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1 Introduction

Diversification, integral to both investing and life more generally, has a historical foundation dating back centuries.1

Today, the idea is typically linked to the influential work of Markowitz (1952), who formally establishes the concept

within the famous mean-variance framework and describes the role of correlations among assets in achieving an

optimal risk-return tradeoff. Estimating these co-measures using financial market data is done countless times a day,

as they are necessary inputs for models in various fields of finance. With growing awareness of diversification’s

relevance, new ideas have refined and expanded the concept, while making it more accessible for investors.

Prominent examples are the capital asset pricing model (CAPM), the idea of (mostly) efficient markets, and the

birth of the passive fund management industry. Specifically, product developments such as index mutual and

exchange-traded funds (ETFs) have marked important milestones, providing low-cost diversification to the masses.

Figure 1: Examples of Asset Managers Advertising Diversification Through Factor Investing.
The figure combines screenshots from websites of various asset managers, which propose to enhance diversification
by engaging in factor investing. Relevant text portions on diversification are highlighted in yellow.
Screenshots were compiled on November 11, 2022 from the following sources:
Amundi (https://www.amundi.com/institutional/files/nuxeo/dl/9102f718-3202-4362-b41d-056aaf0024e7),
BlackRock (https://www.blackrock.com/us/individual/investment-ideas/what-is-factor-investing),
Goldman Sachs Asset Management (https://www.gsam.com/content/dam/gsam/pdfs/us/en/fund-resources/investment-education/look-under-the-hood-

multi-factor-strategies.pdf?sa=n&rd=n),
Invesco (https://www.invesco.com/us/resources/factor-investing?audienceType=Investor), J.P. Morgan Asset Management
(https://am.jpmorgan.com/us/en/asset-management/adv/investment-strategies/etf-investing/capabilities/factor-etfs/),
Robeco (https://www.robeco.com/me/key-strengths/quant-investing/glossary/diversification-over-factors.html),
Pimco (https://europe.pimco.com/en-eu/resources/education/understanding-risk-factor-diversification),
WisdomTree Investment (https://www.wisdomtree.com/investments/blog/2020/05/13/factor-diversification-and-why-it-matters-in-a-new-market-regime)

Since models are typically not only assessed for theoretical elegance but also for their predictive performance,

various researchers have empirically tested the implications of the CAPM. The results indicate that, while the

market factor helps in assessing stock (portfolio) risk, other cross-sectional risk sources unrelated to the market

also impact equity returns (Fama and French (1993)). Those insights have given rise to factor investing, enabling

investors to harvest risk premia from these alternative sources of risk, alongside the traditional market risk premium.

Consequently, the asset management industry has developed new products, often called ’smart beta’, to make the

approach more accessible to investors. Following this narrative, factor investing, particularly in a broad sense

1 References to ’naive’ diversification (dividing exposure equally among risky opportunities) trace back to the Talmud’s origins
(Duchin and Levy (2009)).
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across multiple styles and asset classes (ASCLs), offers significant potential for diversification by combining these

uncorrelated sources of compensated risk.2 This has prompted asset managers to actively market the benefits of

diversification through factor investing (see Figure 1). For long-term factor investors, it is, thus, crucial to assess

future factor correlations when forming a strategic allocation.3

Figure 2: Correlations of Factor Excess Returns.
This figure shows Pearson correlation coefficients for 14 monthly factor excess return TS and results of t-tests
with the null hypothesis of no correlation. Data covers the full investigation period from July 1971 to December
2018. Coefficients are represented by circles, of which size and color indicate correlation magnitude and sign.
Insignificant coefficients are marked with crosses. The factor labels’ first letters (at the left and lower margin)
indicate the associated ASCL of a given factor, where C, E, and FX are abbreviations for commodity, equity,
and foreign exchange, respectively. Consult Table A4 and Section 3 for an overview of all factor TS analyzed.
Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024). An overview of the
abbreviations used in the course of this paper is provided in Table A3.

Various academic studies, highlighting benefits of diversification across factors, have shaped this assessment.4

Using a broad set of factors constructed over three ASCLs with data ranging back to July 1971,5 I can corroborate

an overall uncorrelated behavior (Figure 2). Since numerous studies support time-varying correlations in asset

return series generally6 and in factor/style returns specifically (e.g., Ilmanen (2022)), I also observe temporal

dynamics, revealing that the broadly uncorrelated pattern remains stable over time.7 Moreover, when comparing

traditional diversification (across asset classes) with a broad multi-factor strategy, the latter is notably more effective

in enhancing the risk-return tradeoff – especially during periods of turbulences, such as the great financial crisis.8

2 The appendix of Vincenz and Zeissler (2024) provides a more detailed literature review on factor investing.
3 Selecting factors for the investment universe with positive expected future excess returns from various proposed phenomena

is also crucial, but beyond my study’s scope. Refer to Ilmanen (2022) for a summary of common criteria from the literature
to evaluate a factor’s long-term outlook.

4 As examples, refer to Bender et al. (2010), Asness et al. (2013), Houweling and Van Zundert (2017), or Ilmanen et al. (2021).
5 The data set is introduced in Section 3.
6 See Longin and Solnik (1995), Longin and Solnik (2001), Ang and Chen (2002), Cappiello et al. (2006), or Preis et al.

(2012).
7 Figure A1 presents supporting evidence (rolling factor correlations). Correlations broadly appear time-varying, with some

factor pairs experiencing periods of spiking correlation. However, these spikes usually do not occur simultaneously across
all factor pairs. For other pairs, a stable uncorrelated pattern persists over time.

8 Figure A2 illustrates the diversification benefits of uncorrelated factors by showing cumulative log excess returns of four
factor strategies, capturing broad market exposure across U.S. and international equity, commodity, and FX. Moreover, the
figure illustrates the cumulative performance of two multi-factor portfolios. The first naively allocates across the four market
factors (resembling traditional diversification), while the second defines diversification more broadly and allocates naively
across the entire factor set, thus achieving a better risk-adjusted return by volatility reduction (see also Figure 3).
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The empirical support for diversification benefits through multi-factor investing prompts a key question: Given

the narrative of close to zero (or even negative) correlations, should multi-factor investors actually care about

conditional correlations between the factors in their portfolio? Or should they focus on factor variances, since these

are the main driver of portfolio risk under the assumption of zero correlations? To the best knowledge of the author,

no existing study covers these questions.

I contend that long-short multi-factor investors, guided by academic research and asset manager advertisements,

expect to hold a portfolio of uncorrelated return streams. Consequently, they are primarily concerned with simulta-

neous increases in variances across factors as drivers of their aggregate portfolio risk. Conversely, correlations are

deemed fixed and without time-varying impact on overall risk. Put simply, despite their confidence in multi-factor

diversification (and zero correlations), these investors remain vulnerable to synchronous spikes in variances. After

a shock, this vulnerability should translate into higher expected future multi-factor returns. Specifically, since asset

return variances tend to show short-term persistence, investors should expect variances to stay elevated after a

broad spike, resulting in higher expected future multi-factor risk and potentially increased returns in the short run,

assuming a variance-in-mean relationship.

The empirical investigation covers 14 long-short factor strategies across three ASCLs, equity, commodity,

and foreign exchange (FX), from July 1971 to December 2018. Using a simple multi-factor benchmark, i.e.

an equally-weighted monthly-rebalanced portfolio of all factors, I analyze the roles of average variance (AV),

average correlation (AC), and the product of both (as proxy for portfolio variance) in explaining current and future

benchmark risk and return. As the in-sample (IS) analysis shows, all three variables help to span contemporaneous

variance of the equally-weighted multi-factor portfolio, indicating that both components, variances and correlations,

are needed to explain current benchmark risk. However, AV emerges as the best-performing predictor of future

multi-factor variance over a one-year horizon. Importantly, only AV also demonstrates explanatory power for future

one-year average returns. Specifically, my results indicate a variance-in-mean relationship which is revealed solely

after untangling the opposing effects of AV and AC on future returns.

This finding is robust across various subperiods, short forecast horizons (e.g., six months or two years), and

multivariate specifications incorporating macroeconomic and market predictors or alternative approximations of

multi-factor risk as control variables. Extending the forecast window to 60 and 120 months reveals that other

variables gain relevance for longer-term forecasts, for example AC as well as external macro and market variables.

I observe the strongest predictability of future benchmark variance at the longest window (ten years), while for

returns, the best-working horizon is five years. Notably, return predictability is most pronounced when multi-

factor returns exhibit mean-reversion, both AC and AV contribute to the forecast, and additional variables provide

significant excess information about future returns. Using all regressors tested, the model explains around 74%

of the IS variation in future mean returns over the five-year horizon. An analysis of alternate equally-weighted

multi-factor portfolios, linked to ASCLs or styles, confirms AV’s importance over AC as a driver of future multi-

factor risk and returns in the short run.9 Moreover, employing AV, AC, and a simple proxy for overall portfolio

variance as predictive variables in an out-of-sample (OS) exercise affirms that primarily factor variances drive

9 Only for portfolios combining either solely market-, carry-, or FX-associated factors, the IS evidence of a variance-in-mean
relationship is comparably weak or (for the latter) even non-existent.
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future returns. At the one-year horizon, the associated 𝑂𝑆-𝑅2 of AV (observed in isolation) ranges from 10.36%

to 13.48%, depending on the starting period of the test.

The important insight of these results is the investment implication for multi-factor investors: Be cautious

when betting on a dysfunctional variance-in-mean relationship (as suggested for instance in Moreira and Muir

(2017)). As an important secondary finding, I report a declining trend in multi-factor returns over the course of

the investigation period, whereas lasting trends in AV or AC are absent. Put differently, while both components of

multi-factor risk have remained stationary over time, multi-factor investing has lost some of its attractiveness (in

terms of risk compensation).

The paper broadly contributes to the factor investing literature, mainly by empirically exploring the impact

of the two components of multi-factor portfolio risk – factor variances and correlations – on the future portfolio

risk-return tradeoff. Moreover, it connects to broader areas such as forecasting aggregate assets’ risk-return tradeoff,

examining variance and correlation risk premia, and assessing the effectiveness of macroeconomic and market

data in describing and predicting asset returns. The findings bear importance for academics and practitioners.

Researchers, from an asset-pricing perspective, should emphasize characterizing periods of synchronously spiking

variances across cross-asset factor strategies, which are often linked to elevated global uncertainty and precede

times of higher-than-average risk and returns for multi-factor investors . During such times, staying invested might

require increased risk appetite and risk-bearing capabilities. For practitioners, identifying AV as forecaster of

multi-factor variance and returns can enhance their ability to assess and manage conditional risk-return tradeoffs.

The paper is organized as follows: Section 2 discusses the importance of variances and correlations for multi-

factor investors, motivating the hypothesis that investor focus on variances when assessing short-term portfolio

risk. Section 3 introduces the data set of long-short factor returns, which is analyzed in the subsequent Section

4, covering the empirical application. In the last Section 5, I conclude with a short summary of the findings. The

paper includes appendices with additional remarks (Appendix A) and exhibits (Appendix B), which are referenced

throughout the paper. Abbreviations used in this paper are listed in Table A3.

2 The Importance of Variances and Correlations for Multi-Factor Investors

Consider an investor employing 𝑁 long-short factor strategies to gain (naive) diversification by holding and

maintaining (through frequent rebalancing) an equally-weighted factor portfolio. The conditional variance of

portfolio returns is given by

𝜎2
𝑝,𝑡 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑘=1

𝑤𝑖,𝑡𝑤𝑘,𝑡𝜎𝑖𝑘,𝑡 =
1
𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑘=1

𝜎𝑖𝑘,𝑡 , (1)

where 𝜎𝑖𝑘,𝑡 represents the conditional covariance of factor 𝑖 with factor 𝑘 at time 𝑡 and 𝑤𝑖,𝑡 [𝑤𝑘,𝑡 ] defines the

portfolio weights of factors 𝑖 [𝑘], which are simply set to 𝑤𝑖,𝑡 = 𝑤𝑘,𝑡 = 1
𝑁

. An attractive feature of multi-factor

investing is the documented uncorrelated behavior among long-short factor strategies (see Footnote 4 in Section

1). Therefore, an investor who diversifies across factor styles and ASCLs may expect to hold a portfolio of risky,

yet uncorrelated (on average, positive) return streams, or put differently, a set of truly orthogonal risk premia (with
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𝜎𝑖𝑘,𝑡 = 𝜎𝑖𝑘 = 0,∀𝑖 ≠ 𝑘). This investor has a simpler perception of portfolio risk:

𝜎2
𝑝,𝑡 =

1
𝑁2

𝑁∑︁
𝑖=1

𝜎2
𝑖,𝑡 . (2)

In other words, an investor assured of uncorrelated factor returns is only concerned with factor variances as driver

of (time-varying) portfolio risk; correlations are deemed irrelevant.

This perspective differs from that of a typical diversified long-only equity investor, who knowingly holds a

portfolio of moderately (or even highly) correlated assets. For such an investor, changes in both variances and

covariances can have a considerable impact on overall portfolio variance. Accordingly, studies identify variance

and correlation risk premia, compensating those who enable investors to hedge against stochastic variance and

correlation fluctuations.10 In this context, return co-movements become particularly crucial during market stress,

that is, when diversification is needed most and often breaks down, as empirical studies have observed (e.g., Ang

and Chen (2002) or Preis et al. (2012)).

Pollet and Wilson (2010) describe a model linking stock return correlations to the market risk premium, while

showing simultaneously that AV may be un- or even negatively related to the risk premium. Empirically, they

find higher AC to predict higher future U.S. equity market excess returns. Conversely, when controlling for AC,

AV exhibits a negative yet insignificant link, supporting the model’s hypothesis that changes in aggregate risk can

translate into shifting correlations between stocks. However, Chen and Petkova (2012) report divergent results for

the U.S. equity market. They find AV as only significant predictor of future market excess returns and highlight

differences in sample period, data frequency, and stock universe as potential reasons for deviations to Pollet and

Wilson (2010). More recently, Jondeau et al. (2019) assess AV and AC in comparison to average skewness as

predictors for future U.S. stock excess returns and report favorable results for the latter variable. 11

In prior studies on equity, AV (or average volatility) is typically understood as a proxy for aggregate idiosyncratic

risk (e.g., Campbell et al. (2001), Goyal and Santa-Clara (2003), Bali et al. (2005), or Jondeau et al. (2019)), while

AC is often regarded as measure of aggregate market risk (e.g., Pollet and Wilson (2010), Jondeau et al. (2019)).12

For a multi-factor investor, AV across all factors in the portfolio quantifies the conditional risk of investing in

a single arbitrary factor (idiosyncratic component), while AC proxies the conditional benefits of diversifying

across factors (systematic component).13 The total conditional risk of the multi-factor portfolio depends on both

components and two key considerations: (1) Is it generally a risky time to invest in any arbitrary factor strategy?

(2) Does broad diversification across factors offer risk reduction benefits for multi-factor investors, as suggested in

the literature (see Section 1)? Starting from these considerations, we can think further about what a spike in either

of the two components implies.

To emphasize the implications of surging AC, we can consider an extreme scenario, that is, AC climbs from

near 0 to 1, while factor variances and unconditional mean returns remain stable. In this case, instead of an

10 See for instance Carr and Wu (2009), Bollerslev et al. (2009), and Buss et al. (2017) on variance risk premia and Driessen
et al. (2009), Buraschi et al. (2014), Mueller et al. (2017), and Buss et al. (2017) on correlation risk premia.

11 Following Jondeau et al. (2019), I observe average skewness as control variable in my empirical analysis, see Section A.2.1.
12 AC is also sometimes associated with investor disagreement (see e.g. Buraschi et al. (2014) or Jondeau et al. (2019)).
13 Instead of measuring diversification benefits (i.e. low [high] AC, high [low] benefits), one may view the systematic component

as proxy for systematic multi-factor risk (low [high] AC, low [high] systematic risk), akin to Pollet and Wilson (2010). The
interpretation as diversification benefits follows authors such as Campbell et al. (2001) or Buss et al. (2017).
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investment universe with 𝑁 orthogonal risky strategies, the investor now can only access one sort of compensated

risk exposure mimicked by all 𝑁 strategies. In other words, the formerly distinguishable risk factors have become

a single integrated risk factor, preventing the investor from realizing any further diversification benefits through

multi-factor investing.14 Essentially, this would imply that we have circled back to a single factor affecting all asset

returns, reminiscent of the CAPM – despite the empirical evidence suggesting diversification through multi-factor

investing due to low factor correlations (see Section 1).

Examining the idiosyncratic component, a surge in AV signals higher risk for an investment in any arbitrary

factor, indicating cross-sectional variance clustering. This refers to periods with concurrently elevated return

variation across the factor universe. What could be an economic interpretation of such shocks?

Considering factor premia as compensation for distinct risks, a rise in a factor’s (stochastic) variance increases

the risk for investors harvesting the premium. For instance, after an economic shock, investors might be less willing,

capable, and likely to bear a factor’s risk, leading to disinvestment and reduced risk-sharing.15 Alternatively, more

individuals may be willing to compensate others for risk-bearing, supplying more risk to share in aggregate. In

both cases, a risk-based explanation might further suggest that the increased risk implies a higher conditional risk

compensation.

Another prominent reasoning for outperforming factor strategies is widespread irrational investor behavior,

which is exploitable by sophisticated market players with the necessary funds and risk appetite.16 From this

perspective, increasing factor variance implies that exploiting the market anomaly caused by irrational investors

has become more risky. Assuming again an economic shock, investors might be less willing, capable, and likely

to exploit the anomaly, causing broader market distortions and more noise trader risk for the investors remaining

to exploiting the anomaly. Alternatively, the shock may fuel the anomaly by prompting more irrational investor

behavior, increasing stakes for investors betting against the irrationality.17 Both cases again highlight scenarios of

greater risk, yet also greater profit opportunities for factor investors.18

Importantly, both risk-based and behavioral perspectives on factors can align with the idea of exogenous

economic shocks affecting factor strategies’ conditional risk and return. After such shocks, factor investors will

likely need more risk appetite and capabilities to bear risk to stay invested. Therefore, at the aggregate multi-factor

level, events triggering AV spikes should introduce significant uncertainty about any risky endeavor’s future and

have economic implications on a global scale, given a broad set of factors, covering assets of many countries across

the world, various ASCLs, and different factor styles. For multi-factor investors, even those diversified across

14 The term "no-place-to-hide state variable", introduced by Buss et al. (2017), also suits AC. Following the notion of Buraschi
et al. (2014), it underscores correlation risk as a non-diversifiable risk within (stock) portfolios.

15 Investors’ funding liquidity may suffer from shocks due to destabilizing margins (which increase in illiquidity), leading
to excessive deleveraging and liquidity spirals. As Brunnermeier and Pedersen (2009) outline, destabilizing margins are
particularly evident when fundamentally evaluating investments becomes challenging for financiers, which could be the
case following a major sudden shock. The authors also highlight the correlation between market liquidity and volatility and
emphasize cross-sectional co-movements in liquidity, since typically investors facing capital constraints sell multiple assets.

16 Exploiting market anomalies is usually not without risks for investors (e.g., De Long et al. (1990)).
17 An example might be a shock severely stressing a substantial portion of investors. Porcelli and Delgado (2009) show

experimentally that stress leads individuals to rely on established reactions to risk, potentially intensifying pre-existing
behavioral biases when making financial decision (see also Starcke and Brand (2012) for a literature summary on decision
making under stress). For instance, collective stress during a recession due to fears of job loss illustrates this phenomenon.

18 I abstract from cases where factors cease to produce excess returns, for instance due to investor correcting their behavioral
biases, causing anomalies to disappear. Moreover, I do not delve into data mining as explanation for factor performance;
refer to Footnote 3 for more on this topic.
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several strategies with supposedly zero correlations, it poses a serious challenge to mitigate such broad-based

shocks.

Why is that? By defining 𝐴𝑉𝑡 = 1
𝑁

∑𝑁
𝑖=1 𝜎

2
𝑖,𝑡

and re-arranging Equation 2, the portfolio risk when all assets are

assumed to be uncorrelated, it becomes clearer:

𝜎2
𝑝,𝑡 =

1
𝑁2

𝑁∑︁
𝑖=1

𝜎2
𝑖,𝑡 =

𝐴𝑉𝑡

𝑁
. (3)

For a multi-factor investor assuming zero correlations, the impact of the systematic component (diversification

benefit) is deemed fixed. Therefore, 𝜎2
𝑝,𝑡 depends solely on AV, representing the idiosyncratic component (risk

of investing in any arbitrary factor), and on the number of factor strategies (𝑁) available for naive diversification.

To further simplify Equation 3, we can assume, as in Pollet and Wilson (2010), that all factors exhibit the same

variance, i.e. 𝜎2
𝑖,𝑡

= 𝜎2
𝑘,𝑡

= 𝜎2
𝑡 . In this case, 𝐴𝑉𝑡 = 1

𝑁

∑𝑁
𝑖=1 𝜎

2
𝑖,𝑡

= 𝜎2
𝑡 , and total portfolio risk is given by:

𝜎2
𝑝,𝑡 =

𝐴𝑉𝑡

𝑁
=
𝜎2
𝑡

𝑁
. (4)

When AV (aka 𝜎2
𝑡 ) spikes, the only risk management tool available to lower portfolio risk to pre-spike levels, aside

from reducing overall risk exposure through disinvestment, is to include additional sensible factor strategies in the

portfolio, thereby enhancing diversification benefits and reducing risk.19

However, identifying new, reliable and uncorrelated strategies is time-consuming and costly. While today’s

factor zoo offers myriad candidate strategies, this was not the case in the 1970s at the beginning of my data

sample, when gathering data was more inconvenient and there was less data available to conduct meaningful

backtests. Today, however, identifying candidate strategies is no longer a major challenge, but rather evaluating

their sensibility and reliability. In sum, the number of strategies available to investors, 𝑁 , is likely to be costly

to increase and, therefore, rather persistent, especially in the short run. 20 Consequently, the only feasible way to

decrease risk is to disinvest, i.e. to reduce exposure to the risky multi-factor portfolio.

As asset return variance exhibits short-term persistence (e.g., Cardinale et al. (2021)), investors may anticipate

a cross-sectional variance shock to persist in the short run. For example, investors constrained by portfolio variance

limits may hesitate to invest or remain invested after a spike in variances across factors that is likely to show

some persistence. Therefore, less-risk appetite of (multi-)factor investors following a spike might lead to higher

expected risk and required return compensation in the upcoming period, that is, a variance-in-mean relationship.21

As a result, conditional AV should assist in short-term forecasting of multi-factor risk and returns. Conversely,

19 This idea follows Campbell et al. (2001) and Connor et al. (2006), who find increased idiosyncratic stock volatility over time.
In consequence, they argue, more randomly-chosen stocks have become necessary to reduce portfolio risk to any given level.

20 While I focus on the short run, it is also unrealistic to assume investors in a competitive environment can endlessly discover
new, reliable, and uncorrelated factor strategies, even with ample time, means, and willpower to conduct research. Ultimately,
the existence of an infinite number of profitable systematic trading strategies, which all can be rationalized by a compelling
(risk-based or behavioral) narrative, seems implausible.

21 The concept implies a positive association between expected risk and investor compensation. Various studies (e.g., Campbell
(1987), Glosten et al. (1993), Harvey (2001)) have tested the validity of this idea using equity (market) data, however, with
only limited success, as Pollet and Wilson (2010) summarizes. More recently, Moreira and Muir (2017) have presented
conflicting evidence by building volatility-managed portfolios, which deliver risk-adjusted outperformance by exploiting a
weakening in the risk-return tradeoff when volatility spikes. The authors highlight that variance is stochastic and highly-
persistent, while having no explanatory power for future returns; their results and investment implications remain highly
debated in the literature. Liu et al. (2019), Cederburg et al. (2020), Barroso and Detzel (2021), and Angelidis and Tessaromatis
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as investors expect factors to proxy orthogonal risks (at least in the short run22 ), AC between factors should

lack predictive power. In other words, acknowledging stochastic factor variances but assuming fixed near-zero

correlations may lead investors to compensate only for variance, but not for correlation risk.

The setup has another testable implication. The difference between Equations 1 and 2 lies in multi-factor

investors’ perception of uncorrelated factors. Yet, this is not entirely accurate – some factors are not perfectly or-

thogonal and correlations fluctuate to some extent over time (see Section 1). Thus, I would expect both components,

AV and AC, to be necessary to decompose contemporaneous portfolio variance.

A final implication emerges from the above line of thought. In the short run, multi-factor investors focus on

variances, perceiving factors as totally uncorrelated. However, some time of higher-than-excepted correlations

between factors may lead investors to reassess, potentially abandoning some strategies with diminishing diversifi-

cation benefits. Accordingly, correlations may show more relevance in the medium/long run. This expectation is

supported by the findings of Buss et al. (2017), who find the variance risk premium most relevant at relatively short

horizons, while the correlation risk premium shows more predictive power at longer horizons when compared to

the former premium.

3 Factor Data

This study employs a subset of monthly end-of-month return TS for diversified long-short factor portfolios, initially

introduced in Vincenz and Zeissler (2024). The set spans 14 factor strategies within the ASCLs equity (comprising

U.S. single stocks and international equity indices), commodity, and FX.23

In detail, the equity section includes the five well-known Fama-French U.S. factors and two international equity

country index factors. Commodity factors are derived from exchange-traded commodity futures contracts for 31

commodities. Lastly, FX factors are based on monthly spot and forward U.S. dollar exchange rates of 69 currencies.

Factors are constructed by cross-sectional ranking assets based on factor characteristics and forming long-short

portfolios with the top/bottom 16.67% of assets. Granular transaction costs are applied for more realistic returns

(see Table A4 in the Appendix). For details on the construction and methodological differences to other papers,

see Appendix A.1 and Vincenz and Zeissler (2024). Factor returns are ex-ante volatility-scaled (10%) with an

expanding window of all previous returns.24 Unless stated otherwise, returns discussed are log excess returns, in

line with Pollet and Wilson (2010).

As a simple multi-factor strategy, I use the equally-weighted ’naive’ benchmark, akin to Vincenz and Zeissler

(2024). It includes all available factors at a given time, representing the broad market of factor premia. Additionally,

(2023) critique OS implementability or after-cost profitability (i.e. limits to arbitrage). Conversely, DeMiguel et al. (2021)
present a volatility-managed multi-factor strategy outperforming OS and after transaction costs.

22 Investors perceiving factor returns as uncorrelated might be especially convinced in the short run, given that correlations
typically exhibit a slower pace of change compared to volatilities (see Frazzini and Pedersen (2014)).

23 Table A4, taken from Vincenz and Zeissler (2024), provides a detailed overview of the factors. Compared to Vincenz and
Zeissler (2024), the dataset here differs in two ways: I exclude factors with negative average monthly returns, except for
E_US.SMB, leading to the exclusion of C_Value, FI_Carry_Slope, FI_Momentum, FX_Momentum and FX_Value. I keep
the Fama-French U.S. Size factor, since it is quite common in the literature. Additionally, I exclude fixed income factors due
to their limited number of observations and convert the unbalanced set into a balanced one.

