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1 Introduction

In the 2015 Paris Agreement, 196 parties committed to holding global average temperature in-

creases to below 2°C above pre-industrial levels. The agreement explicitly calls on the �nancial

industry in helping to make �nance �ows `consistent with a pathway towards low carbon emis-

sions ...' (p. 3, United Nations, 2015). Investors are becoming increasingly aware of their role

in mitigating climate change and the potentially enormous societal and economic consequences

of failing to do so. As a result, asset owners and investors representing over $120 trillion in

assets have signed up for the UN Principles for Responsible Investment in 2021.1 Nonetheless,

many institutional investors report challenges in addressing climate risks, citing a lack of best

practices, problems around data availability, and inherent di�culties with assessing climate

change (Krueger et al., 2020; Giglio et al., 2020).

Development of scienti�c methods and metrics to measure climate risk exposure is urgently

needed (Krueger et al., 2020; Giglio et al., 2020). One of the main issues in this respect is that

green innovation is driven by the �rms that belong to the worst performers on environmental

issues. Cohen et al. (2020) show that the green innovation is largely driven by the energy sector,

measured by both the number and quality of green patents. In addition, De Haas and Popov

(2022) show that sectors with the highest carbon intensity also display the steepest subsequent

decrease in carbon intensity, especially when and where the equity market development is high.

Also, brown �rms increase emissions much more in response to increases in cost of capital

than green �rms do, as shown by Hartzmark and Shue (2023). Corporate emissions, however,

are best at identifying `climate losers' (Sautner et al., 2022), that is, �rms that are currently

among the heaviest emitters. In this setting, all emissions are assumed equally harmful, while

investors might assign greater weight to some emissions over others. For example, for �rms

whose emissions occur in the production of goods that reduce emissions elsewhere (e.g. solar

panels), or that operate in sectors for which abatement is expected to be easier, investors might

perceive lower risk exposures. To illustrate this point, note that the annual direct emissions

of Tesla, Inc., a manufacturer of electric vehicles, and W&T O�shore, Inc., an independent oil

and gas producer, are relatively similar, ranking close to the 80th percentile in our sample.

We contribute to this discussion by introducing a market-based measure of asset-level climate

1See UN PRI Annual Report 2021: https://www.unpri.org/annual-report-2021/how-we-work/

building-our-effectiveness/enhance-our-global-footprint
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risk exposure, determined by the extent to which an asset's price correlates with a carbon risk

factor. Following the terminology of the asset pricing literature, we refer to this measure as

carbon beta. Due to the market-based nature of our measure, carbon betas re�ect market par-

ticipants' expectations regarding an asset's future transition risk exposure. Besides a company's

current greenhouse gas emissions, factors such as the availability of clean technologies, quality

of management, innovation ability, competition, and �nancial health likely a�ect a company's

ability to deal with transition risks and reduce future greenhouse gas emissions. If market prices

incorporate expectations about such aspects, then our carbon beta will re�ect those too.2 Com-

ing back to our earlier examples, whereas the carbon emissions were comparable, the average

carbon beta of Tesla is among the bottom 5%, while that of W&T is in the top 5%. Seemingly,

investors can hold widely varying expectations of climate risk exposure as measured by carbon

beta even for �rms with similar emissions output.

Our carbon risk factor is constructed by forming a long-short portfolio. The long leg of the

portfolio contains relatively pollutive companies whereas the short leg contains relatively clean

companies. To roughly classify companies into pollutive and clean groups, we use companies'

relative greenhouse gas emissions. The motivation behind this choice is not that emissions are

a perfect indicator of whether a company is green or brown,3 but rather that as a group, heavy

emitters are more likely to be negatively a�ected by an accelerated low-carbon transition than

light emitters are. Our carbon risk factor thus consists of a long position in the stocks of the

heaviest-emitting 30% of �rms o�set by a short position in stocks of the least-emitting 30%

of �rms, controlling for size as in Fama and French (1993). We refer to this portfolio as the

Pollutive-Minus-Clean, or PMC, portfolio.4 We perform time-series regressions of equity returns

on the carbon risk factor � while controlling for additional factors known to drive returns � to

determine stock return sensitivities to carbon risk. We regard the loading on the carbon risk

factor, the carbon beta, as a �rm-level indicator of climate transition risk exposure.

Inspired by recent work by Cohen et al. (2020) we explore the relationship between our measure

2The distinction between greenhouse gas emissions and carbon betas is akin to the broader distinction in the
asset pricing literature between characteristics and the covariance structure of returns as introduced in Daniel
and Titman (1997).
3We use `brown', `pollutive', and `unsustainable' interchangeably to describe �rms, products, and services that
are contributing to climate change, while we use `green', `clean', and `sustainable' to describe �rms, products,
and services that contribute much less to, or even help in, mitigating climate change.
4In 5.5% of �rm-month observations, �rms are in the top (bottom) 30% of emissions whereas they are in the
bottom (top) 30% of carbon betas. We have constructed an alternative PMC factor without such contradictory
cases, and found a correlation of 99% with the original PMC factor. This con�rms that the most and least
pollutive �rms are indeed captured by taking the portfolios of the top and bottom 30% emitters.
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of climate risk and �rms' green patents output. Cohen et al. (2020) �nd that green innovation

is largely driven by �rms in the Energy sector, yet paradoxically these �rms are generally

amongst the worst performers on environmental issues. We download all patents issued by the

U.S. Patent and Trademark O�ce (USPTO) from 2010 to 2020 and link their patent classes to

green patent classi�cation schemes. Our results indicate a negative and statistically signi�cant

association between carbon beta and green innovation, indicating that green innovators are less

exposed to climate risk. If we only include Energy �rms in the analysis, the e�ect becomes more

pronounced. We do not �nd similar results when focusing our analysis on carbon intensities

or carbon emissions as the indicator of climate risk exposure. These �ndings suggest that �rm

di�erences in green innovation are taken into consideration by market participants and are

therefore re�ected by carbon betas, illustrating the forward-looking nature of carbon beta. In

addition, we �nd a robust and positive association between carbon beta and MSCI Climate

Value-at-Risk, which is purpose built to be forward looking.

The economic mechanism behind the carbon risk factor follows that of the Pástor et al. (2020,

2022)'s model of an ESG factor. If concerns regarding the climate unexpectedly rise, consumer

demand will shift from brown products and services to greener ones. Producers of these products

and services will bene�t accordingly, which increases their valuation. Simultaneously, investors

who care about the climate will substitute brown asset holdings for greener alternatives, either

because they derive more utility from holding green assets (for example because they are publicly

pressured to do so), or because they anticipate stricter environmental policies. Our proxy for

the carbon risk factor is intended to capture such shifts in the valuation of brown �rms relative

to green �rms that occur due to changing concerns around climate change. In other words, we

expect carbon beta to provide hedging ability against realization of transition risk, and have an

unconditional positive risk premium. We empirically test these hypotheses.

Assets with positive carbon betas tend to depreciate in value when investors become more

concerned about the climate. On the contrary, negative carbon beta assets tend to appreciate

in such times. These assets can be regarded as `climate hedge' assets because they deliver high

returns when climate change concerns increase. We devise several tests to uncover such an

e�ect. To start, we construct an index similar to Engle et al. (2020)'s Climate Change News

Index. Our index is determined by the textual similarity between daily news articles published

in the Wall Street Journal and a corpus of texts on climate change collected from o�cial
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reports and Wikipedia. We theorise that periods in which climate change is frequently reported

in the news tend to coincide with episodes of heightened uncertainty around future climate

policies. As this approach is analogous to that in the literature on economic policy uncertainty

(see, e.g., Baker et al. 2016), we refer to our index as the Climate Policy Uncertainty (CPU)

index. We �nd that in months when CPU increases, �rms with higher carbon beta have lower

returns. A one standard deviation higher carbon beta leads to around a 15 bps reduction

in returns, ceteris paribus, for each standard deviation increase in climate policy uncertainty.

Based on observations that extreme temperature shocks reduce corporate earnings (Addoum

et al. 2018; Pankratz et al. 2019) and disproportionably diminish the market values of pollutive

�rms (Choi et al. 2020), we perform similar analyses using extreme weather events in the United

States. We document that during months with abnormally high temperatures, �rms with high

carbon betas tend to generate signi�cantly lower returns, in both economic and statistical

terms. A qualitatively similar pattern is observed in periods of extreme drought, where a one

standard deviation higher carbon beta is associated with a 39 bps lower return. These results

are consistent with the model of Pástor et al. (2020, 2022), implying that carbon beta is indeed

functioning as a measure of climate risk. In other words, the carbon beta approach allows

investors to hedge the carbon transition risk in their portfolio since it can single out climate

winners next to climate losers.

A natural question that arises, is whether the hedging ability of carbon beta comes at a cost

of lower unconditional expected returns, or, in other words, whether climate risk is priced in

the cross-section of stock returns. If investors dislike states of the world in which the climate

deteriorates, they should demand higher returns for holding high carbon beta assets that under-

perform in such scenarios. Likewise, they should be willing to accept lower expected returns for

climate hedge assets with negative carbon betas, in return for these assets' ability to hedge cli-

mate risks. On the contrary, in times of increasing concern about the environment, assets with

high carbon betas tend to depreciate in conjunction with the PMC portfolio, because these as-

sets are expected to be negatively a�ected by a low-carbon transition. As such assets are riskier

and shunned by investors, they should trade at discounts, and o�er higher expected returns.

In line with theoretical predictions by Pástor et al. (2020), our asset pricing tests con�rm this

to be the case. A one standard deviation increase in carbon beta tends to be associated with,
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ceteris paribus, an increase in annualised return by 1.15%-points.5

Apart from being able to distinguish transition winners from transition losers, our approach

allows us to calculate carbon betas for any asset for which returns are observed. In our data

sample of US equity from 2007 to 2020, we are able to calculate carbon betas for a little under

600,000 �rm-month observations. Over the same sample, we have observations for emissions

and emission intensities for a little over 200,000 �rm-month observations. In addition, our

procedure allows the estimation of carbon betas for asset classes that have no other carbon-

related measures available, for which it is inherently di�cult to construct such measures (e.g.

commodities), or which are by their nature opaque (e.g. hedge funds for which the holdings

data are not publicly available). The estimation procedure is transparent and consistent across

assets and asset classes and does not directly rely on the voluntary disclosure of emissions-

related information. We demonstrate the �exibility of our methodology by applying it to three

di�erent asset classes: (i) U.S. equities as the core focus of our paper, (ii) national equity indices

in Appendix B, and (iii) U.S. corporate bonds. Theoretically it is possible to apply our approach

to any asset class with a su�cient history of returns observations, but further avenues to apply

our concept are left for future research.6

Our paper relates to a growing literature on climate �nance, which studies the interactions

between climate change and �nancial markets. Addoum et al. (2018) examine the e�ects of

extreme temperature shocks on corporate earnings and �nd that such shocks signi�cantly im-

pact earnings in over 40% of industries. Relatedly, Bansal et al. (2019) estimate stock return

sensitivities to long-run temperature shocks and �nd that temperature-exposed stocks carry

a risk premium. Pankratz et al. (2019) establish a causal negative relationship between heat

exposure and �rms' operating performance, and observe that �nancial analysts and market

participants incorrectly anticipate the e�ects of heat on company performance. Bortolan et al.

(2022) argue that variation in temperatures a�ects asset prices, and provide empirical evidence

to back their claim. Huynh et al. (2021) observe that mutual fund managers divest from pol-

lutive �rms after they experience increased local air pollution. Hong et al. (2019) explore the

stock prices of food producers and conclude that they do not e�ciently re�ect long-run drought

risks. Engle et al. (2020) construct portfolios to hedge innovations in climate change news. We

5Note that whereas the hedging ability is relatively easy to identify, identi�cation of a risk premium requires
a long history of data due to the low signal-to-noise ratio in �nancial markets. Therefore, we interpret the
�ndings of the risk premium with caution.
6The PMC index is available through the website of the authors.
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adopt their methodology of quantifying climate change news. Choi et al. (2020) study how

people update their beliefs about climate change during periods of high temperatures. The

authors con�rm that attention to climate change spikes during such periods, and that stocks of

�rms with low carbon emissions outperform their carbon-intensive peers. The e�ects coincide

with selling from retail investors, yet better-informed institutional traders do not exhibit simi-

lar behaviour. Painter (2020) and Goldsmith-Pinkham et al. (2022) �nd that physical climate

risks are priced in the U.S. municipal bond market. Goldstein et al. (2022) model how ESG

investing a�ects price informativeness. One of the model's implications is that an increasing

share of ESG-motivated investors leads to prices that are more re�ective of ESG signals and

less re�ective of �rm fundamentals.

Görgen et al. (2020) are the �rst to consider the concept of a carbon risk factor. Their fac-

tor is constructed from several ESG variables provided by MSCI, Sustainalytics, the Carbon

Disclosure Project (CDP), and Thomson Reuters. The authors �nd that Fama and French

(1993) and Carhart (1997) asset-pricing models perform signi�cantly better after the inclusion

of the carbon risk factor. They �nd no evidence of a carbon risk premium in the cross-section

of returns. After conducting a Campbell and Vuolteenaho (2004) decomposition, the missing

premium is attributed to carbon risk being associated more with unrewarded cash �ow risk

than with discount rate risk.7 Görgen et al. (2020)'s paper is di�erent from ours in several

ways. First, Görgen et al. (2020) primarily adopt an asset pricing perspective of the carbon

risk factor as a driver of stock returns, while we focus more on �rm-level sensitivities towards

such a factor as a measure of carbon risk. Second, the construction of Görgen et al. (2020)'s

carbon factor relies on a number of ESG variables designed to capture di�erences in a �rm's

climate change adaptability, its value chain, and the public's perception. Considering the many

variables available to choose from and given that ESG data are notoriously inaccurate (see, for

example, Chatterji et al. (2016), Kotsantonis and Serafeim (2019), and Berg et al. (2022)) and

costly to obtain, we refrain from making additional assumptions on how �rms are exposed to

climate risks, other than that such exposure is proxied for by carbon emissions.

