R2

fluctuates becomes smaller, i.e., we observe less fluctuation across the periods. More importantly,

however, we observe an increase of the R2 of about ∼10% across all degrees of risk aversion.

Since performance of the linear PPP and the non-linear DPPP converges when imposing

realistic constraints as shown in 3.2, one would expect that a linear surrogate explains a larger

portion of portfolio weight predictions in the constrained setting. In fact, this is what we find

empirically, i.e., the surrogate R2’s are generally much higher in the constrained setting as

compared to the unconstrained benchmark case. More precisely, the simple linear surrogate model

explains between 70% and 90% of the weights for γ = 20, while the R2 ranges between 60% and

80% for the other degrees of risk aversion considered. Introducing transaction costs and a leverage

constraint hence results in an increase of ∼10% of the simple linear surrogate R2. Analogous to

the unconstrained case, adding interactions further leads to a surrogate R2-increase of ∼10%. In

fact, in 2012 and for γ = 20, the linear surrogate model including interactions nearly perfectly

explains variation in weight predictions (R2 of 95%).

[FIGURE 8 ABOUT HERE]

The analysis stresses the fact that the complexity of the DPPP decreases in a realistic setting

and when increasing risk aversion. Moreover, based on these numbers, we infer that between

50-90% of the underlying characteristic-weight relationship is of linear nature, depending on

whether we impose constraints and the degree of risk aversion. About another 10-20% can be

captured by interactions, and the remaining 5-30% can be attributed to the non-linear functional

form of the DPPP model.17

4 Different investor utility functions

Similarly to varying the degree of risk aversion for a CRRA investor, we can account for different

investor types by changing the utility function that we use to optimize the models. In particular,

17Note that a high adjusted R2 does not always translate into a similar certainty equivalent, i.e., a similar utility. In
Table C.6 in the Appendix we analyze the portfolios generated by the respective surrogate models. The table shows
the certainty equivalent of the portfolios generated by the surrogate models and the corresponding original DPPP. In
addition, we report whether the differences between the surrogate and original certainty equivalents are statistically
significant. Results are stratified by model specification and inclusion of interactions.
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we explore linear and deep portfolio policies for an investor with mean-variance utility defined as

u(rp,t+1) = rp,t+1 −
γ

2

(
rp,t+1 −

1
T

T

∑
t=1

rp,t+1

)2

, (10)

where γ is the absolute risk aversion of the investor, and for a loss-averse investor (Tversky and

Kahneman (1992)) with utility defined as

u(rp,t+1) =


−l(W − (1 + rp,t+1))

b if (1 + rp,t+1) < W

((1 + rp,t+1)− W)b otherwise
, (11)

where W is a reference wealth level determined in the editing stage, the parameter l measures the

investor‘s loss aversion and the parameter b captures the degree of risk seeking over losses and

risk aversion over gains. For simplicity, we fix the parameters W and b at one and only change the

loss aversion parameter l. We include the constraints specified in Section 3.2 in the optimization

process for both preferences.

Table 3 shows the results for the linear and deep portfolio policies for a mean-variance investor

with different degrees of absolute risk aversion. We report the distributional characteristics of

portfolio returns net of transaction costs. Most importantly, for all degrees of risk aversion,

the DPPP yields higher certainty equivalent returns than the PPP. Generally, the results for the

mean-variance investor are similar to those for the CRRA investor for the DPPP. The model

yields similar certainty equivalents, Sharpe ratios, and weight characteristics. In contrast, the

linear model provides significantly better results for the mean-variance preference across all risk

aversions. As a result, the difference in monthly certainty equivalent returns of 20-50 basis points

is smaller than in the CRRA case, driven by the better performance of the linear model. In line

with the previous results, the outperformance in terms of certainty equivalent difference decreases

with increasing risk aversion.18 The mean-variance utility function perfectly illustrates that the

degree of absolute risk aversion determines the strength of the penalty on the variance of portfolio

returns, i.e., the strength of regularization, since portfolio return variance is an explicit part of the

utility function. This is supported not only by the decreasing difference in certainty equivalents

18The outperformance of the DPPP is amplified when we remove transaction costs and leverage constraints,
analogous to our CRRA benchmark case. We report the results for this in Table C.7 in the Appendix.
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with increasing risk aversion, but also by the increasing p-values for the difference. In fact, for

γ = 10 we find that the difference is no longer significant at the 1% level, while for γ = 20 we

find the only case where the difference is not significant for all common levels.

[TABLE 3 ABOUT HERE]

Next, we optimize portfolio policies for the loss-averse investor and report results in Table

4 similar to the mean-variance investor for different levels of loss aversion. Again, the DPPP

outperforms the PPP for all degrees of loss aversion. More precisely, the outperformance of the

DPPP ranges between 61 basis points and 54 basis points with all differences being significant at

the 1% level.19 An interesting feature of the loss-averse investor’s preference is the fact that she

cares about the size of the tail of the portfolio return distribution, rather than the mean to variance

ratio, which is relevant to a mean-variance investor. The results in Table 4 reflect this. Both

portfolios display higher skewness of returns compared to the portfolios optimized conditional

on mean-variance or CRRA preferences. Most importantly, the DPPP yields significantly higher

skewness than the linear analogue, explaining the higher certainty equivalent for the loss-averse

investor.

In contrast to previous results, we do not find a decrease in certainty equivalent differences

between the DPPP and PPP with increasing loss aversion. Furthermore, mean return and standard

deviation only decrease slightly with increasing loss aversion. In contrast to the risk aversion

parameter γ, the loss aversion parameter l does not regularize the variance of predictions directly,

but rather penalizes low skewness, reducing fat tails on the left side of the distribution. This

does not translate into a similar degree of economic regularization of model complexity as risk

aversion.

In line with the intuition that the investor does not care about the mean to variance ratio, the

p-values of the Sharpe ratios are slightly higher and do not seem to differ significantly at the 1%

level for three out of four loss aversions. Lastly, although the DPPP yields slightly higher turnover

in all cases, the weight distribution of the portfolios is still very similar to that for other utility

functions considered.
19Again, we show in Table C.8 in the Appendix that these findings are amplified when we remove transaction costs

and leverage constraints.
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[TABLE 4 ABOUT HERE]

The main results in Table 3 and Table 4 are visually summarized in Figure 9, which shows

the cumulative performance of portfolio returns over time for both the PPP and the DPPP, all

degrees of risk aversion or loss aversion, and with transaction cost and leverage constraints. The

figure shows that the DPPP consistently outperforms the PPP by a substantial margin in all

specifications.

[FIGURE 9 ABOUT HERE]

5 Conclusion

Building on the parametric portfolio policy of Brandt et al. (2009), we show that feed-forward

neural networks can be used to directly optimize portfolios based on a large number of firm

characteristics for different investor preferences. In essence, we do so by replacing traditional

distance loss functions with context-specific utility functions when optimizing neural networks.

Analogous to Brandt et al. (2009), our framework allows for integration of constraints, such as

transaction cost penalties or leverage restrictions.

Our empirical results indicate that neural networks perform significantly better than linear

models in regards to portfolio allocation, suggesting that firm characteristics are non-linearly

related to optimal portfolio weights. This is especially true when the investor’s utility preference

takes into account higher moments of the resulting portfolio return distribution. Consistent with

this hypothesis, we show that linear surrogate models are not able to fully explain the deep

parametric portfolio weight predictions, even when accounting for two-way interactions. We

further shed light on the non-linear relationship between characteristics and predicted weights by

depicting the sensitivity of predicted weights with respect to the input. Again, we find a clearly

non-linear relation between stock characteristics and optimal portfolio weights. We further find

that return-based stock characteristics resemble the most important group of predictors. However,

consistent with DeMiguel et al. (2020), variable importance is more evenly distributed and puts
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less weight on past returns when leverage constraints and transaction costs explicitly accounted

for when deriving optimal portfolios.