24 This approach sizes each factor with equal ex-ante volatility, enhancing diversification by reducing the risk contribution of
highly volatile factors (e.g., Blin et al. (2021), Vincenz and Zeissler (2024)). It fits along the lines of Equation 4, which
assumes all factors have the same variance.
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Figure 3: Mean and Standard Deviation of Factor Excess Returns.
This figure presents summary statistics for the set of 14 monthly factor excess return TS and the various multi-factor
portfolios. In detail, the left panel reports the annualized arithmetic mean with associated two-sided 95% confidence
intervals as box plots, while the right panel analogously reports the annualized standard deviation. Data covers
the full investigation period from July 1971 to December 2018. The factor labels’ first letters (at the left margin)
indicate the associated ASCL of a given factor, where C, E, and FX are abbreviations for commodity, equity, and
foreign exchange, respectively. The grey numbers on the right beside the factor labels report the available number
of monthly observations per factor during the investigation period starting in July 1971 and ending in December
2018. Standard errors for normal confidence intervals are obtained by bootstrapping (see Appendix A.6 for more
information). Monthly mean returns and their standard errors are annualized by multiplying with 12, while standard
deviations and their standard errors are multiplied with

√
12. Consult Table A4 and Section 3 for an overview of all

factor TS analyzed. Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024).
An overview of the abbreviations used in the course of this paper is provided in Table A3.

I consider two sorts of equally-weighted substrategies, defined by factor association to either (1) a respective ASCL

or (2) a specific factor style.25 Monthly rebalancing ensures consistent exposure for all equally-weighted strategies.

For a concise overview of return series in the balanced set, Figure 3 presents means and standard deviations over

the investigation period from July 1971 to December 2018, with associated two-sided 95% confidence intervals as

box plots. As shown, mean returns and volatilities vary notably within and across ASCLs. In sum, the balanced set

offers a global perspective on risk factors, making it ideal for studying the relevance of variances and correlations

for multi-factor investors.26

Figure 4 reports cumulative log excess returns of all factors and the naïve benchmark over time. In line with

the low correlations depicted in Figure 2, combining factors – even in a naive manner – substantially reduces

portfolio volatility (see also Figure 3). Even during the great financial crisis (or the associated NBER recession),

in which several factors crashed at some point, the drawdown of the naive benchmark is comparably small. This is

because the worst declines in individual factor strategies during this period did not occur entirely synchronously,

preserving some diversification benefits. The overall smooth performance of the naive benchmark is reassuring

for multi-factor investors and asset managers advocating diversification across factors. In sum, these descriptive

25 Styles include carry, momentum, and market. Non-attributable strategies are categorized as ’Other’. Most factors’ style is
evident from their name. Commodity basis-momentum falls under momentum, while U.S. single-stock value, size, quality,
and investment factors are non-attributable.

26 A significant caveat of using this extensive historical dataset is that the main hypothesis - multi-factor investors’ focus on
variances - presumes investor awareness of these systematic investment strategies and their low cross-correlations in the first
place. Both was likely not broadly given at the beginning of the sample period. Thus, for robustness, I re-estimate the main
regression specification using subsamples.
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Figure 4: Cumulative Log Excess Returns of Factors and Naïve Benchmark.
This figure plots cumulative log excess returns of the constructed set of 14 monthly factor TS and of the naïve
benchmark, which equally weighs all available factors in the investment universe at a given point in time, over
the full investigation period from July 1971 to December 2018. Moreover, gray shading is highlighting periods of
recessions in the U.S., as defined by the NBER. The factor labels’ first letters (plotted at the right margin) indicate
the associated ASCL of a given factor, where C, E, and FX are abbreviations for commodity, equity, and foreign
exchange, respectively. Consult Table A4 and Section 3 for an overview of all factor TS analyzed. Detailed data
set information is available in Appendix A.1 and Vincenz and Zeissler (2024). An overview of the abbreviations
used in the course of this paper is provided in Table A3.
statistics contribute to the perception of factor strategies as largely uncorrelated return streams, raising questions

about the relevance of factor correlations for multi-factor investors.

4 Empirical Application

In Section 4.1, I outline the methodology for my key measures, which proxy the conditional variance of the

multi-factor portfolio. Subsequently, Section 4.2 presents the main IS results, followed by a summary of robustness

tests in Section 4.3.

4.1 Methodology - Approximations for Benchmark Variance

As suggested by Pollet and Wilson (2010), I approximate the variance of the equally-weighted multi-factor

benchmark by the product of two components. Specifically, at time 𝑡, I observe the product of the weighted AV of

individual factors (𝐴𝑉𝑡 ) and the weighted AC between all factor pairs (𝐴𝐶𝑡 ):

�̂�2
Naive,𝑡 ≈ 𝐴𝑉𝑡 × 𝐴𝐶𝑡 (5)

Pollet and Wilson (2010) analytically show that this product equals the portfolio variance when all portfolio assets

share the same variance. Empirically, they confirm its viability as a proxy for U.S. stock market portfolio variance.

While Pollet and Wilson (2010) use daily stock data over a quarter to estimate the two components (for

predictions over the subsequent quarter), I use a different approach for my set of 𝑁 = 14 monthly factor TS. At time

𝑡, AV is the equally-weighted average across sample variances of all factors, estimated over the previous twelve

months:

𝐴𝑉𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

�̂�2
𝑖,𝑡−12:𝑡 (6)
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Similarly, AC is the equally-weighted average of all 27 elements in the sample correlation matrix. The sample

correlation between factor 𝑖 and 𝑘 , �̂�2
𝑖𝑘,𝑡−12:𝑡 , is again estimated using the last twelve observations28:

𝐴𝐶𝑡 =
1
𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑘=1

�̂�2
𝑖𝑘,𝑡−12:𝑡 (7)

Following Pollet and Wilson (2010), I construct two competing conditional variance measures based solely on

the equally-weighted portfolio’s return data. The first, VAR𝑡 , is the sample variance of the multi-factor benchmark

over the preceding 12 months. The second, VAR.G𝑡 , is derived by estimating a GARCH(1,1) model with an

expanding window and extracting the one-step ahead forecast.
Name Symbol Obs Min Mean Max Std Skewness Kurtosis Autocorr (1)

Average Variance 𝐴𝑉𝑡 (12M) 559 0.018 0.086 0.433 0.067 2.43 6.83 0.98
Average Correlation 𝐴𝐶𝑡 (12M) 559 1.484 9.671 24.203 4.788 0.79 0.06 0.92

Naive Variance VAR𝑡 (12M) 559 0.001 0.008 0.043 0.008 2.21 4.83 0.95
Naive Variance GARCH VAR.G𝑡 559 0.004 0.010 0.119 0.008 6.73 65.67 0.72

Table 1: Approximations for Benchmark Variance.
This table lists the approximations for the variance of the multi-factor benchmark. Additionally, column ’Obs’
reports the available number of monthly observations per variable over the full investigation period, starting in July
1971 and ending in December 2018. Moreover, in the last seven columns the table provides summary statistics
of the predictor TS, specifically the minimum and maximum monthly observation as well as monthly arithmetic
mean, standard deviation (all stated as percentage), skewness, excess kurtosis, and the first-order autocorrelation.
The TS of the variables were tested to rule out the possibility of containing unit roots with sufficient confidence
(see Table A5). Refer to Section 4.1 for information on all variables that approximate (components of) multi-factor
variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course of this paper is
provided in Table A3.

Table 1 presents summary statistics for the constructed measures, and Figure 5 illustrates their dynamics over

the investigation period. Consistent with previous research highlighting diversification benefits across factors, AC

remains low throughout the sample period, averaging 0.1 with a standard deviation of 0.05. Furthermore, 𝐴𝐶𝑡
is positively skewed, indicating periods of correlation clustering. However, 𝐴𝐶𝑡 never surpasses 0.24 over the

entire investigation period, a relatively low level compared to stock correlations.29 Thus, even during times of

synchronously rising correlations, multi-factor investors still retain some diversification benefits.

When comparing summary statistics for 𝐴𝑉𝑡 and the sample variance estimated from multi-factor returns

(VAR𝑡 ), the latter’s mean (0.01%) is much lower than the former’s (0.09%). This aligns with the findings of Pollet

and Wilson (2010) regarding their respective measures for the stock market. Moreover, 𝐴𝑉𝑡 exhibits notably higher

volatility than the benchmark variance measure (0.07% vs. 0.01%), also consistent with Pollet and Wilson (2010).

Additionally, both series show positive skewness and excess kurtosis to a much greater extent than 𝐴𝐶𝑡 , indicating

periods of substantial simultaneous volatility spikes across multiple factors.

27 In defining AC, I deviate from Pollet and Wilson (2010), who exclude diagonal elements in the sample correlation matrix
when calculating their measure (i.e. 𝐴𝐶𝑡 = 1

𝑁 (𝑁−1)
∑𝑁
𝑖=1

∑
𝑘≠𝑖 �̂�

2
𝑖𝑘,𝑡−12:𝑡 ). Following their approach for my set of long-

short factors results in periods with AC falling below zero (see Figure A5). In consequence, the variance approximation
�̂�2

Naive,𝑡 ≈ 𝐴𝑉𝑡 × 𝐴𝐶𝑡 takes on insensible negative values, leading me to prefer the definition in Equation 7.
28 I adopt a rolling 12-month horizon to align with the estimation window for variances when calculating AV (similar to Pollet

and Wilson (2010)). However, this is relatively short for estimating correlations. Frazzini and Pedersen (2014), dealing with
monthly returns, use one-year horizons for standard deviations and five-year windows for correlations, requiring at least
twelve non-missing data points for the former and 36 observations for the latter. Their argument for this approach is evidence
that correlations change more slowly than volatilities.

29 For instance, the AC measure constructed by Pollet and Wilson (2010) (based on U.S. equity data) averages 0.237 and reaches
a maximum of 0.646 over their sample period.
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Figure 5: Regressors over Time. Approximations of Benchmark Variance.
This figure presents the dynamics of the approximations of multi-factor variance used as regressors over the
full investigation period from July 1971 to December 2018. Moreover, gray shading is highlighting periods of
recessions in the U.S., as defined by the NBER. Refer to Section 4.1 for information on all variables that approximate
(components of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used
in the course of this paper is provided in Table A3.

Table 1 also provides insights into the series’ persistence by presenting first autocorrelation coefficients. All

series exhibit substantial, some extreme, serial correlation, with 𝐴𝑉𝑡 showing the highest coefficient (0.98), and

VAR.G𝑡 the lowest (0.72). While observing high persistence is generally in line with results by Campbell et al.

(2001) and Pollet and Wilson (2010) on equity market variance, it is more pronounced here due to the use of

rolling overlapping windows VAR.G𝑡 , using an expanding window for fitting the GARCH model, displays the

lowest persistence (which is still considerable in absolute terms).

Given the high serial correlation, I test whether the series contain unit roots by conducting Augmented Dickey-

Fuller tests (see Table A5 in the Appendix). However, I reject the null hypothesis of existing unit roots at the

five percent level and proceed to analyze the TS in levels. Furthermore, a visual analysis of the series in Figure 5

reveals temporary spikes, but no lasting trend. These findings align with prior research on U.S. equity data. When

analyzing their AV measure, Pollet and Wilson (2010) identify multiple peaks and troughs but no discernible trend.

Moreover, studies by Schwert (1989), Campbell et al. (2001), and Connor et al. (2006) find no sustained rise in U.S.

equity market volatility over time. Similarly, my data indicates highly volatile periods for multi-factor investors but

no clear overall increase in risk (variance) throughout the study period.

Supplementing these results, I pinpoint periods with major spikes in the measures (see Table A6 in the

Appendix). 𝐴𝑉𝑡 surged in the early to mid 1970s, concurrent with the OPEC oil embargo, rising global inflation,

and the ensuing U.S. recession. Afterwards, 𝐴𝑉𝑡 peaked only twice to a similar extent – during the Dotcom Bubble

burst and subsequent global economic slowdown in the early 2000s, and in 2009, coinciding with the conclusion

of the Global Financial Crisis and the associated U.S. recession. The spikes in 𝐴𝑉𝑡 during these times of increased

economic and financial uncertainty are not entirely surprising and match those detected by Jondeau et al. (2019)
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for U.S. stock data. Importantly, the peaks in 𝐴𝐶𝑡 do not coincide with these renowned periods, providing further

evidence of factor diversification benefits, even in such uncertain times. Thus, in accordance with the narrative in

Section 2, I observe occasional surges in the risk of an arbitrary factor investment, particularly during periods of

heightened global uncertainty; yet, broad diversification has consistently reduced risk for multi-factor investors,

even during these challenging times.

Finally, an important observation concerns spikes in VAR𝑡 , the sample variance of the multi-factor return series.

Three out of four peaks in VAR𝑡 coincide (partially) with 𝐴𝑉𝑡 spikes, indicating that 𝐴𝑉𝑡 has a relatively greater

impact on total variance dynamics of the multi-factor benchmark compared to 𝐴𝐶𝑡 .30 Furthermore, examining the

TS behavior reveals that both total multi-factor variance and the idiosyncratic component (AV) tend to be higher

during economic downturns, roughly aligning with NBER recessions. This pattern mirrors prior findings on the

counter-cyclical behavior of equity variance measures relative to the business cycle31 and supports the narrative of

major global economic shocks triggering increased AV, as discussed in Section 2.

As there are various studies examining other variables to predict aggregate risk and returns, I consider numerous

control variables to provide a comprehensive comparison. Details are provided in the Appendix. Specifically, I

observe other approximations of multi-factor risk, covering higher moments (average skewness/kurtosis), return

dispersion (cross-sectional variance/skewness/kurtosis), and the two TS phenomena momentum and value (Section

A.2.1). Additionally, I further control for the influence of external macroeconomic and market data, such as

inflation, fiscal balance, money supply, yield curve steepness, business cycle information, and market-implied

volatility (Section A.2.2).

4.2 IS Results

Following Pollet and Wilson (2010), Section 4.2.1 tests how the regressors relate contemporaneously to multi-

factor variance.32 Hereafter, Section 4.2.2 assesses their power to forecast future benchmark variance over different

horizons. Accordingly, Section 4.2.3 reports results for (mean) return forecasts. To be concise, recurring tables

covering regression results for the various horizons, referenced frequently in the following, are placed in Appendix

B (see Table A7 to A19). An aggregate perspective, summarizing results across all horizons, is provided for the

variance forecasting in Figures 6 and 7 and for the return forecasting in Figures 8 and Figure 9.

4.2.1 Variance Decomposition

Table A7a shows the first set of OLS regression results, concerning the constructed approximations for benchmark

risk. In the first two columns, using either solely AV or AC to explain contemporaneous benchmark variance, both

estimated coefficients show notable t-statistics (2.26 and 5.07, respectively) and exhibit a positive sign. Similar to

30 This is in line with the results of Jondeau et al. (2019), who find in their study of U.S. equity data that market variance and
AV show similar dynamics over time.

31 An early study by Officer (1973) explores the link between U.S. equity market variability and industrial production as proxy
for business fluctuations. Campbell et al. (2001) find higher market-, industry-, and firm-level volatility for U.S. equity during
recessions; Connor et al. (2006) broadly confirm these results. Jondeau et al. (2019) report similarities in the dynamics of
U.S. stock market variance and a measure of AV across stocks, also noting that market variance spikes typically during NBER
recessions. Moreira and Muir (2017) observe co-movement in volatility across their factor set (mostly US-equity-based) and
report widespread spikes in recessions. In contrast, Pollet and Wilson (2010) find no evident link between their AV and AC
measures and NBER recessions.

32 Here and in the following regressions, the rolling measures estimated from the monthly data use overlapping windows.
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the findings of Pollet and Wilson (2010), AV accounts for a larger portion of variation (31%) compared to AC

(23%). However, the pattern is less pronounced than in their study covering the U.S. stock market.33

The third column combines both measures linearly and reports even larger t-statistics for both AV (2.32) and

AC (6.55), but also for the estimate of the intercept term (-3.15), which in this specification establishes significance

for the first time. Moreover, the specification is able to explain slightly more variation (57%) than the sum of the

individual approaches. Subsequently, Column four shows results for the product of AV and AC. The term appears

highly significant, with a t-statistic of 4.44, and the model accounts for a higher portion of variation (69%) as

the specification combining both terms linearly. In addition, the estimate of the intercept term appears - again -

insignificant in this scenario. However, the equation term is not reaching the magnitude of statistical significance

(t-statistic of 39.1) and explanatory power (𝑅2 of 98%) that is reported by Pollet and Wilson (2010) in their study

using daily and quarterly stock market data.

The fifth column provides results for a model combining all previous equation terms. In this setup, only the

coefficient associated with the product of AV and AC is still significantly different from zero (t-statistic of 6.52),

while 𝑅2
adj gets only a minor boost by incorporating the individual terms and rises from 69% to 72% (comparing

with the previous column).

The following columns (six to twelve) report findings for the additional risk approximations, observed in

isolation, while the last column shows results for a specification combining all previous variables. Only 𝐶𝑆𝐾𝑡
(column ten) achieves a significant estimate standalone (t-statistic of -4.05), but the 𝑅2

adj is small (3%) compared to

𝐴𝑉𝑡 , 𝐴𝐶𝑡 , and their product. When observing all variables simultaneously, the coefficients of almost all variables

(with VAL𝑡 as exception) are accompanied by absolute t-statistics higher than 2, with those of 𝐴𝑉𝑡 and the product

of 𝐴𝑉𝑡 and 𝐴𝐶𝑡 being exceptionally high (-6.87 and 13.83, respectively). In terms of variation explained, this

model is slightly better than the specification solely based on 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , and their product (72% vs. 87%, compare

column five), indicating that the additional predictors lead to some modest improvements. However, the estimate

of the intercept shows significance for the more complex model in the last column, contrasting the simpler model

in column five.

Analogously to Table A7a, Table A7b shows the second set of OLS regression results, concerning the external

candidate predictors. The first seven columns report results for each predictor individually, the following six

for successively combining the variables, and the last three columns for specifications combining all analyzed

regressors. Considered standalone, only inflation (column one; t-statistic of 2.44), the business cycle indicator

ADS (columns six; t-statistic of -3.06), as well as the VIX (columns seven; t-statistic of 4) exhibit statistically

significant estimates, where an increase in INFLTN or VIX leads to increased contemporaneous benchmark

variance, while an increase in ADS has the opposite effect.34 This indicates that in times of rising (falling) inflation

or market-implied equity volatility, investors in a naively diversified multi-factor strategy face more (less) return

variation, while an improving (worsening) business environment typically comes with lower (higher) variance in

returns. The observation of negative signs estimated for the coefficients of the business cycle variables is consistent

with the notion of a counter-cyclical dynamic between variance measures and the business cycle, as established

33 In their study, Pollet and Wilson (2010) report a 𝑅2 of around 70% (37%) for AV (AC) when decomposing contemporaneous
variance.

34 The effect of the second business cycle indicator, CFNAI, is similar in terms of its direction compared to ADS, but the
coefficient estimate and t-statistic associated are notably smaller in absolute magnitude.
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by various other authors (see Section 4.1). When comparing the standalone explanatory power of the external

variables with those of the variance approximations, only the VIX shows similar strong performance (𝑅2
adj of 30%).

This does not come as a surprise given the VIX’s interpretation as market-implied measure of (equity) risk.

Turning to the specifications that successively combine the predictors (columns eight to 13), only INFLTN

stays relevant (in terms of t-statistic) in all of the model versions except for the last iteration, in which the VIX is

added and, thereafter, the only variable with a significant coefficient estimate. When also considering AV, AC the

product of both, and the other risk approximations in parallel to all external predictors (last three columns of Table

A7b), several variables jointly show significant estimates. Most importantly, the product of AV and AC appears -

as before - highly relevant for explaining contemporaneous variance.

In sum, the analysis shows sufficient support of the product of AV and AC being an adequate approximation of

benchmark variance, even after controlling for various other candidate predictors. This is in line with the results of

Pollet and Wilson (2010) in the context of the stock market and the framework of multi-factor investing outlined

in Section 2.

4.2.2 Variance Forecasting

Similar to Pollet and Wilson (2010), I analyze in the next step whether the contemporaneous regressors have

power to forecast future benchmark variance, calculated over the subsequent 12-month period. Table A8a shows

the first set of OLS regression results, concerning the constructed approximations for benchmark risk. The first

two columns explore models solely based on either AV or AC as explanatory variable. Here, only AV exhibits an

estimated coefficient with a notable t-statistic (4.68); using the associated model allows to explain roughly 12% of

variation in future variance. This finding is underlined by column three, which shows a specification combining

both variables with only marginally higher 𝑅2
adj. In comparison: Pollet and Wilson (2010) find both variables

predicting future stock market variance standalone, but with AV appearing as the more powerful predictor.

Column four shows that the product of AV and AC, which has shown strong explanatory power for contem-

poraneous variance, is (to a lesser extent) also useful in the forecasting exercise (t-statistic of 2.24; 𝑅2
adj of 3%),

similarly to the results of Pollet and Wilson (2010). However, column five reveals that after controlling for both

AV and AC, the estimated coefficient of the product term appears no longer significant, while the coefficient of AV

(AC) exhibits a t-statistic of 2.96 (0.75). This suggests that the information relevant for forming predictions about

future multi-factor portfolio variance is inherent to the variances across underlying factors (i.e. AV), in contrast to

the correlations between those factors (i.e. AC).

Column six to nine provide insights into how the competing measures of benchmark variance, based on the

multi-factor return series, performs standalone, as well as combined with AV. Regardless of whether comparing the

variables standalone or in a combined setting, AV emerges as the better performing predictor and explains a notably

higher portion (12%, standalone) of variation in future benchmark variance than the variance measure based on

benchmark returns (3%) and the GARCH approach (6%).35 However, the specification jointly applying 𝐴𝑉𝑡 and

VAR.G𝑡 (column nine) indicates that predictions based on AV can be slightly improved by incorporating GARCH:

Both coefficient estimates show significance and 𝑅2
adj is slightly higher compared to observing AV standalone.

35 As an interesting side note: For this rather short forecast horizon, the GARCH estimate is a better predictor of future variance
than simply use contemporaneous (short-term) variance. This is, indeed, no surprise given that GARCH models are favorably
applied in short-term volatility forecasting.

16



Figure 6: IS Explanatory Power of One-Regressor Specifications per Forecast Horizon. Variance Decomposi-
tion/Forecasting. (Caption on the next page.)
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Figure 6: IS Explanatory Power of One-Regressor Specifications per Forecast Horizon. Variance Decomposi-
tion/Forecasting.
This figure illustrates the adjusted 𝑅2 (𝑅2

adj) of the various measures used as explanatory variable for decom-
posing/predicting the conditional variance of the naive multi-factor portfolio, when each variable is applied in
isolation over the various tested forecast horizons (the results of the decomposition of contemporaneous variance
are indicated by the horizon labeled ’0’). More information on the associated regression results (for instance the
𝑅2

adj, expressed as number) are provided in Tables A7 to A12. Refer to Sections 4.1 (multi-factor variance), A.2.1
(multi-factor risk), and A.2.2 (external predictors) for an overview of explanatory variables in the regressions. An
overview of the abbreviations used in the course of this paper is provided in Table A3.

The subsequent columns (ten to 16) report findings for the various other approximations of benchmark risk,

observed in isolation, while the last column provides a combined model of all previous predictors. While 𝐶𝑆𝑉𝑡 ,

𝐶𝑆𝐾𝑡 , and MOM𝑡 - taken in isolation - exhibit significant estimates, the explanatory power (in terms of 𝑅2
adj) of

both is well below that established for AV. When considering all risk approximations jointly, several variables

besides AV show significant estimates, but the coefficient of AV exhibits the highest t-statistic, highlighting AV

as the main driver of predictability. Notably, the estimates of AV so far show significance in all tested regression

specifications and the signs of the estimates are consistently positive across all model variations in Table A8a.

To summarize, investors can expect a rise (fall) in benchmark variance over the upcoming year after a rise

(fall) in current AV, while no statistically significant effect between AC and subsequent variance can be detected.

Importantly, this is in line with the predictions following from the view on multi-factor investing outlined in Section

2.

Table A8b shows the second set of OLS regression results, concerning the external candidate predictors. No

external predictor - except for the VIX - exhibits a significant coefficient estimate when tested standalone. When

combining the various variables, also other measures show more notable t-statistics in some cases, as for instance

the business cycle indicator ADS (columns 12-13) or INFLTN (columns 15-16). However, even when controlling

for these other variables (columns 14-16), the coefficients of AV still shows the highest observable t-statistics.

Besides the base scenario with a forecast window of 12 months, I also examine specifications over other forecast

horizons to check for robustness of the results. Figure 6 provides a visual summary of the explanatory power per

predictor (applied in a one-regressor specification) over the different horizons, while Figure 7 summarizes the

statistical significance for each regressor and horizon. More details can be found in the appendix. Specifically,

Table A9 shows results when forecasting future variance over the subsequent six-month period. Importantly, the

findings qualitatively stay the same; while the forecast performance of AV is slightly less pronounced compared to

the one-year period, it is still notable compared to the other variables.36 The same holds true for a forecast horizon

of 24-months (see Table A10). However, the performance is even less pronounced than observed for the six-month

window.37

When moving to even longer forecast windows, an interesting pattern can be observed. Table A11 provides

regression results when forecasting benchmark variance over the subsequent 60-month period. Five findings are

36 A small difference in the findings, compared to the 12-month horizon, is that at this short horizon, using VAR.G𝑡 as predictor
(t-statistic of 3.94 standalone) seems more promising in terms of significance than 𝐴𝑉𝑡 , despite the still strong performance
of 𝐴𝑉𝑡 as predictor standalone (t-statistic of 3.59). Additionally, also MOM𝑡 appears even better suited for the shorter window
(t-statistic of 3.06) when compared to the one-year period.

37 One notable aspect of the 24-month period is that it is the only among the various forecast horizons in which the coefficient
of AC, which is consistently negative across different horizons, exhibits a significant estimate when observed on its own.
However, when using both AV and AC, AC’s t-statistic drops below 2, while AV stays significant. As a side note: Also the
VIX shows relevance as predictor for this forecast horizon (standalone and combined with other variables, such as AV). In
fact, it appears to be even more promising than for the six- and 12-month windows.
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Figure 7: IS Statistical Significance per Regressor and Forecast Horizon. Variance Decomposition/Forecasting.
(Caption on the next page.)
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Figure 7: IS Statistical Significance per Regressor and Forecast Horizon. Variance Decomposition/Forecasting.
This figure summarizes, for each of the explanatory variables used in decomposing/predicting the conditional
variance of the naive multi-factor portfolio and per forecast horizons (the results of the decomposition of contem-
poraneous variance are indicated by the horizon labeled ’0’), the percentage of t-statistics (over all tested regression
specifications which include the given regressor) that exhibit an absolute value higher than 2. More information
on the associated regression results (for instance the t-statistics, expressed as number) are provided in Tables A7 to
A12. Refer to Sections 4.1 (multi-factor variance), A.2.1 (multi-factor risk), and A.2.2 (external predictors) for an
overview of explanatory variables in the regressions. An overview of the abbreviations used in the course of this
paper is provided in Table A3.

striking. First, the dominant role of AV (and its sidekick, VAR.G𝑡 ) as explanatory variable vanishes, while AC stays

irrelevant; observed standalone or as linear combination (columns one to three), no coefficient associated with

both variables exhibits significance at this horizon. Second, multi-factor variance shows (however, insignificant)

mean-reverting behavior over the five-year period (compare the negative coefficient estimate in column six in Table

A11a to Table A10a or A8a), broadly in line with the findings of Cardinale et al. (2021). Third, the product of AV

and AC in this setting appears only to be helpful when used in combination with other predictors (especially AV);

almost all coefficients associated exhibit significance across the specifications. The coefficient estimated is in all

cases negative, i.e. the product – a proxy for the portfolio variance – also captures the mean-reverting dynamic

that is observed for the sample variance measure. Fourth, while the variables approximating benchmark variance

seem more important to forecast short-term benchmark variance, the external predictors gain importance for longer

periods (comparing 𝑅2
adj in column 12 of Table A8b, Table A10b, and Table A11b). The VIX is the only external

predictor which behaves notably different, meaning equity-implied volatility proves relatively more helpful for

shorter horizons and, therefore, resembles – not surprisingly – the other benchmark variance approximations.38

Fifth, while none of the other risk approximations is of major help to improve the forecasts at this horizon,

𝐴𝑆𝑡 represents an exception and shows significant coefficient estimates in isolation as well as combined with the

other predictors.