Our paper �ts into a relatively recent literature that examines forward-looking, �rm-level mea-

7Campbell and Vuolteenaho (2004) predict that cash-�ow risk should be priced at a larger premium than discount
rate risks, as the latter is more transitory. Görgen et al. (2020) however observe the reverse to be the case
in their sample period. Explanations for this �nding could lie in the time-varying component of the price of
cash-�ow risk and in the fact that after the global �nancial crisis, cash-�ow shocks have been predominantly
upward (Maio, 2013; Campbell et al., 2013).
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sures of climate risk. Sautner et al. (2022) and Li et al. (2020) construct measures of corpo-

rate climate risk from textual analysis of earnings call transcripts. Both studies use a similar

methodology that quanti�es climate risk via the share of the earnings call conversations devoted

to climate-related topics. Sautner et al. (2022) go to great lengths to validate their Climate

Change Exposure. The measure indicates higher exposure for companies listed in countries with

stronger climate regulations. Compared to more traditional measures of carbon risk, a greater

fraction of the variation in Climate Change Exposures occurs at the �rm level rather than at

the sector, year, or country level. Based on climate risk disclosures in annual reports, Kölbel

et al. (2020) conclude that transition risks have statistically and economically signi�cant e�ects

on the spreads in CDS markets, while physical climate risks do not. Huynh and Xia (2021)

consider the covariance between corporate bond returns and the Engle et al. (2020) Climate

Change News Index. Bonds with high climate news betas are more expensive, consistent with

their potential to hedge against climate risks. Similarly, Alekseev et al. (2022) evaluate climate

hedging portfolios formed by going long (short) the stocks that are disproportionally bought

(sold) by mutual fund managers after they have experienced local extreme heat events.

Finally, our work adds to recent �ndings on the stock return implications of corporate carbon

emissions. Two of the most comprehensive works on this topic are Bolton and Kacperczyk

(2021a) and Bolton and Kacperczyk (2021b) who focus on the pricing of corporate carbon

emissions in respectively U.S. and global equity markets. In the former study, the authors

conclude that more emissions are associated with higher returns, yet only the indirect emissions

display explanatory power beyond the industry e�ect. The latter research utilises levels and

percentage changes in �rms' emissions as a proxy for long-term and short-term transition risks.

A transition risk premium is mostly present in the cross-section of North American, European,

and Asian stocks. In Australian, African, and South American stock markets, transition risk

does not seem to be priced. Additionally, the global carbon premium increased markedly

following the 2015 Paris Agreement. A related study by Monasterolo and De Angelis (2020)

�nds that the systematic risk of low-carbon assets has decreased after the Paris Agreement,

while carbon-intense assets have become riskier. Using information from option prices, Ilhan

et al. (2021) report larger downside tail risks for stocks with higher carbon intensities. Moreover,

the costs of protection against these tail risks are higher at times of heightened attention to

climate change. Hsu et al. (2023) examine the existence of a pollution premium in the cross-

section of U.S. stock returns. Their focus lies on mandatory toxic emissions disclosures, rather
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than on greenhouse gas emissions. A long-short portfolio sorted on toxic emissions generates a

return spread of 5.52% annually. The authors explain this `pollution premium' through higher

regulatory risks faced by pollutive �rms and provide empirical support for this hypothesis.

The remainder of this paper is organised as follows. Section 2 introduces our main sources of

data and our dataset construction procedure. In Section 3, we describe the construction of the

pollutive-minus-clean portfolio and the estimation of carbon betas. Results follow in Section 4,

including the validation of our estimates and main analyses. Section 5 concludes.

2 Data

2.1 Stock market and corporate data

For the main analysis of this paper, we combine U.S. stock market data from the Center for

Research in Security Prices (CRSP) with �nancial statements data from S&P Capital IQ Com-

pustat. We utilise the Wharton Research Data Services (WRDS) Linking Table to match

observations from CRSP's Monthly Stock File with observations from Compustat's Fundamen-

tals Annual at the end of June of the previous year.8 To mitigate survivorship bias resulting

from Compustat's data collection procedure (Banz and Breen, 1986), we only include �rms after

they have appeared in Compustat for two consecutive years.

We proceed by calculating several variables from the combination of �elds in CRSP and Com-

pustat. To compute book-to-market ratios, we divide the book value of equity by the market

capitalisation at the end of January of the associated year. We divide the following items by

total assets: book leverage; capital expenditures; property, plant, & equipment; and research &

development expenses, resulting in the accounting ratios debt-to-assets, investment-to-assets,

PP&E-to-assets, and R&D-to-assets. We calculate return on equity by dividing net income by

total shareholder's equity. All accounting variables are winsorised at the 1% and 99% cuto�

points to mitigate the e�ect of outliers and potential data errors. We calculate momentum by

compounding a stock's return over the past 12 months, excluding the most recent month to ac-

count for short-term reversal (Jegadeesh, 1990). We utilise daily returns obtained from CRSP's

daily security �le to estimate CAPM-implied market betas and idiosyncratic return volatilities.

8We only make use of the linking information if the link type is any of LU, LC, LS, LX, LD, LN, or LO and if
the link primary is P or C. At the time of matching, the link must be valid according to the link date and link
end date.
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Estimations are based on rolling windows containing three years of daily return observations.

We obtain data on U.S. factor returns from Kenneth French's data library, which we use in the

estimation of CAPM-betas, idiosyncratic volatilities, and carbon betas.9

Panel A of Table 1 reports descriptive statistics for our stock market data set. After merg-

ing CRSP with Compustat and applying our �lters, the sample contains a little over 540,000

monthly return observations for over 6,300 unique �rms. The average return in excess of the

risk-free rate equals 0.83% per month. Moreover, the average (median) �rm in our sample

has a market capitalisation of about $5.5 billion ($495 million). Average book-to-market, book

leverage, and investment-to-assets equal 0.77, 0.25, and 0.08, respectively. The average �rm has

a market beta of 1 and idiosyncratic volatility of 45%. The sector composition of our sample is

as follows. Roughly 18% of the observations are linked to stocks in the Financial sector, 17%

to IT, 15% to both Health Care and Industrials, 13% to Consumer Discretionary, around 5%

to each of Energies, Materials, and Consumer Staples, 3% to both Telecommunications and

Utilities, and less than 1% to Real Estate.

2.2 Emissions data

We collect information on greenhouse gas emissions from S&P's Trucost, a leading provider of

corporate emissions data. Trucost data are either reported or estimated by Trucost's proprietary

models. Reported emissions originate from various sources, including the Carbon Disclosure

Project (CDP), MSCI, Sustainalytics, Bloomberg, ISS, and corporate sustainability reports.

The extent to which non-reported emissions are estimated varies. Some values are partial

estimates, for example, derived from a company's usage of fossil fuel. Other estimates might

be derived from partial disclosure in corporate sustainability reports or private conversations

with company representatives. A majority of estimations result from Trucost's proprietary

model, which utilises an extensive input-output model that associates business activities with

environmental impacts. Trucost reports emissions according to the standards set forth by the

Greenhouse Gas Protocol.10 The Greenhouse Gas Protocol decomposes emissions into three

`scopes'. Scope 1 emissions include the direct emissions occurring in a company's production

process. Scope 2 emissions are the indirect emissions associated with the purchase of electricity,

heat, or steam. All other emissions taking place in a company's value chain are accounted for

9https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
10https://ghgprotocol.org.
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as scope 3. As our database does not contain the complete data for scope 3 emissions, we

only include scope 1 and scope 2 emissions in our analyses.11 We sum scope 1 and scope 2

to a combined scope 1 & 2, and calculate emission intensities for the combined and separate

scope 1 & 2 emissions by dividing each of the total emissions by the associated �rm's revenues

as reported by Trucost. In the remainder of this paper, we refer to the combined scope 1 &

2 emissions when using the terms emissions or total emissions, and we refer to the combined

scope 1 & 2 emissions scaled by revenues when we use the terms emission intensity or intensity.

The descriptive statistics of the emissions and intensities are given in Panel B of Table 1.

11Our Trucost data only includes the downstream scope 3 emissions, which are the indirect emissions that occur
further `down' a company's value chain. These are emissions by a �rm's customers, but not by its suppliers.

10



Table 1: Descriptive Statistics CRSP - Compustat - Trucost Merged
The table reports descriptive statistics on the variables used in our analysis. Panel A reports company and market variables. Panel B reports emissions
variables. Our sample consists of the intersection between CRSP and S&P Capital IQ Compustat (and S&P Trucost for Panel B). The sample period extends
from January 2007 to end of December 2020.

Percentiles

N.o. Obs. Mean SD 1% 5% 25% Median 75% 95% 99%

Panel A: Firm-level and market variables

Excess Return (%) 786,481 0.676 14.712 -39.801 -21.837 -6.243 0.359 6.764 23.540 51.866
Market Cap. (millions) 701,774 5,358 24,972 7 19 132 592 2,545 21,098 88,765
Book/Market* 701,774 0.663 0.678 -0.617 0.034 0.268 0.509 0.856 1.852 4.152
Return on Equity* 788,412 -0.015 0.711 -3.970 -0.934 -0.040 0.073 0.148 0.445 3.209
Debt/Assets* 785,576 0.190 0.208 0.000 0.000 0.006 0.124 0.312 0.603 0.901
Investment/Assets* 783,907 0.041 0.057 0.000 0.000 0.005 0.021 0.052 0.156 0.324
Property, Plant, & Equipment/Assets* 701,774 0.418 0.436 0.000 0.000 0.066 0.268 0.674 1.242 1.936
Research & Development/Assets* 701,774 0.049 0.119 0.000 0.000 0.000 0.000 0.037 0.261 0.672
Carbon Beta 682,022 0.052 0.557 -1.197 -0.777 -0.266 0.013 0.312 1.034 1.830
Idiosyncratic Volatility (%) 765,204 40.823 21.938 11.855 15.195 23.903 35.437 52.546 85.790 110.428
CAPM Beta 765,204 0.976 0.510 -0.127 0.125 0.631 0.976 1.304 1.850 2.303
Momentum 737,261 0.065 0.469 -0.831 -0.621 -0.216 0.031 0.265 0.879 2.033

Panel B: Emission variables

Scope 1 Emissions (millions tons CO2) 238,902 1.558 8.921 0.000 0.000 0.003 0.020 0.128 4.692 40.364
Scope 2 Emissions (millions tons CO2) 238,902 0.276 0.987 0.000 0.000 0.006 0.032 0.136 1.227 4.600
Scope 1 & 2 Emissions (millions tons CO2) 238,902 1.834 9.298 0.000 0.000 0.011 0.065 0.339 6.091 42.451
Scope 1 Emission Intensity (tons CO2/$
million)

238,902 161.869 596.842 0.234 0.540 3.716 13.580 30.009 764.240 4303.386

Scope 2 Emission Intensity (tons CO2/$
million)

238,902 33.099 45.600 0.929 1.127 7.822 17.611 41.608 117.576 285.483

Scope 1 & 2 Emission Intensity (tons
CO2/$ million)

238,902 198.877 623.588 1.731 2.133 13.942 38.246 77.493 893.624 4447.235

*Winsorised at the 2% level.



2.3 Climate Policy Uncertainty Index

We follow Engle et al. (2020) in creating an index for climate news risk. The index levels are

determined by the textual similarity of news articles in the Wall Street Journal with a corpus of

climate change terms constructed from authoritative sources. We theorise that periods of high

climate change news are indicative of increased uncertainty around climate change regulation.

Following similarly constructed indices for Economic Policy Uncertainty (see Baker et al. 2016),

we refer to this index as the Climate Policy Uncertainty (CPU) index.

The CPU index is constructed as follows. First, we collect documents on climate change. Our

corpus includes the �ve Assessment Reports written by the UN Intergovernmental Panel on

Climate Change (IPCC). Because these reports are technical (see Sautner et al. 2022; Li et al.

2020), we extend the climate change corpus with articles in the `climate change' category on

Wikipedia.12 We assume that the writing in Wikipedia articles is more representative of the

language used in newspapers than the writing in o�cial reports on climate change. We refer to

the collection of texts from the IPCC reports and the Wikipedia articles as the climate change

corpus, denoted by CCC . We collect texts of daily articles published in the Wall Street Journal

starting from 1997. The collection of each daily archive's texts is referred to as CWSJ,t. We

determine the CPU index as follows. We start by applying several text preprocessing steps

commonly used in Natural Language Processing.13 We then perform a term frequency - inverse

document frequency (TF-IDF) transformation to convert our collection of text articles into nu-

merical vector form.14 We apply the same TF-IDF transformation to the climate change corpus

CCC and each day's collection of news article texts CWSJ,t, yielding TF-IDF vectors denoted by

vCC and vWSJ,t. Finally, for each day we compare vWSJ,t with vCC by cosine similarity.15 The

intuition behind this approach is that when news articles use climate change terms in similar

proportions as the texts related to climate change, the index indicates a high level of climate

12https://en.wikipedia.org/wiki/Category:Climate_change
13These involve, in the following order: removing punctuation, tokenising (splitting sentences into words), re-
moving stop words, lemmatising (reducing words to their word roots, e.g. the words 'climate' and 'climatology'
both become 'climat'), and converting terms into bigrams (two-word collections of consecutive words).

14The TF-IDF algorithm converts words, in our case bigrams, into scores determined by the word's frequency
within a document, penalised by its frequency across documents. Hence, a word occurring often in one
document but rarely in other documents receives a high score, as it is regarded as being informative for that
certain document.

15Formally, the cosine similarity between two vectors is de�ned as the cosine of the angle between them, or
equivalently by the inner product of the vectors normalised to have unitary length. The cosine similarity
reaches its maximum of 1 when the angle between vCC and vWSJ,t equals 0

◦.
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change news risk (Engle et al., 2020)16. We lower the frequency of our measure from daily to

monthly by taking monthly averages of daily index levels. For ease of interpretability, we scale

index values such that the mean of the index equals 100.