Exploring variations in the degree of an investor’s risk aversion and utility function, we find

that a more complex non-linear model yields higher utility than a linear model in all cases. These

differences are not only statistically significant, but also economically meaningful. However,

higher risk aversion is associated with lower gains across all specifications. In that sense, the level

of risk aversion can be seen as a regularization parameter that leans against model complexity.

Overall, we show how to generalize the original linear parametric portfolio policy of Brandt

et al. (2009), and our results support the use of neural networks in solving portfolio choice

problems. While other non-linear methods might show success as well, neural nets are particularly

suited because of their ability to comprehensively model arbitrary functional forms. Highlighting

the growing role of machine learning and non-linear models in finance, our approach thus

resembles a comparably simple and flexible neural network-based model that enables practitioners

and researchers alike to create reasonable portfolio allocations based on firm characteristics and

preferences.
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(a) Short-Term Reversal
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(b) Sales-To-Price

Figure 1: Mean returns, standard deviations and Sharpe ratios of one-dimensional portfolio sorts
Mean returns, standard deviations and Sharpe ratios of decile portfolios sorted on short-term reversal (left
panel) and sales-to-price ratio (right panel). Data is from Chen and Zimmermann (2022) and spans from
1925 to 2021.
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Figure 2: Neural network structure
This figure presents the core structure of our neural networks. White circles denote the input layer, grey
circles denote the hidden layer and black circles denote the output layer. The data cube on the left depicts
the structure of our data, i.e., we have k variables across i cross-sections in t periods. The rectangle on the
right depicts our output, i.e., weights across i cross-sections in t periods. The output of the neural network
is normalized by 1/Nt and added to the benchmark portfolio b. The final output is labeled O.
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Figure 3: Out-of-sample testing strategy
This figure presents our out-of-sample testing strategy. We recursively increase our training window,
presented by the black portion of each bar, while holding the validation and the test window constant,
presented by the grey portions of each bar.
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Figure 4: Cumulative performance over time for CRRA preference
The left panel shows the cumulative sum of portfolio returns for the benchmark, i.e., unconstrained,
DPPP and PPP. The right panel shows the cumulative sum of portfolio returns net of trading costs for the
transaction cost and leverage constrained DPPP and PPP. We show the results for each of the degrees of
relative risk aversion considered and across all out-of-sample periods.
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Figure 5: Variable importance per cluster in the benchmark and the constrained setting for the DPPP
and the PPP
We group the variables into clusters according to the economic category specified in the Open Source
Asset Pricing data set by Chen and Zimmermann (2022). Clusters are then ranked by sum of characteristic
importance within the respective cluster. We display the top nine clusters and subsume all other clusters
within "other". We plot the top clusters in terms of its importance across all benchmark and constrained
DPPP and PPP models for different degrees of risk aversion, respectively. The filled area of a cluster
corresponds to its importance.
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Figure 6: Variable importance in the benchmark and the constrained setting for the DPPP and the PPP
Variable importance for the 40 most influential variables in the PPP and DPPP across model specifications and risk aversions, respectively. Variable
importance computed as the average importance over all training samples and normalized to sum to one within each model.
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Figure 7: Marginal association between portfolio weights and characteristics in the benchmark and the
constrained setting for the DPPP
This figure shows the sensitivity of predicted weights (left vertical axis) with respect to values of the
respective variable (horizontal axis) across all benchmark and constrained DPPP models for different
risk aversions, respectively. The aforementioned relationship is depicted by curves, smoothed via spline-
regressions. The figure also includes bars, depicting the Sharpe ratio (right vertical axis), per variable decile
(horizontal axis).
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Figure 8: Surrogate R2 for the DPPP in the benchmark and the constrained setting
This figure depicts the adjusted R2 of the surrogate models across benchmark and constrained DPPP
models. More specifically, the lines show the R2 for a linear surrogate model of the estimated weights by the
deep models on the 50 most important variables in each model for all out-of-sample periods. Interactions
include all possible two-way interactions between the variables.
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Figure 9: Cumulative performance over time for MV and LA preferences
The left panel shows the cumulative sum of portfolio returns net of trading costs for the the transaction
cost and leverage constrained DPPP and PPP of investors with mean-variance preferences. The right panel
shows the cumulative sum of portfolio returns net of trading costs for the the transaction cost and leverage
constrained DPPP and PPP of investors with loss-aversion preferences. We show the results for each of the
degrees of absolute risk aversion and loss aversion considered and across all out-of-sample periods.
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Table 1: Benchmark DPPP for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0393 0.0669 0.0263 0.0492 0.0063 0.0303 -0.0019 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0002 0.0079 0.0065

∑i |wi|/Nt ∗ 100 0.5336 0.6897 0.4972 0.6127 0.3834 0.5211 0.2292 0.3276
max wi ∗ 100 2.1781 1.8474 2.0363 1.7452 1.5531 1.5929 0.9199 1.1676
min wi ∗ 100 -2.3296 -1.8995 -2.1712 -1.8709 -1.6581 -1.7950 -0.9302 -1.2923
∑i wi I(wi < 0) -3.3467 -4.4722 -3.0841 -3.9171 -2.2642 -3.2565 -1.1521 -1.8617
∑i I(wi < 0)/Nt 0.4401 0.4473 0.4351 0.4430 0.4084 0.4317 0.3672 0.4016
∑i |wi,t − w+

i,t−1| 3.8045 8.7876 3.7816 7.8053 2.8497 6.5992 1.6268 4.0840

Mean 0.0489 0.0797 0.0473 0.0711 0.0368 0.0622 0.0212 0.0402
StdDev 0.0982 0.1234 0.0890 0.0982 0.0705 0.0816 0.0437 0.0548
Skew -0.1001 1.8314 -0.1004 0.8169 -0.1539 0.4023 -0.3209 0.3712
Kurt 1.2734 14.0481 1.3766 4.9609 2.0482 1.6333 1.3888 1.8887
SR 1.7233 2.2382 1.8391 2.5101 1.8097 2.6422 1.6789 2.5395
p-value(SRDPPP − SRPPP) 0.0363 0.0077 0.0013 0.0004

FF5 + Mom α 0.0331 0.0648 0.0324 0.0570 0.0244 0.0490 0.0116 0.0303
StdErr(α) 0.0043 0.0065 0.0040 0.0052 0.0032 0.0043 0.0019 0.0028

This table shows out-of-sample estimates of the deep portfolio policies with 157 firm characteristics optimized for a CRRA investor with relative risk
aversion of 2, 5, 10 and 20, respectively. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with
three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December
2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond to the respective risk aversions. The first rows show the monthly
certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP
and PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio
weight, the average maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of
negative weights in the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return
distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP
and PPP. The bottom panel shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to include the
momentum factor.
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Table 2: Transaction cost and leverage constrained DPPP for CRRA investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0114 0.0206 0.0084 0.0159 0.0020 0.0107 -0.0125 -0.0001
p-value(CEDPPP − CEPPP) 0.0001 0.0007 0.0018 0.0178