In the final step, I test the relationships applying a 120-month forecast horizon (see Table A12). For this

extensively-long time period, mean-reversion of benchmark variance is - at a first glance - not evident anymore

and AV is again the dominant predictor of the set of variance approximations reported in Table A12a, while the

coefficients of AC and of the product of both variables are insignificant (observed in isolation).

In addition, Table A12b (together with the previous tables) reveals that the set of external predictors, while

showing low explanatory power compared to the set of variance approximations at short horizon, is strongly (and

almost monotonically) gaining importance for future variance forecasts when the forecast window is extended. For

the 10-year period, the specification combining all external predictors (see column 13 in Table A12b) explains

around 52% of variation in future benchmark variance, while the model combining the variance [risk] approximation

terms (see column five [17] in Table A12a) only establishes a 𝑅2
adj of roughly 15% [31%].

The dominant of the external explanatory variables at this horizon is the fiscal balance indicator, of which the

coefficient estimate exhibits significance in nearly all associated specifications (t-statistic of 8.9 standalone), and

which manages to explain around 12% in variation standalone (column 2). The positive coefficient is indicating

that a fiscal balance surplus (deficit) typically leads to higher (lower) benchmark variance in the future. While yield

curve steepness shows a significant estimate standalone, the explanatory power seems to get subsumed by the other

38 The higher and more robust informativeness of the VIX for shorter variance forecast horizons seems also sensible when
considering the construction of the index using 30-days option contracts on the S&P 500.
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predictors in most of the specifications with multiple regressors. The inflation indicator, with a coefficient estimate

insignificantly different from zero standalone, becomes relevant when applied together with BDGT.BLNC, but

shows again insignificant estimates when also the business cycle series are considered in parallel. However, for all

specifications based on even more variables (in columns 13-16 in Table A12b), the t-statistics associated with the

inflation coefficient are comparably high (for instance -14.65 when considering all variables in column 16). The

estimated sign of the coefficient is in all tested specifications consistently negative, indicating that a rise in global

inflation predicts a fall in future multi-factor variance over long horizons. Interestingly, CFNAI and ADS show no

notable forecasting performance when observed in isolation, but in almost all other specifications together with the

remaining variables. Lastly, for the VIX no relevant predictive power is observed at the ten-year horizon, similarly

to the five-year window.

While the insignificant results of AC and the product of AV and AC in a standalone model are somewhat

contrary to the idea formulated in Section 2 of relevance assumed at longer horizons, both coefficients (together

with AV), as well as those of other risk approximations show significant estimates for the last set of models

that combines all regressors (see columns 14-16 in Table A12b). In other words, while the macro and market

backdrop plays the dominant role when forecasting multi-factor risk at long horizons, variance (and broader risk)

approximations help to further sharpen the prediction. The positive signs of the estimates indicate that - when

controlling for the various external predictors that explain notable variation in future variance - higher AC, as well

as AV, today leads to higher variance for the multi-factor portfolio in the far distant future. The mostly negative

estimates for the product of both variables, which are observed in combination with other predictors, reveal that

there is some more nuanced mean-reverting behavior at work after having controlled for the strong effect of AV.

Lastly, it is notable that the variance forecasting results appear most accurate for the longest, followed by the two

shortest, and trailed by the intermediate horizons (compare 𝑅2
adj of last column’s specification in the lower part of

the previously referenced tables).

In sum, changing the forecast horizon essentially does not change the main finding observed at the 12-month

window, as comparing the 𝑅2
adjof AV, AC, and the other measures in Figure 6 (or the robustness of the statistical

significance in Figure 7) highlights: AV is a comparably strong predictor of future multi-factor risk at short horizons

(i.e. from six up to 24 months), while AC between factors is not of major importance . The pattern breaks at the

60-month horizon, where mean-reversion in benchmark variance comes into play and AV is not the sole dominating

predictor anymore to forecast benchmark variance, but only shows some predictive power in combination with the

product of AV and AC. For the longest forecast window of ten years, even though macro and market variables seem

more relevant for the long-term outlook on future multi-factor risk, all three predictors - AV, AC, and the product

thereof - show significant t-statistics when controlling for external variables. This fits the narrative of Section 2,

suggesting that correlations between factors (in contrast to their variances) are not relevant for future benchmark

variance and returns in the short run, but should ultimately be relevant in the long run.

Finally, it is worth to emphasize that the relationships observed at the 12-month horizon, when focusing either

on AV or AC standalone, are consistent across all windows tested (meaning coefficients never change their sign,

as captured by Table A20), i.e. higher AV [AC] predicts higher [lower] future multi-factor risk. This indicates

that both components of overall portfolio variance work in opposite directions and that AV is the driving force

behind the persistent in overall variance. Going further, the findings also explain the tendency of overall variance to
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show stronger, more significant persistence at shorter horizons and mean-reverting behavior in the medium run: For

shorter windows, only the (positive) influence of AV is significant and, therefore, outweighs the (negative) influence

of AC. For the 60-month period, the coefficients of both variables are insignificant, but the (negative) impact of

AC is stronger (see Table A11a), leaving this forecast horizons to be the only one documenting a mean-reverting

behavior in portfolio variance.

4.2.3 (Mean) Return Forecasting

In an intermediate step, before exploring how the regressors relate to future returns, I decompose contemporaneous

monthly benchmark returns. Section A.3.1 in the Appendix reports and shortly describes the results (see also Table

A13). In sum, no variable of the set of variance approximations (suggested in Section 4.1) is well able to explain

contemporaneous multi-factor returns on a standalone basis, but combined with a broader set of other predictors,

𝐴𝑉𝑡 exhibits significant estimates in two specifications. Overall, the dynamics of contemporaneous returns are

best explained by momentum as well as reversal patterns, (equity-)market-implied volatility, and the global money

supply.

Next, I explore how the regressors relate to future returns at short horizons, i.e. one month into the future. The

results are reported in Table A14. Notably, while AV has been previously of no use to decompose contemporaneous

one-month benchmark returns, I report a t-statistic of 2.14 for the standalone model in column one of Table A14a,

with 𝑅2
adj of around 1%. The only other variable showing a coefficient estimate with a t-statistic surpassing 2 in

Table A14 is observed for the product of AV and AC, also in the standalone specification (column four). The bottom

line: While at least AV (and also the product term) shows some weak explanatory power standalone (in line with

the predictions following from the view on multi-factor investing outlined in Section 2), predicting multi-factor

returns over the upcoming month is quite challenging. This is particularly true since variables that were previously

useful in explaining contemporaneous one-month returns (e.g. value signal) do not enhance one-month-ahead

return forecasts.

Therefore, I also examine the predictability of future mean returns over the upcoming year. Table A15 reports

the associated results. Most regressors still exhibit insignificant coefficient estimates in the various specifications,

rendering them again as not helpful predictors in the short run.39 However, assuming a holding period of more than

one month greatly enhances the statistical significance and explanatory power of the AV term. When considered in

isolation (Table A15a, column one), the t-statistic is about 4.15 (vs. 2.14 for the one-month forecasting window) and

the model is able to explain roughly 10% of the variation in future mean returns (vs. previously 1%). Moreover, the

model based on AV shows more predictive power than the competing variance measures based on the benchmark

return series (Table A15a, column six to nine). Overall, these observations are in line with the predictions following

from the view on multi-factor investing outlined in Section 2, implying that AV (in contrast to AC) predicts future

return at relatively short horizons.40

As before in the context of variance forecasts, I also examine specifications over other forecast horizons to check

for robustness of the results. The results are reported extensively in the appendix. Figure 8 and Figure 9 roughly

39 As a side note: Some of the other risk proxies, such as 𝐶𝑆𝑉𝑡 , also exhibits significant estimates with an absolute t-statistics
higher than 2 in some specifications, but the explanatory power observed in isolation is marginal compared to 𝐴𝑉𝑡 .

40 It should be noted, however, that when controlling for the set of external variables (Table A15b, last column), the relevance
of AV is overshadowed by other variables such as 𝐶𝑆𝑉𝑡 or the momentum signal.
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Figure 8: IS Explanatory Power of One-Regressor Specifications per Forecast Horizon. Return Decomposi-
tion/Forecasting. (Caption on the next page.)
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Figure 8: IS Explanatory Power of One-Regressor Specifications per Forecast Horizon. Return Decomposi-
tion/Forecasting.
This figure illustrates the adjusted 𝑅2 (𝑅2

adj) of the various measures used as explanatory variable for decompos-
ing/predicting the conditional return of the naive multi-factor portfolio, when each variable is applied in isolation
over the various tested forecast horizons (the results of the decomposition of contemporaneous returns are indicated
by the horizon labeled ’0’). More information on the associated regression results (for instance the 𝑅2

adj, expressed
as number) are provided in Tables A13 to A19. Refer to Sections 4.1 (multi-factor variance), A.2.1 (multi-factor
risk), and A.2.2 (external predictors) for an overview of explanatory variables in the regressions. An overview of
the abbreviations used in the course of this paper is provided in Table A3.

summarize the findings of the various predictors over the different horizons in terms of explanatory power and

statistical significance. Specifically, Table A16 shows results when forecasting future returns over the subsequent

six-month period. Importantly, the findings qualitatively stay the same; while the forecast performance of AV is

less pronounced compared to the one-year period, it is still notable relative to the other variables, i.e. the model

only applying AV achieves the highest 𝑅2
adj (roughly 5%) across the one-regressor models.

When extending to a two-year horizon (see Table A17), the impact of AV becomes even more pronounced

(with a 𝑅2
adj of around 23% when observing the variable individually, see for instance Figure 8), while for instance

benchmark variance (VAR𝑡 ) still shows insignificant coefficient estimates.41 In other words, while we can not

observe the typically assumed variance-in-mean relationship (see Pollet and Wilson (2010)) when using only

benchmark return data, it is present when instead applying AV as predictor for risk. Moreover, the variation

explained by external predictors roughly doubles compared to the 12-month period (while 𝑅2
adj and t-statistics are

still comparably low vs. the model solely based on AV).42 This is a first indication that the influence of the macro

and market variables on multi-factor returns is getting more important for longer holding periods, similar to the

findings in the context of variance forecasting.

Moving to a 60-month forecast window, Table A18 reports similarities, but also some interesting differences

to the previous findings. As for the shorter horizons, the estimate of the AV coefficient is consistently positive

and highly significant in nearly all associated specifications, achieving a t-statistic (𝑅2
adj) of 7.9 (37%) standalone

- the best performance for AV across the tested horizons. In addition, AC now also shows significance in many

specifications, exhibiting a t-statistic (𝑅2
adj) of -4.32 (14%) standalone. Using both variables, the regression is

able to explain almost 47% of the variation in future mean returns. The product of both variables, while showing

significance standalone (t-statistic of 3.02), however, seems to be of no additional explanatory help when applied

together with the single terms (column four to five). In general, the gain in importance of AC as predictor fits

the idea that correlations should also at some point in time come into consideration for multi-factor investors, as

outlined in Section 2. The consistently negative sign of the estimates suggests that a spike in AC predicts lower

future returns, while the relationship is - as before - positive for AV.

In addition, some of the additional approximations of multi-factor risk also show more explanatory power. For

instance, 𝐶𝑆𝑉𝑡 and 𝐶𝑆𝐾𝑡 standalone exhibit t-statistics (𝑅2
adj) of 4.64 (15%) and -3.26 (7%), respectively. Besides

these strong results for the variance and some of the risk approximations, also the set of external predictors now

appears more useful. This is especially true for the fiscal balance indicator and the VIX. For both, the coefficient

41 Additionally, I report significant estimates for the VIX, the product of AV and AV, as well as 𝐶𝑆𝑉𝑡 in the one-regressor
model, but the explanatory power (𝑅2

adj of around 11%, 10%, and 7%, respectively) is small compared to AV (23%).
42 Specifically, the model in column 12 of Table A17b (A15b) [A16b], based on all external predictors except for the VIX

(which as a measure of implied volatility behaves intuitively more similar to the variance approximations), establishes a 𝑅2
adj

of around 6% (3%) [1%] for the 24-month (12-month) [6-month] horizon.
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Figure 9: IS Statistical Significance per Regressor and Forecast Horizon. Return Decomposition/Forecasting.
(Caption on the next page.)
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Figure 9: IS Statistical Significance per Regressor and Forecast Horizon. Return Decomposition/Forecasting.
This figure summarizes, for each of the explanatory variables used in decomposing/predicting the conditional
return of the naive multi-factor portfolio and per forecast horizons (the results of the decomposition of contempo-
raneous returns are indicated by the horizon labeled ’0’), the percentage of t-statistics (over all tested regression
specifications which include the given regressor) that exhibit an absolute value higher than 2. More information on
the associated regression results (for instance the t-statistics, expressed as number) are provided in Tables A13 to
A19. Refer to Sections 4.1 (multi-factor variance), A.2.1 (multi-factor risk), and A.2.2 (external predictors) for an
overview of explanatory variables in the regressions. An overview of the abbreviations used in the course of this
paper is provided in Table A3.

estimate is statistically different from zero in all models associated, and when considered individually, they are able

to explain roughly 19% and 17% of variation in future returns, respectively (as illustrated in Figure 8). Overall,

applying all predictors jointly leads to a 𝑅2
adj of roughly 74% at the 60-month forecast horizon, which is impressive

even considered for an IS estimate.

In the last step, I apply a ten-year forecast window (see Table A19). AV is overall not a relevant predictor

anymore at this long horizon (𝑅2
adj of 4% when considered standalone) and only shows a significant estimate

when combined with benchmark variance, all other risk approximations, or all available predictors. Instead, AC

establishes a t-statistic (𝑅2
adj) of -2.23 (12%) when observed individually and proves significant across all associated

specifications, while the coefficient is consistently estimated with a negative sign. In addition, the product of both

terms now appears useful in all models when observed with other variables, while the forecast performance is still

weak standalone. Of the other approximations for benchmark risk, I find some predictive power for variables such

as𝐶𝑆𝑉𝑡 (showing significance in all specifications with standalone 𝑅2
adj of 1%), but also the results in this category

are generally weaker compared to the 60-month period.

Furthermore, Table A19b, reporting the results for the external predictors, provides evidence that the macro

and market variables also are less helpful for the 120-month window. Only the global money supply and business

cycle variables show partially interesting results, but the broader explanatory power is far from what is evident for

the 60-month window.43 In detail, all external variables together explain about 24% of variation in future mean

return over the ten-year horizon, while the same model explains roughly 58% over the five-year horizon (compare

column 13 in Table A19 to Table A18). Indeed, this marks a difference between the variance and (mean) return

forecasting exercises. While the predictability (taken 𝑅2
adj as measure) for variance forecasts is strongest for the

longest forecast window tested (ten years), it peaks at the 60-month window for return forecasts. 44

To summarize, the results for shorter horizons (ranging from one month to two years) validate the observations

made at the one-year horizon. Specifically, AV emerges as the most promising predictor when compared to the

second component of portfolio variance (AC) or any other measures used as control variables, as nicely outlined in

Figure 8 and Figure 9. However, the most explanatory power to predict future returns is achieved for the five-year

forecast horizon, at which the variance of multi-factor returns exhibits mean-reversion, AC - in addition to the

peak performance of AV - starts to matter for and contributes to risk/return forecasts, and macro and market

variable (as well as other risk approximations) are able to deliver noteworthy excess information about future

43 More in detail, for the coefficient of the global money supply variable, I establish a t-statistic of -2.39 for the one-regressor
model, while the coefficient is consistently significant and negative across all specifications estimated. For the business cycle
indicator ADS, the associated t-statistic is 2.23 for the one-regressor model and the coefficient is significantly different from
zero in all tested models, except for one. The signs of the coefficients are in all cases positive.

44 To be more specific in this context: For variance forecasts, the model applying all predictors shows a 𝑅2
adj of 39% (6-month),

42% (12-month), 26% (24-month), 35% (60-month), and 63% (120-month). For mean return forecasts, the same model
shows an 𝑅2

adj of 16% (6-month), 26% (12-month), 40% (24-month), 74% (60-month), and 50% (120-month).

26



returns. Again, it is worth to highlight that the positive relationship observed for AV (applied standalone) at the

12-month horizon shows consistency across all windows tested (captured by Table A20), i.e. higher AV predicts

higher future multi-factor returns. The negative sign of AC’s coefficient is similarly consistent, with the exception

of the one-month horizon.

These results are again highly insightful. As I reported before in the context of variance forecasting, they

indicate that both components of overall portfolio variance also work in opposite directions when predicting future

returns. This is important, since it explains why VAR𝑡 , the contemporaneous overall portfolio variance, shows no

significant relationship with future returns across any of the horizons tested: By combining both components, the

opposing effects are diluted and the net effect is less informative. Therefore, when authors such as Moreira and

Muir (2017) state that variance/volatility does not predict returns, they are correct on the surface (meaning that

overall variance of the multi-factor portfolio does not predict returns), but overlook the more nuanced patterns

concerning the idiosyncratic and systematic components of the overall measure. These patterns suggest that the

often assumed variance-in-mean relationship is indeed present in the data, however, only when focusing on the

component of multi-factor variance that is relevant to investors (following the argument in Section 2), namely AV.

4.3 Robustness and Further Analysis

For the main part of this paper, I have measured AV and AC in levels, following the idea that multi-factor investors

care about their portfolio’s variance also in terms of the level and (as assumed) perceive factor correlations as

persistently (close to) zero, which is a fixed absolute threshold. In an additional analysis in Section A.3.2, I further

examine this topic by exploring an alternate approach of measuring AV and AC in relative terms instead of levels,

specifically by calculating relative changes over time. Overall, the findings suggest that contemporaneous levels of

the measures are the primary drivers of short- and long-term future multi-factor risk and return, whereas relative

changes between months do not exhibit significant explanatory power.

Similar to Pollet and Wilson (2010), I check for further robustness of the main finding - that is, the dominance

of AV as predictor of future short-term multi-factor returns compared to AC - by estimating the regression models

that contain each predictor in isolation for different subperiods of the total investigation period starting in July

1971 and ending in December 2018. The results are reported and outlined more detailed in Section A.3.3 in the

Appendix (see also Table A22) and deliver additional support for the hypothesis that multi-factor investors should

mainly care about variances, at least in the short run. For instance, with one exception, all coefficients associated

with AV over the different subperiods show notable t-statistics higher than 3 and the same positive relationship that

is also observed over the full sample. Moreover, the relationship is especially evident in the most recent subsample.

Another possible way to check for further robustness is to test the impact of AV and AC on short-term risk

and returns when observing other multi-factor portfolios than the naive factor portfolio over all available factor

strategies, as done so far. Therefore, I use the two different sets of equally-weighted strategies, which are described

in Section 3 and formed based on a factor’s association to either an ASCL or factor style, to forecast variances and

returns for each multi-factor portfolio.

I start with forecasts of portfolio variances over the upcoming 12-month period; detailed results can be found

in the Appendix (Section A.3.4). The findings of this robustness test broadly support the main results presented in

Section 4.2.2. Another interesting observation is that the measure of variance based on the returns of the respective
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portfolio return series comes with stronger predictive power for future risk - compared to AV - of multi-factor

portfolios with a lower number of considered factors (𝑁). This is in line with the idea that total portfolio variance

is a better proxy for risk of undiversified factor portfolios with low 𝑁 , for which the variance better reflects the

information of the single factor variances, that is lost due to diversification for high 𝑁 .

In addition to variances, I similarly check for robustness concerning the findings on multi-factor return forecast-

ing, when observing other multi-factor portfolios than the naive factor portfolio over all available factor strategies.

The results are outlined in Section A.3.5 of the Appendix. In sum, these findings mostly deliver further support for

the relevance of variances (compared to correlations) for future returns of multi-factor returns. Only for portfolios

containing either the market-, carry-, or FX-associated factors, the IS evidence of a variance-in-mean relationship

is comparably weak or even non-existent (for the latter), which is puzzling.

The IS results presented so far suggest that average factor variance is a viable predictor of multi-factor (mean)

returns over the short-term future, for instance the upcoming one-month or one-year period, while AC carries no

notable predictive information for these horizons. I further evaluate this claim OS by predicting returns of the next

month (or over the next year, alternatively), while using only data available up to the current month to conduct the

forecast. The findings are reported more extensively in Section A.4.2. Overall, the main pattern remains robust:

AV appears as the more useful predictor to forecast multi-factor returns at the one- and twelve-month period

when compared to AC or other variance approximations. Specifically, when observed individually, AV establishes

a 𝑂𝑆-𝑅2 between 10.36% and 13.48% for return forecasts over the upcoming year. In addition, observing the

recursively-estimated coefficients over time indicates that while AV - with a consistently positive relationship since

the end of the 1980s - has reached its peak impact on the return forecast (i.e. the highest absolute coefficient

estimate) only a few years ago, AC has at the same time reached its lowest impact so far. Moreover, the tendency of

lasting increases in AV’s estimated coefficient during NBER recessions fits the idea of major exogenous economic

shocks as potential trigger for a rise in variances across factors and its impact on future multi-factor returns, as

discussed in Section 2.

While the statistical insights so far are interesting, their economic implications for investment decisions,

potentially in real-time, are still left to explore. Therefore, I also construct simple timing strategies, similar to

Moreira and Muir (2017), to test the viability of varying exposure to the equally-weighted multi-factor portfolio

according to different approximations for portfolio variance, specifically AV, AC and the sample variance. However,

my ex-ante expectations are somewhat different to those stated in Moreira and Muir (2017), since the authors build

their volatility-managed portfolios based on empirical evidence supporting persistence in variances and opposing

a variance-in-mean relationship. In contrast, my findings so far suggest a more nuanced picture, in which the

variance-in-mean relationship is only uncovered when focusing on the variable that should be of main interest for

multi-factor investors believing in uncorrelated factors, as outlined in Section 2, namely AV. The results of these

trading strategies are reported in Section A.5 and overall caution multi-factor investors to bet on a dysfunctional

variance-in-mean relationship.45

45 An additional robustness test shows that this overall picture is unchanged when refraining from ex-ante volatility scaling the
factor return series before forming the naive multi-factor portfolio and conducting the timing exercise.
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5 Conclusion

Should conditional correlations matter to multi-factor investors?

The factor investing literature emphasizes diversification benefits across factors. Accordingly, asset managers

actively promote these benefits of multi-factor investing. In this context, I hypothesize that multi-factor investors

perceived factor correlations as close to zero and, thus, focus on factor variances in their short-term risk assessment.

Using 14 factor return series across various ASCLs, factor styles, and an extensive historical data period, this paper

empirically finds support for the hypothesis.

While both variance components, AV and AC, explain current multi-factor risk, only AV predicts future

portfolio risk and return at short horizons (one month to two years), supporting the hypothesis. Specifically, the

findings confirm short-term persistence in risk and a variance-in-mean relationship: Higher AV unlike AC, leads to

significantly increased future risk and returns for multi-factor investors. Notably, the variance-in-mean relationship

is discernible only by disentangling the opposing effects of AV and AC, and not by observing the overall ’diluted’

variance of the multi-factor portfolio.

For medium- and long-term multi-factor risk and return forecasts (60 and 120 months), other predictors,

such as ACalong with external macro and market variables, gain relevance. The strongest predictability for future

benchmark variance is observed at the longest window of 120 months, while 60 months works best for return

forecasts. Interestingly, return predictability peaks when multi-factor return variance exhibits mean-reversion, AC

(besides AV) starts contributing to risk/return forecasts, and additional control variables provide further excess

information about future returns. The model, using all tested regressors, explains around 72% of the IS variation

in future mean returns over this horizon.

Besides other robustness tests, such as exploring different control variables and analyzing IS performance across

subperiods and for alternative equally-weighted multi-factor strategies, an OS analysis validates AV as the key

component of benchmark risk, enhancing forecasts of short-term multi-factor returns. The important implication

of these results for multi-factor investors is to be cautious when relying on a dysfunctional variance-in-mean

relationship, as suggested by Moreira and Muir (2017). In addition to the main findings, the paper presents further

observations on multi-factor investing. For instance, while the risk of an arbitrary factor investment (proxied by

AC) and the diversification benefits of multi-factor investing (proxied by AC) have remained stable, multi-factor

investing has become less attractive over time in terms of risk compensation.

The paper contributes to various strands in the literature, such as factor investing, forecasting risk-return

tradeoffs, variance and correlation risk premia, and the effectiveness of macroeconomic and market data in

predicting asset returns. It also highlights potential areas for future research, such as better characterizing periods of

synchronously spiking variances across cross-asset factor strategies. These periods coincide with times of elevated

global economic uncertainty and are typically followed by higher-than-average risk and returns for diversified

multi-factor investors. Additionally, the study only incidentally touches on the strengthening explanatory power

of external macro and market predictors for longer forecast horizons, peaking at the five-year horizon. Therefore,

further exploring the relevance of macro and market data for multi-factor returns, particularly at longer horizons,

promises a deeper understanding of long-term multi-factor premia.

29



Bibliography

Ang, A. and J. Chen (2002). Asymmetric Correlations of Equity Portfolios. Journal of Financial Economics 63(3),

443–494.

Angelidis, T. and N. Tessaromatis (2023). The Disappearing Profitability of Volatility-Managed Equity Factors.

Journal of Financial Markets 65, 100857.

Asness, C. S., T. J. Moskowitz, and L. H. Pedersen (2013). Value and Momentum Everywhere. Journal of

Finance 68(3), 929–985.

Bakshi, G., X. Gao, and A. G. Rossi (2019). Understanding the Sources of Risk Underlying the Cross Section of

Commodity Returns. Management Science 65(2), 619–641.

Bali, T. G., N. Cakici, X. Yan, and Z. Zhang (2005). Does Idiosyncratic Risk Really Matter? Journal of

Finance 60(2), 905–929.

Barroso, P. and A. Detzel (2021). Do Limits to Arbitrage Explain the Benefits of Volatility-Managed Portfolios?

Journal of Financial Economics 140(3), 744–767.

Barroso, P. and P. Santa-Clara (2015). Beyond the Carry Trade: Optimal Currency Portfolios. Journal of Financial

and Quantitative Analysis 50(5), 1037–1056.

Bekaert, G. and C. R. Harvey (2000). Foreign Speculators and Emerging Equity Markets. Journal of Finance 55(2),

565–613.

Bender, J., R. Briand, F. Nielsen, and D. Stefek (2010). Portfolio of Risk Premia: A New Approach to Diversification.