Figure 1 plots the Climate Policy Uncertainty index through time. Along the horizontal axis,

various events related to climate change are reported. As can be seen, the CPU index generally

rises when such events occur. The index peaks in December 2009, when the 15th Conference

of the Parties (COP) was held in Copenhagen. COP15 was one of the �rst international

conferences to bring climate change to the highest political level. As a result of the conference,

the Copenhagen Accord was signed. The Accord expressed clear political intent to limit carbon

emissions and respond to climate change. The CPU index reached its second-highest level in

November and December 2015, during COP21 in Paris. At this conference, the Paris Agreement

was negotiated. Around the end of 2019, the index remained at elevated levels. This period

marked a series of mass protests to demand action on climate change. These strikes coincided

with the Climate Action Summit in New York.

2.4 Other data

We collect data from various additional sources. In this section, we brie�y describe the datasets

used, the data collection procedure, and the purpose of collecting the data.

1. Sautner et al. (2022) Firm-Level Climate Change Exposure. We compare our

estimates of carbon beta with Sautner et al. (2022) Climate Change Exposures (hereafter SvLVZ

CCEs). This measure is determined by the extent to which climate change-related words are

used by the company's management and analysts during earnings calls. Besides general Climate

Change Exposure, Sautner et al. (2022) determine separate vocabularies for risks, opportunities,

and regulations related to climate change.17 We use the three components, as well as general

climate change exposure in our analysis. We cross-sectionally standardise all SvLVZ CCE

exposure values to make their scales comparable.

2. Temperature and drought statistics. We collect monthly temperature anomalies for the

16The construction of our Climate Policy Uncertainty index closely follows that of the Engle et al. (2020) Climate
Change News Index. The di�erence mainly lies in the composition of our climate change corpus. First, our
climate change corpus only includes the 5 Assessment Reports by the IPCC, while Engle et al. (2020)'s CCNI
also incorporates various reports from other authoritative sources. Second, our corpus includes all Wikipedia
articles on climate change. The correlation (in levels) between the CPU index and CCNI is about 75%.

17The data are available at https://osf.io/fd6jq/
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Figure 1: Climate Policy Uncertainty Index
The �gure plots the Wall Street Journal-based Climate Policy Uncertainty (CPU) index over time alongside various events related to climate policy.
The CPU index is de�ned as the textual similarity between daily articles published in the Wall Street Journal and a corpus of documents on climate
change.



United States from the U.S. Climate Reference Network.18 A month's temperature anomaly

is de�ned as the temperature deviation from its 30-year average reference temperature. We

download the Palmer Z-Index, a derivative of the Palmer Drought Severity Index (PDSI; Palmer

1965) as a measure of drought severity.19 The PDSI uses precipitation, temperature, and

geographic data to model available quantities of water to a location of interest. As the PDSI

is inaccurate over short frequencies (see, e.g. Karl (1986)), we use the Palmer Z-Index which is

designed to be more responsive on a monthly frequency. Negative values of -4 indicate extreme

drought, values between -1 to 1 indicate regular conditions, and values of +4 indicate unusually

wet periods.

3. MSCI Climate-Value-at-Risk and MSCI Emissions Data. We obtain Climate-

Value-at-Risk (CVaR) data from MSCI for about 2,200 �rms in our sample. CVaR has been

designed to capture �rm-speci�c forward-looking valuation assessments regarding climate risk

and opportunities.20 The measure includes a wide array of information, including - but not

limited to - corporate emissions data, green patent issuance, exposure to physical climate risks,

green revenues, and modeled outcomes in di�erent policy and technology scenarios. Values for

CVaR are bounded by -100 and 100, where -100 (100) indicates that a company is expected

to be harmed by (bene�t from) climate change. We reverse the sign of CVaR to align it with

traditional Value-at-Risk, and cross-sectionally standardise it to enable comparison with other

metrics. In additional robustness checks, we base the construction of the PMC portfolio on

MSCI's corporate emissions data rather than Trucost's.

4. MSCI Country Indices. For tests on international carbon betas, we download daily

returns on 48 national equity indices from Re�nitiv (formerly Thomson Reuters) Eikon. All

index prices are denominated in U.S. dollars. We collect data from January 2015 to December

2020. We use national equity indices to estimate carbon betas on the country level, which we

use for our validation tests in Appendix 5.

5. Green Patents. Following Cohen et al. (2020), we download U.S. patents through the U.S.

Patent and Trademark O�ce's (USPTO) Bulk Data Storage System.21 The USPTO provides

text �les for all patents issued in the United States from 1976 onwards. We download patents

18https://www.ncdc.noaa.gov/temp-and-precip/national-temperature-index/time-series/anom-tavg/

1/0
19https://www.ncei.noaa.gov/access/monitoring/historical-palmers/
20https://www.msci.com/documents/1296102/16985724/MSCI-ClimateVaR-Introduction-Feb2020.pdf/

f0ff1d77-3278-e409-7a2a-bf1da9d53f30
21https://bulkdata.uspto.gov/
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granted from 2010 up to and including 2020. We rely on two techniques to link patent issuance

to our dataset. First, we download the patent-to-company mapping from the Compustat Link

table of WRDS' newly released US Patents (Beta) product.22 This patent-company linkage is

available for the 2011-2019 period. For this period, our patent database and that of WRDS

cover almost the same patents.23 A small di�erence (less than 1%) in patent coverage is likely

the result of retrospective changes in USPTO's data or an occasional error in our or WRDS's

retrieval of patent �les. Second, we map the stated assignees in patent grants to the company

names in our Compustat sample by applying an approximate-string matching algorithm based

on a cosine similarity comparison utilised in section 2.3. We only match records if the con�dence

level exceeds 85%. At this level, manual inspection of matching outcomes yields very few

incorrect matches, yet this conservative approach comes with the risk of overlooking valid links.

We assume, however, that such valid links are covered by WRDS's linking table. When our

matching algorithm disagrees with that of WRDS, we follow the link proposed by WRDS, as we

believe the linking table by WRDS is better able to deal with company subsidiaries and name

changes. For patents outside the 2011-2019 window, we �rst extrapolate the WRDS linking

table and otherwise rely on our linking procedure. To check the robustness of our green patent

construction procedure, we also download information on green patent shares from MSCI.

To identify green patent issuance, we follow guidelines by the OECD as described by Ha²£i£

and Migotto (2015). These guidelines describe the patent classi�cations that are related to a

wide variety of green technologies, for example, environmental management, water pollution

abatement, waste management, climate adaptation, biodiversity protection, renewable energy,

greenhouse gas capture and storage, and fuel e�ciency. We supplement the guidelines of the

OECD with the International Patent Classi�cation (IPC) Green Inventory.24 In our analyses,

we proxy for green innovation by Green Share; the number of green patents as a percentage

of the total number of patents issued to a company (Cohen et al., 2020). We download over

750,000 unique patents, matched to over 3,000 �rms. A little under 10% of total patent issues

are classi�ed as green. Top green patent issuers, by the total number of green patents, are IBM,

Ford, General Electric, Intel, Apple, and Raytheon.

22Available at https://wrds-www.wharton.upenn.edu/pages/analytics/wrds-us-patents/
23We obtain over 99% of the patents in the WRDS database for the 2011-2019 period for which WRDS has
patent data available.

24See https://www.wipo.int/classifications/ipc/green-inventory/home
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3 Methodology

3.1 The Pollutive-Minus-Clean portfolio

We regard the pollutive-minus-clean (PMC) portfolio as an observable proxy for carbon risk.

The PMC portfolio captures di�erences in the returns to a portfolio of polluting �rms relative

to the returns to a portfolio of cleaner �rms. The working of our carbon risk factor follows the

mechanism of the Pástor et al. (2020, 2022) model for ESG risk. In this model, ESG risks ma-

terialise via two channels, the customer and the investor channel. A similar mechanism applies

to carbon risk. When climate concerns unexpectedly rise, for example, because the predicted

path of temperature warming worsens, customer demand shifts from `brown' to `green' prod-

ucts and services. Lower demand negatively shocks the pro�tability of pollutive companies,

and hence reduces these companies' market values, while the opposite occurs for clean com-

panies. The second channel involves investors' preferences. Investors derive more utility from

sustainable investments in times of climate stress, either because they care about the climate

or because they face public pressure to divest from brown assets. Indeed, Choi et al. (2020)

report that stocks with high carbon intensity underperform stocks with lower carbon intensities

during abnormally warm months. Their �ndings are mainly driven by retail investors selling

carbon-intensive stocks. Furthermore, investors may anticipate governments imposing stringent

climate change policies, as the likelihood of policy interventions increases in times of heightened

environmental concerns (see Pástor and Veronesi (2013) for political risk in general). Selling

pressure and increased discount rates induced by heightened climate concerns cause pollutive

�rms to depreciate, and clean �rms to appreciate, in value. As the PMC portfolio holds a net

long (short) position in brown (green) stocks, both channels lead to a reduction in the PMC

portfolio's value in response to a climate shock. The opposite occurs when concerns regarding

climate change unexpectedly lessen so that the return on the PMC portfolio becomes positive.

We similarly construct the PMC portfolio as the Fama and French (1993) HML portfolio. PMC

is a self-�nancing portfolio that takes a long position in the most polluting 30% of �rms and

a short position in the least polluting 30% of �rms. We perform this sorting on scope 1 & 2

emissions, which include both estimated and reported emissions. We do not consider scope 3

emissions for several reasons. First, our data only includes downstream scope 3 emissions, which
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measures the emissions further `down' a company's value chain.25 As di�erent �rms operate at

di�erent levels in the value chain, downstream emissions are less comparable between companies.

Second, scope 3 emissions data are by de�nition estimated rather than reported. There are

considerable complexities in accurately modeling emissions associated with all activities in a

company's value chain. As a result, when comparing �rms' emissions, Busch et al. (2018), Berg

et al. (2022), and Kalesnik et al. (2022) report much lower pairwise correlations for scope 3

emissions than for scope 1 & 2 emissions. Third, because scope 3 emissions are double-counted

for �rms active in the same value chains (see Kalesnik et al. 2022), they are much larger in

magnitude than scope 1 and 2 emissions. Hence, combined scope 1, 2 & 3 emissions tend to

be dominated by their scope 3 component and are relatively similar to scope 3 emissions in

isolation. While constructing the PMC portfolio, we adjust for the size bias that results from

sorting on corporate emissions. We do so by explicitly forming separate portfolios for �rms

valued below and above the median NYSE �rm, following Fama and French (1993). We de�ne

breakpoints for polluting and clean �rms at the 70th and 30th percentiles. For each year we form

four value-weighted portfolios; small/polluting (SP), big/polluting (BP), small/clean (SC), and

big/clean (BC). The return on PMC is then given by:

rPMC,t =
rSP,t + rBP,t

2
−

rSC,t + rBC,t

2
, (1)

where rPMC,t is the return on the PMC factor on day t and rSP,t, rBP,t, rSC,t, and rBC,t are

the returns, respectively, on the Small / Polluting, Big / Polluting, Small / Clean, and Big /

Clean portfolios on day t. Figure 2 displays the cumulative log return on the PMC portfolio.

The mean return on PMC has been substantially negative over the 2007 to 2021 period. Returns

to the PMC portfolio are signi�cantly lower in months where climate policy uncertainty increases

and in months that have abnormally high temperatures, as Panel B of Figure 2 shows. Table

2 compares the PMC factor to the Fama and French (1993) factors and the Carhart (1997)

momentum factor.

Returns to the PMC portfolio are negatively correlated with the market factor, indicating that

the pollutive leg on average holds �rms with lower systematic risk. The PMC portfolio correlates

positively with value. This is expected, as the most pollutive �rms tend to be value �rms, while

25E.g. for a gas station, downstream emissions include emissions from the cars consuming the station's gasoline,
while upstream emissions include the emissions involved with the extraction of crude oil or re�ning of oil into
gasoline.
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Figure 2: Performance of the PMC Portfolio
The �gure in (a) plots the cumulative log return on the pollutive-minus-clean portfolio. The PMC
portfolio is constructed by taking a long position in the 30% of �rms with the highest carbon emissions,
o�set by a short position in the 30% of �rms with the lowest emissions. Similar to Fama and French
(1993), we enforce size neutrality by de�ning the PMC portfolio separately for samples of small and
large �rms. Details of the construction procedure are described in Section 3.1. The �gure in (b) plots
the performance of the PMC portfolio conditional on two proxies for materialising climate risks: Terciles
of month-to-month changes in the Climate Policy Uncertainty index introduced in Section 2.3 and the
10% of months with the highest temperature deviations from long-term averages (see Section 2.4).

(A) Performance of the PMC Portfolio

(B) Performance of the PMC Portfolio Conditional on Materialising Climate Risks

cleaner �rms tend to be growth �rms. The procedure we follow to ensure size neutrality seems

to work, as indicated by the insigni�cant association between the carbon risk and size factors.

To verify the robustness of some of our portfolio construction choices, we alternatively construct

PMC portfolios on other sorting variables besides Trucost's reported and estimated emissions.

Figures A1 and A2 and Table A4 in Appendix A report evidence that portfolios constructed

by (i) using only reported emissions; (ii) using only estimated emissions; (iii) using emissions

intensities; and (iv) using emissions provided by MSCI yield relatively similar portfolio returns.
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Table 2: Factor Return Descriptive Statistics
This table reports the mean monthly returns, the monthly return volatilities, and pairwise return cor-
relations of the market (RMRF), value (HML), size (SMB), momentum (UMD), and carbon (PMC)
factors. Returns on the RMRF, HML, SMB, and UMD factors are obtained from Kenneth French's
website. The sample period is January 2004 to December 2020. *, **, and *** denote statistical signif-
icance at the 10%, 5%, and 1% level, respectively.