∑i |wi|/Nt ∗ 100 0.1238 0.1809 0.1288 0.1836 0.1195 0.1813 0.1199 0.1764
max wi ∗ 100 0.4423 0.7863 0.4595 0.7337 0.3948 0.7373 0.4010 0.7527
min wi ∗ 100 -0.4000 -1.0246 -0.4337 -1.0098 -0.3671 -0.9559 -0.3538 -0.8031
∑i wi I(wi < 0) -0.3924 -0.8042 -0.4288 -0.8234 -0.3614 -0.8072 -0.3642 -0.7717
∑i I(wi < 0)/Nt 0.2279 0.3242 0.2453 0.3160 0.1974 0.3202 0.2092 0.3446
∑i |wi,t − w+

i,t−1| 0.5201 1.7149 0.5431 1.5699 0.4701 1.3921 0.4989 1.1146

Mean 0.0139 0.0232 0.0133 0.0214 0.0121 0.0200 0.0112 0.0174
StdDev 0.0489 0.0502 0.0424 0.0447 0.0412 0.0402 0.0392 0.0364
Skew -0.6865 -0.4891 -0.9352 -0.7242 -0.8990 -0.6081 -0.9919 -0.7242
Kurt 3.0761 3.0184 2.5399 2.3413 2.1149 1.7382 2.5912 1.8450
SR 0.9825 1.6009 1.0860 1.6609 1.0208 1.7235 0.9871 1.6537
p-value(SRDPPP − SRPPP) 0.0007 0.0032 0.0029 0.0051

FF5 + Mom α 0.0032 0.0116 0.0030 0.0109 0.0034 0.0101 0.0031 0.0084
StdErr(α) 0.0011 0.0017 0.0012 0.0016 0.0013 0.0015 0.0013 0.0015

This table shows out-of-sample estimates of the deep portfolio policies with the transaction costs penalty (Equation (8)) and leverage constraint
(Equation (9)) with 157 firm characteristics optimized for a CRRA investor with relative risk aversion of 2, 5, 10 and 20, respectively. The regular
portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes,
respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December 2020. The columns labeled "γ = 2", "γ = 5",
"γ = 10" and "γ = 20" correspond to the respective risk aversions. The first rows show the monthly certainty equivalent of the investor as well as the
bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows statistics
on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and minimum
portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover
in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions net of transaction costs as well as the
annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel
shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table 3: Transaction cost and leverage constrained DPPP for mean-variance investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0155 0.0205 0.0139 0.0169 0.0095 0.0115 0.0024 0.0041
p-value(CEDPPP − CEPPP) 0.0002 0.0019 0.0445 0.1083

∑i |wi|/Nt ∗ 100 0.1703 0.1813 0.1749 0.1819 0.1777 0.1831 0.1698 0.1807
max wi ∗ 100 0.6604 0.8464 0.6827 0.7866 0.6870 0.7554 0.6496 0.7271
min wi ∗ 100 -0.6442 -0.9616 -0.6817 -0.9814 -0.6921 -1.0005 -0.6387 -0.8684
∑i wi I(wi < 0) -0.7280 -0.8072 -0.7607 -0.8113 -0.7808 -0.8201 -0.7244 -0.8029
∑i I(wi < 0)/Nt 0.3279 0.3348 0.3417 0.3181 0.3455 0.3144 0.3367 0.3263
∑i |wi,t − w+

i,t−1| 0.8275 1.7662 0.9699 1.6756 0.9834 1.6001 0.8911 1.4106

Mean 0.0177 0.0231 0.0183 0.0223 0.0171 0.0202 0.0165 0.0186
StdDev 0.0479 0.0517 0.0422 0.0467 0.0391 0.0417 0.0375 0.0380
Skew -0.6768 -0.6706 -0.9111 -0.7508 -0.9562 -0.6423 -0.9801 -0.7631
Kurt 2.9347 3.3770 2.6367 2.8915 2.5835 1.9170 2.6507 2.0241
SR 1.2811 1.5494 1.5054 1.6560 1.5153 1.6756 1.5215 1.6961
p-value(SRDPPP − SRPPP) 0.0086 0.0499 0.0578 0.0643

FF5 + Mom α 0.0063 0.0113 0.0075 0.0112 0.0069 0.0101 0.0068 0.0092
StdErr(α) 0.0013 0.0017 0.0013 0.0017 0.0014 0.0017 0.0014 0.0015

This table shows out-of-sample estimates of the deep portfolio policies with the transaction costs penalty (Equation (8)) and leverage constraint
(Equation (9)) with 157 firm characteristics and optimized for a mean-variance investor with absolute risk aversion of 2, 5, 10 and 20, respectively.
The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8
nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December 2020. The columns labeled "γ = 2",
"γ = 5", "γ = 10" and "γ = 20" correspond to the respective risk aversions. The first rows show the monthly certainty equivalent of the investor as
well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows
statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and
minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and
the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions net of transaction costs as
well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom
panel shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table 4: Transaction cost and leverage constrained DPPP for loss averse investors with different degrees of loss aversion

l = 1.5 l = 2 l = 2.5 l = 3
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0127 0.0188 0.0094 0.0150 0.0057 0.0117 0.0032 0.0086
p-value(CEDPPP − CEPPP) 0.0001 0.0007 0.0009 0.0082

∑i |wi|/Nt ∗ 100 0.1688 0.1806 0.1745 0.1816 0.1755 0.1821 0.1786 0.1838
max wi ∗ 100 0.6587 0.8298 0.6856 0.8486 0.6877 0.8334 0.7004 0.8658
min wi ∗ 100 -0.6328 -0.9735 -0.6719 -0.9619 -0.6744 -0.9578 -0.6948 -0.9557
∑i wi I(wi < 0) -0.7169 -0.8018 -0.7580 -0.8093 -0.7653 -0.8125 -0.7878 -0.8249
∑i I(wi < 0)/Nt 0.3264 0.3285 0.3418 0.3301 0.3435 0.3284 0.3475 0.3365
∑i |wi,t − w+

i,t−1| 0.8454 1.8264 0.9550 1.8575 1.0269 1.8608 1.1131 1.8881

Mean 0.0175 0.0236 0.0180 0.0234 0.0178 0.0233 0.0183 0.0232
StdDev 0.0473 0.0521 0.0430 0.0480 0.0411 0.0460 0.0401 0.0439
Skew -0.6541 -0.6393 -0.8328 -0.6609 -0.9037 -0.5521 -0.8835 -0.5700
Kurt 2.8837 3.2452 2.5963 3.1598 2.3513 2.5513 2.2285 2.2444
SR 1.2806 1.5689 1.4486 1.6887 1.5035 1.7531 1.5821 1.8311
p-value(SRDPPP − SRPPP) 0.0041 0.0222 0.0139 0.0219

FF5 + Mom α 0.0079 0.0147 0.0089 0.0157 0.0092 0.0160 0.0100 0.0166
StdErr(α) 0.0013 0.0017 0.0013 0.0017 0.0013 0.0017 0.0014 0.0017

This table shows out-of-sample estimates of the deep portfolio policies with the transaction costs penalty (Equation (8)) and leverage constraint
(Equation (9)) with 157 firm characteristics optimized for a loss-averse investor with loss aversion of 1.5, 2, 2.5, and 3, respectively. The regular
portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes,
respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December 2020. The columns labeled "l = 1.5", "l = 2",
"l = 2.5" and "l = 3" correspond to the respective loss aversions. The first rows show the monthly certainty equivalent of the investor as well as the
bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows statistics
on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and minimum
portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover
in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions net of transaction costs as well as the
annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel
shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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• Appendix A: Neural Network Configuration

• Appendix B: Robustness

• Appendix C: Supplementary tables
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Appendix A Neural Network Configuration

Our benchmark model consists of an input layer, three hidden layers and an output layer. We

apply the geometric pyramid rule (Masters, 1993), i.e. the first hidden layer consists of 32 nodes,

the second hidden layer consists of 16 nodes and the third hidden layer consists of eight nodes.

We consider different network architectures in Appendix B.

At each node of the network, a linear transformation of the preceding outputs is fed into

an activation function. We choose to use the leaky rectified linear unit (leaky ReLU) activation

function at every node.