Journal of Portfolio Management 36(2), 17–25.

Bhojraj, S. and B. Swaminathan (2006). Macromomentum: Returns Predictability in International Equity Indices.

Journal of Business 79(1), 429–451.

Blin, O., F. Ielpo, J. Lee, and J. Teiletche (2021). Alternative Risk Premia Timing: A Point-in-Time Macro,

Sentiment, Valuation Analysis. Journal of Systematic Investing 1(1), 52–72.

Bollerslev, T., G. Tauchen, and H. Zhou (2009). Expected Stock Returns and Variance Risk Premia. Review of

Financial Studies 22(11), 4463–4492.

Bollerslev, T., V. Todorov, and L. Xu (2015). Tail Risk Premia and Return Predictability. Journal of Financial

Economics 118(1), 113–134.

Boons, M. and M. P. Prado (2019). Basis-Momentum. Journal of Finance 74(1), 239–279.

Brandt, M. W., P. Santa-Clara, and R. Valkanov (2009). Parametric Portfolio Policies: Exploiting Characteristics

in the Cross-Section of Equity Returns. Review of Financial Studies 22(9), 3411–3447.

Brooks, J. and T. J. Moskowitz (2017). Yield Curve Premia. Available at SSRN 2956411.

Brunnermeier, M. K. and L. H. Pedersen (2009). Market Liquidity and Funding Liquidity. Review of Financial

Studies 22(6), 2201–2238.

Buraschi, A., R. Kosowski, and F. Trojani (2014). When There is No Place to Hide: Correlation Risk and the

Cross-Section of Hedge Fund Returns. Review of Financial Studies 27(2), 581–616.

Buraschi, A., F. Trojani, and A. Vedolin (2014). When Uncertainty Blows in the Orchard: Comovement and

Equilibrium Volatility Risk Premia. Journal of Finance 69(1), 101–137.



Buss, A., L. Schönleber, and G. Vilkov (2017). Expected Stock Returns and the Correlation Risk Premium. Centre

for Economic Policy Research.

Campbell, J. Y. (1987). Stock Returns and the Term Structure. Journal of Financial Economics 18(2), 373–399.

Campbell, J. Y., M. Lettau, B. G. Malkiel, and Y. Xu (2001). Have Individual Stocks Become More Volatile? An

Empirical Exploration of Idiosyncratic Risk. Journal of Finance 56(1), 1–43.

Cappiello, L., R. F. Engle, and K. Sheppard (2006). Asymmetric Dynamics in the Correlations of Global Equity

and Bond Returns. Journal of Financial Econometrics 4(4), 537–572.

Cardinale, M., N. Y. Naik, and V. Sharma (2021). Forecasting Long-Horizon Volatility for Strategic Asset

Allocation. Journal of Portfolio Management 47(4), 83–98.

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance 52(1), 57–82.

Carr, P. and L. Wu (2009). Variance Risk Premiums. Review of Financial Studies 22(3), 1311–1341.

Cederburg, S., M. S. O’Doherty, F. Wang, and X. S. Yan (2020). On the Performance of Volatility-Managed

Portfolios. Journal of Financial Economics 138(1), 95–117.

Chen, Z. and R. Petkova (2012). Does Iidiosyncratic Volatility Proxy for Risk Exposure? Review of Financial

Studies 25(9), 2745–2787.

Chordia, T., A. Subrahmanyam, and Q. Tong (2014). Have Capital Market Anomalies Attenuated in the Recent

Era of High Liquidity and Trading Activity? Journal of Accounting and Economics 58(1), 41–58.

Connor, G., R. A. Korajczyk, and O. Linton (2006). The Common and Specific Components of Dynamic Volatility.

Journal of Econometrics 132(1), 231–255.

Cooper, I., L. Ma, and P. Maio. What Does the Cross-Section Tell About Itself? Explaining Equity Risk Premia

with Stock Return Moments. Journal of Money, Credit and Banking.

Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods and their Application. Number 1. Cambridge

university press.

De Long, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann (1990). Noise Trader Risk in Financial Markets.

Journal of Political Economy 98(4), 703–738.

DeMiguel, V., A. Martin-Utrera, and R. Uppal (2021). A Multifactor Perspective on Volatility-Managed Portfolios.

Available at SSRN 3982504.

Dickey, D. A. and W. A. Fuller (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit

Root. Journal of the American Statistical Association 74(366a), 427–431.

Dockner, E. J., S. Kranner, and J. Zechner (2018). Systematic Risk Premia in EM Bond Markets. Technical report,

Working Paper.

Driessen, J., P. J. Maenhout, and G. Vilkov (2009). The Price of Correlation Risk: Evidence from Equity Options.

Journal of Finance 64(3), 1377–1406.

Duchin, R. and H. Levy (2009). Markowitz Versus the Talmudic Portfolio Diversification Strategies. Journal of

Portfolio Management 35(2), 71–74.

Fama, E. F. (1965). The Behavior of Stock-Market Prices. Journal of Business 38(1), 34–105.

Fama, E. F. and K. R. French (1993). Common Risk Factors in the Returns on Stocks and Bonds. Journal of

Financial Economics 33(1), 3–56.

Fama, E. F. and K. R. French (2015). A Five-Factor Asset Pricing Model. Journal of Financial Economics 116(1),

1–22.

31



Frazzini, A. and L. H. Pedersen (2014). Betting Against Beta. Journal of Financial Economics 111(1), 1–25.

Garcia, R., D. Mantilla-Garcia, and L. Martellini (2014). A Model-Free Measure of Aggregate Idiosyncratic

Volatility and the Prediction of Market Returns. Journal of Financial and Quantitative Analysis 49(5-6),

1133–1165.

Georgopoulou, A. and J. Wang (2017). The Trend Is Your Friend: Time-Series Momentum Strategies Across

Equity and Commodity Markets. Review of Finance 21(4), 1557–1592.

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993). On the Relation Between the Expected Value and the

Volatility of the Nominal Excess Return on Stocks. Journal of Finance 48(5), 1779–1801.

González-Rozada, M. and E. L. Yeyati (2008). Global Factors and Emerging Market Spreads. Economic Jour-

nal 118(533), 1917–1936.

Goyal, A. and N. Jegadeesh (2018). Cross-Sectional and Time-Series Tests of Return Predictability: What Is the

Difference? Review of Financial Studies 31(5), 1784–1824.

Goyal, A. and P. Santa-Clara (2003). Idiosyncratic Risk Matters! Journal of Finance 58(3), 975–1007.

Green, J., J. R. Hand, and X. F. Zhang (2017). The Characteristics that Provide Independent Information about

Average U.S. Monthly Stock Returns. Review of Financial Studies 30(12), 4389–4436.

Gupta, T. and B. Kelly (2019). Factor Momentum Everywhere. Journal of Portfolio Management 45(3), 13–36.

Harvey, C. R. (2001). The Specification of Conditional Expectations. Journal of Empirical Finance 8(5), 573–637.

Houweling, P. and J. Van Zundert (2017). Factor Investing in the Corporate Bond Market. Financial Analysts

Journal 73(2), 100–115.

Huang, D., J. Li, L. Wang, and G. Zhou (2020). Time Series Momentum: Is It There? Journal of Financial

Economics 135(3), 774–794.

Hurst, B., Y. H. Ooi, and L. H. Pedersen (2017). A Century of Evidence on Trend-Following Investing. Journal

of Portfolio Management 44(1), 15–29.

Ilmanen, A. (2022). Investing Amid Low Expected Returns: Making the Most When Markets Offer the Least. John

Wiley & Sons.

Ilmanen, A., R. Israel, R. Lee, T. J. Moskowitz, and A. Thapar (2021). How Do Factor Premia Vary Over Time?

A Century of Evidence. Journal Of Investment Management 19(4), 15–57.

Jiang, X. (2010). Return Dispersion and Expected Returns. Financial Markets and Portfolio Management 24,

107–135.

Jondeau, E., X. Wang, Z. Yan, and Q. Zhang (2020). Skewness and Index Futures Return. Journal of Futures

Markets 40(11), 1648–1664.

Jondeau, E., Q. Zhang, and X. Zhu (2019). Average Skewness Matters. Journal of Financial Economics 134(1),

29–47.

Koĳen, R. S., T. J. Moskowitz, L. H. Pedersen, and E. B. Vrugt (2018). Carry. Journal of Financial Eco-

nomics 127(2), 197–225.

Kozhan, R., A. Neuberger, and P. Schneider (2013). The Skew Risk Premium in the Equity Index Market. Review

of Financial Studies 26(9), 2174–2203.

Kraus, A. and R. H. Litzenberger (1976). Skewness Preference and the Valuation of Risk Assets. Journal of

Finance 31(4), 1085–1100.

32



Liu, F., X. Tang, and G. Zhou (2019). Volatility-Managed Portfolio: Does It Really Work? Journal of Portfolio

Management 46(1), 38–51.

Lo, A. W. and A. C. MacKinlay (1988). Stock Market Prices Do Not Follow Random Walks: Evidence from a

Simple Specification Test. Review of Financial Studies 1(1), 41–66.

Longin, F. and B. Solnik (1995). Is The Correlation in International Equity Returns Constant: 1960–1990? Journal

of International Money and Finance 14(1), 3–26.

Longin, F. and B. Solnik (2001). Extreme Correlation of International Equity Markets. Journal of Finance 56(2),

649–676.

Lustig, H., N. Roussanov, and A. Verdelhan (2011). Common Risk Factors in Currency Markets. Review of

Financial Studies 24(11), 3731–3777.

Maio, P. (2016). Cross-Sectional Return Dispersion and the Equity Premium. Journal of Financial Markets 29,

87–109.

Markowitz, H. (1952). Portfolio Selection. Journal of Finance 7(1), 77–91.

Marshall, B. R., N. H. Nguyen, and N. Visaltanachoti (2012). Commodity Liquidity Measurement and Transaction

Costs. Review of Financial Studies 25(2), 599–638.

McCracken, M. W. (2007). Asymptotics For Out of Sample Tests of Granger Causality. Journal of Economet-

rics 140(2), 719–752.

Menkhoff, L., L. Sarno, M. Schmeling, and A. Schrimpf (2012). Currency Momentum Strategies. Journal of

Financial Economics 106(3), 660–684.

Moreira, A. and T. Muir (2017). Volatility-Managed Portfolios. Journal of Finance 72(4), 1611–1644.

Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen (2012). Time Series Momentum. Journal of Financial Eco-

nomics 104(2), 228–250.

Mueller, P., A. Stathopoulos, and A. Vedolin (2017). International Correlation Risk. Journal of Financial

Economics 126(2), 270–299.

Newey, W. K. and K. D. West (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix. Econometrica 55(3), 703–708.

Newey, W. K. and K. D. West (1994). Automatic Lag Selection in Covariance Matrix Estimation. Review of

Economic Studies 61(4), 631–653.

Officer, R. R. (1973). The Variability of the Market Factor of the New York Stock Exchange. Journal of

Business 46(3), 434–453.

Pollet, J. M. and M. Wilson (2010). Average Correlation and Stock Market Returns. Journal of Financial

Economics 96(3), 364–380.

Porcelli, A. J. and M. R. Delgado (2009). Acute Stress Modulates Risk Taking in Financial Decision Making.

Psychological Science 20(3), 278–283.

Preis, T., D. Y. Kenett, H. E. Stanley, D. Helbing, and E. Ben-Jacob (2012). Quantifying the Behavior of Stock

Correlations Under Market Stress. Scientific Reports 2(1), 1–5.

Riddiough, S. J. and L. Sarno (2018). Business Cycles and the Cross-Section of Currency Returns. Available at

SSRN 2906600.

Schneider, P., C. Wagner, and J. Zechner (2020). Low-Risk Anomalies? Journal of Finance 75(5), 2673–2718.

33



Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? Journal of Finance 44(5),

1115–1153.

Starcke, K. and M. Brand (2012). Decision Making Under Stress: A Selective Review. Neuroscience & Biobehav-

ioral Reviews 36(4), 1228–1248.

Stivers, C. and L. Sun (2010). Cross-Sectional Return Dispersion and Time Variation in Value and Momentum

Premiums. Journal of Financial and Quantitative Analysis 45(4), 987–1014.

Stivers, C. T. (2003). Firm-Level Return Dispersion and the Future Volatility of Aggregate Stock Market Returns.

Journal of Financial Markets 6(3), 389–411.

Stöckl, S. and L. Kaiser (2021). Higher Moments Matter! Cross-Sectional (Higher) Moments and the Predictability

of Stock Returns. Review of Financial Economics 39(4), 455–481.

Szymanowska, M., F. De Roon, T. Nĳman, and R. Van den Goorbergh (2014). An Anatomy of Commodity Futures

Risk Premia. Journal of Finance 69(1), 453–482.

Vincenz, S. and T. O. K. Zeissler (2024). Time-Varying Factor Allocation. Journal of Portfolio Management 50(5),

158–217.

Welch, I. and A. Goyal (2007). A Comprehensive Look at the Empirical Performance of Equity Premium Prediction.

Review of Financial Studies 21(4), 1455–1508.

Zaremba, A. (2019). The Cross Section of Country Equity Returns: A Review of Empirical Literature. Journal of

Risk and Financial Management 12(4), 165.

34



A Appendix: Supplementary Text

A.1 Details to Factor Series

A.1.1 Factor Construction

The following description concerning the factor construction is taken from the paper by Vincenz and Zeissler

(2024):46

For the set of global currencies we use monthly spot and forward exchange rates in U.S. dollars and

build end-of-month series starting from January 1971 to December 2018. The data are primarily sourced

from Bloomberg and missing data was filled with data from GFD47. Using bid-ask data, we can account

for transaction costs during trading. The total sample contains 69 currencies (...). We note that the effective

sample size of available currencies can vary over time, given that some emerging country currencies

become available only at later time periods and other currencies cease to exist i.e. due to the adoption

of the Euro. We exclude countries within the euro area after they adapted the euro starting in January

1999. (...) Our data cleansing process includes data removals in case of large deviation of the covered

interest rate parity. We remove negative ask and mid implied yields in non-developed markets, ask and

mid implied yields in developed markets below -5%, and ask and mid implied yields above 150% in all

markets. Additionally we remove data where bid implied yields are above 150%.

To proxy for a currency market factor, we follow the approach of Lustig et al. (2011) and construct the

dollar factor. The dollar factor describes a long position in the set of all available currencies against the

U.S. dollar and the performance is measured over a 1-month holding period.

Our measure of carry is the implied yield in line with literature. The implied yield for long positions

is calculated using the current 1-month forward bid rate ( 𝑓 𝑏) and the current spot ask rate (𝑠𝑎), given that

an investor would purchase the forward at the bid price and sell after the 1 month holding period at the

spot ask price

𝐼𝑌 𝑙𝑡 =
𝑓 𝑏𝑡

𝑠𝑎𝑡
(1 + 𝑟𝑑𝑡 ) − 1, (8)

where 𝑟𝑑𝑡 is the (domestic) U.S. dollar interest rate. Given that covered interest rate parity holds, the

implied yield should approximate the interest rate differential between the USD and the respective foreign

currency (Riddiough and Sarno (2018)). Furthermore, the implied yield for short positions is calculated

in an analogous way, using the current 1-month forward ask rate ( 𝑓 𝑎) and the current spot bid rate (𝑠𝑏)

instead

𝐼𝑌 𝑠𝑡 =
𝑓 𝑎𝑡

𝑠𝑏𝑡
(1 + 𝑟𝑑𝑡 ) − 1 (9)

For currency momentum, we sort according to the historical 12-month currency excess return and

leave out the most recent month
46 Note that in a more recent version of the paper by Vincenz and Zeissler (2024), the authors have adopted some changes to

their factor universe. The paper at hand, however, is based on the factors as described in the following, which is an excerpt
of an older version of Vincenz and Zeissler (2024).

47 Methodology inherited from Dockner et al. (2018).
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𝑀𝑡 =

𝑡−1∏
𝑠=𝑡−11

(1 + 𝑟𝑠) − 1, (10)

where 𝑟𝑡 is the currency spot return. For the value measure, we refer to the concept of purchasing

power parity in order to determine whether a currency is under- or overvalued. Our measure is the five-year

change in the real exchange rate, which can be formulated as the 5-year currency spot rate adjusted by the

consumer price index of the foreign country relative to the U.S. over the same period. We therefore use

the same methodology as Asness et al. (2013), who restrict their analysis to the G10 countries, and extend

it to a broader currency sample.

For our global fixed income universe we construct zero curves for 45 international local currency

government bond markets (21 developed and 24 emerging countries) starting in December 1994 and

ending in December 2018 using data from Bloomberg. (...) Moreover, we use monthly data, i.e. end-of-

month data of local bond yields and, analogously to currencies, build end-of-month time series. In order

to have meaningful duration-representative returns, we aggregate returns into a bucket where bonds with

a time to maturity of five to ten years are grouped. This maturity-bucketing is analog to the methodology

used by JP Morgan48, who also form several maturity buckets for instance within their JPM GBI index.

Sovereign bond returns will be presented from the perspective of a U.S. investor. Similar to currencies, we

note that the effective sample size of available countries can vary over time, given limited data availability

for particular countries. (...)

We introduce a number of risk premia evident in the fixed income universe. The market factor

constitutes of a GDP-weighted long position in the seven largest countries49 in terms of real GDP and a

short position in the risk-free rate50.

Our measure of carry is defined similar to Koĳen et al. (2018) as the term spread within the maturity

bucket:

𝐶𝑡 = 𝑦
10𝑦
𝑡 − 𝑦5𝑦

𝑡 . (11)

For momentum we take again the common measure of the 12-1 month historical US dollar return, i.e.

𝑀𝑡 =

𝑡−1∏
𝑠=𝑡−11

(1 + 𝑟𝑚𝑡
𝑠 ) − 1, (12)

where 𝑟𝑚𝑡

𝑡 is the return of a bond at time 𝑡 with remaining maturity𝑚𝑡 . Our measure of value is defined

as the nominal yield (𝑦) on the bond minus current inflation51 (𝐼𝑛 𝑓 𝑦𝑜𝑦) to derive a real bond yield level:

𝑉𝑡 = 𝑦𝑡 − 𝐼𝑛 𝑓 𝑦𝑜𝑦𝑡 . (13)

As stated in Brooks and Moskowitz (2017), our measures of carry, momentum and value can be

interpreted in a natural economic way, namely that carry provides information about expected future

48 Brooks and Moskowitz (2017) follow the same approach.
49 United States, Great Britain, Japan, China, Germany, India, France
50 ICE LIBOR USD 1-month rate is taken from Bloomberg.
51 Opposed to expected inflation as is used e.g. in Brooks and Moskowitz (2017) or Asness et al. (2013).
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yields without changes to the yield curve, momentum signals trends in yield changes and value indicates

the level of yields with respect to a fundamental anchor namely inflation.

Our commodity data collection includes liquid and exchange-traded commodity futures contracts

for 31 commodities sourced via Bloomberg. The majority of contracts is identical to those used by

Szymanowska et al. (2014) and Boons and Prado (2019). Our sample of futures data starts in July 1959

and ends in December 2018. (...) The returns of individual commodities are calculated using a roll-over

strategy as done by the authors above. In line with their reasoning, we calculate first and second nearby

contract returns given these are usually more liquid. In order to avoid contract positions close to expiration

and the resulting notice days or erratic volume and price behavior, we restrict expiration of each commodity

contract to be after 𝑡 + 2. To account for transaction costs, we will apply a relative half spread of 4.4 basis

points suggested by Marshall et al. (2012).

For commodities the market factor is, analog to currencies, a long position in the set of all available

commodity futures at any specific timepoint. Our carry signal is derived from the basis (𝐵𝑡 ), which

indicates whether a commodity futures curve is in contango (positive basis) or in backwardation (negativ

basis):

𝐵𝑡 =
𝐹
𝑇2
𝑡

𝐹
𝑇1
𝑡

− 1, (14)

where 𝐹𝑇𝑛𝑡 is the 𝑛-th nearby futures contract at time 𝑡. We take long (short) positions in commodities

in backwardation (contango), i.e. purchase (sell) relatively cheap (expensive) first-nearby futures contracts

given the term-structure of the futures curve.

For momentum we use in accordance with previous asset classes the 12-1 month historical return of

the first-nearby futures contract as signal

𝑀𝑡 =

𝑡−1∏
𝑠=𝑡−11

(1 + 𝑟𝑇1
𝑠 ) − 1, (15)

where 𝑟𝑇1
𝑠 is the return of the first nearby (𝑇1) futures contract at time 𝑠52.

The commodity value measure is based on the negative five year cumulative return53 commonly used

by other authors such as Asness et al. (2013):

𝑉𝑡 = −
( 𝑡∏
𝑠=𝑡−59

(1 + 𝑟𝑇1
𝑠 ) − 1

)
(16)

The last and most recent commodity factor is basis-momentum, which is defined as a combination of

(𝐵𝑡 ) and momentum (𝑀𝑡 ):

𝐵𝑀𝑡 =

𝑡∏
𝑠=𝑡−11

(1 + 𝑟𝑇1
𝑠 ) −

𝑡∏
𝑠=𝑡−11

(1 + 𝑟𝑇2
𝑠 ). (17)

52 We require at least one return 𝑟𝑇1
𝑠 for the calculation of the momentum signal above, i.e. in case of missing data we will still

be able to generate a momentum signal and therefore expand the momentum signal availability in the cross-section.
53 Analog to momentum, we will require at least one return 𝑟𝑇1

𝑠 for the calculation of the value signal in order to broaden the
cross-sectionally available assets.

37



The motivation of the signal according to Boons and Prado (2019) is that it contains relevant slope

and curvature information, determined by market participants seeking positions on the futures curve at

different locations.

For our analysis on international equity indices we include a total of 49 Morgan Stanley Capital

International (MSCI) country total return indices, all sourced via Bloomberg, to our equity cross-section

and construct end-of-month series starting in January 1970. The respective indices are all quoted in USD.

(...) As outlined by Zaremba (2019), MSCI indices, followed by Datastream Global Equity Indices, are the

most popular choice on a country-level equity perspective, given the calculation transparency, consistency

in index calculation and result comparability across a broad number of countries. Bhojraj and Swaminathan

(2006) investigate factor momentum on equity index level from 1970 to 1999 using MSCI data and find

momentum during the first year and reversals during the following year. We acknowledge the heterogenity

among the selected countries and therefore are cautious with the final results of the factor construction.

In our analysis, we proxy transaction costs with 10 basis points for each country index in each month.

Analog to the other asset classes, we assume this proxy will be again more conservative given full

transaction costs are incurred monthly, even when the position remains unchanged.

We construct a market-capitalization weighted equity index benchmark with the seven largest countries

in terms of market capitalization to represent the equity market factor financed with the risk-free rate.

Given market capitalization data from the country indices becomes available not until August 1995, we

proxy the equity market returns solely with the US equity index returns, starting in 1970. Our equity index

momentum measure is the 12-1 month cumulative return as in Equation 12. 54 Finally, we replicate the five

classical U.S. equity single stock factors (from Fama and French (1993) and Fama and French (2015)) as

well as the momentum factor from Carhart (1997) and add them to our factor universe.

At the end of month 𝑡 we rank assets according to the above described signals and form six portfolios.

In the case of an available total sample size below six, at least one asset will be selected for the top

and bottom sixth portfolio. This selection approach has the advantage that it can account for a varying

sample size. We take long (short) positions in assets based on the top (bottom) sextile in accordance with

the standard methodology i.e. done by Lustig et al. (2011) for currencies. At the end of each month, the

portfolios are rebalanced. Each asset in the long (short) portfolio is then weighted equally.

A.1.2 Differentiation to Literature

The following description of methodological differences of the considered factors to the relevant academic literature

is taken from the paper by Vincenz and Zeissler (2024):55

For currencies, in contrast to most other literature (i.e. Menkhoff et al. (2012) or Lustig et al. (2011)

we include the United States, i.e. USD, to the currency sample. All currencies above are generally quoted

54 Opposed to the other presented asset classes, we refrain from constructing a carry and value factor within the equity index
space due to the heterogeneity of countries.For carry the dividend yield could be considered as underlying characteristic
measurement and for value the cyclically-adjusted price earnings ratio. However, perceived discrepancies in terms of e.g.
shareholder value and accounting methodologies, among other differences, across the presented countries led us to refrain
from constructing such factors.

55 As noted before, in a more recent version of the paper by Vincenz and Zeissler (2024) the authors have adopted some changes
to their factor universe. The following excerpt is taken from an older version of Vincenz and Zeissler (2024).
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against the USD, however with the inclusion of the USD as a separate investable currency, this has the

effect that the pair USD/USD constitutes a neutral portfolio position. From a practical perspective, this

gives an investor the chance to stay in USD (i.e. invest into the currency pair USD/USD) in case the other

investment opportunities are less attractive, i.e. due to negative carry across all currencies. In addition, we

use inflation and GDP data from local sources (including several emerging market countries) and rely on

the credibility of local authorities supplementing sound data. As mentioned in the Appendix A.1.1, we

apply a data cleansing procedure when covered interest parity is violated.

For fixed income, opposed to currency data, we do not have bid-ask data available for the zero-coupon

yield curves. In order to account for transaction costs, we therefore approximate the zero-coupon bond

spreads using currency-related spreads for each country56. Our heuristics includes a spread multiple of

1.5 of the country-representative FX-spread. Given that we calculate returns from the perspective of a US

investor, total transaction costs (including currency conversion costs) for a fixed income investor consist

therefore of a 2.5 multiple of currency transaction costs. Given that total transaction costs are incurred at

each month, even if the bond is not entirely sold but only rebalanced, we assume this approach will be

more conservative than in practice. Total fixed income transaction costs will be represented as follows:

𝑠
𝑠𝑝𝑟𝑒𝑎𝑑
𝑡 =

��𝑠𝑎𝑡 − 𝑠𝑏𝑡 �� , (18)

where 𝑠𝑎𝑡 (𝑠𝑏𝑡 ) is the ask (bid) spot exchange rate at time 𝑡. Equation 18 represents the currency spot spread.

𝑟𝑥𝑡+1 =
𝑠𝑏
𝑡+1 − 1.5𝑠𝑠𝑝𝑟𝑒𝑎𝑑

𝑡+1
𝑠𝑎𝑡

− 1 (19)

where 𝑟𝑥𝑡 is the currency spot excess return at time 𝑡.

Following the construction of fixed income returns including transaction costs, we construct a long-

term maturity bucket averaging returns between tenors of five to ten years. We consider this duration

bucket to proxy for returns with highest loadings on duration risk.

We use a broader cross-section of 31 commodities to construct factors for this asset class (cp. Boons

and Prado (2019) and Szymanowska et al. (2014) who use 21 commodities respectivley).

Given the global representativeness of the asset-classes currencies, fixed income and commodities, we

follow suit with equities and resort to MSCI equity indices. From a practical perspective and given real-

world investment constraints, country indices provide investors with a simple, mostly feasible, diversified

and cost-efficient way to implement an equity factor strategy. However, we acknowledge that there is

great heterogeneity across the different countries and the results of global factor portfolios based on

heterogeneous country specific indicators shall be treated cautiously. This great heterogeneity among

countries leads us to construct only a market and momentum factor, which can be constructed most

consistently in our view, for equity indices.