Correlations

Mean Return (%) Std. Dev. (%) RMRF HML SMB UMD PMC

RMRF 0.62 4.35 1.00 - - - -

HML -0.12 2.71 0.24*** 1.00 - - -

SMB 0.14 2.40 0.34*** 0.19*** 1.00 - -

UMD 0.17 4.62 -0.43*** -0.33*** -0.10 1.00 -

PMC -0.28 1.97 -0.13** 0.18*** -0.09 0.13* 1.00

3.2 Estimating Carbon Betas

To estimate carbon betas � i.e. return sensitivities to the PMC factor � we run time-series

regressions of the corresponding �rm's daily stock returns on PMC while controlling for the

Fama and French (1993) market, size, and, value factors and the Carhart (1997) momentum

factor. We estimate:

Ri,t = αi+βRMRF
i RMRFt+βSMB

i SMBt+βHML
i HMLt+βUMD

i UMDt+βPMC
i PMCt+ ϵi,t,

(2)

where Ri,t is the excess return on stock i on day t, αi is the stock's risk-adjusted outperformance,

β's denote sensitivities to the factors, RMRFt, SMBt, HMLt, UMDt, and PMCt are respec-

tively the daily returns on the market, size, value, momentum, and carbon risk factors, and ϵi,t

is the residual term. Our interest lies in βPMC
i , which denotes the stock i's carbon beta. We

use a 36-month estimation window, which thus contains about 750 daily return observations.26

In later tests, we cross-sectionally standardise estimates of carbon beta when comparing them

to other measures of carbon risk. In all cases, we winsorise estimates at the 1% and 99% levels

to mitigate the impact of outliers.27

26Besides considering several alternative carbon risk factor de�nitions (as shown in Figure A1 and Table A4
in Appendix A), we have further included the Fama and French (2015) pro�tability and investments factors,
performed the regression on monthly instead of daily return observations, utilised an industry-neutral carbon
risk factor, and considered a carbon risk factor based on carbon intensities. Our validation results remain
qualitatively similar.

27Our results are virtually una�ected by omitting to winsorise and by increasing the extent of winsorisation to
2% and 98% cuto� points.
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4 Results

4.1 Summary of validation exercises

To verify that our estimates of climate risk exposure align with expectations, are not overly

governed by industry e�ects, or are driven by spurious correlations, we subject �rm-level esti-

mates of carbon betas to a battery of validation tests. The goal of these exercises is to make

sure that variation in carbon betas aligns with prior expectations from related studies on other

climate risk measures and with commonly held views on climate exposures. We �rst compare

carbon betas across industry sectors.

Figure 3: Industry Sector Variation in Carbon Beta
The �gure displays the coe�cients estimated by regressing Carbon Beta on two-digit GICS Industry
Sector �xed e�ects (Panel A) and headquarter state �xed e�ects (Panel B). The sample period is January
2007 to December 2020. The coe�cients are estimated with the speci�cation in Equation (12). The
95% con�dence intervals are based on robust standard errors adjusted for clustering at the �rm level.

Figure 3 shows that we �nd the highest carbon betas in the Energy, Materials, and Utilities

sectors. These sectors are collectively responsible for over 70% of scope 1 & 2 emissions in

our sample, so their high loadings on the carbon risk factor are expected. On the contrary,

we observe that �rms in the IT, Financial, and Health Care sectors tend to exhibit the lowest

average carbon betas. The negative carbon betas of the stocks in these industries indicate

a tendency for high stock returns in times of increasing climate concerns. Continuing our
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validation tests, we investigate how �rm characteristics correlate with estimates of carbon beta.

We theorise that smaller, more capital-intensive, lower-valued, less pro�table, and less innovative

�rms are more exposed to climate risks. These predictions largely turn out to be true.

Then, we investigate how �rm characteristics correlate with corporate climate risk exposure.

Firm characteristics are known to be related to climate risk exposure, see, for example, Bolton

and Kacperczyk (2021a), Hsu et al. (2023), Sautner et al. (2022), and Li et al. (2020). We

make several predictions based on economic theory and related research. First, we expect

larger �rms to be better equipped at dealing with transition risks as they are more diversi�ed

across operating activities. Larger �rms can also exert greater lobbying power, leaving them

less exposed to potentially adverse e�ects of climate regulation. On the contrary, we expect that

�rms holding more physical assets are vulnerable to rising costs of climate regulation via the

greenhouse gas emissions and energy requirements of their assets (see Sautner et al. 2022 and Li

et al. 2020 for empirical evidence). Many studies report lower �rm valuations as a result of higher

climate risk exposure (for example, Bolton and Kacperczyk 2021a, Matsumura et al. 2014, and

Li et al. 2020). Moreover, it is more di�cult for capital-constrained �rms to make investments

in low-carbon technologies. A reduced ability to adapt leaves these �rms at greater transition

risk. The opposite holds for �rms that actively invest in research & development. Such �rms

will either have better low-carbon technologies available or are better able to capitalise on such

technologies as they become available in the future. Indeed, Sautner et al. (2022) �nd �rm-level

climate risks to be negatively correlated with R&D expenses relative to assets. To test our

expectations, we estimate via panel regression:

CBi,t = λXi,t−1 + ci + µt + ϵi,t, (3)

where CBi,t is a �rm i 's carbon beta at month t, Xi,t is a vector of lagged �rm characteristics

that includes the natural logarithm of the �rm's market capitalisation, its book-to-market ratio,

return on equity, book leverage, investments-to-assets, PP&E-to-assets, and R&D-to-assets, ci

is an optional sector (two-digit GICS) �xed e�ect, and µt is a year-month �xed e�ect. We

cluster standard errors by �rms, as residuals within �rms are correlated over time.

Table 3 reports our estimates. Negative correlates of climate risk exposure are company size

(market capitalisation), pro�tability (return-on-equity), and innovation (R&D-to-assets). For

company size, we �nd a positive coe�cient in column (1), yet this speci�cation omits corporate
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emissions as a control variable and thereby fails to control for the indirect e�ect of corporate

emissions on transition exposure via company size. The positive association also turns negative

after we account for industry-speci�c di�erences in company size and carbon beta, indicating

that within industry sectors, larger �rms have lower carbon betas. We �nd capital intensity

(proxied for by investments-to-assets and PP&E-to-assets) and corporate greenhouse gas emis-

sions to be positively associated with carbon beta. The association between emissions and

carbon beta is economically sizeable, as a standard deviation increase in the log-transformed

emissions variable tends to be associated with a 0.22 to 0.50 standard deviation increase in

carbon beta, depending on whether or not sector e�ects are considered. Our results for book-

to-market and book leverage are mixed. Columns (1) and (3) report a positive relationship

between the book-to-market ratio and our measure, suggesting that �rms exposed to climate

Table 3: Carbon Beta and Firm Characteristics
This table reports the regression coe�cients obtained from regressing monthly, �rm-level estimates of
Carbon Beta on �rm characteristics. The regression equation is given by Equation (3). Firm-speci�c
characteristics are derived from Compustat data. Corporate greenhouse gas emissions are obtained
from Trucost. Standard errors are clustered at the �rm level. *, **, and *** denote statistical
signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Carbon Beta�

(1) (2) (3) (4)

ln(Market Cap.) -0.023*** -0.197*** -0.052*** -0.127***

(0.005) (0.012) (0.004) (0.011)

Book/Market 0.124*** 0.100*** 0.078*** 0.051*

(0.014) (0.033) (0.013) (0.027)

Return on Equity -0.013 -0.024* -0.012* -0.012
(0.009) (0.013) (0.007) (0.011)

Debt/Assets 0.368*** 0.310*** 0.164*** 0.166***

(0.044) (0.067) (0.035) (0.053)

Investment/Assets 2.944*** 3.138*** 1.136*** 1.100***

(0.237) (0.493) (0.169) (0.289)

Property, Plant, & Equipment/Assets 0.740*** 0.524*** 0.183*** 0.151***

(0.032) (0.058) (0.025) (0.040)

Research & Development/Assets -0.886*** -1.244*** -0.526*** -1.171***

(0.076) (0.144) (0.077) (0.147)

ln(Emissions)� - 0.510*** - 0.266***

- (0.025) - (0.025)

Year - Month FE Yes Yes Yes Yes
Industry FE No No Yes Yes
N.o. Obs. 595,293 200,917 595,202 200,917
R2-Adj. 0.243 0.472 0.421 0.608

�Indicates a cross-sectionally standardised variable.
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risk trade at lower valuations. Yet this does not survive the addition of corporate emissions as

a control variable in (2), and therefore merely re�ects a tendency of emission-heavy �rms to

trade at lower valuations. However, in speci�cation (4), which controls for industry di�erences,

book-to-market remains to hold explanatory value beyond the e�ect of corporate emissions. We

�nd a negative association between book leverage and carbon beta in columns (1) and (2), yet

it disappears after the inclusion of sector-�xed e�ects in columns (3) and (4), suggesting it can

only be attributed to general di�erences in leverage and carbon betas across sectors. All in all,

our results are in line with the hypotheses derived from the existing literature.

Next, we turn to comparisons of carbon beta with alternative measures of climate risk. Cor-

relation Table 4 reveals robust associations with emissions, emission intensities, Sautner et al.

(2022) Climate Change Exposures, MSCI Climate-Values-at-Risk, and MSCI Green Scores.

These associations go in a direction that is ex-ante in line with expectations. Appendix B

describes our validation tests in greater detail and provides additional validation e�orts.

Table 4: Correlations Between Carbon Beta and Alternative Measures
of Climate Risk
This table reports pairwise correlation coe�cients between carbon beta and alter-
native �rm-level measures of climate risk. The sample period is January 2007 to
December 2020. SvLVZ CCE is the Sautner et al. 2022 Climate Change Expo-
sure measure. CVaR is the MSCI Climate-Value-at-Risk measure. Emissions and
emission intensity data are from Trucost. Other data collection procedures are
described in Section 2.4. *, **, and *** denote statistical signi�cance at the 10%,
5%, and 1% level, respectively.

Carbon ln( Emissions SvLVZ
Beta Emissions) Intensity CCE CVaR

Carbon Beta 1.00 - - - -

ln(Emissions) 0.49*** 1.00 - - -

Emissions Intensity 0.34*** 0.48*** 1.00 - -

SvLVZ CCE 0.19*** 0.24*** 0.50*** 1.00 -

CVaR 0.36*** 0.44*** 0.41*** -0.03 1.00

4.2 Capturing forward-looking aspects of carbon risks

4.2.1 Green Innovation

Cohen et al. (2020) report a striking disconnect: �rms operating in the Energy sectors are

responsible for a large share of greenhouse gasses and are amongst the worst performers on

environmental issues, yet they are the most active in patenting low-carbon technologies. As
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`green innovators' are likely to be less exposed to climate-related risks and might even bene�t

from a low-carbon transition, we expect carbon beta to partially pick up di�erences in green

innovation output. Especially in the Energy sector, we expect this result to appear, as here

the `ESG-innovation disconnect' is most pronounced. To test whether active issuers of green

patents have lower carbon beta, we exploit the main measure of green innovation used by Cohen

et al. (2020): Green Share, determined by the number of green patents granted to a company

at time t as a fraction of total patents granted to that company. Speci�cally, we estimate:

Si,t = σGreenSharei,t + λXi,t−1 + ci + µt + ϵit, (4)

where Sit is either �rm i's cross-sectionally standardised carbon beta, scope 1 & 2 emissions

intensity, or the natural logarithm of total scope 1 & 2 emissions in month t; Xi,t−1 is a

vector of lagged �rm characteristics that includes the natural logarithm of the �rm's market

capitalisation, its book-to-market ratio, return on equity, book leverage, investments-to-assets,

PP&E-to-assets, and R&D-to-assets; ci is an optional sector �xed e�ect; and µt is a time �xed

e�ect. Table 5 reports our estimates for the speci�cation in Equation (4).

In column (1), we regress carbon beta on green innovation and �rm-level control variables

using our complete sample. In this sample, which includes �rms in sectors other than the

Energy sector, an economically small yet statistically signi�cant negative relationship is observed

between green innovation and carbon beta. That is, �rms that are more active in issuing green

patents tend to have lower climate risk exposure as indicated by carbon beta. The e�ect is

small, however, as a unit (theoretically, the maximum increase possible in green innovation)

increase in green innovation is only associated with a reduction of about 7% of a cross-sectional

standard deviation in carbon beta. In column (2), we focus our analysis on the Energy sector,

where we expect green patenting to be most important based on Cohen et al. (2020)'s �ndings.

The negative relationship between carbon beta and green innovation is much more pronounced

within the Energy sector. A unit increase in green share is associated with about 0.3 of a

standard deviation reduction in carbon beta. Moving to emission intensity in column (3) and

the natural logarithm of emissions as the dependent variable in column (4), we do not �nd a

similar e�ect. As a robustness check, we repeat the analysis using MSCI Green Patent Share

as the measure of green innovation. Table A3 in Appendix A presents the results. Here, the

coe�cient on green innovation for all sectors is not signi�cant at the 10% level. When focusing
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Table 5: Carbon Beta and Green Innovation
This table reports the coe�cients obtained from estimating regression Equation (4). Green Share
(%) is the measure of green patent innovation from Cohen et al. (2020). We collect data on U.S.
patents issuance from the U.S. Patent and Trademark O�ce's Bulk Data Storage System. The
data are from December 2010 to December 2020. Standard errors are clustered at the �rm level.
*, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Carbon Carbon Emissions ln(
Beta� Beta� Intensity� Emissions)�

Green Share (%) -0.071* -0.344** -0.161 0.297
(0.041) (0.148) (0.274) (0.264)

ln(Market Cap.) -0.044*** 0.006 0.086** 0.413***
(0.006) (0.028) (0.039) (0.028)

Book/Market 0.109*** 0.065 0.158 0.200***
(0.027) (0.082) (0.122) (0.076)

Return on Equity -0.003 0.009 -0.032 0.002
(0.010) (0.050) (0.050) (0.037)

Debt/Assets 0.187*** 0.708** 0.600 0.688**
(0.054) (0.302) (0.475) (0.276)

Investment/Assets 0.078 1.263 -1.639* -1.161**
(0.330) (0.849) (0.869) (0.497)

Property, Plant, & Equipment/Assets 0.380*** 0.636*** 0.509*** 0.246***
(0.045) (0.141) (0.147) (0.092)

Research & Development/Assets -0.686*** -1.712* -4.136 -6.527
(0.104) (1.043) (6.582) (6.580)

Year-Month Yes Yes Yes Yes
Industry FE Yes No No No
Sectors All Energy Energy Energy
N.o. Obs. 223,659 12,660 6,859 6,859
R2-Adj. 0.432 0.342 0.136 0.726

�Indicates a cross-sectionally standardised variable.
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the analysis only on the Energy sector, we do however �nd the same pattern. That is, within the

energy sector, �rms that are more active in patenting green technologies have lower carbon betas

yet are not signi�cantly di�erent in terms of emissions or emission intensities. Coupled with

Cohen et al. (2020)'s observation that much of green innovation is driven by the Energy sector,

our �ndings hold important implications for investors. Our results suggest that divestment

from the Energy sector also cuts funding to green innovators, while a divestment strategy that

targets high-carbon beta �rms operating in the Energy sector still allocates to those �rms most

productive in researching low-carbon innovation.