R(z) =


z if z > 0

αz otherwise
, (12)

where z denotes the input and α denotes some small non-zero constant, in our case 0.01. ReLU is

the most popular activation function because it is cheap to compute, converges fast and is sparsely

activated. The disadvantage of transforming all negative values to zero is a problem called "dying

ReLU". A ReLU neuron is "dead" if it is stuck in the negative range and always outputs zero. Since

the slope of ReLU in the negative range is also zero, it is unlikely that a neuron will recover once

it goes negative. Such neurons play no role in discriminating inputs and are essentially useless.

Over time, a large part of the network may do nothing. Leaky ReLU fixes this problem because

it has small slope for negative values instead of a flat slope. Moreover, we shift the activation

function at every node in every hidden layer by adding a constant. This is commonly referred to

as bias in the machine learning literature.

Our benchmark network is estimated by minimizing the loss function (utility function) given

in Equation (10). To do so, we apply the commonly used ADAM stochastic gradient descent

optimization technique developed by Kingma and Ba (2014).

To control for the non-linearity and heavy parametrization of the model, we employ different

regularization techniques to prevent overfitting: first, as mentioned above, we impose a constraint

on an individual stock’s absolute portfolio weight of |3%|.

Second, we add a lasso (l1) penalty term to the loss function to be minimized. Adding the

penalty implies a potential shrinkage of coefficients towards 0. This in turn reduces the variance

of the prediction, i.e. preventing the model to be overfitted.
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Third, we employ early stopping on the validation data. Early stopping refers to a very general

regularization technique. At each new iteration, predictions are estimated for the validation

sample, and the loss (utility) is constructed. The optimization is terminated when the validation

sample loss starts to increase by some small specified number (tolerance) over a specified number

of iterations (patience). Typically, the termination occurs before the loss is minimized in the training

sample. Early stopping is a popular regularization tool because it reduces the computational cost.

Fourth, we implement a dropout layer before the first hidden layer (Srivastava et al., 2014).

The basic idea of dropout is to randomly remove units (and their connections) from the neural

network during training. This prevents the units from becoming too similar. During training,

samples are taken from an exponential number of different thinned networks. At test time, it

is easy to approximate the effect of averaging the predictions of all these thinned networks by

simply using a single, unthinned network with smaller weights. The combination of a dropout

layer, l1-regularization and early stopping tremendously helps to reduce overfitting and model

complexity.

Fifth, we adopt an ensemble approach in training our neural network (Hansen and Salamon,

1990). In particular, we initialize five neural networks with different random seeds and construct

predictions by averaging the predictions from all networks. This reduces the variance across

predictions since different seeds produce different predictions due to the stochastic nature of the

optimization process.

Finally, we adopt our own version of a batch normalization algorithm (Ioffe and Szegedy,

2015). In general, training deep neural networks is complicated by the fact that the distribution of

inputs to each layer changes during training as the parameters of the previous layers change. This

phenomenon is referred to as internal covariate shift and can be remedied by normalizing the layer

inputs. The strength of this method is that normalization is part of the model architecture and is

performed for each training mini-batch. Batch normalization allows much higher learning rates to

be used and less care to be taken in initialization. Brandt et al. (2009) standardize characteristics

cross-sectionally to have zero mean and unit standard deviation across all stocks at date t. Hence,

the model predictions represent deviations from the benchmark portfolio. However, applying the

aforementioned activation function destroys this structure. In our model each observation can be

interpreted as a complete cross-section (e.g. a batch size of 12 refers to 12 complete cross-sections
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of data). However, the model of Brandt et al. (2009) requires normalization on a cross-sectional

level instead of a batch level. Thus, we employ our own version of cross-sectional normalization

after applying the activation function in each hidden layer, such that the output of each node in

the hidden layer is standardized cross-sectionally to have zero mean and unit standard deviation

across all stocks at date t. Hence, the output of each node in each hidden layer can also be

interpreted as a deviation from the benchmark portfolio.

We provide a summary of the relevant hyperparameters in Table C.2.

[TABLE C.2 ABOUT HERE]
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Appendix B Robustness Checks

B.1 Benchmark comparison

For robustness, we also compare our PPP and DPPP model for a CRRA investor with a relative

risk aversion of γ = 5 to an equally (EW) and value-weighted (VW) benchmark portfolio.

Table C.3 presents the comparison between different portfolios based on their utility, weights

and return characteristics. The first row reports the certainty equivalent of the realized utility across

out-of-sample periods for a CRRA investor with relative risk aversion of five. The equally weighted

and value weighted portfolio yield a certainty equivalent of 0.0015 and 0.0022, respectively. The

standard PPP substantially outperforms the simple portfolios, yielding a certainty equivalent of

0.0263. However, the DPPP yields a certainty equivalent of 0.0492, almost twice as large as the

certainty equivalent derived from the PPP.

The next set of rows gives insight into the distribution of the respective portfolio weights.

The active portfolios take comparably large positions, with the average absolute weight of the

deep portfolio policy being almost nine times as large as in the case of the equally weighted

and value weighted portfolio, respectively. However, due to the weight constraint shown in

Equation (7) these positions remain below 3% in absolute terms. As Ang et al. (2011) show,

average gross leverage of hedge fund companies amounts to 120% in the period after the financial

crisis 2007-2008. This indicates that both the linear and the deep portfolio policies are rather

unrealistic in the benchmark case. We address this in Section 3.2 by including a penalty term for

transaction costs and a constraint for leverage in our objective function.

The monthly mean returns of 4.7% and 7.1% in the linear and deep policy case are much

higher than the mean returns of around 1.1% in the equally weighted and value weighted portfolio

cases due to their highly levered nature. In fact, both models substantially outperform the market

porfolios with more than twice as large Sharpe ratios. In terms of skewness and kurtosis the

DPPP stands out as compared to the other portfolios. In particular, the portfolio exhibits a

positive skewness (0.82) and high kurtosis (4.96). The bottom set of rows reports the alphas and

its standard errors with respect to a six-factor model that appends a momentum factor to the

Fama-French five-factor model. The market portfolio alphas are both not significantly different

from zero. The linear policy alpha is 3.2%. The deep policy alpha is even higher, amounting to
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5.7%. Both alphas are highly statistically significant. These large unexplained returns can partially

be attributed to the highly levered nature of the active portfolios, as we show in the following

sections.

[TABLE C.3 ABOUT HERE]

B.2 Long only

A large majority of equity portfolios face restrictions on short selling. We incorporate short-sale

constraints as in Brandt et al. (2009), i.e. we truncate portfolios weights at zero (and still keep the

cap of 3% per stock). In particular, to make sure that portfolio weights still sum up to one, we add

the following portfolio rebalancing term to the end of our optimization process:

w∗
i,t =

max[0, wi,t]
Nt

∑
j=1

max[0, wi,t]

. (13)

Table C.4, shows results from estimating a long-only portfolio for CRRA investor with relative

risk aversion of γ = 5. Again, the deep parametric portfolio policy yields the highest certainty

equivalent, although certainty equivalent is markedly lower than in the unconstrained case. Still,

the certainty equivalent of the deep parametric portfolio policy is around five times higher than the

certainty equivalent of the market portfolios and around 43% higher than the certainty equivalent

of the linear parametric portfolio policy. The difference between the utility of the deep and the

linear parametric portfolio policy is statistically significant at the 0.1% level.

Both active portfolios result in a much higher turnover than the market portfolios, and the

deep portfolio policy produces a higher turnover than the linear portfolio policy (124% versus

60%). Different from the unconstrained benchmark results in Table C.3, here we report the fraction

of weights that are equal to zero. Interestingly, on average the deep portfolio policy does not

include 10% of stocks, while the linear portfolio policy does not include 27% of the available

stocks. Thus, the deep portfolio policy invests in more stocks but also has a higher individual

maximum weight (1.57% vs 0.36%), indicating that many weights are possibly very low.