56 González-Rozada and Yeyati (2008) show that time variation in bond spreads is explained by global factors which we assume
are also implicit in currency spreads.
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A.2 Additional Methodology

A.2.1 Other Approximations for Benchmark Risk

There is a long list of papers that consider return dispersion as explanatory variable for aggregated asset returns

(for instance Stivers and Sun (2010), Maio (2016), or Stöckl and Kaiser (2021)) and risk (see e.g. Bekaert and

Harvey (2000) or Stivers (2003)).57 Return dispersion describes how closely the returns of a cross-section of

assets move in lockstep over a observed time period and is typically measured as the cross-sectional variance

(volatility) of returns of the set of assets (see e.g. Maio (2016)). Garcia et al. (2014) formally show it’s usefulness

as consistent and asymptotically efficient estimator for aggregate idiosyncratic volatility, with the key advantages of

being model-free and observable at any frequency. Cooper, Ma, and Maio (Cooper et al.) develop an asset-pricing

model that accompanies the common market factor by two additional sources of risk, of which one is defined by

the cross-sectional variance of various common long-short factors.

Empirically, Maio (2016) for instance reports return dispersion being negatively related to future stock market

excess returns over various horizons in his IS test and also finds statistically and economically evidence for it’s

viability as OS predictor, while the recent results of Stöckl and Kaiser (2021) deliver further support for it’s

predictive power IS and OS. Following this literature, I define cross-sectional variance as

𝐶𝑆𝑉𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖1:𝑖𝑁 ,𝑡 )2, (20)

where 𝑟𝑖,𝑡 defines the monthly log return of the factor at time 𝑡 and 𝑟𝑖1:𝑖𝑁 ,𝑡 the average return over the cross-section

of 𝑁 factors.

Authors such as Jondeau et al. (2019) or Stöckl and Kaiser (2021) explore the viability of higher return

moments for predicting fluctuations in future aggregated stock excess returns, following studies that point to

possible theoretical reasons for these metrics to show relevance. For example, a negative skewness, associated

with occasionally large negative returns, is often interpret as sign of tail/crash risk (see e.g. Brunnermeier and

Pedersen (2009), Kozhan et al. (2013), or Bollerslev et al. (2015)). Moreover, early work by authors such as Kraus

and Litzenberger (1976) has already explored skewness preferences of investors in the context of asset-pricing

and established - similar to the traditional CAPM - that only the non-diversifiable part of an asset’s skewness,

i.e. the co-skewness of the asset with the market portfolio, should demand a risk compensation. In a more recent

study, Schneider et al. (2020) – building on authors such as Kraus and Litzenberger (1976) – show that accounting

for (co)skewness helps to explain empirically well-documented low-risk anomalies based on beta and volatility

risk measures. Jondeau et al. (2019) provide theoretical insights as well as empirical evidence that support the

relevance of (rising) average skewness as predictor of (falling) future stock market returns. Additionally, Jondeau

et al. (2020) show that this relationships also holds when forecasting the returns of index futures.

57 In addition to predicting TS dynamics of aggregated asset returns, other papers such as Jiang (2010) also explore whether
return dispersion is priced in the cross-section of stock returns. For an overview and discussion of cross-sectional measures
of dispersion and their relevance in a broader context, see for instance Stöckl and Kaiser (2021).
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Similar to Jondeau et al. (2019),58 I first calculate sample skewness for factor 𝑖 at time 𝑡 using return data of the

previous 12 months, denoted Ŝk𝑖,𝑡−12:𝑡 .59 At time 𝑡, average skewness is then defined as (equally-weighted) average

of the sample skewness of all 𝑁 individual factors:

𝐴𝑆𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

Ŝk𝑖,𝑡−12:𝑡 (22)

Moreover, I define average kurtosis analogously based on the sample excess kurtosis of the individual factor

TS. For factor 𝑖, I estimate the sample excess kurtosis using the last 12 observations and denote the variable as

K̂𝑖,𝑡−12:𝑡 .60 Average kurtosis at time 𝑡 is then constructed as (equally-weighted) average of the sample excess kurtosis

of all 𝑁 individual factors:

𝐴𝐾𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

K̂𝑖,𝑡−12:𝑡 (24)

Name Symbol Obs Min Mean Max Std Skewness Kurtosis Autocorr (1)
Average Skewness 𝐴𝑆𝑡 (12M) 559 -1.133 -0.17 0.752 0.296 -0.14 0.79 0.88
Average Kurtosis 𝐴𝐾𝑡 (12M) 559 -0.932 -0.164 1.249 0.379 0.83 0.57 0.86

Cross-Sectional Variance 𝐶𝑆𝑉𝑡 559 0 0.001 0.018 0.001 7.51 90.47 0.35
Cross-Sectional Skewness 𝐶𝑆𝑆𝑡 559 -0.891 -0.004 1.201 0.152 1.71 22.56 0.04
Cross-Sectional Kurtosis 𝐶𝑆𝐾𝑡 559 0.018 31.136 913.059 67.141 6.88 66.85 0.10

Momentum MOM𝑡 (12M) 559 -0.008 0.002 0.01 0.003 -0.44 1.21 0.93
Value VAL𝑡 (60M) 505 -0.02 0 0.03 0.005 0.95 4.28 0.18

Table A1: Other Approximations for Benchmark Risk.
This table lists the alternative approximations for the risk of the multi-factor benchmark. Additionally, column
’Obs’ reports the available number of monthly observations per variable over the full investigation period, starting
in July 1971 and ending in December 2018. Moreover, in the last seven columns the table provides summary
statistics of the predictor TS, specifically the minimum and maximum monthly observation as well as monthly
arithmetic mean, standard deviation (for 𝐶𝑆𝑆𝑡 and 𝐶𝑆𝐾𝑡 , these metrics are reported in thousands), skewness,
excess kurtosis, and the first-order autocorrelation. The TS of the variables were tested to rule out the possibility
of containing unit roots with sufficient confidence (see Table A5). If necessary (only in the case of VAL𝑡 (60M)),
the TS were transformed (by calculating differences) and re-tested (see Table A5). For information on the variables
that approximate multi-factor risk (i.e. 𝐴𝑆𝑡 , 𝐴𝐾𝑡 , 𝐶𝑆𝑉𝑡 , 𝐶𝑆𝑆𝑡 , 𝐶𝑆𝐾𝑡 , MOM𝑡 , and VAL𝑡 ), refer to Section A.2.1.
An overview of the abbreviations used in the course of this paper is provided in Table A3.

In addition to these two variables based on higher moments, I additionally calculate cross-sectional measures

of dispersion in higher moments, as done by Stöckl and Kaiser (2021), who also provide a more detailed overview

58 While Jondeau et al. (2019) use daily stock data to estimate their monthly standardized measure of skewness, this is infeasible
given that only monthly factor return data is available. Therefore, instead of relying on daily data, I construct both measures
using the 𝑁 = 14 monthly factor series and a one-year lookback window, as done before in the context of AV and AC.
Additionally, Jondeau et al. (2019) standardize their measure of skewness for each asset using a historic measure of the
asset’s volatility. Since the factor TS are already ex-ante volatility scaled, I refrain from further adjustments when calculating
Sk𝑖,𝑡−12:𝑡 .

59 For transparency, I use the following formula to calculate sample skewness:

Ŝk𝑖,𝑡−12:𝑡 = 𝐷1 ∗
𝑡∑︁

𝑡=𝑡−12

(
𝑟𝑖,𝑡 − 𝑟𝑖,𝑡−12:𝑡
�̂�𝑖,𝑡−12:𝑡

)3
, (21)

where 𝑟𝑖,𝑡−12:𝑡 defines the average return over the previous 12 months, and 𝐷1 = 12
(12−1)∗(12−2) = 6

55 .
60 For transparency, I use the following formula to calculate sample excess kurtosis:

K̂𝑖,𝑡−12:𝑡 = 𝐷4 ∗
𝑡∑︁

𝑡=𝑡−12

(
𝑟𝑖,𝑡 − 𝑟𝑖,𝑡−12:𝑡
�̂�𝑖,𝑡−12:𝑡

)4
− 𝐷5, (23)

with 𝐷4 =
12∗(12+1)

(12−1)∗(12−2)∗(12−3) = 26
165 and 𝐷5 =

3∗(12−1)2

(12−2)∗(12−3) = 121
30 .
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of the relevant literature motivating these metrics. Cross-sectional skweness, for instance, acts as an approximation

of aggregated idiosyncratic skweness, as shown formally by Garcia et al. (2014) (see Stöckl and Kaiser (2021)).

Moreover, in the asset-pricing model of Cooper, Ma, and Maio (Cooper et al.), the third source of risk (besides

the market factor and cross-sectional variance of several long-short portfolios) is defined as the cross-sectional

skewness over their set of factor returns.

Following Stöckl and Kaiser (2021), I define cross-sectional skewness as

𝐶𝑆𝑆𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖1:𝑖𝑁 ,𝑡 )3

𝐶𝑆𝑉3
𝑡

(25)

and cross-sectional kurtosis as

𝐶𝑆𝐾𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖1:𝑖𝑁 ,𝑡 )4

𝐶𝑆𝑉4
𝑡

. (26)

Finally, I include simple proxies for two common signals often used for predicting returns (cross-sectionally61

as well as over time), namely momentum and value (see for instance Moskowitz et al. (2012), Gupta and Kelly

(2019), Ilmanen et al. (2021), and Vincenz and Zeissler (2024)).62 Both measures are derived using past return

data of the equally-weighted multi-factor portfolio and should control for two distinct features often observed for

return TS: persistence (i.e. positive autocorrelation) over the short and reversals over the long run. Specifically,

the momentum signal at time 𝑡, MOM𝑡 , is the arithmetic mean return estimated over the previous twelve months.

Conversely, the value signal VAL𝑡 compares cumulative returns over the last five years.63

As before, Table A1 reports summary statistics for the constructed TS and Figure A3 shows the dynamics

of the variables over the investigation period. Measures constructed using rolling overlapping windows are fairly

persistent, while dispersion measures, conversely, display less autocorrelation. Since the results of conducted

Augmented Dickey-Fuller tests lead to a rejection of the null hypothesis considering the existence of unit roots (see

Table A5) for almost all series, I proceed to analyze the TS of all variables in levels, with the exception of VAL𝑡 .

For VAL𝑡 , I transform the TS into first differences.

The evidence pointing to a stochastic trend in the TS of the value signal underlines an observation that could

already be inferred from previous charts showing the cumulative performance of the equally-weighted benchmark,

61 For this reason, both concepts are also underlying some factors in the investment universe of this study, presented in Section
3.

62 The viability of predicting future asset returns by relying on past return data has been discussed in the literature for quite
some time (see for instance Fama (1965) or Lo and MacKinlay (1988)). In the last decade, Moskowitz et al. (2012) have
revisited the matter of TS momentum in their influential study and found supporting evidence for return persistence in futures
on various ASCLs, namely equity indices, currencies, commodities, and bonds. Since then, the discussion is far from over.
Various other articles have either delivered further support for the profitability of TS momentum (e.g. Georgopoulou and
Wang (2017) or Hurst et al. (2017)) or raised new doubts (e.g. Goyal and Jegadeesh (2018) or Huang et al. (2020)). While
not the main focus of the paper at hand, investigating TS momentum in the context of multi-factor investing adds a new
perspective to this discourse.

63 The value signal is inspired by Asness et al. (2013) and is given for factor 𝑖 at time 𝑡 by

VAL𝑡 = 𝑙𝑛(
�̄�𝑡−60

𝑃𝑡
), (27)

where 𝑃𝑡 is the cumulative return index of the naive multi-factor portfolio at time 𝑡 and �̄�𝑡−60 is the average cumulative return
index five years ago, estimated from 𝑡 − 65 to 𝑡 − 54. Since returns are additive, calculating momentum or value signals
per individual factor and averaging over those yields the same aggregate measure, which therefore could also be labeled
’average’ momentum/value, similar to some of the other variables in the set. Intuitively, a [negative] positive value of VAL𝑡
is interpreted as [over-] undervaluation.
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such as Figure 4: The long-lasting attractiveness of engaging in multi-factor investing, supported for instance by

a significantly positive unconditional mean return (see Figure 3), has been on a decline over the investigation

period for the given factor universe.64 This phenomenon is highlighted in Figure A6, by contrasting the behavior

of the value signal - before taking first differences - with the performance dynamics of the naive portfolio. As the

figure reveals, VAL𝑡 is almost constantly negative, implying persistent ’overvaluation’ of the naive strategy (when

following the narrative of the value concept) or more generally that the cumulative return over the last five years

has been persistently positive most of the time. This finding is in line with significantly positive unconditional

mean returns of the naive portfolio and generally supporting the attractiveness of multi-factor investing. However,

as Figure A6 further illustrates, VAL𝑡 clearly shows an upward trajectory over time and finally crosses zero late at

the end of the investigation period, indicating that five year cumulative returns have declined over time and lately

been negative for the first time. Therefore, it seems sensible for investors to have this trend in mind when projecting

past unconditional (multi-)factor performance into the future.

A.2.2 External Predictive Variables

I resort to a subset of the variables described and applied in Vincenz and Zeissler (2024) to allocate a universe

of factors across different ACs based on OS return predictions. The set is motivated by the relevant asset-pricing

literature (see Vincenz and Zeissler (2024)). With one exception65, I focus on those variables providing a large

number of observations (i.e. covering my full investigation period); the detailed set and summary statistics are

displayed in Table A2.
Name Symbol Obs Min Mean Max Std Skewness Kurtosis Autocorr (1)

Inflation Regime INFLTN 570 -0.010 0.038 0.148 0.030 1.68 2.24 0.99
Global Fiscal Balance BDGT.BLNC 570 -0.078 -0.029 -0.002 0.015 -0.90 0.81 0.99

Money Supply GLBL.M2.SPPLY 570 -1.558 0.096 2.398 0.379 0.64 6.17 0.03
Steepness of the Yield Curve Steep_Yld_Crv 570 -0.027 0.017 0.044 0.012 -0.62 0.10 0.95

Chicago Fed National Activity Index CFNAI 570 -4.298 -0.095 1.956 0.827 -1.50 4.51 0.93
Aruoba Diebold Scotti Index ADS 570 -4.672 -0.083 2.720 0.802 -1.19 4.69 0.84

VIX Index VIX 397 0.095 0.202 0.614 0.079 1.71 4.44 0.83

Table A2: Candidate Predictors.
This table lists the external variables by their names and associated shortcut symbols used in the rest of the
paper. Additionally, column ’Obs’ reports the available number of monthly observations per variable over the full
investigation period, starting in July 1971 and ending in December 2018. Moreover, in the last seven columns
the table provides summary statistics of the predictor TS, specifically the minimum and maximum monthly
observation as well as monthly arithmetic mean, standard deviation, skewness, excess kurtosis, and the first-order
autocorrelation. The TS of the external predictors were tested to rule out the possibility of containing unit roots
with sufficient confidence. If necessary (only in the case of GLBL.M2.SPPLY), the TS were transformed (by
calculating differences) and re-tested (see Table A5). For information on the external predictors refer to Section
A.2.2, while a detailed description of the data set is provided in Vincenz and Zeissler (2024). An overview of the
abbreviations used in the course of this paper is provided in Table A3.

Specifically, variables associated with inflation, fiscal balance, money supply, steepness of the yield curve, two

U.S. business cycle indicators (Chicago Fed National Activity Index and Aruoba Diebold Scotti Index), as well as

64 This finding is broadly in line with the results of authors such as Chordia et al. (2014) or Green et al. (2017), who report
falling average premia for factors (anomaly portfolios) over time.

65 Specifically, I include the VIX despite the shorter-than-desired TS, since controlling with a measure of market-implied
volatility seems important in the context of volatility/variance approximations, as were discussed in Section 4.1.
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market-implied volatility enter the analysis as predictors. All predictors represent proxies for global economic and

financial conditions to match the mostly globally-oriented factor universe.66

As was the case for the variables previously introduced as regressors, Table A2 also reports the first autocorre-

lation coefficient of the external predictors. Similar for instance to the proxies of multi-factor variance discussed in

Section 4.1, the series exhibit generally a very high degree of persistence (especially INFLTN and BDGT.BLNC).

After testing the TS to rule out the possibility of containing unit roots (see Table A5), I reject the null hypothesis

for all external predictors except for GLBL.M2.SPPLY, which shows a persistent level increase over most of the

investigation period. In consequence, I transform the TS of GLBL.M2.SPPLY by forming first differences, re-test

the series, and subsequently reject the null hypothesis of existing unit roots. Finally, FigureA4 shows the dynamics

of the variables over the investigation period.

A.3 IS Results

A.3.1 Monthly Return Decomposition

In an intermediate step, before exploring how the regressors relate to future returns, I decompose contemporaneous

monthly benchmark returns; Table A13 shows the results. In sum, only a few variables exhibit a coefficient estimate

significantly and consistently differing from zero in the various tested model specifications.

Naturally, two of these variables are those calculated directly from past and contemporaneous return data,

namely MOM𝑡 and VAL𝑡 . In detail, the momentum signal achieves an absolute t-statistic higher than 5 and a 𝑅2
adj

of roughly 8% standalone, whereas VAL𝑡 shows absolute t-statistics higher than 20 in all associated models and

explains around 85% standalone. These results indicate that contemporaneous monthly multi-factor returns are

partly explained by patterns of short-term persistence in returns (here captured over the last year) and - to a large

extent - by patterns of mean reversion over longer horizons (captured over five years).67 Other variance and risk

approximations are generally not useful for the decomposition when observed individually, but combined with a

broader set of other predictors, 𝐴𝑉𝑡 exhibits significant estimates in two specifications.

The second exception is the global money supply indicator, which shows t-statistics larger than 3 standalone as

well as in all of the other models (with one exception), when combined with the remaining variables. The sign of

the estimated coefficients for GLBL.M2.SPPLY indicates that lose (tight) monetary conditions are associated with

higher (lower) contemporaneous monthly multi-factor returns. The third and last variable showing importance over

several specifications is equity-implied volatility (VIX), with absolute t-statistics higher than 2 and negative signs

of the coefficient observed consistently across all models. The latter observation implies that an increase in current

implied volatility typically comes with lower contemporaneous monthly returns.

To sum up, the dynamics of contemporaneous returns are best explained by momentum as well as reversal

patterns, (equity-)market-implied volatility, and the global money supply. The model using all variables together

achieves a 𝑅2
adj of around 91% (see last column in Table A13b).

66 For more details on (the construction of) each predictor, refer to Vincenz and Zeissler (2024).
67 Specifically, the consistently positive sign of the estimated momentum coefficients suggests that positive current momentum

typically comes with positive current returns, while the negative sign of the value coefficient indicates that an increase in
contemporaneous undervaluation is typically observed together with negative current returns.
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A.3.2 Relative Measures of AV and AC

For the main part of this paper, I have measured AV and AC in levels, following the idea that multi-factor investors

care about their portfolio’s variance also in terms of the level. This view further fits the assumed investor perception

of factor correlations being persistently (close to) zero and mostly irrelevant for the TS dynamics of overall portfolio

risk. For example, an investor with this strong belief will presumably worry less about a recent increase in AC

from 0.03 to 0.06, even though it is a spike of 100%, because the level is still close to zero.

In an additional analysis, I further examine this topic by exploring an alternate approach of measuring AV

and AC in relative terms instead of levels, specifically by calculating relative changes over time.68 The results are

presented in Table A20, covering the decomposing and forecasting of multi-factor variances, and in Table A21,

showing similar results for returns.

Overall, the findings suggest that contemporaneous levels of the measures are the primary drivers of short- and

long-term future multi-factor risk and return, whereas relative changes between months do not exhibit significant

explanatory power. In detail, none of the relative measures is useful in forecasting future variances, independent

of the chosen forecast window,69 and only (ΔAC𝑡−1:𝑡 )/AC𝑡−1 achieves a significant coefficient when forecasting

returns over the next six-month period.

When decomposing current variances and one-month returns, the significant coefficient of (ΔAV 𝑡−1:𝑡 )/AV 𝑡−1

indicates that an increase in relatively-measured AV comes with higher contemporaneous multi-factor variance

(in line with the results for the level of AV) and negative contemporaneous returns (contrary to the consistently

positive coefficient estimated for the level of AV). The latter finding suggests that a relative increase in AV today is

typically accompanied by a negative shock to returns and has no predictive power for future returns, while a high

level of AV today has no significant relationship with current returns, but seems to predict higher future returns.

A.3.3 (Mean) Return Forecasting Using Subsamples

Similar to Pollet and Wilson (2010), I check for further robustness of the main finding - that is, the dominance of

AV as predictor of future short-term multi-factor returns compared to AC - by estimating the regression models

that contain each predictor in isolation for different subperiods of the total investigation period starting in July

1971 and ending in December 2018. The results are reported in Table A22.

With one exception (the first subperiod from June 1972 to October 1983), the coefficients of AV show all

notable t-statistics higher than 3 and the same positive relationship that is also observed over the full sample. For

the last subperiod from August 2006 to December 2017), the t-statistic even surpasses 6. In contrast, all estimates

for AC over the different subperiods appear insignificant, with the previously mentioned exception of the first

subsample, in which the pattern reverses and AC plays the dominant role (however, with a negative sign and a

seemingly counter-intuitive relationship), while AV shows no significance.

Moreover, Table A22 also reports results when considering conditional market variance, estimated over the

last 12 monthly observations, as explanatory variable. While the estimate of the associated coefficient appears

insignificant over the full sample and the first two subsamples, the variable establishes significant estimates in the

68 For transparency, (ΔAC𝑡−1:𝑡 )/AC𝑡−1 is defined as (AC𝑡 − AC𝑡−1 )/AC𝑡−1 .
69 However, the relationship for (ΔAV 𝑡−1:𝑡 )/AV 𝑡−1 is consistently positive across all horizons (as it is for the level of AV),

supporting the narrative of (relatively) higher risk today implying higher risk in the future.
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latter two subperiods, in which also AV shows the strongest performance. However, AV stills outperforms market

variance in both subperiods in terms of 𝑅2
adj and RMSE.

Overall, the results - especially in the more recent period - deliver additional support for the hypothesis that

multi-factor investors mainly should care about variances, at least in the short run.

A.3.4 Variance Forecasting of Other Multi-Factor Portfolios

Another possible way to check for further robustness is to test the impact of AV and AC on short-term risk

and returns when observing other multi-factor portfolios than the naive factor portfolio over all available factor

strategies, as done so far. Therefore, I use the two different sets of equally-weighted strategies, which are described

in Section 3 and formed based on a factor’s association to either an ASCL or factor style, to forecast variances and

returns for each multi-factor portfolio. I look at two different versions of the introduced measures of AV and AC.

First, as before, I use AV and AC calculated over all available factors in the data set. Second, I also calculate both

measures solely using the factors underlying the respective multi-factor portfolio considered for the forecast.

I start with forecasts of multi-factor variance over the upcoming 12-month period. The results for the three naive

strategies formed on ASCLs are reported in Table A23. With the exception of the strategy based only on equity

factors (Naive.E), AV and AC - calculated using all factors - do not seem useful for variance forecasts for other

multi-factor portfolios.70 However, when measuring AV and AC only over the factors constituting the respective

mulit-factor portfolio, the results support the idea of variances as the dominant predictor of future multi-factor

risk. Taken in isolation, the estimated coefficient of AV shows significance for all three portfolio, with t-statistics

between 2.14 and 7.62, while AC only shows relevance for the equity-only strategy (-2.07).

Interestingly, the latter findings is - in some sense - in line with the arguments provided in Section 2. The

equity factor segment comprises two market factors, based on equity country indices and U.S. single stock data,

respectively. Notably, these are highly correlated (see Figure 2) and this high correlation is - naturally - quite

persistent (see Figure A1), since it is ’by design’. Given that the equity-only multi-factor portfolio contains only

a fraction of the strategies that constitute the naive portfolio over all factors, the risk of the former portfolio is

expected to be strongly influenced by the two highly-correlated factors, due to less diversification. Therefore,

fitting this observation into the narrative provided in Section 2, an investor engaging in the equity-only multi-factor

strategy probably does not perceive his portfolio is to be constructed from totally uncorrelated streams of returns,

given the two obviously highly-correlated strategies. The findings support this idea, since AC only shows relevance

for variance forecasts of Naive.E, but not the other two portfolios.

In addition to the portfolios formed on ASCLs, Table A24 also shows the findings for the multi-factor strategies

based on factor styles. The results are generally in line with those for the set of ASCL-based strategies, i.e.

AV - calculated using only the strategies contained in the respective multi-factor portfolio - seems to show the

strongest predictive power, when compared to AC. More in detail, the estimated coefficient of AV (AC) shows

t-statistics between 2.26 (-1.96) and 9.58 (1.56), when evaluated in isolation. Moreover, while AV - calculated using

all available factors - overall appeared as not helpful for the ASCL-based portfolios (except for the equity-only

strategy), the measure now shows significant coefficient estimates for every except the carry-only portfolio, when

70 The explanatory power for the equity-only strategy is likely due to the equity bias in the overall factor universe, i.e. mostly
equity factors are used to calculate AV and AC over the whole factor set.
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observed standalone. This is - as before - in line with the equity-bias in the overall sample of factors and the

fact that carry is the only style-segment which includes no equity factor strategy, therefore being only marginally

diversified (across two ASCLs) and having the least in common with the overall naive strategy across all factors,

when compared with the other style-based portfolios.

Considering both tables and all alternative naive strategies analyzed, the coefficient of AV (AC) - when evaluated

in isolation - exhibits t-statistics between 2.14 (-2.07) and 9.58 (1.56), with an average t-statistic of 4.66 (0.12) and

a median of 3.63 (1.09). Therefore, the findings of this robustness test broadly support the main results presented

in Section 4.2.2. Finally, another interesting observation is that the measure of variance based on the returns of

the respective portfolio return series comes with stronger predictive power for future risk - compared to AV -

of multi-factor portfolios with a lower number of considered factors (𝑁). This is in line with the idea that total

portfolio variance is a better proxy for risk of undiversified factor portfolios with low 𝑁 , for which the variance

better reflects the information of the single factor variances, that is lost due to diversification for high 𝑁 .

A.3.5 (Mean) Return Forecasting of Other Multi-Factor Portfolios

In addition to variances, I similarly check for robustness concerning the findings on multi-factor return forecasting,

when observing other multi-factor portfolios than the naive factor portfolio over all available factor strategies, as

done before. The results for the three naive strategies formed on ASCLs are reported in Table A25.

With the exception of the strategy based only on FX factors (Naive.FX), AV (compared to AC) appears as

the main driver of future multi-factor returns, when observed in isolation. Specifically, the coefficient estimated

for AV shows a t-statistic of 6.32 for Naive.E and 3.14 for Naive.C, compared to 0.32 for Naive.FX, while no

estimate of AC establishes notable significance. Moreover, and again with the exception of Naive.FX, multi-factor

variance (and its approximation, the product of AV and AC) also shows significant coefficient estimates. In sum,

these findings deliver further support for the relevance of variances for future returns of multi-factor investors, but

also highlight the difficulty to forecast returns for FX-associated multi-factor strategies, which do not seem related

to contemporaneous proxies of risk.