4.2.2 Unobserved Factors of Forward-Looking Climate Risk

Climate-Value-at-Risk (CVaR) is a measure developed by MSCI that incorporates forward-

looking and corporate valuation assessments of the impact of climate change and related policies

on asset prices. MSCI includes a wide variety of aspects in the estimation of CVaR. Firm emis-

sions and green patent innovations are its main determinants. The measure also incorporates

various proxies for physical climate risks, transition scenario analyses, low-carbon revenues, and

abatement policies. The objective of our analysis is to investigate whether or not carbon betas

correlate with forward-looking aspects of carbon risk as modeled by CVaR. We are speci�cally

interested in the components of CVaR unrelated to emissions and green innovation. To achieve

this objective, we estimate:

CVaRit = α+ σGreenShareit + λln(Emissions)it + γCBit + ci + µt + ϵit, (5)

where CVaRit is MSCI's Climate-Value-at-Risk; GreenShareit is a �rm's share of green patents

relative to total patents; ln(Emissions)it is the natural logarithm of scope 1 & 2 emissions;

CBit is a �rm i's carbon beta at time t; and ci is an optional industry �xed e�ect. Note that

we make use of the information provided by MSCI rather than our manually collected data on

green innovation. We do so because the measure of green innovation provided by MSCI is used

as one of the inputs to the estimation of CVaR, and thus is most suited for orthogonalising

CVaR to green innovation.

Regression estimates are presented in Table 6.

The speci�cation in column (1) does not include sector-�xed e�ects while the speci�cation in

27



Table 6: Carbon Beta and Unobserved Climate Risk Factors
This table reports the coe�cients obtained from estimating regression Equation (5). MSCI
CVaR is MSCI's Climate-Value-at-Risk. Standard errors are clustered at the �rm level.
Speci�cation (1) does not control for industry-�xed e�ects, while Speci�cation (2) does. *,
**, and *** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: MSCI CVaR�

(1) (2)

Carbon Beta� 0.209*** 0.077***
(0.030) (0.028)

MSCI S1&2 Emissions� 0.353*** 0.281***
(0.032) (0.038)

MSCI Green Patent Share� -0.191*** -0.191***
(0.073) (0.070)

Year - Month FE Yes Yes
Industry FE No Yes
N.o. Obs 167,055 167,055
R2 0.261 0.317

�Indicates a sectionally standardised variable.

column (2) does. Emissions and green innovation are positively, respectively negatively, asso-

ciated with CVaR. This result is by construction, as emissions and green innovation are used

in the evaluation of CVaR by MSCI. In both speci�cations, the coe�cient on carbon beta is

positive and statistically signi�cant. Our �ndings indicate a strong association between compo-

nents of CVaR unrelated to emissions characteristics and green innovation and between carbon

beta. Even while controlling for industry e�ects, the coe�cient on carbon beta remains statis-

tically signi�cant, indicating that the information captured by carbon beta does not only vary

at the industry level and must thus partly be �rm-speci�c. As column (2) in Table 6 reports,

increasing carbon beta by one standard deviation, while keeping emissions, green innovation,

and industry membership constant, is associated with about a 7.7% standard deviation increase

in CVaR. This indicates that carbon beta correlates with factors included in CVaR other than

emissions and green innovation, for example, exposure to low-carbon technologies, exposure to

carbon abatement policies, or green revenues.
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4.3 Carbon Beta and Hedging of Climate Risk

In this section, we investigate equity return dynamics during times in which climate change risks

materialise. We evaluate two proxies for aggregate climate risk realization. First, we consider

shocks to an index that captures how frequently climate change is reported in the news, where

we assume such shocks coincide with uncertainty regarding future climate policies. Second, we

consider extreme weather events in the contiguous United States. Research shows that during

extreme weather events, investors become more concerned about climate change (Alekseev et al.,

2022; Huynh et al., 2021; Choi et al., 2020; Bansal et al., 2016). Our interest lies speci�cally in

the interaction e�ect between carbon beta and the proxy for materialising climate risk on stock

returns. Speci�cally, we seek to answer the question of how market responses to materialising

climate risks are di�erent for �rms with high versus low carbon betas.

To answer this question, we adopt the framework of Daniel and Titman (1997) and Bolton and

Kacperczyk (2021a,b). We utilise speci�cations of the form:

Ri,t = βCBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (6)

where Ri,t is �rm i's excess stock return in month t, CBi,t−1 is the carbon beta at the end

of month t-1, Xi,t−1 is a vector of lagged control variables including the natural logarithm of

�rm i 's market capitalisation, its book-to-market, return on equity, book leverage, investment-

to-assets, PP&E-to-assets, and stock i's CAPM beta, idiosyncratic volatility, and momentum,

ci is a sector �xed e�ect, and µt is a time �xed e�ect. Alternatively, we replace CBi,t−1 with

other measures of climate risk, in which case we cross-sectionally standardise both measures to

enable comparison. We include industry sector and time-�xed e�ects to mitigate possible bias

resulting from unobserved e�ects that vary across sectors respectively in time. Robust standard

errors are clustered at the �rm level to adjust for possible serial correlation of residuals within

�rms.

4.3.1 Carbon Beta and Climate Policy Uncertainty

As a �rst proxy for realisations in climate risks, we utilise the Climate Policy Uncertainty index.

We study the e�ects of innovations in the CPU index and its interaction with carbon beta on
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stock returns. Our speci�cation is the following variation on Equation (6):

Ri,t = βCBi,t−1 + γ CBi,t−1 ×∆CPUt + λXi,t−1 + ci + µt + ϵi,t, (7)

where Ri,t is the excess return on the company i 's stock in month t, CBi,t−1 denotes the stock

i 's carbon beta at the end of month t-1, ∆CPUt is the standardised percentage change in the

CPU index from month t-1 to month t, Xi,t−1 is a vector of lagged control variables including

the natural logarithm of �rm i's market capitalisation, its book-to-market, return on equity,

book leverage, investment-to-assets, PP&E-to-assets, and stock i's CAPM beta, idiosyncratic

volatility, and momentum, ci is a sector e�ect, and µt is a year-month e�ect. The regression

does not include a main e�ect for ∆CPUt, as it is subsumed by the year-month �xed e�ect.

We are primarily interested in γ, as it signi�es the incremental monthly return associated with

a one standard deviation increase in carbon beta for each standard deviation with which the

CPU index increases. We estimate similar regression models where we replace carbon beta and

its interaction term with standardised log-transformed scope 1&2 emissions or standardised

emission intensities to uncover any potential di�erences in market responses to CPU shocks.

Table 7 reports our �ndings.

Our results show that in months where the CPU index increases (decreases), stocks with higher

carbon betas tend to have lower (higher) returns. This �nding is economically sizeable: for two

�rms that di�er only by a one standard deviation di�erence in carbon beta, the �rm with the

higher carbon beta will tend to underperform the other �rm by 15 bps (equivalent to 1.80%

annualised) for each standard deviation with which the CPU index increases. To provide a

more precise comparison with emissions intensities and emissions, column (2) reports regression

estimates for the subsample of observations that have available emissions data. Within this

smaller subsample, the coe�cient roughly halves, but the e�ect remains economically meaning-

ful and statistically signi�cant at the 1% level. Turning to column (3), we repeat the analysis

for emissions and emissions intensities instead of carbon betas. We do not �nd a similar e�ect

when interacting innovations in the CPU with companies' emissions intensities. Column (4),

on the contrary, does reveal a similar pattern for emissions. The e�ect however is subsumed

by the inclusion of the carbon beta interaction in column (5), in which the interaction e�ect

of carbon beta remains statistically signi�cant. Our �ndings suggest that carbon betas are

able to sort stocks according to their exposure to climate policy uncertainty. The evidence is
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Table 7: Carbon Beta, Climate Policy Uncertainty, and Stock Returns
This table reports the full set of coe�cients obtained from estimating Equation (7). The sample period
is from January 2007 to December 2020. ∆CPU is the monthly percentage change in the Climate Policy
Uncertainty index, as de�ned in Section 2.3. All regressions include sector and year-month �xed e�ects.
Standard errors are clustered at the �rm level. *, **, and *** denote statistical signi�cance at the 10%,
5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta� × ∆CPU� -0.150*** -0.072*** - - -0.058*

(0.019) (0.025) - - (0.029)
Carbon Beta� 0.037 0.045 - - 0.014

(0.028) (0.047) - - (0.047)
Emissions Intensity� × ∆CPU� - - -0.026 - 0.012

- - (0.018) - (0.022)

Emissions Intensity� - - -0.052* - -0.112***

- - (0.031) - (0.038)

ln(Emissions)� × ∆CPU� - - - -0.064** -0.040
- - - (0.028) (0.037)

ln(Emissions)� - - - 0.181** 0.245***

- - - (0.081) (0.092)

ln(Market Cap.) -0.014 0.062*** 0.064*** -0.003 -0.019
(0.013) (0.023) (0.023) (0.035) (0.038)

Book/Market 0.130*** -0.175 -0.161 -0.239* -0.253**

(0.046) (0.120) (0.119) (0.126) (0.127)

Return on Equity 0.143*** 0.109 0.109 0.100 0.096
(0.042) (0.076) (0.076) (0.076) (0.076)

Debt/Assets 0.149 0.291 0.314 0.219 0.193
(0.111) (0.202) (0.203) (0.201) (0.201)

Investment/Assets -1.645*** -1.139 -1.145 -0.888 -0.942
(0.596) (1.217) (1.206) (1.211) (1.202)

Property, Plant, & Equipment/Assets 0.075 -0.145 -0.108 -0.242* -0.237*

(0.073) (0.133) (0.135) (0.138) (0.138)

CAPM Beta 0.153*** -0.481*** -0.491*** -0.494*** -0.495***

(0.044) (0.111) (0.109) (0.109) (0.112)

Idio. Volatility -1.520*** 3.918*** 3.930*** 3.905*** 3.951***

(0.189) (0.540) (0.538) (0.539) (0.537)

Momentum 0.296*** -0.086 -0.088 -0.091 -0.093
(0.054) (0.112) (0.112) (0.112) (0.112)

Year - Month FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.253

�Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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also consistent with an explanation of carbon betas being able to identify green �rms that act

as hedging assets against sudden realisations of climate change risks, to the extent that such

realisations are re�ected by our CPU index.

4.3.2 Stock Returns and Extreme Weather Events

Bansal et al. (2016) and Choi et al. (2020) theorise and empirically validate that pollutive �rms

tend to exhibit poorer returns during extreme weather since the e�ects of climate change are

more salient in such periods. In our �rst test, we use temperature anomaly observations from

the U.S. Climate Reference Network above the 90th percentile of past 30-year observations to

classify months in which temperatures are abnormally high. Our second test focuses on drought

events. We utilise values of the Palmer Z-Index (Palmer, 1965) below the 10th percentile of past

30-year observations to classify periods of extreme drought. The 10th percentile equates to a

Z-Index of just below -2 in our sample, which according to Palmer (1965) indicates moderate

drought conditions. We estimate the model:

Ri,t = βCBi,t−1 + ϕEWt × CBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (8)

where Ri,t is �rm i's excess stock return in month t, EWt is an extreme weather dummy equal

to 1 if the temperature anomaly or drought severity of month t ranks among the 10% most

extreme months, CBi,t−1 is the carbon beta at the end of month t-1, Xi,t−1 is a vector of lagged

control variables including the natural logarithm of �rms i's market capitalisation, book-to-

market, return on equity, book leverage, investment-to-assets, PP&E-to-assets, and stock i's

CAPM beta, idiosyncratic volatility, and 12-month-minus-1-month momentum, ci is a sector

�xed e�ect, and µt is a year-month �xed e�ect. Our coe�cient of interest is ϕ, which can be

interpreted as the additional return associated with a one standard deviation increase in carbon

beta, ceteris paribus, in times of an extreme weather event. The regression does not include a

main e�ect for EWt is it is subsumed by the year-month �xed e�ect µt.
28

28Note that the EW dummy is subsetted by t only, and not by i, meaning that our identi�cation relies on
shocks to aggregated temperatures and droughts for the (contiguous) United States. Such shocks could a�ect
shareholders' perception of climate change, and thus could lead to a reallocation of their investment portfolios.
As an alternative empirical strategy, we could utilise local variation in extreme weather events (that is, an
EWi,t dummy). We however do not opt for this approach, for two reasons. First, it is not trivial to clearly
identify where a �rms' shareholders are located. Second, we want to minimise the possibility that our results
are driven by changes to �rms' fundamentals induced by the extreme weather shock. Our approach mitigates
this issue since �rm fundamentals are stronger in�uenced by local shocks than by US-wide shocks.
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We �nd that �rms with higher carbon betas experience lower returns during abnormally warm

months. The results are presented in Table 8. We repeat the analysis for two alternative �rm-

level indicators of carbon risk: Scope 1 & 2 emissions intensity and the natural logarithm of

Scope 1 & 2 emissions. These variables do not show a similar pattern in extreme temperature

months. In months with temperature anomalies above the 90th percentile, a standard deviation

increase in carbon beta tends to be associated with about a 33 bps lower monthly excess return.

In Table 9, we turn our attention to drought spells. Again, we �nd that carbon beta is the only

proxy that shows a signi�cantly negative interaction e�ect with equity returns.