The deep portfolio policy yields higher expected returns than the linear portfolio policy, with
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a moderate increase in volatility resulting in a Sharpe ratio that is around 20% higher than the

Sharpe ratio of the linear portfolio policy. This difference is statistically significant at the 0.1% level.

Interestingly, the third and fourth moments of all portfolio policies are similar and the portfolio

return distributions are not heavily skewed or tailed. Lastly, the alphas of the Fama-French model

are a lot smaller compared to the benchmark models, while still being highly significant in both

the linear and the deep portfolio policy case. Without the ability to take (potentially extreme)

short positions, the estimated parametric portfolios appear to be much more realistic. Nonetheless,

the deep portfolio policy still outperforms the other portfolios in terms of realized out-of-sample

utility.

[TABLE C.4 ABOUT HERE]

B.3 Model complexity

Our benchmark model is a relatively shallow neural net with only three hidden layers. It is

conceivable that a more complex model can achieve even higher utility gains over a linear model.

For example, Goodfellow et al. (2016) observe that neural nets with more hidden layers tend to

outperform neural nets with fewer hidden layers but more nodes per layer. Kelly et al. (2022)

report evidence in support of complex models in the context of forecasting aggregate stock market

returns.

We extend our benchmark model to include between two and five hidden layers. All models

start with 32 nodes in the first hidden layer and then halve the number of nodes in each subse-

quent layer. The number of parameters across models therefore varies between 5,600 and 5,768.

Additionally, we increase the number of hyperparameters by adding different possible learning

rates to our hyperparameter tuning and increasing the number of epochs and patience for early

stopping, to account for the different complexities of the models and to ensure that more complex

models also reach their respective potential. More specifically, the learning rate is now given by

LR ∈ {0.0001, 0.001, 0.01}, the number of maximum epochs for which we train is set to 300, and

the patience is increased to 30.

Table C.5 shows the results. The second model is our original benchmark model that we added
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for comparison.20 The remaining columns contain results based on networks with two, four or five

hidden layers. We observe that reducing the number of hidden layers to two reduces the certainty

equivalent. This reduction in certainty equivalent is significant at the 5%-level. In contrast,

increasing the number of hidden layers to four or five, respectively, does not yield statistically

significant differences in certainty equivalent. We thus conclude that in general, reasonable

complexity adjustments in terms of the number of hidden layers do not lead to significantly

different outcomes. However, we note that the testing of more hyperparameter specifications may

have significant improvements for the DPPP.

[TABLE C.5 ABOUT HERE]

20Note that the certainty equivalent is higher compared to our benchmark in Section 3.1. This is due to the
aforementioned fact that we add different possible learning rates as well as increase the number of epochs and patience
for early stopping. We do so not only for the model variations, but also for our benchmark to ensure consistency across
models.
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Appendix C Supplementary Tables
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

ChInvIA Change in capital inv (ind adj) Abarbanell and Bushee 1998, AR yearly Accounting investment growth

GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

IdioVolAHT Idiosyncratic risk (AHT) Ali, Hwang, and Trombley 2003, JFE monthly Price volatility

EarningsConsistency Earnings consistency Alwathainani 2009, BAR yearly Accounting earnings

Illiquidity Amihud’s illiquidity Amihud 2002, JFM monthly Trading liquidity

BidAskSpread Bid-ask spread Amihud and Mendelsohn 1986, JFE monthly Trading liquidity

grcapx Change in capex (two years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

grcapx3y Change in capex (three years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

betaVIX Systematic volatility Ang et al. 2006, JF monthly Price volatility

IdioRisk Idiosyncratic risk Ang et al. 2006, JF monthly Price volatility

IdioVol3F Idiosyncratic risk (3 factor) Ang et al. 2006, JF monthly Price volatility

CoskewACX Coskewness using daily returns Ang, Chen and Xing 2006, RFS monthly Price risk

Mom6mJunk Junk Stock Momentum Avramov et al 2007, JF monthly Price momentum

OrderBacklogChg Change in order backlog Baik and Ahn 2007, Other yearly Accounting accruals

roaq Return on assets (qtrly) Balakrishnan, Bartov and Faurel 2010, JAE quarterly Accounting profitability

MaxRet Maximum return over month Bali, Cakici, and Whitelaw 2010, JF monthly Price volatility

ReturnSkew Return skewness Bali, Engle and Murray 2015, Book monthly Price risk

ReturnSkew3F Idiosyncratic skewness (3F model) Bali, Engle and Murray 2015, Book monthly Price risk

CBOperProf Cash-based operating profitability Ball et al. 2016, JFE yearly Accounting profitability

OperProfRD Operating profitability R&D adjusted Ball et al. 2016, JFE yearly Accounting profitability

Size Size Banz 1981, JFE monthly Price size

SP Sales-to-price Barbee, Mukherji and Raines 1996, FAJ yearly Accounting valuation

EP Earnings-to-Price Ratio Basu 1977, JF monthly Price valuation

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

InvGrowth Inventory Growth Belo and Lin 2012, RFS yearly Accounting profitability

BrandInvest Brand capital investment Belo, Lin and Vitorino 2014, RED yearly Accounting investment

Leverage Market leverage Bhandari 1988, JFE monthly Price leverage

ResidualMomentum Momentum based on FF3 residuals Blitz, Huij and Martens 2011, JEmpFin monthly Price momentum

Price Price Blume and Husic 1972, JF monthly Price other

NetPayoutYield Net Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

PayoutYield Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

NetDebtFinance Net debt financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

NetEquityFinance Net equity financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

XFIN Net external financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

DolVol Past trading volume Brennan, Chordia, Subra 1998, JFE monthly Trading volume

FEPS Analyst earnings per share Cen, Wei, and Zhang 2006, WP monthly Analyst profitability

AnnouncementReturn Earnings announcement return Chan, Jegadeesh and Lakonishok 1996, JF monthly Price earnings

REV6 Earnings forecast revisions Chan, Jegadeesh and Lakonishok 1996, JF monthly Analyst earnings

AdExp Advertising Expense Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

RD R&D over market cap Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

CashProd Cash Productivity Chandrashekar and Rao 2009, WP yearly Accounting profitability

std_turn Share turnover volatility Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

VolSD Volume Variance Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

retConglomerate Conglomerate return Cohen and Lou 2012, JFE monthly Price delayed processing

RDAbility R&D ability Cohen, Diether and Malloy 2013, RFS yearly Accounting other

AssetGrowth Asset growth Cooper, Gulen and Schill 2008, JF yearly Accounting investment

EarningsForecastDisparity Long-vs-short EPS forecasts Da and Warachka 2011, JFE monthly Analyst earnings

CompEquIss Composite equity issuance Daniel and Titman 2006, JF monthly Accounting external financing

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

IntanBM Intangible return using BM Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanCFP Intangible return using CFtoP Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanEP Intangible return using EP Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanSP Intangible return using Sale2P Daniel and Titman 2006, JF yearly Accounting long term reversal

ShareIss5Y Share issuance (5 year) Daniel and Titman 2006, JF monthly Accounting external financing

LRreversal Long-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

MRreversal Medium-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

EquityDuration Equity Duration Dechow, Sloan and Soliman 2004, RAS yearly Price valuation

cfp Operating Cash flows to price Desai, Rajgopal, Venkatachalam 2004, AR yearly Accounting valuation

ForecastDispersion EPS Forecast Dispersion Diether, Malloy and Scherbina 2002, JF monthly Analyst volatility