I also conduct the analysis for the naive strategies formed on factor styles; the results are shown in Table

A26. For this setup, the results are more mixed, indicating that portfolios based on styles (across ASCLs) behave

differently than those formed on ASCLs (across styles). For the market and carry portfolios, no coefficient estimate

across the several regressors and models establishes significance, with the exception of the coefficient of AV,

calculated across all available factors and observed together with the measure of portfolio variance (last column).71

While this is only weak evidence, it is supportive of the role of factor variances as main driver of multi-factor

returns. Still, it is notable that the IS evidence of a variance-in-mean relationship is so weak for these two portfolios

(and even non-existent for the FX-based strategy mentioned before), compared to the findings of the various other

analyses conducted.

For Naive.Mom, I find both AV and correlation as important drivers of future returns. This is not surprising,

since the portfolio contains two pairs of factors that are highly-correlated, namely the commodity momentum and

commodity basis-momentum strategies, as well as the two equity momentum factors based on country indices and

71 This findings is especially striking, since the portfolio based on market factors contains the two highly-correlated equity
market factors, as outlined in Section A.3.4.
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U.S. single stocks (see Figure 2). Finally, the findings for the portfolio with the three remaining factors (Naive.Other)

are - again - in line with the previous results and highlight the relevance of factor variances for future multi-factor

returns.

Finally, I again consider both tables: Aggregated over all alternative naive strategies analyzed, the coefficient of

AV (AC) - when evaluated in isolation - exhibits t-statistics between 0.12 (-2.5) and 15.75 (0.67), with an average

t-statistic of 3.96 (-0.38) and a median of 1.92 (-0.37). This last comparison highlights that the main finding

reported in Section 4.2.3 broadly persist when considering less diversified multi-factor portfolios (i.e. based on

fewer factors), while they are less emphasized in the latter case.

A.4 OS Test

A.4.1 Methodology

To check for further robustness, I also consider OS forecasting to avoid look-ahead bias when evaluating the

relationships. Specifically, I recursively estimate the regression models - while using (overlapping) data only

available up to a certain point in time - to subsequently forecast the mean return over the upcoming period. These

forecasts are then compared to those of a historical mean model, using only the constant term as explanatory

variable, where 𝑒𝑁 and 𝑒𝐴 define the vector of OS errors from the historical mean model and the OLS model,

respectively. As measures of accuracy, I observe OS-𝑅2 and ΔRMSE as outlined in Welch and Goyal (2007) or

Pollet and Wilson (2010):

OS-𝑅2 = 1 − 𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝑁
(28)

ΔRMSE =
√︁

MSE𝑁 −
√︁

MSE𝐴 (29)

Moreover, I calcualte MSE-𝐹, which is the F-statistic suggested by McCracken (2007):

MSE-𝐹 = 𝑃 ∗ MSE𝑁 − MSE𝐴
MSE𝐴

, (30)

where 𝑃 is the number of OS observations.

A.4.2 Results

The IS results presented so far suggest that average factor variance is a viable predictor of multi-factor (mean)

returns over the short-term future, for instance the upcoming one-month or one-year period, while AC carries no

notable predictive information for these horizons. I start the OS evaluation of this claim by predicting returns of

the next month, while using only data available up to the current month to conduct the forecast. Table A27 presents

the OS results for the main regression models, using a varying number of observations (𝑅 = 91, 131, 171) to fit the

regression for conducting the first forecast.72

As can be inferred when comparing Panel a with b and c, the results are to some extent sensitive to the chosen

start of the OS exercise (𝑅). Nevertheless, some broader patterns emerge across the three Panels: First, the model

72 The methodology of the OS exercise is described in Section A.4.1. The following discussion of the results focuses on𝑂𝑆-𝑅2

as metric to evaluate the forecast performance. However, choosing ΔRMSE instead leads to qualitatively similar conclusions.
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solely based on AV (AC) outperforms (underperforms) the historical mean model in terms of 𝑂𝑆-𝑅2 in all three

applications.73 Second, the competing variance proxy based on the return series of the overall factor portfolio,

VAR𝑡 , performs worse than the historical mean model in one of the three applications, and worse than AV in all

of them. Last, using the product of AV and AC yields the best results in each analysis, always followed by AV

observed standalone on the second rank. Therefore, the main pattern generally remains robust across all tested 𝑅:

AV appears as the more useful predictor to forecast multi-factor returns at the one-month period when compared

to AC.

In the next step, I test the relationship over the one-year horizon, as done before in the IS analysis. Table

A28 presents the associated OS results for the main regression models, using a varying number of observations

(𝑅 = 80, 120, 160) to fit the regression for conducting the first forecast of the mean return over the upcoming

12-month period. All three panels essentially show the same patterns. In line with the IS findings, AV is the

dominant predictor with an 𝑂𝑆-𝑅2 for the one-regressor model between 10.36% (𝑅 = 80) and 13.48% (𝑅 = 160).

None of the predictive models tested achieves similar forecast performance, whether based on one or multiple

regressors. One the contrary, AC is performing notably worse than the historical mean model in the OS exercise,

with a standalone 𝑂𝑆-𝑅2 between -10.18% (𝑅 = 80) and -7.12% (𝑅 = 160). In sum, AV clearly seems more of an

important driver for future returns.

Table A28 also indicates that forecasting multi-factor returns using multi-factor variance (VAR𝑡 ) or the product

of AV and AC, which is expected to proxy for multi-factor variance, performs considerably worse than simply

using AV. This suggests that important information gets lost when only considering the aggregated return TS of

the equally-weighted multi-factor benchmark or when blending the two components of benchmark variance into

one measure. Moreover, applying both components AV and AC jointly in a multivariate model helps to improve

the forecast performance compared to observing AC, the product of both components, or VAR𝑡 standalone, with

𝑂𝑆-𝑅2 between 0.90% (𝑅 = 80) and 7.14% (𝑅 = 160). Still, this model, influenced by the uninformative noise of

AC, performs only as the second-best option in all three scenarios, always following the model merely based on

AV.

Finally, to evaluate the persistence of the relationship between future returns and the proxies for multi-factor

variance, I report in Figure A7 the recursively estimated coefficients when forecasting returns over the next 12

months based on an univariate regression framework. In general, the figure confirms findings already established

in the course of conducting IS tests across subsamples (see Section A.3.3 and Table A22). Considering AV, the

estimate is negative at the start of the investigation period, successively reverses, and finally turns (and consistently

stays) positive at the end of the 1980s. Afterwards, the relationship becomes even more pronounced until reaching

a peak at the end of the sample (in line with the results in Table A22). For AC, the estimate is generally more

negative in the beginning of the sample, before gradually moving closer to zero over time (compare also to Table

A22). So while AV has reached its peak impact on the return forecast (i.e. the highest absolute coefficient estimate)

only a few years ago, AC has at the same time reached its lowest impact so far. Moreover, the bottom panel of

Figure A7 shows that the estimated coefficients of VAR𝑡 and the product of AV and ACexhibit similar dynamics

over time, in line with the idea that both variables are considered being multi-factor variance approximations. The

73 AV (AC) establishes 𝑂𝑆-𝑅2 of 0.20%, 0.91%, and 1.11% (-1.32%, -0.28% and -0.23%) for 𝑅 = 91, 𝑅 = 131, and 𝑅 = 171,
respectively.
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relationship between either of the two variables and future returns is negative at the beginning and turns positive

in the 2000s, showing a visible upwards trend over time.

Another interesting observation can be drawn from the upper panel of Figure A7. During the recessions in

the early 2000s (associated with the dotcom bubble) and the late 2000s (great financial crisis), the figure reveals

a notable spike in the coefficient of AV, indicating that a spike in variances across factors is typically followed

by higher future returns.74 Both times, the coefficient subsequently reaches a new all-time high. This observation

fits the idea of major exogenous economic shocks as potential trigger for a rise in variances across factors and its

impact on future multi-factor returns, as discussed in Section 2.

A.5 Trading Strategies - Timing

A.5.1 Methodology

While the statistical insights so far are interesting, their economic implications for investment decisions, potentially

in real-time, are still left to explore. In the following, I therefore generate simple timing strategies, similar to authors

such as Moreira and Muir (2017), Cederburg et al. (2020), Barroso and Detzel (2021), or DeMiguel et al. (2021).

The goal is to test the viability of varying exposure to the equally-weighted multi-factor portfolio according to

different approximations for portfolio variance, specifically AV, AC and the sample variance.75

However, my ex-ante expectations are somewhat different to those stated in Moreira and Muir (2017). The

authors build their volatility-managed portfolios based on empirical evidence against a variance-in-mean relation-

ship. This, together with documented persistence in variances, makes it attractive to reduce the exposure in volatile

times, thereby lowering (managing) the risk and enhancing the risk-return tradeoff.

In contrast, the IS findings established so far suggest a more nuanced picture. Specifically, the overall variance

of the multi-factor portfolio is actually less persistent as one would assume based on prior studies’ results. This is

mainly due to the opposing influences of both variance components, i.e. higher AV [AC] relates to higher [lower]

future variance. Moreover, while I indeed find no evidence of a significant variance-in-mean relationship when

observing overall, "diluted" portfolio variance, it can be uncovered when considering both variance components

(and their - again- opposing effects) separately: Higher AV predicts higher future multi-factor returns. Given these

insights, inverse volatility/variance timing, as proposed by Moreira and Muir (2017), should not lead to broad

risk-adjusted outperformance.

Therefore, I start by defining two overarching forms of trading strategies constructed from the signal 𝑠, based

on contrary investment philosophies. The first form, in line with the ideas in Moreira and Muir (2017), follows

a "risk-managing" approach to timing, meaning that the exposure to the multi-factor portfolio in the upcoming

month is calculated as the inverse of the signal 𝑠 at the end of month 𝑡 (𝑤𝑠,MM,𝑡+1 = 1
𝑠𝑡

). The second form instead

does the exact opposite, yielding a "risk-embracing" strategy which increases exposure as the signal increases. In

more detail, I observe a linear scaling (𝑤𝑠,LIN,𝑡+1 = 𝑠𝑡 ), matching the linear regression framework of the IS analysis,

as well as a transformation that should help to reduce extreme leverage (𝑤𝑠,SQRT ,𝑡+1 =
√
𝑠𝑡 ).

74 The same behavior is, to a much smaller extent, also visible in the 1990s recession. While the coefficient also increases
notably during the first recession in the 1980s, it afterwards still exhibits a negative sign. The only recession in the sample
without a lasting increase in the coefficient of AV is the second in the 1980s.

75 As a side note: The signal TS used here are identical to those used in the IS analysis, meaning in case of variables such as
AV or AC that they are calculated from log returns. However, when calculating the performance of the timing strategies, I
consider arithmetic returns.
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The monthly returns of the timing strategy based on signal 𝑠 are then derived as

r𝑠,𝑡+1 = 𝑤𝑠,𝑡+1 × 𝑟𝑡+1 , (31)

where 𝑟𝑡+1 is the return of the static naive multi-factor portfolio.

To be aligned with the IS analysis, I additionally observe timing strategies with longer holding periods. For

these strategies, given a holding period of 𝐻 months, the weight for the upcoming period, 𝑤𝑠,𝑡+1 , is carried forward

for the next (𝐻 − 1) months, assuming that during this period, monthly trading activity only involves rebalancing

to maintain the target weight. For each combination of signal 𝑠 and holding period ∀𝐻 > 1, I form 𝐻 parallel

strategies. The first begins the timing efforts at the earliest period possible (given data availability), while each of

the remaining strategies subsequently delays the start of the timing exercise by a month compared to is predecessor.

Then, I average at time 𝑡 over the monthly weights and returns of all parallel strategies available to arrive at an

aggregate strategy for signal 𝑠. This procedure’s goal is to mitigate the results being driven by a specific starting

point.

To measure the benefits of the resulting timing strategies, I calculate various measures of (risk-adjusted)

performance, for instance the annualized information ratio as in Ilmanen et al. (2021), using the return TS of

the timed strategy and the associated static portfolio (with a constant weight of 1 over the same period) as

benchmark.76 Similar to Moreira and Muir (2017), I scale all timing strategies ex-post to a volatility equal to

the unconditional volatility of the static multi-factor portfolio before calculating performance measures, thereby

enhancing comparability. For establishing statistical inference, I perform bootstraps with 1000 replications to

estimate standard errors and p-values (see Appendix A.6 for more information).

Finally, I briefly want to stress some differences between my methodology, the one applied by Moreira and

Muir (2017), and that of other papers in this area. First and foremost, the main focus of Moreira and Muir

(2017) (and other authors such as Liu et al. (2019), Cederburg et al. (2020), Barroso and Detzel (2021), and

Angelidis and Tessaromatis (2023)) is on the volatility management of different, individually observed factors. In

contrast, the analysis provided is concerned with multi-factor investing, aligning with the focus of recent research

by DeMiguel et al. (2021). Additionally, Moreira and Muir (2017) (and also DeMiguel et al. (2021) as well as

Angelidis and Tessaromatis (2023)) build their multi-factor portfolios from different sets of U.S. equity factors,

while the multi-factor portfolio observed in the paper at hand is more diverse in terms of covering more ASCLs

and a wider geographic breadth (see Section 3).77 Moreover, in their analysis Moreira and Muir (2017) focus on

timing portfolios which combine the factors in their set so that the portfolio is unconditionally mean-variance

efficient (Angelidis and Tessaromatis (2023) follow this procedure). In other words, they chose the static weight of

a respective multi-factor portfolio so that the IS Sharpe Ratio is maximized given the underlying set of factors. In

76 Note that the "static" equally-weighted portfolio is only static in the sense that the factor exposure is the same in each
period. However, as mentioned before in Section 3, the portfolio has still to be rebalanced every month to maintain this
constant exposure over time. All timing efforts described here are conducted on top of this monthly rebelancing of the
equally-weighted portfolio.

77 While Moreira and Muir (2017) include a FX carry factor in their analysis of individual factors and also cover credit-risk
factors (based on corporate bond return data) as well as international stock market indices in their Internet Appendix, these
strategies are not included in their multi-factor portfolios. Other authors dealing with volatility management also often solely
cover factors and anomaly portfolios constructed from U.S. equity data (see for instance Liu et al. (2019), Cederburg et al.
(2020), or Barroso and Detzel (2021)).
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contrast, my analysis centers on an approach to multi-factor investing that is agnostic to any expectations of future

returns and refrains from further optimization, using instead a simple equally-weighted portfolio (after having

conducted an ex-ante volatility scaling, see Section 3).78

A.5.2 Results

The results of the timing exercise are reported in Table A29. Once more, the evidence broadly points rather towards

the existence of a variance-in-mean relationship than against it. Starting with the strategies constructed in the

spirit of Moreira and Muir (2017) (MM), I find actually none of the 18 risk-managing approaches with significant

outperformance at the 5% level. The same holds true for the bulk of risk-embracing strategies, indicating that

neither reducing nor increasing risk exposure based on contemporaneous conditional variance proxies helps to

enhance the risk-return tradeoff, since the former [latter] is not only reducing [increasing] future risk, but also

future returns.

Specifically, only one of the total of 54 constructed strategies shows significance at the 5% level, namely the

approach scaling weights according to the square root (SQRT) of AV and holding on to the exposure for the next

five years.79 This finding is generally in line with the IS results and can be explained with the distinct feature of this

horizon, at which the predictive power of AV for future returns is the strongest across all windows observed, while

it is simultaneously the only horizon for which AV does not significantly forecast future risk (see for instance Table

A20 and Table A21). While this indeed marks a weakening in the risk-return tradeoff, its dynamic is opposite to

the ideas in Moreira and Muir (2017), who build their volatility-managed portfolios based on the evidence of risk

persistence and a missing link between conditional risk and future returns.

In any case, the big picture established from the constructed trading strategies caution multi-factor investors

to bet on a dysfunctional variance-in-mean relationship. This picture is unchanged when refraining from ex-ante

volatility scaling the factor return series before forming the naive multi-factor portfolio (to be more aligned with

Moreira and Muir (2017) or Barroso and Detzel (2021)), as Table A30 reveals.

A.6 Details to Bootstrap Methods and Inference

To calculate standard errors for different summary statistics (e.g. mean or standard deviation) of a return TS, I rely on

non-parametric bootstrapping (see for instance Davison and Hinkley (1997)). In detail, I generate 100080 bootstrap

samples, each of which has the same size as the original TS, by randomly drawing monthly observations with

replacement from the original sample. Subsequently, I compute the different summary statistics under consideration

for each bootstrap sample and derive the standard errors of the statistics.

78 Moreira and Muir (2017) include, when examining TS alphas of their multi-factor portfolios (presented in Table VI), a risk
parity portfolio as control variable, which follows a conceptually similar idea as the multi-factor portfolios observed here. In
Barroso and Detzel (2021), the twelfth footnote contains results on an equally-weighted multi-factor portfolio, implying they
use a similar weighting method as the provided paper (except for the ex-ante volatility-scaling, which I omit in a robustness
test, see Table A30). By contrast, DeMiguel et al. (2021) use a conceptually different approach. They refrain from using
fixed relative weights for the components of theirs multi-factor portfolio and instead allow the weights to change dependent
on market volatility.

79 In the face of such weak results, I do not adjust the statistical inference for multiple comparisons, which overall would be
sensible given the set numerous strategies tested and reduce the established significance even further. Similarly, I do not
consider additional transaction costs that would accrue due to changing exposure to the (monthly-rebalanced) multi-factor
portfolio based on the respective predictive signal.

80 Concerning the number of samples, I follow authors such as Brandt et al. (2009) or Barroso and Santa-Clara (2015) (as the
former state in their study and the latter in the Online Appendix of their work).
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Using the standard errors from the non-parametric bootstrap, I construct (non-bias-adjusted, i.e. centered around

the original estimate of the statistic) normal confidence intervals, one- or two-sided depending on application.

B Appendix: Additional Tables and Figures

B.1 Figures
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Figure A1: Ten-Year Rolling Correlations of Factor Excess Returns.
This figure presents Pearson correlation coefficients for the set of 14 monthly factor excess return TS over the full
investigation period from July 1971 to December 2018, estimated over a rolling window of ten years (120 months)
and arranged similar to a common correlation matrix. Correlation pairs are either depicted as solid black block
(perfectly correlated elements along the diagonal) or as sparkline (off-diagonal elements). Each sparkline comes
with three surrounding horizontal lines: The two solid lines mark correlations of −1 and 1, respectively, while
the dashed line identifies a correlation of 0. Moreover, for each sparkline gray shading is highlighting periods of
recessions in the U.S., as defined by the NBER. The factor labels’ first letters (at the left and upper margin) indicate
the associated ASCL of a given factor, where C, E, and FX are abbreviations for commodity, equity, and foreign
exchange, respectively. Consult Table A4 and Section 3 for an overview of all factor TS analyzed. Detailed data
set information is available in Appendix A.1 and Vincenz and Zeissler (2024). An overview of the abbreviations
used in the course of this paper is provided in Table A3.

Figure A2: Cumulative Log Excess Returns of Market Factors and Naïve Benchmark.
This figure plots cumulative log excess returns of the four monthly market factor TS, the equally-weighted strategy
combining all those market factors, and of the naïve benchmark, which equally weighs all available factors in the
investment universe at a given point in time, over the full investigation period from July 1971 to December 2018.
Moreover, gray shading is highlighting periods of recessions in the U.S., as defined by the NBER. The factor
labels’ first letters (plotted at the right margin) indicate the associated ASCL of a given factor, where C, E, and FX
are abbreviations for commodity, equity, and foreign exchange, respectively. Consult Table A4 and Section 3 for an
overview of all factor TS analyzed. Detailed data set information is available in Appendix A.1 and Vincenz and
Zeissler (2024). An overview of the abbreviations used in the course of this paper is provided in Table A3.
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Figure A3: Regressors over Time. Approximations of Benchmark Risk.
This figure presents the dynamics of the approximations of multi-factor risk used as regressors over the full
investigation period from July 1971 to December 2018. Moreover, gray shading is highlighting periods of recessions
in the U.S., as defined by the NBER. For information on the variables that approximate multi-factor risk (i.e. 𝐴𝑆𝑡 ,
𝐴𝐾𝑡 , 𝐶𝑆𝑉𝑡 , 𝐶𝑆𝑆𝑡 , 𝐶𝑆𝐾𝑡 , MOM𝑡 , and VAL𝑡 ), refer to Section A.2.1. An overview of the abbreviations used in the
course of this paper is provided in Table A3.
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Figure A4: Regressors over Time. External Variables.
This figure presents the dynamics of the external variables used as regressors over the full investigation period from
July 1971 to December 2018. Moreover, gray shading is highlighting periods of recessions in the U.S., as defined
by the NBER. For information on the external predictors refer to Section A.2.2. An overview of the abbreviations
used in the course of this paper is provided in Table A3.
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Figure A5: Two Definitions of AC over Time.
This figure presents the dynamics of two different definitions for AC over the full investigation period from
July 1971 to December 2018. Specifically, 𝐴𝐶𝑡 is defined as 𝐴𝐶𝑡 = 1

𝑁2
∑𝑁
𝑖=1

∑𝑁
𝑘=1 �̂�

2
𝑖𝑘,𝑡−12:𝑡 , while 𝐴𝐶𝑡 (without

diagonal) follows 𝐴𝐶𝑡 = 1
𝑁 (𝑁−1)

∑𝑁
𝑖=1

∑
𝑘≠𝑖 �̂�

2
𝑖𝑘,𝑡−12:𝑡 . Moreover, gray shading is highlighting periods of recessions

in the U.S., as defined by the NBER. An overview of the abbreviations used in the course of this paper is provided
in Table A3.

Figure A6: Original Value Signal and Cumulative Log Excess Returns of Naïve Benchmark over Time.
This figure presents the ’original’ value signal, i.e. before taking first differences of the TS due to evidence of
a unit root (see Table A5), and cumulative log excess returns of the naïve benchmark, which equally weighs all
available factors in the investment universe at a given point in time, over the full investigation period from July
1971 to December 2018. Moreover, gray shading is highlighting periods of recessions in the U.S., as defined by
the NBER. For more information on the value signal VAL𝑡 , refer to Section A.2.1. Consult Table A4 and Section 3
for an overview of all factor TS analyzed. Detailed data set information is available in Appendix A.1 and Vincenz
and Zeissler (2024). An overview of the abbreviations used in the course of this paper is provided in Table A3.

58



Figure A7: Expanding Coefficient Estimates. Mean Return Forecasting (12M). R = 80.
This figure reports the TS of coefficients estimated recursively in the course of forecasting (rolling) mean returns
of the equally-weighted benchmark over the next 12-month period in an OS setting (see Table A28, 𝑅 = 80, i.e. 80
observations are used for the initial estimation). Specifically, each line represents the estimated coefficient of an
univariate linear model using the respective predictive variable as well as an intercept to subsequently predict future
returns. Consult Table A4 and Section 3 for an overview of factors constituting the equally-weighted multi-factor
portfolio. Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to
Section 4.1 for information on all variables that approximate (components of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 ,
VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course of this paper is provided in Table A3.
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B.2 Tables

Abbreviation Full Expression
AC average correlation

ASCL asset class
AV average variance

CAPM capital asset pricing model
ETF exchange-traded fund
FX foreign exchange
IS in-sample
OS out-of-sample
TS time(-)series

Table A3: Abbreviations.
The table lists all abbreviations introduced and used in the course of this paper to provide a quick overview.

Symbol Test statistic Lag order No. Diff.
𝐴𝑉𝑡 (12M) -4.29 4 0
𝐴𝐶𝑡 (12M) -6.25 5 0

VAR𝑡 (12M) -6.27 9 0
VAR.G𝑡 -5.84 10 0
𝐴𝑆𝑡 (12M) -6.01 1 0
𝐴𝐾𝑡 (12M) -7.64 1 0
𝐶𝑆𝑉𝑡 -4.62 10 0
𝐶𝑆𝑆𝑡 -6.67 8 0
𝐶𝑆𝐾𝑡 -5.36 8 0

MOM𝑡 (12M) -6.24 8 0
VAL𝑡 (60M) -8.00 4 1

(a) Risk Approximations

Symbol Test statistic Lag order No. Diff.
INFLTN -6.05 4 0

BDGT.BLNC -4.69 6 0
GLBL.M2.SPPLY -8.28 9 1

Steep_Yld_Crv -4.42 3 0
CFNAI -5.15 9 0
ADS -5.49 8 0
VIX -7.20 2 0

(b) External Predictors

Table A5: Unit Root Tests.
This table reports results of the Augmented Dickey-Fuller tests (see Dickey and Fuller (1979)) conducted for the
monthly TS that are used as regressors, i.e. the risk approximations (Panel a) and external candidate predictors
(Panel b). The unit root tests are based on regressions that include both a constant and time trend. Specifically, the
table lists for each TS the resulting test statistic, the number of lags included in the test, as well as the number of
transformations (i.e. differencing) that were necessary before rejecting the null hypothesis of a unit root at the five
percent level. The five percent critical value associated is -3.41. The lag order is selected according to the Akaike
(AIC) information criterion, with a maximum number of ten lags considered. Refer to Sections 4.1 (multi-factor
variance), A.2.1 (multi-factor risk), and A.2.2 (external predictors) for an overview of explanatory variables in the
regressions. An overview of the abbreviations used in the course of this paper is provided in Table A3.
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No. Period Length Mean
1 Apr 1973 - May 1974 14 0.242
2 Jul 1974 - Jul 1975 13 0.218
3 Feb 2000 - Dec 2001 23 0.291
4 Apr 2009 - Sep 2009 6 0.225

(a) 𝐴𝑉𝑡

No. Period Length Mean
1 Mar 1980 - Feb 1981 12 20.207
2 Apr 1993 - May 1993 2 16.814
3 Jun 2005 - Oct 2005 5 18.862
4 Dec 2005 - Sep 2006 10 18.390
5 Jun 2010 - May 2011 12 19.697
6 Aug 2011 - Jul 2012 12 21.147

(b) 𝐴𝐶𝑡

No. Period Length Mean
1 Feb 1973 - Sep 1974 20 0.031
2 Mar 1980 - Feb 1981 12 0.027
3 Jan 2001 - Dec 2001 12 0.023
4 Oct 2008 - Sep 2009 12 0.025

(c) VAR𝑡

No. Period Length Mean
1 Feb 1973 - Sep 1973 8 0.057
2 Nov 1973 - Jul 1974 9 0.025
3 Jan 1976 - Mar 1976 3 0.023
4 Dec 1976 - Jan 1977 2 0.021
5 Oct 1979 - Nov 1979 2 0.018
6 Mar 1980 - Aug 1980 6 0.026
7 Oct 1987 - Dec 1987 3 0.020
8 Dec 2000 - Apr 2001 5 0.025
9 Sep 2008 - Feb 2009 6 0.025
10 Sep 2011 - Nov 2011 3 0.019

(d) VAR.G𝑡

Table A6: Periods with Peaks in Approximations for Benchmark Variance.
This table lists - per panel - periods showing extreme increases in one of the different measures analyzed as
approximations for the variance of the multi-factor benchmark. Specifically, each panel reports per period the
beginning and ending date, the length of the period (in months), as well as the mean estimated over all observations
within the period (stated as percentage). A period with an extreme increase in the underlying variable is defined
as a time frame of at least two consecutive months, of which all values associated fall into the upper 10% quantile
of all observations available. For a convenient comparison, the mean estimates over all observations available are
0.09% (𝐴𝑉𝑡 ), 0.1 (𝐴𝐶𝑡 ), 0.01% (VAR𝑡 ), and 0.01% (VAR.G𝑡 ). Refer to Section 4.1 for information on all variables
that approximate (components of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the
abbreviations used in the course of this paper is provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[1.322] [0.121] [-3.15] [0.574] [0.981] [4.601] [6.488] [7.324] [16.085] [16.817] [3.389] [14.01] [6.24]
𝐴𝑉𝑡 (12M) 0.063 0.066 -0.042 -0.09