These �ndings can be explained in several ways. For one, investors might regard extreme

weather events as realisations of climate risk, and therefore buy stocks that they deem a `hedge'

against such risk. Here, negative carbon betas proxy for such hedging potential. Second, it could

be the case that during extreme weather events, investors are more aware of the consequences

of climate change, leading them to disproportionally sell holdings they perceive as contributing

to a changing climate. This could follow a similar mechanism as in Huynh et al. (2021), who

�nd that fund managers divest from carbon-intense investments after they experience local

air pollution. In our case, carbon beta might partially capture investors' perception of �rm-

speci�c contribution to climate change. A potential third explanation is that extreme weather

directly a�ects the earnings of high carbon beta companies more so than the earnings of lower

carbon beta companies. In all three cases, however, climate beta functions as an indicator for

which �rms su�er most from such adverse climate events. Carbon beta is consistently better at

providing this hedging ability than both emissions and intensities.

4.4 Pricing of Carbon Risk

In this section, we provide evidence on the asset-pricing implications of climate transition risk

exposures as proxied for by carbon beta. We employ a similar speci�cation as in our other

return regressions:

Ri,t = α+ θCBi,t−1 + λXi,t−1 + ci + µt + ϵi,t, (9)

where Ri,t is the excess return on the company i 's stock in month t, CBi,t−1 denotes the stock

i 's carbon beta at the end of month t-1, Xi,t−1 is an optional vector of lagged control variables
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Table 8: Carbon Beta, Extreme Temperature, and Stock Returns
This table reports the full set of coe�cients obtained from estimating regression Equation (8). The sample period
is from January 2007 to December 2020. Temp.Anomaly is a dummy variable equal to 1 if the associated month's
temperature anomaly is above the 90th percentile and 0 otherwise. All regressions include sector and year-month
�xed e�ects. Returns are multiplied by 100. Standard errors are clustered at the �rm level. *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta� × Temp. Anomaly -0.330*** -0.315*** - - -0.352***
(0.070) (0.098) - - (0.114)

Carbon Beta� 0.069** 0.083* - - 0.057
(0.028) (0.048) - - (0.049)

Emissions Intensity� × Temp. Anomaly - - -0.052 - 0.062
- - (0.067) - (0.073)

Emissions Intensity� - - -0.045 - -0.119***
- - (0.029) - (0.037)

ln(Emissions)� × Temp. Anomaly - - - -0.105 0.046
- - - (0.085) (0.106)

ln(Emissions)� - - - 0.192** 0.236**
- - - (0.081) (0.093)

ln(Market Cap.) -0.013 0.064*** 0.065*** -0.001 -0.017
(0.013) (0.023) (0.023) (0.035) (0.038)

Book/Market 0.132*** -0.169 -0.161 -0.238* -0.245*
(0.046) (0.120) (0.119) (0.126) (0.127)

Return on Equity 0.143*** 0.109 0.109 0.100 0.097
(0.042) (0.076) (0.076) (0.076) (0.076)

Debt/Assets 0.154 0.296 0.314 0.222 0.198
(0.111) (0.202) (0.203) (0.201) (0.201)

Investment/Assets -1.682*** -1.152 -1.140 -0.877 -0.967
(0.596) (1.217) (1.208) (1.213) (1.203)

Property, Plant, & Equipment/Assets 0.082 -0.139 -0.109 -0.242* -0.229*
(0.073) (0.133) (0.135) (0.138) (0.137)

CAPM Beta 0.152*** -0.485*** -0.492*** -0.493*** -0.501***
(0.044) (0.111) (0.109) (0.109) (0.111)

Idio. Volatility -1.514*** 3.942*** 3.933*** 3.912*** 3.978***
(0.189) (0.539) (0.538) (0.539) (0.535)

Momentum 0.298*** -0.088 -0.088 -0.091 -0.094
(0.054) (0.112) (0.112) (0.112) (0.112)

Year - Month FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.253

�Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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Table 9: Carbon Beta, Extreme Drought, and Stock Returns
This table reports the full set of coe�cients obtained from estimating regression Equation (8). The sample
period is from January 2007 to December 2020. Drought is a dummy variable equal to 1 if the associated
month's Palmer Z-Index is below the 10th percentile and 0 otherwise. All regressions include sector and year-
month �xed e�ects. Returns are multiplied by 100. Standard errors are clustered at the �rm level. *, **, and
*** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4) (5)

Carbon Beta� × Drought -0.393*** -0.310*** - - -0.445***
(0.069) (0.112) - - (0.132)

Carbon Beta� 0.066** 0.064 - - 0.042
(0.028) (0.047) - - (0.047)

Emissions Intensity� × Drought - - -0.077 - -0.068
- - (0.093) - (0.102)

Emissions Intensity� - - -0.047 - -0.108***
- - (0.031) - (0.038)

ln(Emissions)� × Drought - - - 0.063 0.337**
- - - (0.107) (0.142)

ln(Emissions)� - - - 0.177** 0.220**
- - - (0.083) (0.094)

ln(Market Cap.) -0.014 0.062*** 0.064*** -0.003 -0.019
(0.013) (0.023) (0.023) (0.035) (0.038)

Book/Market 0.128*** -0.181 -0.161 -0.240* -0.258**
(0.046) (0.120) (0.119) (0.126) (0.127)

Return on Equity 0.142*** 0.106 0.109 0.100 0.095
(0.042) (0.076) (0.076) (0.076) (0.076)

Debt/Assets 0.149 0.290 0.314 0.218 0.192
(0.111) (0.202) (0.203) (0.201) (0.201)

Investment/Assets -1.678*** -1.169 -1.147 -0.885 -0.987
(0.596) (1.216) (1.206) (1.211) (1.201)

Property, Plant, & Equipment/Assets 0.076 -0.142 -0.108 -0.243* -0.232*
(0.073) (0.133) (0.135) (0.138) (0.138)

CAPM Beta 0.151*** -0.484*** -0.493*** -0.493*** -0.491***
(0.044) (0.111) (0.109) (0.109) (0.112)

Idio. Volatility -1.523*** 3.908*** 3.931*** 3.906*** 3.932***
(0.189) (0.540) (0.538) (0.539) (0.536)

Momentum 0.294*** -0.091 -0.087 -0.091 -0.098
(0.054) (0.112) (0.112) (0.112) (0.112)

Industry FE Yes Yes Yes Yes Yes
Year - Month FE Yes Yes Yes Yes Yes
N.o. Obs. 593,367 200,309 200,309 200,309 200,309
R2-Adj. 0.175 0.253 0.253 0.253 0.254

�Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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including company size, book-to-market, return on equity, book leverage, investment-to-assets,

PP&E-to-assets, and stock i's CAPM beta, idiosyncratic volatility, and momentum, ci is the

sector e�ect, and µt is the year-month e�ect. We are interested in θ, the carbon risk premium,

which can be interpreted as the additional return associated with a one standard deviation

increase in carbon beta. As carbon betas are estimated imprecisely � due to estimation errors �

their use as explanatory variables creates an errors-in-variables (EIV) problem. This biases the

estimated coe�cient toward zero. If the `true' carbon premium would be positive, then it would

be underestimated by regression Equation (9). We employ Jegadeesh et al. (2019)'s approach

to correct this issue. Jegadeesh et al. (2019) propose an instrumental variable methodology

that adjusts for the EIV bias by estimating betas on disjoint sample periods. In practice, this

amounts to estimating carbon betas separately using only the (daily) returns in odd or even

months. As the measurement errors are thus by de�nition uncorrelated, the EIV bias is then

resolved by a two-stage least-squares regression estimation where the prior month beta is used

as an instrument. The procedure is outlined in detail in Appendix C. Table 10 reports our

results.

In column (1), where we do not additionally control for other factors known to a�ect returns

and exclude industry-�xed e�ects, the carbon risk premium shows negative. This �carbon risk

discount" is consistent with the underperformance of the PMC portfolio displayed in Figure 2.

Including control variables in column (2) takes away some of the negative coe�cient suggesting

that the negative premium observed in column (1) is partly driven by factors attributable to

characteristics that were negatively rewarded over the sample period and positively correlated

with carbon beta, or vice versa. Our analysis also reveals that the perceived underperformance

of high carbon beta �rms is driven by an industry e�ect: �rms with high (low) carbon betas

tend to operate in sectors that have shown below (above) average returns over the sample

period. Including industry �xed e�ects to correct for this pattern, as column (3) does, turns the

carbon risk premium insigni�cant from zero. We believe that both controlling for additional

factors and including industry-�xed e�ects results in the most credible and precise identi�cation

of a carbon risk premium. The coe�cients estimated according to this speci�cation, reported

in column (4) of the Table, uncover that a standard deviation increase in carbon beta tends

to be associated with an additional 9.6 bps monthly return, ceteris paribus, or about 1.15%

annualised. Table C1 in Appendix C presents the results without the application of Jegadeesh

et al. (2019)'s correction. In this case, the (underestimated) carbon risk premium equals about
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Table 10: Pricing of Carbon Risk with Errors-in-Variables Correction
This table reports the regression coe�cients obtained from regressing monthly excess returns
on estimates of carbon beta. The sample period is from January 2007 to December 2020. The
regression optionally includes the natural logarithm of market capitalisation, book-to-market
ratio, return on equity, book leverage, investments-to-assets, PP&E-to-assets, CAPM beta,
idiosyncratic volatility, and 12-month momentum as control variables. Regressions contain
year-month �xed e�ects and optionally include sector-�xed e�ects. We use Jegadeesh et al.
(2019)'s IV-estimation methodology to account for errors-in-variables (see Appendix C for
details). Standard errors are clustered at the �rm level. *, **, and *** denote statistical
signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4)

Carbon Beta� -0.137*** -0.043** -0.010 0.096***
(0.019) (0.021) (0.026) (0.027)

ln(Market Cap.) - -0.014 - -0.017
- (0.012) - (0.012)

Book/Market - -0.342*** - -0.167***
- (0.050) - (0.054)

Return on Equity - 0.095** - 0.120**
- (0.047) - (0.047)

Debt/Assets - -0.007 - 0.126
- (0.098) - (0.105)

Investment/Assets - -1.851*** - -1.137**
- (0.536) - (0.560)

Property, Plant, & Equipment/Assets - 0.005 - -0.046
- (0.061) - (0.069)

CAPM Beta - 0.277*** - 0.301***
- (0.045) - (0.048)

Idio. Volatility - -0.807*** - -1.148***
- (0.230) - (0.246)

Momentum - 0.287*** - 0.244***
- (0.059) - (0.059)

Industry FE No No Yes Yes
Year - Month FE Yes Yes Yes Yes
N.o. Obs. 427,876 427,955 427,876 427,876
R2-Adj. 0.229 0.230 0.230 0.230

�Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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5.6 bps a month, or 0.6% annualised, suggesting the size of the EIV bias amounts to about half

of the carbon risk premium. All in all, we �nd a small positive risk premium, although the sign

and size does depend on the exact speci�cation of the model. Given that the time-span of our

data sample is relatively short for asset-pricing tests, this is not surprising.

4.5 Corporate Bond Carbon Betas

In this section, we apply the concept of carbon beta to a sample of corporate bonds. Our data

collection and estimation procedure follows Huynh and Xia (2021), who estimate bond returns

sensitivities to the Engle et al. (2020) Climate Change News Index. We download data on

corporate bond prices for the period January 2012 to December 2021 from the FINRA's Trade

Reporting and Compliance Engine (TRACE) Enhanced database. We follow the procedure of

Dick-Nielsen (2009, 2014) to clean prices in TRACE. Observations in TRACE are merged with

Mergent's Fixed Income Securities Database (FISD) to obtain the characteristics of the bonds

and issuers in our sample. We also map S&P's credit ratings29 from Compustat's Capital IQ

to our data. Following Bai et al. (2019), we eliminate trades reported in: (1) bonds other than

corporate bonds, (2) convertible bonds, (3) bonds with reported prices below $5 or above $1000,

(4) bonds with �oating coupon rates, (5) and bonds with maturities shorter than 1 year. We

exclude the least liquid bonds from our sample by requiring bonds to be traded on at least 50%

of trading days. Finally, we merge corporate emissions data from Trucost on 6-digit CUSIP

numbers. We calculate the monthly corporate bond return as of month t as in Lin et al. (2011):

Ri,t =
(Pi,t +AIi,t) + Ci,t − (Pi,t−1 +AIi,t−1)

(Pi,t−1 +AIi,t−1)
, (10)

where Pi,t is the volume-weighted average of intraday transaction prices of bond i on the last

trading day of month t, AIi,t is accrued interest, and Ci,t is the coupon payment.

We construct the pollutive-minus-clean (PMC) portfolio similarly as in our main analysis; by

going long the bonds that are in the top 30% of emissions, o�set by a short position in the 30%

of emissions.

To estimate carbon betas for corporate bonds, we adjust the factor model of Huynh and Xia

29Converted to numerical scale as follows: AAA → 1, AA+ → 2, ... , C → 19, D → 20.
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(2021):

Re
i,t = αi + βPMC

i PMCt + βMKT
i MKTt + βTRM

i TRMt + βDEF
i DEFt + βTED

i TEDt

+ βILLIQ
i ILLIQt + ϵi,t,

(11)

where Re
i,t is the return on bond i as of month t calculated in (10), in excess of the 1-month T-

Bill rate, αi is the bond's risk-adjusted outperformance, β's denote sensitivities to the factors,

MKTt is the aggregate bond market return, TRMt is the term spread of Welch and Goyal

(2008),30 DEFt is the default spread of Welch and Goyal (2008),30 TEDt is the TED spread,31

ILLIQt is the Dick-Nielsen et al. (2012) bond market illiquidity series,32 and ϵi,t is the residual

term. Our interest lies in βPMC
i , which denotes the bond i's carbon beta.