ExclExp Excluded Expenses Doyle, Lundholm and Soliman 2003, RAS quarterly Analyst composite accounting

ProbInformedTrading Probability of Informed Trading Easley, Hvidkjaer and O’Hara 2002, JF yearly Trading liquidity

OrgCap Organizational capital Eisfeldt and Papanikolaou 2013, JF yearly Accounting R&D

sfe Earnings Forecast to price Elgers, Lo and Pfeiffer 2001, AR monthly Analyst valuation

GrLTNOA Growth in long term operating assets Fairfield, Whisenant and Yohn 2003, AR yearly Accounting investment

AM Total assets to market Fama and French 1992, JF yearly Accounting valuation

BMdec Book to market using December ME Fama and French 1992, JPM yearly Accounting valuation

BookLeverage Book leverage (annual) Fama and French 1992, JF yearly Accounting leverage

OperProf operating profits / book equity Fama and French 2006, JFE yearly Accounting profitability

Beta CAPM beta Fama and MacBeth 1973, JPE monthly Price risk

EarningsSurprise Earnings Surprise Foster, Olsen and Shevlin 1984, AR quarterly Analyst earnings

AnalystValue Analyst Value Frankel and Lee 1998, JAE monthly Analyst valuation

AOP Analyst Optimism Frankel and Lee 1998, JAE monthly Analyst other

PredictedFE Predicted Analyst forecast error Frankel and Lee 1998, JAE monthly Accounting earnings

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

FR Pension Funding Status Franzoni and Marin 2006, JF monthly Accounting composite accounting

BetaFP Frazzini-Pedersen Beta Frazzini and Pedersen 2014, JFE monthly Price other

High52 52 week high George and Hwang 2004, JF monthly Price momentum

IndMom Industry Momentum Grinblatt and Moskowitz 1999, JFE monthly Price momentum

PctAcc Percent Operating Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

PctTotAcc Percent Total Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

tang Tangibility Hahn and Lee 2009, JF yearly Accounting asset composition

Coskewness Coskewness Harvey and Siddique 2000, JF monthly Price risk

RoE net income / book equity Haugen and Baker 1996, JFE yearly Accounting profitability

VarCF Cash-flow to price variance Haugen and Baker 1996, JFE monthly Accounting cash flow risk

VolMkt Volume to market equity Haugen and Baker 1996, JFE monthly Trading volume

VolumeTrend Volume Trend Haugen and Baker 1996, JFE monthly Trading volume

AnalystRevision EPS forecast revision Hawkins, Chamberlin, Daniel 1984, FAJ monthly Analyst earnings

Mom12mOffSeason Momentum without the seasonal part Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason Off season long-term reversal Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason06YrPlus Off season reversal years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason11YrPlus Off season reversal years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason16YrPlus Off season reversal years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason Return seasonality years 2 to 5 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason06YrPlus Return seasonality years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason11YrPlus Return seasonality years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason16YrPlus Return seasonality years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeasonShort Return seasonality last year Heston and Sadka 2008, JFE monthly Price momentum

NOA Net Operating Assets Hirshleifer et al. 2004, JAE yearly Accounting asset composition

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

dNoa change in net operating assets Hirshleifer, Hou, Teoh, Zhang 2004, JAE yearly Accounting investment

EarnSupBig Earnings surprise of big firms Hou 2007, RFS quarterly Accounting delayed processing

IndRetBig Industry return of big firms Hou 2007, RFS monthly Price delayed processing

PriceDelayRsq Price delay r square Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelaySlope Price delay coeff Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelayTstat Price delay SE adjusted Hou and Moskowitz 2005, RFS monthly Price delayed processing

STreversal Short term reversal Jegadeesh 1989, JF monthly Price short-term reversal

RevenueSurprise Revenue Surprise Jegadeesh and Livnat 2006, JFE quarterly Accounting sales growth

Mom12m Momentum (12 month) Jegadeesh and Titman 1993, JF monthly Price momentum

Mom6m Momentum (6 month) Jegadeesh and Titman 1993, JF monthly Price momentum

ChangeInRecommendation Change in recommendation Jegadeesh et al. 2004, JF monthly Analyst recommendation

OptionVolume1 Option to stock volume Johnson and So 2012, JFE monthly Trading volume

OptionVolume2 Option volume to average Johnson and So 2012, JFE monthly Trading volume

BetaTailRisk Tail risk beta Kelly and Jiang 2014, RFS monthly Price risk

fgr5yrLag Long-term EPS forecast La Porta 1996, JF monthly Analyst earnings

CF Cash flow to market Lakonishok, Shleifer, Vishny 1994, JF monthly Accounting valuation

MeanRankRevGrowth Revenue Growth Rank Lakonishok, Shleifer, Vishny 1994, JF yearly Accounting sales growth

RDS Real dirty surplus Landsman et al. 2011, AR yearly Accounting composite accounting

Tax Taxable income to income Lev and Nissim 2004, AR yearly Accounting tax

RDcap R&D capital-to-assets Li 2011, RFS yearly Accounting asset composition

zerotrade Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt1 Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt12 Days with zero trades Liu 2006, JFE monthly Trading liquidity

ChEQ Growth in book equity Lockwood and Prombutr 2010, JFR yearly Accounting investment

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

EarningsStreak Earnings surprise streak Loh and Warachka 2012, MS monthly Accounting earnings

NumEarnIncrease Earnings streak length Loh and Warachka 2012, MS quarterly Accounting earnings

GrAdExp Growth in advertising expenses Lou 2014, RFS yearly Accounting investment

EntMult Enterprise Multiple Loughran and Wellman 2011, JFQA monthly Accounting valuation

CompositeDebtIssuance Composite debt issuance Lyandres, Sun and Zhang 2008, RFS yearly Accounting external financing

InvestPPEInv change in ppe and inv/assets Lyandres, Sun and Zhang 2008, RFS yearly Accounting investment

Frontier Efficient frontier index Nguyen and Swanson 2009, JFQA yearly Accounting valuation

GP gross profits / total assets Novy-Marx 2013, JFE yearly Accounting profitability

IntMom Intermediate Momentum Novy-Marx 2012, JFE monthly Price momentum

OPLeverage Operating leverage Novy-Marx 2010, ROF yearly Accounting other

Cash Cash to assets Palazzo 2012, JFE quarterly Accounting asset composition

BetaLiquidityPS Pastor-Stambaugh liquidity beta Pastor and Stambaugh 2003, JPE monthly Price liquidity

BPEBM Leverage component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

EBM Enterprise component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting valuation

NetDebtPrice Net debt to price Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

PS Piotroski F-score Piotroski 2000, AR yearly Accounting composite accounting

ShareIss1Y Share issuance (1 year) Pontiff and Woodgate 2008, JF monthly Accounting external financing

DelDRC Deferred Revenue Prakash and Sinha 2012, CAR yearly Accounting investment

OrderBacklog Order backlog Rajgopal, Shevlin, Venkatachalam 2003, RAS yearly Accounting sales growth

DelCOA Change in current operating assets Richardson et al. 2005, JAE yearly Accounting investment

DelCOL Change in current operating liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelEqu Change in equity to assets Richardson et al. 2005, JAE yearly Accounting investment

DelFINL Change in financial liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelLTI Change in long-term investment Richardson et al. 2005, JAE yearly Accounting investment

Continued on next page
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Acronym Long Description Author(s) Year, Journal Frequency Cat.Data Cat.Economic

DelNetFin Change in net financial assets Richardson et al. 2005, JAE yearly Accounting investment

TotalAccruals Total accruals Richardson et al. 2005, JAE yearly Accounting investment

BM Book to market using most recent ME Rosenberg, Reid, and Lanstein 1985, JF monthly Accounting valuation

Accruals Accruals Sloan 1996, AR yearly Accounting accruals

ChAssetTurnover Change in Asset Turnover Soliman 2008, AR yearly Accounting sales growth

ChNNCOA Change in Net Noncurrent Op Assets Soliman 2008, AR yearly Accounting investment

ChNWC Change in Net Working Capital Soliman 2008, AR yearly Accounting investment

ChInv Inventory Growth Thomas and Zhang 2002, RAS yearly Accounting investment

ChTax Change in Taxes Thomas and Zhang 2011, JAR quarterly Accounting tax

Investment Investment to revenue Titman, Wei and Xie 2004, JFQA yearly Accounting investment

realestate Real estate holdings Tuzel 2010, RFS yearly Accounting asset composition

AbnormalAccruals Abnormal Accruals Xie 2001, AR yearly Accounting accruals

FirmAgeMom Firm Age - Momentum Zhang 2004, JF monthly Price momentum

Table C.1: The table shows all available characteristics used, the author(s), the year and the journal of publication. In addition, this table shows the
update frequency, the data category as well as the economic category.