[2.258] [2.316] [-1.049] [-6.87]
𝐴𝐶𝑡 (12M) 0.001 0.001 0 0

[5.066] [6.55] [-1.114] [-3.518]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.87 1.221 1.444

[4.438] [6.521] [13.833]
𝐴𝑆𝑡 (12M) 0 0

[-1.077] [-3.095]
𝐴𝐾𝑡 (12M) 0 0

[1.86] [2.483]
𝐶𝑆𝑉𝑡 0.019 0.004

[1.823] [2.525]
𝐶𝑆𝑆𝑡 0 0

[0.218] [2.414]
𝐶𝑆𝐾𝑡 0 0

[-4.053] [-3.634]
MOM𝑡 (12M) 0.003 -0.003

[0.432] [-2.472]
VAL𝑡 (60M) 0.001 -0.001

[1.754] [-1.897]
RMSE (‰) 0.063 0.066 0.049 0.042 0.040 0.075 0.073 0.072 0.076 0.075 0.075 0.061 0.022
𝑅2

adj (%) 30.62 23.48 57.30 69.00 72.06 2.42 5.89 8.68 -0.18 2.85 1.22 1.11 86.81
No. Obs. 559 559 559 559 559 559 559 559 559 559 559 505 505

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.612] [2.884] [16.211] [3.185] [6.178] [7.02] [-1.049] [1.77] [1.649] [1.596] [1.526] [1.586] [-1.026] [0.895] [1.858] [1.892]
𝐴𝑉𝑡 (12M) -0.07 -0.064 -0.068

[-7.289] [-6.563] [-7.004]
𝐴𝐶𝑡 (12M) 0 0 0

[-0.981] [0.262] [-0.147]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.115 1.022 1.07

[10.445] [9.103] [11.345]
𝐴𝑆𝑡 (12M) 0 0

[-2.19] [-2.475]
𝐴𝐾𝑡 (12M) 0 0

[3.518] [3.171]
𝐶𝑆𝑉𝑡 0.002

[0.993]
𝐶𝑆𝑆𝑡 0

[0.964]
𝐶𝑆𝐾𝑡 0

[-2.47]
MOM𝑡 (12M) -0.002

[-2.774]
VAL𝑡 (60M) 0

[-1.186]
INFLTN 0.001 0.001 0.001 0.001 0.001 0.001 0 0 -0.001 0

[2.44] [2.794] [2.45] [2.748] [2.567] [2.58] [-0.593] [-1.639] [-3.212] [-2.271]
BDGT.BLNC 0.001 0 0 0 0 0 -0.001 0 0 0

[0.693] [0.213] [0.218] [0.111] [-0.313] [-0.34] [-1.08] [-0.509] [0.587] [0.43]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[0.352] [1.902] [1.726] [1.512] [1.624] [1.389] [1.338] [1.392] [1.59]
Steep_Yld_Crv -0.001 0 -0.001 -0.001 0.001 0.001 0.001 0.001

[-0.797] [-0.233] [-0.731] [-0.716] [1.767] [2.641] [2.604] [3.357]
CFNAI 0 0 0 0 0 0 0

[-1.905] [-1.298] [-0.322] [-1.437] [-2.517] [-4.196] [-4.369]
ADS 0 0 0 0 0 0

[-3.06] [-0.903] [-1.355] [0.279] [0.013] [-0.506]
VIX 0 0 0 0 0

[4.003] [4.027] [4.451] [3.44] [4.169]
RMSE (‰) 0.071 0.075 0.076 0.075 0.073 0.073 0.049 0.071 0.071 0.071 0.069 0.069 0.042 0.020 0.018 0.017
𝑅2

adj (%) 10.92 2.08 -0.15 2.70 6.70 8.40 30.27 10.89 11.00 10.97 16.19 16.62 49.32 88.43 90.87 91.52
No. Obs. 559 559 559 559 559 559 397 559 559 559 559 559 397 397 397 397

(b) External Predictors

Table A7: Variance Decomposition of the Naive Portfolio. (Caption on the next page.)
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Table A7: Variance Decomposition of the Naive Portfolio.
This table reports OLS results of regressing contemporaneous (12-month rolling) multi-factor return variance
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b).
Data covers the full investigation period from July 1971 to December 2018. The regressor names are shown at
the left margin. For return-based measures, the estimation period (in months) is disclosed in brackets alongside
the regressor’s name. Below each estimated coefficient, associated t-statistics (adjusted based on the methods
proposed in Newey and West (1987) and Newey and West (1994)) are reported in squared brackets. Coefficients
with absolute t-statistics above 2 are highlighted in bold. The last three rows show per model root mean squared
error (RMSE), adjusted 𝑅2 (𝑅2

adj), and number of observations used for estimation. Consult Table A4 and Section
3 for an overview of factors constituting the equally-weighted multi-factor portfolio. Detailed data set information
is available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to Sections 4.1 (multi-factor variance), A.2.1
(multi-factor risk), and A.2.2 (external predictors) for an overview of explanatory variables in the regressions.
The TS of the regressors were tested to rule out the possibility of containing unit roots with sufficient confidence.
If necessary (only in the case of VAL𝑡 (60M) and GLBL.M2.SPPLY), the TS were transformed (by calculating
differences) and re-tested (see Table A5). An overview of the abbreviations used in the course of this paper is
provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.238] [4.454] [2.595] [4.004] [1.149] [4.648] [5.368] [3.32] [2.864] [5.47] [5.901] [9.936] [15.951] [12.876] [4.665] [16.94] [-1.3]
𝐴𝑉𝑡 (12M) 0.038 0.037 0.07 0.039 0.032 0.132

[4.678] [4.747] [2.964] [4.154] [3.206] [4.633]
𝐴𝐶𝑡 (12M) 0 0 0 0

[-1.571] [-1.271] [0.753] [2.495]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.19 -0.369 -1.293

[2.239] [-1.746] [-3.178]
VAR𝑡 (12M) 0.166 -0.025 0.51

[2.035] [-0.307] [2.174]
VAR.G𝑡 0.223 0.131 0.056

[4.087] [2.185] [0.438]
𝐴𝑆𝑡 (12M) 0 0

[0.127] [-0.184]
𝐴𝐾𝑡 (12M) 0 0

[1.037] [-0.214]
𝐶𝑆𝑉𝑡 0.015 -0.001

[3.547] [-0.312]
𝐶𝑆𝑆𝑡 0 0

[0.514] [0.195]
𝐶𝑆𝐾𝑡 0 0

[-3.432] [-0.252]
MOM𝑡 (12M) 0.004 0.006

[2.158] [3.107]
VAL𝑡 (60M) -0.001 0

[-1.798] [0.524]
RMSE (‰) 0.070 0.074 0.070 0.073 0.069 0.074 0.072 0.070 0.069 0.075 0.074 0.072 0.075 0.074 0.074 0.062 0.053
𝑅2

adj (%) 11.52 1.03 12.15 3.24 13.42 2.71 6.01 11.40 13.23 -0.15 2.17 5.78 -0.16 1.21 2.28 0.55 25.14
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547 493 493

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.552] [4.503] [11.226] [5.648] [5.651] [6.155] [1.745] [2.559] [2.382] [2.486] [2.532] [2.551] [0.192] [-3.172] [-2.839] [-2.903]
𝐴𝑉𝑡 (12M) 0.11 0.098 0.095

[5.667] [5.53] [6.082]
𝐴𝐶𝑡 (12M) 0 0 0

[2.071] [1.109] [0.997]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.757 -0.592 -0.586

[-3.404] [-3.114] [-3.001]
𝐴𝑆𝑡 (12M) 0 0

[2.033] [1.808]
𝐴𝐾𝑡 (12M) 0 0

[-0.598] [-0.658]
𝐶𝑆𝑉𝑡 0.002

[0.563]
𝐶𝑆𝑆𝑡 0

[0.074]
𝐶𝑆𝐾𝑡 0

[0.087]
MOM𝑡 (12M) 0.001

[0.757]
VAL𝑡 (60M) 0

[-0.512]
INFLTN 0 0 0 0 0 0 0.001 0.002 0.002 0.002

[1.893] [1.001] [0.942] [0.728] [1.03] [0.969] [1.064] [1.951] [2.207] [2.757]
BDGT.BLNC 0.001 0.001 0.001 0.001 0.001 0.001 0 -0.001 -0.001 -0.001

[1.379] [0.994] [0.889] [0.604] [0.674] [0.647] [-0.262] [-1.489] [-1.757] [-2.498]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[0.23] [0.894] [0.758] [1.338] [1.335] [1.069] [1.359] [1.369] [1.209]
Steep_Yld_Crv -0.001 -0.001 0 0 0 0 0 0

[-1.785] [-1.007] [-0.662] [-0.58] [-0.439] [0.036] [-0.119] [-0.211]
CFNAI 0 0 0 0 0 0 0

[0.513] [0.589] [1.142] [0.773] [0.161] [0.901] [0.521]
ADS 0 0 0 0 0 0

[0.166] [-2.065] [-2.243] [-1.886] [-1.805] [-1.622]
VIX 0 0 0 0 0

[2.385] [1.893] [0.941] [2.035] [1.699]
RMSE (‰) 0.075 0.074 0.076 0.074 0.076 0.076 0.058 0.074 0.074 0.074 0.073 0.073 0.056 0.046 0.044 0.044
𝑅2

adj (%) 2.65 3.64 -0.17 3.97 0.69 -0.12 5.44 4.61 4.54 5.25 6.51 6.89 11.14 38.92 42.78 42.35
No. Obs. 558 558 558 558 558 558 385 558 558 558 558 558 385 385 385 385

(b) External Predictors

Table A8: Variance Forecasting (12M) of the Naive Portfolio..
This table reports OLS results of regressing (rolling) multi-factor return variance over the next 12-month period
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To
prevent repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.792] [4.228] [2.294] [3.642] [1.168] [4.423] [4.246] [2.826] [1.816] [5.731] [5.605] [7.413] [11.238] [8.913] [4.599] [14.449] [-0.691]
𝐴𝑉𝑡 (12M) 0.046 0.045 0.062 0.044 0.035 0.099

[3.591] [3.852] [1.851] [2.74] [2.401] [2.324]
𝐴𝐶𝑡 (12M) 0 0 0 0

[-0.866] [-0.556] [0.397] [1.04]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.296 -0.181 -0.586

[2.445] [-0.63] [-0.981]
VAR𝑡 (12M) 0.24 0.023 0.053

[1.87] [0.162] [0.135]
VAR.G𝑡 0.341 0.239 0.201

[3.938] [3.043] [0.996]
𝐴𝑆𝑡 (12M) 0 0

[0.863] [0.091]
𝐴𝐾𝑡 (12M) 0 0

[0.784] [-0.396]
𝐶𝑆𝑉𝑡 0.012 -0.011

[1.207] [-2.689]
𝐶𝑆𝑆𝑡 0 0

[1.515] [1.495]
𝐶𝑆𝐾𝑡 0 0

[-2.229] [-0.369]
MOM𝑡 (12M) 0.008 0.008

[3.064] [3.146]
VAL𝑡 (60M) -0.001 0

[-1.345] [0.492]
RMSE (‰) 0.091 0.096 0.091 0.094 0.091 0.094 0.092 0.091 0.089 0.096 0.096 0.095 0.096 0.096 0.093 0.083 0.075
𝑅2

adj (%) 10.11 0.05 10.03 4.85 10.07 3.42 8.51 9.97 13.67 0.54 0.67 1.91 0.00 0.45 5.35 0.38 17.63
No. Obs. 553 553 553 553 553 553 553 553 553 553 553 553 553 553 553 499 499

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.509] [3.428] [11.528] [4.263] [5.788] [6.25] [1.744] [1.892] [1.896] [2.086] [2.026] [2.055] [-0.68] [-2.723] [-2.747] [-2.524]
𝐴𝑉𝑡 (12M) 0.1 0.084 0.102

[3.148] [2.618] [2.261]
𝐴𝐶𝑡 (12M) 0 0 0

[0.16] [-0.617] [-0.265]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.476 -0.252 -0.414

[-1.301] [-0.689] [-1.087]
𝐴𝑆𝑡 (12M) 0 0

[2.779] [2.587]
𝐴𝐾𝑡 (12M) 0 0

[-1.592] [-1.502]
𝐶𝑆𝑉𝑡 -0.011

[-2.457]
𝐶𝑆𝑆𝑡 0

[1.571]
𝐶𝑆𝐾𝑡 0

[0.594]
MOM𝑡 (12M) 0.003

[1.415]
VAL𝑡 (60M) 0

[0.151]
INFLTN 0.001 0.001 0.001 0 0 0 0.002 0.003 0.003 0.003

[2.034] [1.504] [1.311] [1.022] [1.313] [1.26] [1.943] [2.709] [2.842] [3.058]
BDGT.BLNC 0.001 0.001 0.001 0 0 0 0 -0.001 -0.001 -0.001

[1.115] [0.683] [0.701] [0.237] [0.346] [0.329] [-0.482] [-1.904] [-2.565] [-2.648]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[-1.098] [-0.527] [-0.641] [-0.567] [-0.542] [-0.33] [-0.055] [-0.246] [-0.339]
Steep_Yld_Crv -0.002 -0.001 -0.001 -0.001 0 0 0 0

[-1.772] [-1.374] [-1.289] [-1.203] [-0.262] [-0.19] [-0.207] [-0.31]
CFNAI 0 0 0 0 0 0 0

[0.485] [0.497] [0.966] [1.243] [0.743] [1.656] [1.019]
ADS 0 0 0 0 0 0

[0.042] [-1.32] [-2.553] [-2.7] [-2.569] [-1.873]
VIX 0 0 0 0 0

[2.519] [2.189] [0.226] [1.72] [1.897]
RMSE (‰) 0.093 0.094 0.095 0.093 0.095 0.095 0.078 0.093 0.093 0.092 0.092 0.091 0.074 0.064 0.062 0.060
𝑅2

adj (%) 3.86 2.56 0.01 5.16 0.29 -0.18 3.05 4.73 4.61 6.32 6.77 6.99 11.46 32.14 36.92 39.36
No. Obs. 564 564 564 564 564 564 391 564 564 564 564 564 391 391 391 391

(b) External Predictors

Table A9: Variance Forecasting (6M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) multi-factor return variance over the next 6-month period
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To
prevent repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.874] [5.633] [3.341] [4.687] [2.151] [5.126] [7.544] [3.837] [3.728] [6.759] [7.44] [13.806] [26.078] [15.967] [5.291] [17.221] [0.287]
𝐴𝑉𝑡 (12M) 0.021 0.02 0.036 0.023 0.018 0.096

[2.936] [2.577] [1.867] [3.16] [2.391] [4.813]
𝐴𝐶𝑡 (12M) 0 0 0 0

[-2.333] [-1.994] [0.117] [2.283]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.091 -0.176 -1.025

[1.413] [-1.162] [-3.925]
VAR𝑡 (12M) 0.078 -0.031 0.413

[1.352] [-0.67] [2.777]
VAR.G𝑡 0.109 0.057 0.089

[3.488] [1.86] [1.153]
𝐴𝑆𝑡 (12M) 0 0

[-0.028] [0.14]
𝐴𝐾𝑡 (12M) 0 0

[1.049] [0.33]
𝐶𝑆𝑉𝑡 0.01 -0.001

[3.784] [-0.424]
𝐶𝑆𝑆𝑡 0 0

[0.269] [-0.175]
𝐶𝑆𝐾𝑡 0 0

[-2.582] [-0.063]
MOM𝑡 (12M) 0.001 0.003

[0.49] [2.16]
VAL𝑡 (60M) 0 0.001

[0.034] [1.643]
RMSE (‰) 0.050 0.052 0.050 0.052 0.050 0.052 0.051 0.050 0.050 0.052 0.052 0.051 0.052 0.052 0.052 0.047 0.042
𝑅2

adj (%) 7.09 1.55 8.19 1.43 8.69 1.14 2.87 7.06 7.66 -0.19 2.21 4.51 -0.17 1.01 0.06 -0.21 17.64
No. Obs. 535 535 535 535 535 535 535 535 535 535 535 535 535 535 535 481 481

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[4.567] [4.968] [14.513] [9.359] [6.437] [6.834] [1.823] [3.364] [3.361] [3.966] [4.171] [4.173] [1.61] [0.037] [0.237] [0.299]
𝐴𝑉𝑡 (12M) 0.06 0.055 0.055

[3.665] [3.42] [3.91]
𝐴𝐶𝑡 (12M) 0 0 0

[1.303] [0.93] [0.875]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.469 -0.403 -0.397

[-3.264] [-2.961] [-2.631]
𝐴𝑆𝑡 (12M) 0 0

[1.3] [1.147]
𝐴𝐾𝑡 (12M) 0 0

[0.475] [0.376]
𝐶𝑆𝑉𝑡 0

[0.115]
𝐶𝑆𝑆𝑡 0

[-0.186]
𝐶𝑆𝐾𝑡 0

[0.258]
MOM𝑡 (12M) 0

[-0.296]
VAL𝑡 (60M) 0

[0.21]
INFLTN 0 0 0 0 0 0 0 0.001 0.001 0.001

[1.57] [0.381] [0.348] [0.052] [0.289] [0.256] [0.314] [0.922] [0.908] [1.397]
BDGT.BLNC 0.001 0.001 0.001 0.001 0.001 0.001 0 0 0 0

[1.984] [1.613] [1.62] [1.057] [0.966] [0.957] [-0.298] [-0.983] [-1.015] [-1.518]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[0.497] [0.904] [0.875] [1.651] [1.634] [0.926] [1.052] [1.071] [1.28]
Steep_Yld_Crv -0.001 -0.001 0 0 -0.001 -0.001 -0.001 -0.001

[-3.942] [-1.735] [-0.808] [-0.761] [-1.805] [-1.452] [-1.501] [-1.977]
CFNAI 0 0 0 0 0 0 0

[0.712] [0.717] [0.914] [-0.207] [-0.794] [-0.515] [-0.292]
ADS 0 0 0 0 0 0

[0.483] [-0.861] [-1.406] [-1.324] [-1.304] [-1.211]
VIX 0 0 0 0 0

[2.217] [2.052] [1.98] [2.458] [2.063]
RMSE (‰) 0.057 0.056 0.058 0.056 0.057 0.057 0.044 0.056 0.056 0.055 0.055 0.055 0.042 0.039 0.039 0.038
𝑅2

adj (%) 1.16 5.45 -0.12 5.35 1.61 0.40 7.34 5.40 5.38 6.73 9.06 9.03 14.63 26.72 27.42 26.50
No. Obs. 546 546 546 546 546 546 373 546 546 546 546 546 373 373 373 373

(b) External Predictors

Table A10: Variance Forecasting (24M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) multi-factor return variance over the next 24-month period
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To
prevent repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[5.085] [8.148] [5.462] [6.315] [4.22] [6.893] [8.1] [5.145] [4.952] [9.638] [10.57] [14.934] [35.502] [22.536] [7.177] [23.202] [3.055]
𝐴𝑉𝑡 (12M) 0.001 0.001 0.028 0.005 0.001 0.038

[0.146] [0.091] [4.801] [0.725] [0.15] [2.731]
𝐴𝐶𝑡 (12M) 0 0 0 0

[-1.096] [-1.135] [1.787] [1.594]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.049 -0.303 -0.478

[-1.025] [-4.647] [-2.7]
VAR𝑡 (12M) -0.045 -0.069 0.135

[-1.096] [-2.721] [1.446]
VAR.G𝑡 0.003 0 -0.003

[0.092] [-0.009] [-0.073]
𝐴𝑆𝑡 (12M) 0 0

[2.279] [1.233]
𝐴𝐾𝑡 (12M) 0 0

[0.093] [-0.839]
𝐶𝑆𝑉𝑡 0.002 0

[1.171] [0.321]
𝐶𝑆𝑆𝑡 0 0

[0.6] [0.334]
𝐶𝑆𝐾𝑡 0 0

[-1.033] [-0.533]
MOM𝑡 (12M) 0 0.001

[0.363] [1.402]
VAL𝑡 (60M) 0 0.001

[0.77] [1.92]
RMSE (‰) 0.031 0.030 0.030 0.030 0.030 0.030 0.031 0.030 0.031 0.030 0.031 0.031 0.031 0.031 0.031 0.030 0.028
𝑅2

adj (%) -0.15 1.02 0.84 1.23 6.57 1.10 -0.20 1.89 -0.35 5.65 -0.18 0.20 -0.08 0.18 -0.03 -0.06 8.94
No. Obs. 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 445 445

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6.833] [6.424] [23.407] [9.274] [9.463] [12.386] [2.192] [4.787] [4.857] [5.555] [5.628] [5.652] [4.819] [4.511] [5.34] [5.503]
𝐴𝑉𝑡 (12M) 0.017 0.008 0.01

[2.049] [1.421] [1.072]
𝐴𝐶𝑡 (12M) 0 0 0

[1.842] [1.349] [1.22]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.282 -0.17 -0.178

[-2.693] [-2.159] [-1.595]
𝐴𝑆𝑡 (12M) 0 0

[2.345] [2.483]
𝐴𝐾𝑡 (12M) 0 0

[-0.198] [-0.187]
𝐶𝑆𝑉𝑡 -0.001

[-1.126]
𝐶𝑆𝑆𝑡 0

[-0.382]
𝐶𝑆𝐾𝑡 0

[-0.097]
MOM𝑡 (12M) 0

[-0.371]
VAL𝑡 (60M) 0

[1.142]
INFLTN 0 0 0 0 0 0 -0.001 -0.001 -0.001 -0.001

[0.103] [-1.047] [-0.663] [-1.018] [-0.594] [-0.611] [-1.078] [-1.502] [-1.559] [-1.894]
BDGT.BLNC 0.001 0.001 0.001 0 0.001 0.001 0 0 0 0

[2.102] [1.969] [2.05] [0.968] [1.526] [1.508] [0.565] [0.96] [0.805] [1.033]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[0.971] [1.204] [1.342] [1.48] [1.457] [1.417] [1.473] [1.625] [1.772]
Steep_Yld_Crv -0.001 -0.001 0 0 -0.001 -0.001 -0.001 -0.001

[-1.711] [-1.082] [-0.647] [-0.631] [-2.365] [-2.068] [-2.216] [-3.171]
CFNAI 0 0 0 0 0 0 0

[1.865] [1.713] [1.686] [1.107] [1.052] [1.524] [2.083]
ADS 0 0 0 0 0 0

[1.654] [-0.626] [-1.264] [-1.807] [-1.774] [-1.653]
VIX 0 0 0 0 0

[0.147] [0.395] [1.028] [1.899] [1.986]
RMSE (‰) 0.032 0.031 0.032 0.031 0.031 0.032 0.032 0.031 0.031 0.031 0.029 0.029 0.028 0.027 0.026 0.026
𝑅2

adj (%) -0.19 6.07 0.10 6.46 6.55 3.37 -0.17 6.64 6.82 9.71 16.91 16.90 26.33 30.02 35.11 34.62
No. Obs. 510 510 510 510 510 510 337 510 510 510 510 510 337 337 337 337

(b) External Predictors

Table A11: Variance Forecasting (60M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) multi-factor return variance over the next 60-month period
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To
prevent repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8.671] [8.415] [8.095] [10.426] [4.782] [10.093] [14.175] [8.739] [8.348] [14.851] [14.273] [37.852] [51.794] [33.707] [9.82] [42.589] [7.772]
𝐴𝑉𝑡 (12M) 0.009 0.009 0.021 0.011 0.009 0.029

[2.896] [2.994] [3.069] [3.663] [2.706] [3.769]
𝐴𝐶𝑡 (12M) 0 0 0 0

[-0.479] [-0.198] [1.242] [3.297]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.05 -0.139 -0.244

[1.584] [-1.754] [-2.769]
VAR𝑡 (12M) 0.021 -0.03 0.086

[0.968] [-1.713] [1.845]
VAR.G𝑡 0.021 -0.003 -0.065

[1.278] [-0.141] [-2.372]
𝐴𝑆𝑡 (12M) 0 0

[1.394] [0.397]
𝐴𝐾𝑡 (12M) 0 0

[-0.584] [-4.211]
𝐶𝑆𝑉𝑡 0.003 0.001

[4.049] [0.838]
𝐶𝑆𝑆𝑡 0 0

[1.568] [1.145]
𝐶𝑆𝐾𝑡 0 0

[-0.86] [1.69]
MOM𝑡 (12M) 0.001 0.002

[1.5] [2.231]
VAL𝑡 (60M) 0 0

[-0.806] [1.05]
RMSE (‰) 0.017 0.019 0.017 0.018 0.017 0.018 0.018 0.017 0.017 0.018 0.018 0.018 0.019 0.019 0.018 0.018 0.015
𝑅2

adj (%) 11.50 -0.02 11.35 3.76 14.51 0.54 0.85 12.48 11.32 2.93 1.10 4.39 0.23 -0.13 2.54 -0.06 31.23
No. Obs. 439 439 439 439 439 439 439 439 439 439 439 439 439 439 439 385 385

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6.772] [13.62] [32.117] [11.749] [12.11] [15.603] [6.882] [8.74] [8.261] [8.707] [9.071] [9.57] [19.181] [13.691] [8.269] [18.006]
𝐴𝑉𝑡 (12M) 0.02 0.017 0.018

[3.807] [4.868] [7.425]
𝐴𝐶𝑡 (12M) 0 0 0

[2.205] [2.154] [5.191]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.201 -0.157 -0.167

[-2.568] [-3.413] [-5.923]
𝐴𝑆𝑡 (12M) 0 0

[1.704] [3.156]
𝐴𝐾𝑡 (12M) 0 0

[-1.721] [-3.938]
𝐶𝑆𝑉𝑡 0

[1.066]
𝐶𝑆𝑆𝑡 0

[2.332]
𝐶𝑆𝐾𝑡 0

[4.601]
MOM𝑡 (12M) 0

[1.205]
VAL𝑡 (60M) 0

[1.068]
INFLTN 0 0 0 0 0 0 -0.001 -0.001 -0.001 -0.001

[-0.691] [-2.136] [-2.073] [-2.218] [-1.394] [-1.521] [-4.287] [-4.84] [-5.034] [-14.65]
BDGT.BLNC 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

[8.903] [5.624] [5.618] [3.968] [3.432] [3.734] [2.231] [2.105] [1.87] [5.508]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[0.585] [0.22] [0.193] [1.351] [1.626] [1.592] [1.899] [2.128] [1.601]
Steep_Yld_Crv 0 0 0 0 0 0 0 0

[-3.228] [-0.685] [0.779] [0.916] [1.092] [1.584] [1.444] [4.825]
CFNAI 0 0 0 0 0 0 0

[1.506] [2.665] [3.353] [2.488] [1.834] [2.685] [4.017]
ADS 0 0 0 0 0 0

[0.887] [-2.97] [-2.964] [-2.102] [-2.249] [-3.528]
VIX 0 0 0 0 0

[0.221] [-1.673] [-2.812] [-0.494] [-0.504]
RMSE (‰) 0.020 0.019 0.020 0.020 0.020 0.020 0.020 0.018 0.018 0.018 0.017 0.017 0.013 0.013 0.012 0.011
𝑅2

adj (%) 1.18 11.96 -0.16 2.54 4.40 1.29 -0.13 17.44 17.27 17.20 29.40 31.09 52.08 57.32 61.91 63.20
No. Obs. 450 450 450 450 450 450 277 450 450 450 450 450 277 277 277 277