Figure 4 presents mean bond carbon betas by issuer GICS industry. We obtain a pattern that

is similar to the sectoral distribution of carbon betas in equity securities: the highest exposures

are found in the Energy and Materials sectors, while the lowest are found in the Financials

sector. Figure 5 provides empirical evidence on the relationship between climate risk exposures

with credit ratings and bond maturities. We expect that bonds of lower-rated issuers have

higher transition risk exposure, as such �rms have greater di�culty in meeting the investments

required for a low-carbon transition. This is also consistent with our �ndings on the �rm-level

drivers of carbon beta in the equity market. Bonds rated investment grade - that is, bonds

with a credit rating of BBB or above - indeed have lower climate risk exposures than bonds

with lower ratings. Regarding bond climate betas and maturities, we expect that longer-dated

bonds hold larger climate risk exposures, as the impact of low-carbon transition shifts likely

has larger e�ects in the distant future than in the near future. In line with this hypothesis, we

�nd a strong positive association between bond maturities and bond carbon betas.

30Available at Amit Goyal's website: https://sites.google.com/view/agoyal145
31Obtained from Federal Reserve Bank of Saint Louis: https://fred.stlouisfed.org/series/TEDRATE
32Available at Peter Feldhütter's website: https://feldhutter.com/
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Figure 4: Corporate Bond Carbon Beta by Issuer Industry
The �gure displays the coe�cients estimated by regressing corporate bond carbon betas on issuer two-
digit GICS Industry Sectors. The sample period is January 2012 to December 2021. The 95% con�dence
intervals are based on robust standard errors adjusted for clustering at the bond level.

Figure 5: Corporate Bond Carbon Beta by Rating Group and Maturity Group
The �gures display the coe�cients estimated from regressing corporate bond carbon betas on groups
formed on bond credit rating and bond maturities. The sample period is January 2012 to December
2021. The 95% con�dence intervals are based on robust standard errors adjusted for clustering at the
bond level.
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5 Conclusion

Research shows that green innovation is, for a large extent, driven by the current climate

laggards. Therefore, we propose a forward-looking measure of climate transition risk determined

by the extent to which an asset's return correlates with a carbon risk factor. This carbon risk

factor seeks to capture unexpected changes in consumers' and investors' concerns about the

climate. As a candidate for the carbon risk factor, we propose the pollutive-minus-clean (PMC)

portfolio. The PMC portfolio is a self-�nancing portfolio formed by a long position in the 30%

of stocks with the highest carbon emissions, o�set by a short position in the 30% of stocks with

the lowest emissions. Regressing individual stock returns on the PMC portfolio's returns and

the Fama and French (1993) and Carhart (1997) factors, we regard the loadings on the PMC

portfolio as the �rm-level exposure to climate transition risk: Carbon beta.

Our approach is complementary to conventional approaches that measure climate risk exposure.

The measure re�ects the market's consensus view on a company's climate transition risk. Due to

the market-based nature of our measure, potentially any aspect deemed relevant to climate risk

exposure might be re�ected. For example, the availability of clean technologies, a company's

innovative ability, leadership quality, industry competition, and �nancial condition. Regression

of carbon beta on �rm characteristics indeed shows that variation in carbon beta aligns with

our expectations. Larger, innovative, and pro�table �rms have lower climate risk exposure,

whereas capital-intensive and carbon-intensive �rms have higher climate risk exposure.

Our measure is robustly associated with green innovation, illustrating its forward-looking char-

acter. Subsequent comparisons of carbon beta estimates with alternative (commercial) measures

of climate risk at the �rm level also reveal robust positive associations. Our concept enables

an intuitive distinction between assets that are most at risk from a low-carbon transition and

assets that are well-posed to bene�t from such a shift. We show that returns between low-

and high-carbon beta �rms di�er markedly in months in which climate shocks materialise. Our

results indicate that during months in which uncertainty surrounding future climate policy

spikes, assets with low carbon betas outperform assets with high carbon beta. We observe

similar return patterns for months with abnormally high temperatures, and for months that are

exceptionally dry in precipitation.

Finally, the methodology covers a large universe of assets for which a su�cient history of returns

is observed. Our framework is not limited to a speci�c asset class either.

41



Whereas we rely on carbon emissions as the basis for construction of the PMC factor, with a

relatively short history, alternative proxies for a carbon risk factor could be informative too.

One could use the price of emission allowances, for example, now that emissions trading schemes

are becoming more prevalent. Weather-related securities, or certain commodities, might also be

suitable candidates. Even non-tradable climate risk factors could be evaluated, perhaps based

on textual information akin to the Climate Policy Uncertainty index which we utilised.

Investors can use our framework to create climate-aware investment strategies. Carbon beta

can be employed as an indicator of `climate hedge' potential and used for the construction of

hedge portfolios with high returns in periods of climate stress, against a small risk premium.

Furthermore, most investors can utilise our approach as it is transparent, accessible, and easily

replicated. Carbon betas could thus be used by investors investing in products for which emis-

sion data is not available and for whom it is too costly to make use of commercial alternatives,

e.g. small retail investors or low-cost ETF providers. Our methodology might also be valuable

to academics in assessing the asset pricing implications of climate risk, as our approach yields

a cross-sectionally `rich' dataset. Lastly, regulators and policymakers could use carbon beta to

identify highly exposed �rms to carbon risk. Our empirical results indicate that carbon betas

capture green innovation, in particular in the emission-intensive Energies sector. As such, regu-

lators and policymakers could employ our framework as a tool to disentangle `green innovators'

from otherwise pollutive �rms.
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Table A1: Variable De�nitions
This table reports on the data sources and de�nitions of the variables used in our main analyses.

Variable Description Source*

Excess Returni,t Return for stock i in month t in excess of the 1-month Treasury bill rate, winsorised at 0.5% and 99.5% cut-o� points. CRSP + KFDL
ln(Market Cap.)i,t−1 Natural logarithm of market capitalisation (in millions of US$), where market capitalisation is de�ned as shares out-

standing multiplied by share price at the end of month t-1.
CRSP

B/Mi,t−1 Book to market ratio is the book value of equity at the end of June of previous year divided by market capitalisation at
the end of month t-1, winsorised at 1% and 99% cut-o� points.

CCM

ROEi,t−1 Return on equity is net income divided by total shareholders' equity at the end of June in year of previous year, winsorised
at 1% and 99% cut-o� points.

CS

Debt/Assetsi,t−1 Total long-term and short-term debt divided by total assets at the end of June of previous year, winsorised at 1% and
99% cut-o� points.

CS

Invest./Assetsi,t−1 Investment to assets is capital expenditures divided by total assets at the end of June of previous year, winsorised at 1%
and 99% cut-o� points.

CS

PP&E/Assetsi,t−1 Property, Plant & Equipment divided by total assets at the end of June of previous year, winsorised at 1% and 99%
cut-o� points.

CS

R&D/Assetsi,t−1 Annual Research & Development expenses divided by total assets at the end of June of previous year, winsorised at 1%
and 99% cut-o� points.

CS

Carbon Betai,t−1 Estimated coe�cient from regressing daily returns on PMC portfolio while controlling for Fama and French (1993) three
factors and Carhart (1997) momentum. For month t, we use Carbon Betas at end-of-month t-1 winsorised at 1% and
99% cut-o� points.

AC

Idio. Volatilityi,t−1 Idiosyncratic volatility is the annualised standard deviation of residuals of a 1-year rolling window regression of stock i 's
daily returns on the Fama and French (1993) market factor. For month t, we use idiosyncratic volatilities at end-of-month
t-1 winsorised at 1% and 99% cut-o� points.

AC + CRSP +
KFDL

CAPM Betai,t−1 Market beta is obtained by 1-year rolling window regression of stock i 's daily returns on the Fama and French (1993)
market factor. For month t, we use market betas at end-of-month t-1 winsorised at 1% and 99% cut-o� points.

AC + CRSP +
KFDL

Momentumi,t Cumulative return over the past 12 months excluding the most recent month. AC + CRSP
ln(Emissions)i,t Natural logarithm of combined Scope 1 and Scope 2 emissions of year t-1 (in millions of tonnes of CO2-equivalent),

winsorised from above at 99% cut-o� point.
TC

Emissions Intensityi,t Combined Scope 1 and Scope 2 emissions (in millions of tonnes of CO2-equivalent) scaled by annual revenues of year
t-1, winsorised from above at 99% cut-o� point.

TC

CCEi,t Climate Change Exposure is de�ned as the extent to which managers and analysts discuss climate change related topics
during quarterly earnings calls. The measure is also available in individual pillars that measure exposure related to
climate regulations, climate opportunities, and physical risks. We normalise the measure for easy of comparability.

Sautner et al.
(2022)

CVaRi,t Climate-Value-at-Risk measures �rm-speci�c forward-looking valuation assessments regarding climate risks and oppor-
tunities. We normalise and invert the measure so that its interpretation is equivalent to conventional VaR.

MSCI

CPUt Climate Policy Uncertainty is de�ned by the textual similarity between articles published in the Wall Street Journal
on day t and a corpus of climate change documents. A high CPU on day t indicates that climate change is frequently
discussed on that particular day. We aggregate daily values over the past month to match the granularity of our data
set.

AC + WSJ

Temperature Anomt Temperature Anomaly is a dummy variable equal to 1 if month t 's Temperature Anomaly (deviation from 30-year
reference temperature) is in the top 10% of extreme values and otherwise equal to 0.

AC + NOAA

Droughtt Dummy variable equal to 1 if month t 's Palmer Z-Index (Palmer, 1965) is in the top 10% of extreme values and otherwise
equal to 0.

AC + NOAA

Green Patent Sharei,t The fraction of �rm i's patents issued at and before month t that are classi�ed as green according to the OECD green
patent taxonomy (Ha²£i£ and Migotto, 2015).

AC + USPTO

*KFDL = Kenneth French's Data Library, CCM = CRSP-Compustat Merged, CS = S&P CapitalIQ Compustat, AC = Authors' Calculations, TC = S&P Trucost, WSJ = Wall Street Journal News Archive,

USPTO = US Patent and Trademark O�ce Bulk Data Storage System

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.wsj.com/news/archive/years
https://bulkdata.uspto.gov/


Table A2: Descriptive Statistics on Top and Bottom Subindustries by Carbon Beta
This table reports the mean and median carbon beta of the top and bottom 15 GICS-subindustries by
median carbon beta. The table also reports the number of �rms by subindustry and the number of return
and carbon beta observations by subindustry. The sample period is from January 2007 to December 2020.

Sub-Industry Mean Median N. Firms N. Obs.

Panel A: Top 15 sub-industries by mean carbon beta

Silver 1.51 1.46 7 983
Gold 1.28 1.21 67 5507
Oil & Gas Drilling 1.18 1.27 32 2931
Oil & Gas Exploration & Production 1.14 1.13 266 23578
Precious Metals & Minerals 1.08 1.16 10 774
Copper 1.02 1.04 5 624
Coal & Consumable Fuels 0.93 0.89 36 3486
Oil & Gas Equipment & Services 0.90 0.87 119 10272
Steel 0.80 0.77 58 5624
Integrated Oil & Gas 0.79 0.71 24 3191
Aluminum 0.77 0.72 12 866
Diversi�ed Metals & Mining 0.73 0.74 38 2935
Oil & Gas Re�ning & Marketing 0.69 0.68 49 4574
Oil & Gas Storage & Transportation 0.60 0.58 158 13309
Independent Power Producers & Energy Traders 0.58 0.55 22 1540

Panel B: Bottom 15 sub-industries by mean carbon beta

Financial Exchanges & Data -0.42 -0.41 16 2563
Investment Banking & Brokerage -0.40 -0.42 67 6084
Other Diversi�ed Financial Services -0.38 -0.28 6 490
Internet Services & Infrastructure -0.35 -0.39 27 2293
Biotechnology -0.34 -0.29 561 34386
Systems Software -0.34 -0.33 105 7676
Regional Banks -0.33 -0.29 618 58638
Life & Health Insurance -0.29 -0.26 41 4516
Consumer Finance -0.28 -0.30 68 5762
Highways & Railtracks -0.26 -0.24 2 66
Interactive Media & Services -0.24 -0.25 60 5012
Insurance Brokers -0.23 -0.23 21 1651
Semiconductors -0.21 -0.23 182 17002
Application Software -0.20 -0.21 325 23816
Life Sciences Tools & Services -0.19 -0.20 91 7269
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Table A3: Carbon Beta and MSCI Green Patent Share
This table reports the coe�cients obtained from estimating regression Equation (4). Here, Green
Share MSCI (%) is a measure of green patent innovation constructed and provided by MSCI. The
data are from January 2010 to end of December 2020. Standard errors are clustered at the �rm
level. *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Dependent variable Carbon Carbon S1&2 ln(S1&2
Beta� Beta� Intensity� Emissions)�

MSCI Green Patent Share� 0.020 -0.231*** 0.362 0.130***

(0.021) (0.089) (0.269) (0.046)

ln(Market Cap.) -0.026*** -0.007 -0.190 0.418***

(0.008) (0.035) (0.124) (0.053)

Book/Market 0.126*** 0.207 -0.155 0.395***

(0.039) (0.128) (0.280) (0.107)

Return on Equity -0.004 -0.090* 0.666 0.189
(0.013) (0.055) (0.481) (0.140)

Debt/Assets 0.141** 0.245 1.345 0.676
(0.066) (0.410) (0.841) (0.429)

Investment/Assets -0.283 1.081 -5.444** -2.492***

(0.403) (1.384) (2.473) (0.761)

Property, Plant, & Equipment/Assets 0.392*** 0.481** 1.009** 0.202
(0.051) (0.199) (0.499) (0.167)

Research & Development/Assets -0.984*** 0.583 -20.170 -16.644
(0.141) (1.622) (17.600) (12.999)

Year-Month FE Yes Yes Yes Yes
Industry FE Yes No No No
Sectors All Energy Energy Energy
N.o. Obs. 150,576 6,539 4,423 4,423
R2-Adj. 0.487 0.340 0.227 0.665

�Indicates a cross-sectionally standardised variable.
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Figure A1: Alternative PMC Portfolio Construction
The �gure displays PMC portfolios that were constructed in di�erent ways. The baseline PMC as used
in the paper is compared to alternative constructions based on estimated emissions (PMC Estimated),
reported emissions (PMC Reported), emission intensities (PMC Intensity), and emissions provided by
MSCI (PMC MSCI) instead of by Trucost.