60



Table C.2: Hyperparameters

PPP DPPP

L1 penalty λ ∈ {0, 10−5, 10−3} λ ∈ {0, 10−5, 10−3}
Learning Rate 0.001 0.001
Dropout 0 D ∈ {0, 0.2, 0.4}
Batch Size 12 12
Epochs 200 200
Patience 20 20
Ensemble 0 5
Leaky ReLU − 0.01

This table gives the hyperparameters that we tune. The first column shows the hyperparameters for the
linear parametric portfolio policy (PPP). The second column shows the hyperparameters for the deep
parametric portfolio policy (DPPP).
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Table C.3: Deep and linear portfolio policy

EW VW PPP DPPP

CE 0.0015 0.0022 0.0263 0.0492
p-value(CEDPPP − CEPPP) 0.0002

∑i |wi|/Nt ∗ 100 0.0694 0.0694 0.4972 0.6127
max wi ∗ 100 0.0704 0.1113 2.0363 1.7452
min wi ∗ 100 0.0704 0.0410 -2.1712 -1.8709
∑i wi I(wi < 0) 0.0000 0.0000 -3.0841 -3.9171
∑i I(wi < 0)/Nt 0.0000 0.0000 0.4351 0.4430
∑i |wi,t − w+

i,t−1| 0.0931 0.0779 3.7816 7.8053

Mean 0.0110 0.0105 0.0473 0.0711
StdDev 0.0587 0.0552 0.0890 0.0982
Skew -0.3716 -0.5039 -0.1004 0.8169
Kurt 3.6591 3.3455 1.3766 4.9609
SR 0.6461 0.6609 1.8391 2.5101
p-value(SRDPPP − SRPPP) 0.0075

FF5 + Mom α -0.0002 -0.0003 0.0324 0.0570
StdErr(α) 0.0007 0.0006 0.0040 0.0052

This table shows out-of-sample estimates of the deep and linear portfolio policies with 157 firm charac-
teristics optimized for a CRRA investor with relative risk aversion of five. The regular portfolio policy
is a linear model, while the deep model is a feed-forward neural network with three hidden layers and
32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January
1971 to December 2020. The columns labeled "EW", "VW", "PPP" and "DPPP" show the statistics of
the equal-weighted portfolio, value-weighted portfolio, parametric portfolio policy, and deep parametric
portfolio policy, respectively. The first rows show the monthly certainty equivalent of the investor as well as
the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and
PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics
include the average absolute portfolio weight, the average maximum and minimum portfolio weights, the
average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio,
and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio
return distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for the
difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard
errors with respect to the Fama-French five-factor model extended to include the momentum factor.
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Table C.4: Long-only deep and linear portfolio policy

EW VW PPP DPPP

CE 0.0015 0.0022 0.0075 0.0107
p-value(CEDPPP − CEPPP) 0.0008

∑i |wi|/Nt ∗ 100 0.0694 0.0694 0.0694 0.0694
max wi ∗ 100 0.0704 0.1113 0.3578 1.5865
min wi ∗ 100 0.0704 0.0410 0.0000 0.0000
∑i wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000
∑i I(wi = 0)/Nt 0.0000 0.0000 0.2667 0.0972
∑i |wi,t − w+

i,t−1| 0.0931 0.0779 0.6019 1.2433

Mean 0.0110 0.0105 0.0145 0.0200
StdDev 0.0587 0.0552 0.0506 0.0583
Skew -0.3716 -0.5039 -0.6840 -0.3391
Kurt 3.6591 3.3455 3.1303 4.3683
SR 0.6461 0.6609 0.9931 1.1871
p-value(SRDPPP − SRPPP) 0.0007

FF5 + Mom α -0.0002 -0.0003 0.0043 0.0095
StdErr(α) 0.0007 0.0006 0.0007 0.0012

This table shows out-of-sample estimates of the deep and linear portfolio policies including a long-only
constraint with 157 firm characteristics optimized for a CRRA investor with relative risk aversion of five.
The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with
three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing
Dataset from January 1971 to December 2020. The columns labeled "EW", "VW", "PPP" and "DPPP" show
the statistics of the equal-weighted portfolio, value-weighted portfolio, parametric portfolio policy, and
deep parametric portfolio policy, respectively. The first rows show the monthly certainty equivalent of the
investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent
between DPPP and PPP. The second set of rows shows statistics on portfolio weights averaged over months t.
These statistics include the average absolute portfolio weight, the average maximum and minimum portfolio
weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in
the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the
final portfolio return distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided
p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and
their standard errors with respect to the Fama-French five-factor model extended to include the momentum
factor.
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Table C.5: Deep portfolio policy with different number of hidden layers

Layer 2 Layer 3 Layer 4 Layer 5

CE 0.0386 0.0633 0.0674 0.0647
p-value(CELi − CEL3) 0.0364 0.1716 0.3402

∑i |wi|/Nt ∗ 100 1.2431 1.1550 1.1395 0.8481
max wi ∗ 100 2.2951 2.1522 2.3668 2.2394
min wi ∗ 100 -2.3218 -2.1872 -2.3921 -2.2716
∑i wi I(wi < 0) -8.4616 -7.8263 -7.7149 -5.6143
∑i I(wi < 0)/Nt 0.4757 0.4717 0.4675 0.4568
∑i |wi,t − w+

i,t−1| 15.5297 14.2088 14.4381 11.0562

Mean 0.1102 0.1108 0.1260 0.1063
StdDev 0.1604 0.1428 0.1695 0.1497
Skew 0.2956 0.3956 1.1144 1.8729
Kurt 1.7233 1.1903 4.5579 10.5177
SR 2.3813 2.6886 2.5756 2.4600
p-value(SRLi − SRL3) 0.0003 0.1130 0.0460

FF5 + Mom α 0.0923 0.0927 0.1091 0.0934
StdErr(α) 0.0088 0.0078 0.0095 0.0086

This table shows out-of-sample estimates of the deep portfolio policies with different number of hidden
layers with 157 firm characteristics optimized for a CRRA investor with relative risk aversion of five. The
deep models are feed-forward neural networks with two (32, 16), three (32, 16, 8), four (32, 16, 8, 4) and
five (32, 16, 8, 4, 2) hidden layers (nodes), respectively. We use data from the Open Source Asset Pricing
Dataset from January 1971 to December 2020. The columns labeled "Layer 2", "Layer 3", "Layer 4" and
"Layer 5" show the statistics of the deep parametric portfolio policy with two, three, four and five hidden
layers, respectively. The first rows show the monthly certainty equivalent of the investor as well as the
bootstrapped one-sided p-value for the difference in monthly certainty equivalent between the model with
three layers and the other models. The second set of rows shows statistics on portfolio weights averaged
over months t. These statistics include the average absolute portfolio weight, the average maximum and
minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of
negative weights in the portfolio, and the turnover in the portfolio. The third set of rows shows the first
four moments of the final portfolio return distributions as well as the annualized Sharpe ratios and the
bootstrapped one-sided p-value for the difference in Sharpe ratios between the model with three layers
and the other models. The bottom panel shows the alphas and their standard errors with respect to the
Fama-French five-factor model extended to include the momentum factor.
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Table C.6: Surrogate models for CRRA investors with different degrees of risk aversion

γ = 2 γ = 10 γ = 10 γ = 20

R2 0.5513 0.5537 0.5561 0.6914
Sur. CE 0.0477 0.0342 0.0200 0.0008
Orig. CE 0.0669 0.0492 0.0303 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0003 0.0004
incl. TC No No No No
incl. interactions No No No No

R2 0.7606 0.7712 0.7706 0.8472
Sur. CE 0.0548 0.0382 0.0202 0.0004
Orig. CE 0.0669 0.0492 0.0303 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0001 0.0008
incl. TC No No No No
incl. interactions Yes Yes Yes Yes

R2 0.6762 0.6841 0.7415 0.8039
Sur. CE -0.1009 -0.0841 -0.0669 -0.0489
Orig. CE -0.1218 -0.0980 -0.0756 -0.0536
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0017 0.0387
incl. TC Yes Yes Yes Yes
incl. interactions No No No No

R2 0.8454 0.8395 0.8757 0.9081
Sur. CE -0.1154 -0.0949 -0.0739 -0.0516
Orig. CE -0.1218 -0.0980 -0.0756 -0.0536
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0014 0.2514
incl. TC Yes Yes Yes Yes
incl. interactions Yes Yes Yes Yes

This table compares the monthly certainty equivalents of the linear surrogate models presented in Section
3.3 to the corresponding deep portfolio policies optimized for a CRRA investor with relative risk aversion
of 2, 5, 10 and 20, respectively. The deep models are the feed-forward neural networks presented in Section
3.1 and Section 3.2, respectively. We use data from the Open Source Asset Pricing Dataset from January
1971 to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond to the
respective risk aversions. The rows represent the mean adjusted R2 across all periods, the resulting monthly
certainty equivalent of the weights predicted by the surrogate model, the monthly certainty equivalent of
the corresponding deep model and lastly, the p-value for the difference in the certainty equivalents. The
next two rows "incl. TC" and "incl. interactions" stratify the results across the model specification and the
inclusion of interactions in the surrogate model.
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Table C.7: Benchmark DPPP for MV investors with different degrees of risk aversion

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0392 0.0662 0.0267 0.0469 0.0140 0.0290 -0.0017 0.0053
p-value(CEDPPP − CEPPP) 0.0001 0.0002 0.0066 0.1182

∑i |wi|/Nt ∗ 100 0.5361 0.6749 0.5060 0.6057 0.4373 0.5295 0.2939 0.3847
max wi ∗ 100 2.1772 1.8125 2.0748 1.7260 1.8184 1.6331 1.1825 1.2971
min wi ∗ 100 -2.3513 -1.8523 -2.2097 -1.8370 -1.8924 -1.8039 -1.2239 -1.3872
∑i wi I(wi < 0) -3.3646 -4.3656 -3.1475 -3.8665 -2.6527 -3.3171 -1.6188 -2.2737
∑i I(wi < 0)/Nt 0.4402 0.4451 0.4334 0.4411 0.4204 0.4344 0.3761 0.4171
∑i |wi,t − w+

i,t−1| 3.8594 8.5704 3.9370 7.6984 3.5980 6.7283 2.2396 4.8273

Mean 0.0489 0.0786 0.0468 0.0701 0.0430 0.0628 0.0303 0.0482
StdDev 0.0987 0.1115 0.0897 0.0965 0.0764 0.0824 0.0566 0.0656
Skew -0.1627 1.3035 -0.1451 1.0537 -0.0254 0.3598 -0.0473 0.5061
Kurt 1.5433 8.2253 1.8391 6.5084 2.0479 0.9416 3.0808 1.3940
SR 1.7149 2.4408 1.8070 2.5170 1.9518 2.6402 1.8548 2.5443
p-value(SRDPPP − SRPPP) 0.0035 0.0077 0.0014 0.0012

FF5 + Mom α 0.0332 0.0626 0.0323 0.0559 0.0299 0.0492 0.0193 0.0368
StdErr(α) 0.0043 0.0058 0.0040 0.0051 0.0035 0.0043 0.0026 0.0033

This table shows out-of-sample estimates of the deep portfolio policies with 157 firm characteristics optimized for a mean-variance investor with
absolute risk aversion of 2, 5, 10 and 20, respectively. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural
network with three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January 1971
to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond to the respective risk aversions. The first rows show
the monthly certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent
between DPPP and PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average
absolute portfolio weight, the average maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average
proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the final
portfolio return distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios
between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to
include the momentum factor.
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Table C.8: Benchmark DPPP for LA investors with different degrees of loss aversion

l = 1.5 l = 2 l = 2.5 l = 3
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0406 0.0738 0.0332 0.0631 0.0266 0.0574 0.0194 0.0476
p-value(CEDPPP − CEPPP) 0.0005 0.0001 0.0002 0.0001

∑i |wi|/Nt ∗ 100 0.5354 0.6784 0.5069 0.6630 0.5034 0.6468 0.4940 0.5899
max wi ∗ 100 2.2067 1.8606 2.0872 1.7858 2.0743 1.7618 2.0345 1.6638
min wi ∗ 100 -2.3124 -1.8713 -2.1707 -1.8517 -2.1577 -1.7841 -2.1116 -1.6680
∑i wi I(wi < 0) -3.3600 -4.3905 -3.1542 -4.2795 -3.1290 -4.1627 -3.0616 -3.7529
∑i I(wi < 0)/Nt 0.4403 0.4524 0.4332 0.4509 0.4307 0.4490 0.4286 0.4467
∑i |wi,t − w+

i,t−1| 3.7083 8.7386 3.6546 8.5511 3.7464 8.3677 3.7305 7.6941

Mean 0.0490 0.0824 0.0478 0.0789 0.0473 0.0783 0.0458 0.0721
StdDev 0.0977 0.1575 0.0906 0.1329 0.0871 0.1359 0.0829 0.1108
Skew 0.0347 3.5193 0.1242 1.8141 0.0996 3.5153 0.1404 1.3095
Kurt 1.0871 32.9589 0.9407 13.0823 0.8451 33.2542 0.7114 7.6654
SR 1.7375 1.8130 1.8270 2.0574 1.8789 1.9963 1.9149 2.2548
p-value(SRDPPP − SRPPP) 0.4763 0.1878 0.4242 0.0916

FF5 + Mom α 0.0336 0.0658 0.0338 0.0633 0.0338 0.0624 0.0327 0.0578
StdErr(α) 0.0043 0.0076 0.0041 0.0065 0.0040 0.0067 0.0039 0.0056

This table shows out-of-sample estimates of the deep portfolio policies with 157 firm characteristics optimized for a loss-averse investor with loss
aversion of 1.5, 2, 2.5, and 3, respectively. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with
three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing Dataset from January 1971 to December
2020. The columns labeled "l = 1.5", "l = 2", "l = 2.5" and "l = 3" correspond to the respective loss aversions. The first rows show the monthly
certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP
and PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio
weight, the average maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of
negative weights in the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return
distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP
and PPP. The bottom panel shows the alphas and their standard errors with respect to the Fama-French five-factor model extended to include the
momentum factor.
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