Table A4: Correlations Between Alternative PMC Portfolios
The table reports pairwise correlation coe�cients between alternatively constructed PMC portfolios.
PMC is the pollutive-minus-clean portfolios as employed in the paper.

PMC PMCEstimated PMCReported PMCIntensity PMCMSCI

PMC 1.00 - - -
PMCEstimated 0.95 1.00 - - -
PMCReported 0.73 0.59 1.00 - -
PMCIntensity 0.79 0.79 0.68 1.00 -
PMCMSCI 0.85 0.83 0.63 0.72 1.00

Figure A2: Returns to Alternative PMC Portfolios Conditional on CPU and Temperature
Anomalies
The �gure reports the mean monthly returns of various PMC portfolio de�nitions during various regimes
of Climate Policy Uncertainty (low change in CPU, neutral change in CPU, high change in CPU) and
Temperature Anomalies. The baseline PMC as used in the paper is compared to alternative construc-
tions based on estimated emissions (PMC Estimated), reported emissions (PMC Reported), emission
intensities (PMC Intensity), and emissions provided by MSCI (PMC MSCI) instead of by Trucost.
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Appendix B: Validation of Carbon Betas

In our validation test, we �rst compare estimates of carbon beta across sectors, headquartered

states, and countries. We then run panel regressions to uncover how �rm characteristics are

correlated with corporate climate risk. Next, we perform a �rm-level comparison of carbon betas

with alternative measures of climate risk, amongst which the Sautner et al. (2022)'s measure

constructed from analyst earnings calls and MSCI's Climate-Value-at-Risk measure.

B1 Sector, Headquartered State, and Country Variation in Carbon

Betas

In this section, we �rst seek to analyse how carbon beta is associated with variation in industry

sector membership. To do so, we estimate:

CBit =

11∑
k=1

I[ki = k] + ϵit, (12)

where CBit is �rm i 's carbon beta at the end of time t, k denotes any of 11 GICS industry

sectors, and I[ki = k] indicates whether or not stock i's industry classi�cation belongs to

industry k. The coe�cients obtained from this regression can be interpreted as sector-average

carbon betas.

Figure 3 reports the estimated coe�cients from regressing individual stock's carbon betas on

their respective industry dummies. The �gure shows that the Energies, Utilities, and Materials

sectors exhibit the highest carbon betas. In contrast, for the Financials, IT, and Health Care

sectors, we observe negative mean carbon betas. These �ndings are in line with commonly

held beliefs about sectors' relative carbon risk exposure. While the �gure shows di�erences in

the carbon risk exposure across sectors, the variation of carbon betas within speci�c sectors is

also informative. For example, the Energies sector houses several �rms with very high carbon

betas, however, also includes some �rms that hold much lower exposure to climate risks (not

reported). Note that in later regression speci�cations, we include industry �xed e�ects, so that

we only exploit variation in carbon betas within industries, rather than the variation across

industries reported in Figure 3. We believe this is a conservative approach, as we control for

any unobserved industry e�ect and can circumvent the e�ect of potential industry biases in the
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de�nition of the carbon risk factor.

We now modify Equation (12) to regress on headquarter state dummies. The regression coe�-

cients can be interpreted as average carbon betas by headquarter state. Figure A3A presents

our results. Particularly in Texas, Oklahoma, and New Mexico, average carbon betas are high.

This is likely the result of the large concentration of oil and gas �rms operating in this region.

In California, on the contrary, carbon betas are on average negative. This might stem from

the state's dominant Technology sector. Overall, geographic variation in carbon betas seems to

align with prior expectations, yet is strongly driven by industry e�ects. As mentioned earlier,

we include industry dummies in most regressions to make sure that such e�ects do not confound

our results.

Lastly, we investigate how carbon betas vary over countries. We exploit international variation

in a sample of carbon betas estimated from the returns of di�erent MSCI Country indices. The

estimation of carbon betas is based on a sample of 48 di�erent MSCI country indices. We

estimate carbon betas with the same estimation window and control factors as described in

Section 3, yet now utilise Ken French's Developed Market factors rather than their U.S. factor

equivalents. We again estimate a modi�ed version of Equation (12) that includes country-�xed

e�ects. Figure A3 shows the coe�cients from regressing international carbon betas on their

respective country dummies, a similar speci�cation as in Equation (12). As can be seen, carbon

betas in South America, South Africa, and Australia are relatively high. On the one hand,

this might be related to the vast amounts of natural resources present in these regions and

the carbon intensity of the industries involved in extracting them. On the other hand, these

regions are well-known to have weak climate policies in place. Countries in Europe, generally,

have low to negative carbon betas. This might be a re�ection of the European Union being at

the forefront of regulating climate change. The di�erence between the U.S. and Canada is also

striking. While both nations have a large oil and gas industry, the U.S. at the same time houses

many technology companies. Besides, Canada's petroleum industry is especially pollutive as a

large part of its fossil resources are found in oil sands.

B2 Covariation with Alternative Measures of Climate Risk

We now compare carbon betas with alternative �rm-level measures of climate risk. Here we

consider the natural logarithm of �rm emissions, emission intensity, the Sautner et al. (2022)
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Figure A3: Geographic Variation in Carbon Beta
The �gure displays the coe�cients estimated by regressing Carbon Beta on U.S. headquarter state �xed
e�ects (Panel A) and international country �xed e�ects (Panel B). In Panel B, returns are based on
each country's respective MSCI country index. The sample period is January 2015 to December 2020.
Data comes from Re�nitiv (formerly Thomson Reuters) Eikon.

(A) Headquarter State Fixed E�ects

(B) Country Fixed E�ects
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measure of corporate Climate Change Exposure (CCE), and MSCI's Climate-Value-at-Risk

(CVaR). We standardise all measures of corporate climate risks to enable comparison. Table

4 reveals robust correlations between carbon beta and each of the four alternative measures.

The correlation coe�cients are highly signi�cant and their signs are in line with expectations.

It is interesting to note that while the log of emissions and emission intensities show `only' a

51% correlation, the correlation coe�cients of carbon beta with the log of emissions and carbon

beta with emission intensities are close, at 51% respectively 40%. This suggests that while

there is di�erent information contained in emissions and intensities, there is still a large overlap

between the information in emissions and emissions intensities deemed relevant to carbon beta.

Moreover, the robust associations between carbon beta and the scores on the forward-oriented

CVaR and Sautner et al. (2022) measures are reassuring, as they suggest that carbon beta

partly picks up the information that these measures have been designed to capture, such as

green innovative ability and analyst's perceptions of �rm-level climate risk. We explore the

relationship between our measure and CVaR in more detail in Section 4.2.2.

We now conduct a more detailed comparison between estimates of carbon beta and the Sautner

et al. (2022)'s Climate Change Exposures, where we exploit that Sautner et al. (2022)'s measure

is decomposed into three components: exposure to regulatory risks, climate opportunities,

and physical risks. This allows us to analyse which aspects of climate risk are captured by

carbon beta. We estimate a similar model as in Equation (3), yet we alternatively include the

main CCE, each of its three components, and all three of the components. In our regressions,

we standardise the CCEs for reasons of comparability and interpretability. We again cluster

standard errors at the �rm level to account for serial correlation in our variables.

Table A5 reveals that carbon betas are positively related to CCE and all of its three com-

ponents. A standard deviation increase in CCE tends to be associated with about 23% of a

standard deviation increase in carbon beta. We observe e�ects of similar magnitudes for the

subcomponents measuring exposures related to regulatory risks and climate opportunities. In-

teresting to note is the positive sign on the latter subcomponent's coe�cient: this indicates that

the �rms whose carbon beta is higher are also the �rms with which analysts more frequently

discuss climate change opportunities. This �nding might seem counterintuitive but suggests

that today's major emitters have an important role to play in enabling low-carbon technolo-

gies. Sautner et al. (2022) observe the same pattern when comparing CCEOpportunities with ISS
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Carbon Risk Ratings. Our results for the component of CCE measuring physical climate risks

are somewhat of an exception. Although the coe�cient reported in column (4) is statistically

signi�cant at the 1% level, its magnitude is much smaller than the overall CCE coe�cients and

other components. The adjusted R-squared reported in column (4) also reveals that physical

climate change exposure is of little help in explaining variation in carbon beta. This �nding

does not come as a surprise to us. Physical climate risks are more idiosyncratic and largely

unrelated to corporate carbon emissions, rather much more driven by geographic vulnerabilities.

Hence, our approach is unlikely to pick up di�erences in physical climate risk exposure, and our

analysis con�rms that carbon betas are more related to regulatory and opportunity risks that

are more systematic in nature.

Table A5: Carbon Beta and the Sautner et al. (2022) Climate Change
Exposures
This table reports the full set of coe�cients obtained from estimating a similar
model as in Equation (3). The sample period is from January 2007 to December
2020. CCE is the Sautner et al. (2022) Climate Change Exposure de�ned as
the extent to which a company's earnings analyst calls are devoted to discussing
regulatory risks, opportunities, and physical risks related to climate change. This
table reports the coe�cients obtained from estimating a similar regression as in
Equation (3). All variables are standardised. Standard errors are clustered at the
�rm level. *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1%
level, respectively.

Dependent variable: Carbon Beta�

(1) (2) (3) (4) (5)

CCE� 0.205*** - - - -
(0.012) - - - -

CCERegulatory
� - 0.158*** - - 0.112***

- (0.009) - - (0.009)

CCEOpportunities
� - - 0.159*** - 0.114***

- - (0.012) - (0.011)

CCEPhysical
� - - - 0.044*** 0.027***

- - - (0.006) (0.005)

N.o. Obs. 350,339 350,339 350,339 350,339 350,339
R2-Adj. 0.043 0.026 0.026 0.002 0.038

�Indicates a cross-sectionally standardised variable.
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Appendix C: Errors-in-Variables Adjustment

Carbon betas � like all regression coe�cients � are subject to estimation error. The use of carbon

beta as an explanatory variable leads to an errors-in-variables (EIV) problem: when explanatory

variables are subject to measurement error, regression coe�cients are biased towards zero. This

`attenuation bias' thus overestimates the `true' coe�cient when it is negative and underestimates

it when it is positive. We employ the instrumental variable (IV) approach of Jegadeesh et al.

(2019) to resolve these EIV-induced problems. Jegadeesh et al. (2019) propose a framework

in which the betas are estimated on two disjoint sets. Similar to Jegadeesh et al. (2019), we

implement this by estimating carbon betas in even months separately from carbon betas in odd

months. In even (odd) months, we only use the daily returns in previous even (odd) months in

the estimation window.33 The estimator of Jegadeesh et al. (2019) is de�ned as:

λ̂IV = (XIV X
′
EV )

−1(XIV R
′) (13)

where XIV is the matrix of instrumental variables with odd-month (even-month) estimated

carbon betas in even (odd) months, XEV is the matrix of explanatory variables with even-

month (odd-month) estimated carbon betas in even (odd) months, and R is a vector of stock

returns in excess of the risk-free rate. Note that the matrices XIV and XEV contain estimated

(carbon) betas, �rm characteristics, and market variables, so that λ̂IV is a vector of both

estimated risk premia and characteristics premia.

The estimator can be decomposed into two parts by expressing it as a two-stage least squares

regression. In the �rst stage, the explanatory variables are regressed on the instrumental vari-

ables:

δ̂ = (XIV X
′
IV )

−1(XIV X
′
EV ) (14)

Whereas in the second stage, the OLS estimator is pre-multiplied by the inverse of scaling

matrix δ̂:

33This e�ectively halves the estimation window, from around 750 daily observations to around 375. While this
increases estimation errors, Jegadeesh et al. (2019) show in simulation exercises that this does not lead to large
deviations from the true coe�cients.
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λ̂IV = δ̂−1((XIV X
′
IV )

−1(XIV R
′)), (15)

By estimating betas on disjoint samples, the measurement error is uncorrelated. This property

allows the IV estimation methodology to yield unbiased estimates of the true risk premia.

Jegadeesh et al. (2019) point out that the diagonal elements in δ̂ are smaller than 1 and equal

to the ratio of the variance in the beta divided by the sum of the variance in beta and in

measurement error. Hence, the inverse of δ̂ e�ectively scales up the OLS coe�cients and thereby

alleviates the attenuation bias. As the standard errors are scaled by the same constants, there

is no e�ect on the t-statistics.
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Table C1: Pricing of Carbon Risk without Errors-in-Variables Correction
This table reports the regression coe�cients obtained from regressing monthly excess returns
on estimates of carbon beta. The sample period is from January 2007 to December 2020. The
regression optionally includes the natural logarithm of market capitalisation, book-to-market
ratio, return on equity, book leverage, investments-to-assets, PP&E-to-assets, CAPM beta,
idiosyncratic volatility, and 12-month momentum as control variables. Regressions contain
year-month �xed e�ects and optionally include sector-�xed e�ects. Standard errors are clus-
tered at the �rm level. *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1%
level, respectively.

Dependent variable: Monthly excess return (×100)
(1) (2) (3) (4)

Carbon Beta� -0.084*** -0.017 0.007 0.056**
(0.018) (0.021) (0.026) (0.026)

ln(Market Cap.) - -0.014 - -0.019
- (0.011) - (0.012)

Book/Market - -0.348*** - -0.156***
- (0.050) - (0.053)

Return on Equity - 0.088* - 0.115**
- (0.047) - (0.047)

Debt/Assets - -0.043 - 0.117
- (0.097) - (0.104)

Investment/Assets - -1.866*** - -1.068*
- (0.530) - (0.552)

Property, Plant, & Equipment/Assets - 0.010 - -0.033
- (0.060) - (0.068)

CAPM Beta - 0.263*** - 0.271***
- (0.044) - (0.047)

Idio. Volatility - -0.805*** - -1.136***
- (0.226) - (0.243)

Momentum - 0.302*** - 0.257***
- (0.059) - (0.059)

Industry FE No No Yes Yes
Year - Month FE Yes Yes Yes Yes
N.o. Obs. 437,847 437,847 437,847 437,847
R2-Adj. 0.227 0.227 0.227 0.228

�Indicates a standardised variable. Firm-level variables are cross-sectionally standardised.
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