(b) External Predictors

Table A12: Variance Forecasting (120M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) multi-factor return variance over the next 120-month period
(dependent variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To
prevent repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.002 0.003 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.002 0.002 0.002 0.002 0 0.003 0.003

[2.518] [3.101] [1.775] [3.684] [0.48] [4.106] [1.16] [2.653] [0.923] [6.504] [5.258] [5.396] [6.224] [5.032] [0.22] [8.963] [3.132]
𝐴𝑉𝑡 (12M) 0.949 0.935 2.48 1.392 0.419 -1.777

[1.354] [1.24] [1.418] [1.765] [0.533] [-1.463]
𝐴𝐶𝑡 (12M) -0.004 -0.004 0.01 -0.001

[-0.454] [-0.377] [0.644] [-0.084]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 3.849 -17.452 36.16

[0.529] [-0.889] [2.121]
VAR𝑡 (12M) -0.238 -7.072 -15.658

[-0.028] [-0.7] [-1.676]
VAR.G𝑡 13.165 11.941 -11.835

[1.208] [1.004] [-1.861]
𝐴𝑆𝑡 (12M) 0.003 0

[1.927] [0.087]
𝐴𝐾𝑡 (12M) 0 0

[-0.069] [-0.223]
𝐶𝑆𝑉𝑡 -0.127 -0.162

[-0.221] [-1.045]
𝐶𝑆𝑆𝑡 0 0

[0.863] [0.01]
𝐶𝑆𝐾𝑡 0 0

[1.595] [-0.867]
MOM𝑡 (12M) 0.928 0.118

[5.303] [1.35]
VAL𝑡 (60M) -1.522 -1.503

[-20.58] [-24.292]
RMSE (‰) 8.802 8.823 8.800 8.821 8.790 8.825 8.758 8.791 8.754 8.785 8.825 8.824 8.824 8.819 8.463 3.262 3.134
𝑅2

adj (%) 0.34 -0.12 0.20 -0.08 0.25 -0.18 1.35 0.42 1.26 0.72 -0.18 -0.15 -0.14 -0.03 7.87 84.59 85.46
No. Obs. 559 559 559 559 559 559 559 559 559 559 559 559 559 559 559 505 505

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.002 0.002 0.002 0.002 0.002 0.002 0.007 0.002 0.002 0.001 0.001 0.001 0.007 0.004 0.004 0.003

[3.565] [2.525] [4.773] [2.302] [6.046] [5.979] [4.111] [1.875] [1.491] [1.16] [1.121] [1.12] [2.667] [1.202] [1.2] [2.538]
𝐴𝑉𝑡 (12M) 4.677 4.92 -0.464

[2.196] [2.25] [-0.531]
𝐴𝐶𝑡 (12M) 0.009 0.012 0.008

[0.421] [0.56] [0.804]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -11.66 -15.362 12.294

[-0.388] [-0.494] [1.101]
𝐴𝑆𝑡 (12M) -0.001 0

[-0.611] [-0.271]
𝐴𝐾𝑡 (12M) 0 -0.001

[0.325] [-1.965]
𝐶𝑆𝑉𝑡 -0.052

[-0.527]
𝐶𝑆𝑆𝑡 0

[-1.313]
𝐶𝑆𝐾𝑡 0

[-1.459]
MOM𝑡 (12M) 0.092

[1.232]
VAL𝑡 (60M) -1.759

[-28.115]
INFLTN 0 -0.001 0.004 0.008 0.012 0.012 -0.016 0.038 0.032 0.026

[0.011] [-0.035] [0.234] [0.529] [0.83] [0.783] [-0.364] [0.846] [0.709] [1.154]
BDGT.BLNC 0.004 0.004 0.005 0.023 0.036 0.035 0.023 -0.008 -0.004 0.034

[0.14] [0.143] [0.171] [0.642] [0.954] [0.946] [0.585] [-0.206] [-0.096] [1.675]
GLBL.M2.SPPLY 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0

[3.412] [3.39] [3.422] [3.339] [3.34] [3.611] [4.166] [4.162] [1.054]
Steep_Yld_Crv 0.027 0.048 0.066 0.067 0.05 0.055 0.055 -0.026

[0.685] [1.118] [1.483] [1.544] [0.905] [1.082] [1.058] [-0.992]
CFNAI 0.001 0.001 0.001 0 0 -0.001 -0.002

[0.965] [1.486] [1.226] [-0.094] [-0.392] [-0.527] [-2.78]
ADS 0 0 0 0.001 0.001 0.001

[0.72] [-0.381] [0.045] [0.647] [0.621] [2.862]
VIX -0.025 -0.027 -0.038 -0.04 -0.009

[-2.717] [-2.805] [-3.62] [-3.767] [-2.563]
RMSE (‰) 8.793 8.793 8.691 8.787 8.780 8.785 7.942 8.793 8.690 8.675 8.645 8.643 7.743 7.467 7.461 2.336
𝑅2

adj (%) -0.18 -0.17 2.14 -0.03 0.13 0.01 5.58 -0.35 1.83 1.98 2.50 2.36 8.88 14.59 14.28 91.48
No. Obs. 570 570 570 570 570 570 397 570 570 570 570 570 397 397 397 397

(b) External Predictors

Table A13: Return Decomposition of the Naive Portfolio. (Caption on the next page.)
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Table A13: Return Decomposition of the Naive Portfolio.
This table reports OLS results of regressing contemporaneous monthly multi-factor returns (dependent variable)
on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). Data covers the full
investigation period from July 1971 to December 2018. The regressor names are shown at the left margin. For
return-based measures, the estimation period (in months) is disclosed in brackets alongside the regressor’s name.
Below each estimated coefficient, associated t-statistics (adjusted based on the methods proposed in Newey and
West (1987) and Newey and West (1994)) are reported in squared brackets. Coefficients with absolute t-statistics
above 2 are highlighted in bold. The last three rows show per model root mean squared error (RMSE), adjusted 𝑅2

(𝑅2
adj), and number of observations used for estimation. Consult Table A4 and Section 3 for an overview of factors

constituting the equally-weighted multi-factor portfolio. Detailed data set information is available in Appendix A.1
and Vincenz and Zeissler (2024). Refer to Sections 4.1 (multi-factor variance), A.2.1 (multi-factor risk), and A.2.2
(external predictors) for an overview of explanatory variables in the regressions. The TS of the regressors were
tested to rule out the possibility of containing unit roots with sufficient confidence. If necessary (only in the case
of VAL𝑡 (60M) and GLBL.M2.SPPLY), the TS were transformed (by calculating differences) and re-tested (see
Table A5). An overview of the abbreviations used in the course of this paper is provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0

[2.028] [2.301] [0.613] [2.524] [0.487] [3.493] [3.54] [1.927] [1.743] [5.323] [5.993] [5.33] [6.048] [6.221] [4.128] [5.938] [0.076]
𝐴𝑉𝑡 (12M) 1.349 1.374 1.255 1.331 1.347 2.613

[2.142] [1.991] [0.819] [1.811] [2.077] [1.1]
𝐴𝐶𝑡 (12M) 0.005 0.006 0.005 0.02

[0.728] [0.872] [0.408] [1.319]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 12.205 1.34 -1.35

[2.168] [0.091] [-0.036]
VAR𝑡 (12M) 6.817 0.282 -16.244

[1.071] [0.037] [-0.573]
VAR.G𝑡 3.981 0.053 -0.541

[0.915] [0.01] [-0.035]
𝐴𝑆𝑡 (12M) 0 0

[0.363] [-0.013]
𝐴𝐾𝑡 (12M) 0.001 0.001

[1.24] [1.119]
𝐶𝑆𝑉𝑡 0.002 -0.25

[0.006] [-0.78]
𝐶𝑆𝑆𝑡 0 0

[-1.544] [-1.5]
𝐶𝑆𝐾𝑡 0 0

[-1.841] [-1.293]
MOM𝑡 (12M) 0.081 -0.033

[0.5] [-0.197]
VAL𝑡 (60M) -0.14 -0.121

[-1.465] [-1.249]
RMSE (‰) 8.756 8.799 8.751 8.758 8.751 8.787 8.796 8.756 8.756 8.802 8.788 8.803 8.787 8.790 8.800 8.236 8.119
𝑅2

adj (%) 0.88 -0.10 0.82 0.83 0.64 0.17 -0.04 0.70 0.70 -0.16 0.15 -0.18 0.18 0.10 -0.12 0.52 1.14
No. Obs. 558 558 558 558 558 558 558 558 558 558 558 558 558 558 558 504 504

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.002 0.004 0.001 0.001 0.002

[3.961] [2.519] [5.566] [2.112] [6.083] [6.088] [2.016] [2.115] [2.081] [1.699] [1.644] [1.631] [1.537] [0.41] [0.474] [0.651]
𝐴𝑉𝑡 (12M) 2.866 3.215 2.919

[1.925] [1.987] [1.387]
𝐴𝐶𝑡 (12M) 0.017 0.021 0.023

[1.172] [1.405] [1.434]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.588 -4.82 -5.727

[0.031] [-0.233] [-0.26]
𝐴𝑆𝑡 (12M) -0.001 -0.002

[-0.64] [-0.768]
𝐴𝐾𝑡 (12M) 0.001 0.001

[0.508] [0.759]
𝐶𝑆𝑉𝑡 -0.034

[-0.098]
𝐶𝑆𝑆𝑡 0

[-0.679]
𝐶𝑆𝐾𝑡 0

[-1.06]
MOM𝑡 (12M) 0.175

[0.917]
VAL𝑡 (60M) -0.096

[-0.776]
INFLTN -0.003 -0.005 -0.005 0 0.004 0.003 -0.057 -0.029 -0.038 -0.058

[-0.23] [-0.303] [-0.303] [-0.005] [0.285] [0.21] [-1.074] [-0.557] [-0.665] [-1.043]
BDGT.BLNC 0.005 0.008 0.008 0.028 0.042 0.041 0.012 0.007 0.014 0.017

[0.163] [0.26] [0.26] [0.771] [1.087] [1.073] [0.296] [0.183] [0.341] [0.413]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[-0.01] [-0.032] [0.009] [0.15] [0.173] [0.053] [-0.016] [0.006] [-0.239]
Steep_Yld_Crv 0.036 0.054 0.073 0.077 0.014 0.021 0.02 0.009

[0.898] [1.167] [1.515] [1.521] [0.227] [0.366] [0.345] [0.165]
CFNAI 0.001 0.001 0.002 -0.001 -0.001 -0.002 -0.002

[1.4] [1.778] [1.25] [-0.528] [-0.734] [-0.862] [-1.157]
ADS 0.001 -0.001 0.002 0.004 0.004 0.004

[0.755] [-0.56] [0.9] [1.309] [1.284] [1.598]
VIX -0.001 0 -0.011 -0.013 -0.012

[-0.203] [-0.076] [-1.616] [-1.85] [-1.616]
RMSE (‰) 8.788 8.788 8.789 8.777 8.767 8.779 8.193 8.787 8.787 8.770 8.735 8.727 8.122 7.927 7.914 7.880
𝑅2

adj (%) -0.16 -0.17 -0.18 0.09 0.32 0.04 -0.24 -0.32 -0.50 -0.27 0.35 0.34 -0.03 3.98 3.80 3.36
No. Obs. 569 569 569 569 569 569 396 569 569 569 569 569 396 396 396 396

(b) External Predictors

Table A14: Return Forecasting (1M) of the Naive Portfolio.
This table reports OLS results of regressing multi-factor returns of the subsequent month (dependent variable) on
contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent repetition, refer to
Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.001 0.003 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001

[2.616] [4.797] [2.343] [3.435] [1.561] [5.088] [5.461] [2.783] [2.666] [5.543] [6.446] [7.606] [12.212] [9.67] [5.896] [11.362] [1.182]
𝐴𝑉𝑡 (12M) 1.297 1.274 1.808 1.538 1.306 1.536

[4.147] [3.832] [2.465] [4.509] [3.968] [1.537]
𝐴𝐶𝑡 (12M) -0.007 -0.005 -0.001 -0.003

[-1.425] [-1.052] [-0.093] [-0.463]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 7.002 -6.03 -0.02

[1.351] [-0.658] [-0.001]
VAR𝑡 (12M) 3.6 -3.87 -0.362

[0.96] [-0.977] [-0.035]
VAR.G𝑡 3.537 -0.202 -1.08

[2.319] [-0.145] [-0.219]
𝐴𝑆𝑡 (12M) 0.001 0

[0.66] [0.293]
𝐴𝐾𝑡 (12M) 0.001 0

[1.01] [-0.099]
𝐶𝑆𝑉𝑡 0.398 0.127

[3.684] [1.221]
𝐶𝑆𝑆𝑡 0 0

[-1.695] [-1.941]
𝐶𝑆𝐾𝑡 0 0

[-1.263] [1.852]
MOM𝑡 (12M) 0.037 0.092

[0.414] [1.235]
VAL𝑡 (60M) 0.002 0.026

[0.108] [0.979]
RMSE (‰) 2.539 2.667 2.525 2.636 2.521 2.671 2.669 2.527 2.539 2.678 2.667 2.644 2.681 2.682 2.683 2.536 2.327
𝑅2

adj (%) 10.45 1.19 11.23 3.42 11.36 0.86 1.02 11.13 10.29 0.36 1.17 2.88 0.10 0.04 -0.05 -0.20 13.75
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547 493 493

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001

[4.416] [2.578] [9.43] [4.594] [6.482] [6.432] [0.915] [1.992] [2.118] [1.912] [1.865] [1.861] [1.043] [0.776] [0.442] [0.79]
𝐴𝑉𝑡 (12M) 0.594 0.973 0.805

[0.634] [1.044] [0.988]
𝐴𝐶𝑡 (12M) -0.009 -0.007 -0.006

[-0.86] [-0.645] [-0.704]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 15.322 10.714 9.903

[1.396] [1.01] [0.953]
𝐴𝑆𝑡 (12M) -0.002 -0.002

[-1.42] [-2.074]
𝐴𝐾𝑡 (12M) -0.001 0

[-0.8] [-0.416]
𝐶𝑆𝑉𝑡 0.216

[2.649]
𝐶𝑆𝑆𝑡 0

[-1.451]
𝐶𝑆𝐾𝑡 0

[1.516]
MOM𝑡 (12M) 0.174

[2.366]
VAL𝑡 (60M) 0.026

[0.908]
INFLTN -0.007 -0.008 -0.009 -0.006 -0.004 -0.004 -0.047 -0.017 -0.012 -0.031

[-0.704] [-0.635] [-0.68] [-0.501] [-0.343] [-0.336] [-0.906] [-0.371] [-0.287] [-1.097]
BDGT.BLNC -0.001 0.005 0.005 0.014 0.021 0.021 -0.001 -0.019 -0.019 -0.018

[-0.025] [0.18] [0.187] [0.507] [0.612] [0.622] [-0.021] [-0.748] [-0.722] [-1.07]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[-0.631] [-0.813] [-0.749] [-0.698] [-0.688] [-0.739] [-0.748] [-0.709] [-0.721]
Steep_Yld_Crv 0.022 0.025 0.034 0.034 0.003 -0.001 0.003 0.002

[1.381] [0.926] [1.263] [1.21] [0.098] [-0.021] [0.082] [0.085]
CFNAI 0 0 0 0 0 0 -0.001

[1.079] [1.257] [0.767] [-0.28] [-0.392] [-0.611] [-1.542]
ADS 0 0 0 0.001 0.001 0.001

[1.065] [-0.02] [0.362] [1.331] [1.263] [2.033]
VIX 0.007 0.006 -0.001 -0.002 -0.003

[1.596] [1.324] [-0.154] [-0.403] [-0.923]
RMSE (‰) 2.688 2.697 2.695 2.684 2.678 2.680 2.574 2.687 2.684 2.671 2.646 2.646 2.525 2.290 2.258 2.213
𝑅2

adj (%) 0.51 -0.18 0.00 0.82 1.25 1.10 4.06 0.41 0.49 1.22 2.92 2.74 6.25 22.23 23.97 26.03
No. Obs. 558 558 558 558 558 558 385 558 558 558 558 558 385 385 385 385

(b) External Predictors

Table A15: Mean Return Forecasting (12M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) mean returns over the next 12-month period (dependent
variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent
repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.001 0.003 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.003 0.003 0.002 0.002 0.003 0.002 0.002 0

[2.497] [3.601] [1.569] [3.323] [1.002] [4.345] [4.772] [2.613] [2.78] [5.545] [5.88] [6.153] [9.761] [7.504] [4.478] [6.406] [0.071]
𝐴𝑉𝑡 (12M) 1.289 1.288 1.375 1.427 1.417 2.828

[3.308] [3.288] [1.104] [3.025] [3.092] [1.514]
𝐴𝐶𝑡 (12M) -0.001 0 0.001 0.01

[-0.239] [-0.039] [0.053] [0.948]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 9.284 -0.984 -11.217

[2.098] [-0.084] [-0.404]
VAR𝑡 (12M) 4.754 -2.225 -1.923

[1.165] [-0.498] [-0.107]
VAR.G𝑡 1.191 -2.912 -1.239

[0.498] [-1.12] [-0.142]
𝐴𝑆𝑡 (12M) 0.001 0

[0.745] [0.12]
𝐴𝐾𝑡 (12M) 0.001 0

[1.136] [0.473]
𝐶𝑆𝑉𝑡 0.307 -0.085

[2.085] [-0.626]
𝐶𝑆𝑆𝑡 0 0

[-0.202] [-0.463]
𝐶𝑆𝐾𝑡 0 0

[-1.978] [-0.232]
MOM𝑡 (12M) 0.025 0.054

[0.236] [0.5]
VAL𝑡 (60M) -0.006 0.022

[-0.134] [0.48]
RMSE (‰) 3.785 3.882 3.785 3.824 3.785 3.866 3.882 3.782 3.778 3.877 3.858 3.866 3.883 3.875 3.882 3.611 3.452
𝑅2

adj (%) 4.82 -0.16 4.65 2.84 4.48 0.69 -0.12 4.78 4.99 0.12 1.10 0.68 -0.18 0.23 -0.15 -0.19 6.35
No. Obs. 553 553 553 553 553 553 553 553 553 553 553 553 553 553 553 499 499

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001

[4.267] [2.245] [7.468] [2.922] [6.226] [5.98] [0.995] [1.895] [2.062] [1.974] [1.694] [1.702] [1.213] [0.394] [0.342] [0.527]
𝐴𝑉𝑡 (12M) 1.903 2.172 2.304

[1.519] [1.651] [1.809]
𝐴𝐶𝑡 (12M) 0.008 0.011 0.013

[0.758] [0.944] [1.275]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 2.095 -1.664 -4.76

[0.141] [-0.108] [-0.361]
𝐴𝑆𝑡 (12M) -0.001 -0.001

[-0.88] [-1.195]
𝐴𝐾𝑡 (12M) 0 0.001

[0.159] [0.483]
𝐶𝑆𝑉𝑡 0.038

[0.377]
𝐶𝑆𝑆𝑡 0

[-0.447]
𝐶𝑆𝐾𝑡 0

[-0.175]
MOM𝑡 (12M) 0.194

[1.906]
VAL𝑡 (60M) 0.058

[1.459]
INFLTN -0.008 -0.009 -0.008 -0.006 -0.004 -0.004 -0.066 -0.043 -0.046 -0.066

[-0.719] [-0.677] [-0.628] [-0.5] [-0.29] [-0.289] [-1.204] [-0.88] [-0.856] [-1.418]
BDGT.BLNC 0 0.007 0.007 0.014 0.022 0.022 0.001 -0.005 -0.002 -0.003

[0.017] [0.213] [0.25] [0.431] [0.602] [0.618] [0.032] [-0.2] [-0.085] [-0.09]
GLBL.M2.SPPLY 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

[1.114] [1.146] [1.198] [1.408] [1.435] [1.455] [1.406] [1.424] [1.38]
Steep_Yld_Crv 0.016 0.019 0.031 0.031 0.002 0.006 0.008 0.005

[0.541] [0.533] [0.842] [0.799] [0.041] [0.139] [0.16] [0.151]
CFNAI 0 0.001 0.001 -0.001 -0.001 -0.001 -0.002

[0.957] [1.197] [0.803] [-1.088] [-1.773] [-1.861] [-1.998]
ADS 0 0 0.001 0.002 0.002 0.002

[0.907] [-0.016] [1.158] [2.492] [2.439] [2.171]
VIX 0.006 0.005 -0.002 -0.004 -0.005

[1.066] [0.788] [-0.42] [-0.615] [-0.986]
RMSE (‰) 3.882 3.889 3.880 3.883 3.867 3.870 3.699 3.880 3.873 3.868 3.839 3.839 3.596 3.382 3.371 3.343
𝑅2

adj (%) 0.19 -0.18 0.27 0.10 0.93 0.79 1.23 0.07 0.27 0.35 1.67 1.49 5.19 15.46 15.58 15.85
No. Obs. 564 564 564 564 564 564 391 564 564 564 564 564 391 391 391 391

(b) External Predictors

Table A16: Mean Return Forecasting (6M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) mean returns over the next 6-month period (dependent
variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent
repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.001 0.003 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.001

[2.55] [4.885] [1.941] [3.333] [1.003] [4.317] [5.833] [2.634] [2.758] [6.412] [8.349] [14.334] [23.252] [14.554] [6.2] [16.446] [1.052]
𝐴𝑉𝑡 (12M) 1.351 1.344 2.087 1.613 1.447 2.351

[4.102] [3.869] [4.304] [7.44] [4.941] [3.141]
𝐴𝐶𝑡 (12M) -0.003 -0.001 0.005 0.006

[-1.108] [-0.45] [1.046] [1.04]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 8.477 -8.361 -8.022

[2.009] [-1.768] [-0.809]
VAR𝑡 (12M) 3.497 -4.26 1.273

[1.158] [-1.596] [0.206]
VAR.G𝑡 1.834 -2.229 -0.846

[1.13] [-2.283] [-0.263]
𝐴𝑆𝑡 (12M) 0 0.001

[0.522] [1.507]
𝐴𝐾𝑡 (12M) 0.001 0.001

[1.797] [1.723]
𝐶𝑆𝑉𝑡 0.42 0.068

[4.834] [1.286]
𝐶𝑆𝑆𝑡 0 0

[-0.246] [-0.878]
𝐶𝑆𝐾𝑡 0 0

[-1.515] [0.473]
MOM𝑡 (12M) -0.062 -0.041

[-0.683] [-0.721]
VAL𝑡 (60M) 0.008 0.018

[0.514] [1.021]
RMSE (‰) 1.691 1.918 1.689 1.820 1.677 1.904 1.916 1.668 1.682 1.919 1.870 1.857 1.922 1.910 1.915 1.854 1.512
𝑅2

adj (%) 22.53 0.29 22.50 10.19 23.48 1.76 0.46 24.42 23.22 0.15 5.27 6.57 -0.17 1.12 0.58 -0.15 31.85
No. Obs. 535 535 535 535 535 535 535 535 535 535 535 535 535 535 535 481 481

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.003 0.003 0.002 0.002 0.002 0.002 0 0.003 0.003 0.003 0.003 0.003 0.002 0 0 0

[4.388] [3.315] [13.626] [4.113] [6.606] [6.932] [0.687] [2.665] [2.477] [2.101] [2.215] [2.223] [1.201] [-0.061] [-0.036] [-0.048]
𝐴𝑉𝑡 (12M) 1.944 2.149 2.025

[2.393] [2.92] [3.409]
𝐴𝐶𝑡 (12M) 0.004 0.006 0.005

[0.457] [0.682] [0.83]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -1.827 -4.674 -2.994

[-0.22] [-0.588] [-0.409]
𝐴𝑆𝑡 (12M) -0.001 -0.001

[-0.88] [-0.864]
𝐴𝐾𝑡 (12M) 0 0

[0.416] [0.344]
𝐶𝑆𝑉𝑡 0.066

[1.48]
𝐶𝑆𝑆𝑡 0

[-0.659]
𝐶𝑆𝐾𝑡 0

[0.195]
MOM𝑡 (12M) -0.061

[-0.967]
VAL𝑡 (60M) -0.005

[-0.256]
INFLTN -0.004 -0.007 -0.007 -0.004 -0.003 -0.003 -0.028 -0.002 -0.005 0.001

[-0.437] [-0.649] [-0.566] [-0.324] [-0.214] [-0.218] [-0.893] [-0.085] [-0.188] [0.044]
BDGT.BLNC 0.01 0.015 0.015 0.027 0.031 0.031 0.014 0.002 0.004 0.004

[0.496] [0.647] [0.614] [1.209] [1.264] [1.271] [0.707] [0.108] [0.284] [0.36]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[-0.853] [-0.865] [-0.786] [-0.691] [-0.682] [-0.823] [-1.131] [-1.093] [-1.016]
Steep_Yld_Crv 0.02 0.033 0.039 0.04 0.007 0.012 0.013 0.014

[1.106] [1.688] [1.838] [1.844] [0.31] [0.466] [0.534] [0.749]
CFNAI 0 0 0 0 0 0 0

[0.892] [1.236] [0.921] [0.249] [-0.176] [-0.437] [-0.094]
ADS 0 0 0 0 0 0

[0.79] [-0.246] [-0.444] [0.723] [0.701] [0.517]
VIX 0.008 0.007 0.002 0.001 0.001

[2.543] [2.105] [0.597] [0.238] [0.347]
RMSE (‰) 1.932 1.931 1.935 1.921 1.929 1.931 1.845 1.920 1.918 1.886 1.868 1.867 1.810 1.501 1.487 1.478
𝑅2

adj (%) 0.27 0.46 0.05 1.43 0.62 0.46 10.85 1.33 1.43 4.44 6.17 6.01 12.80 39.54 40.34 40.21
No. Obs. 546 546 546 546 546 546 373 546 546 546 546 546 373 373 373 373

(b) External Predictors

Table A17: Mean Return Forecasting (24M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) mean returns over the next 24-month period (dependent
variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent
repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.001 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003

[5.009] [8.035] [6.226] [6.371] [5.491] [6.538] [9.359] [5.261] [4.821] [8.403] [10.449] [21.941] [24.08] [31.286] [7.537] [23.374] [7.008]
𝐴𝑉𝑡 (12M) 1 0.953 0.812 1.19 1.041 0.742

[7.904] [8.676] [3.331] [5.206] [8.356] [1.885]
𝐴𝐶𝑡 (12M) -0.009 -0.008 -0.009 -0.008

[-4.318] [-4.097] [-3.531] [-2.807]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 4.886 1.585 1.981

[3.016] [0.778] [0.375]
VAR𝑡 (12M) 2.44 -3.157 -1.298

[1.491] [-1.934] [-0.391]
VAR.G𝑡 1.812 -0.979 -0.838

[1.908] [-1.061] [-0.475]
𝐴𝑆𝑡 (12M) 0 0

[0.012] [0.183]
𝐴𝐾𝑡 (12M) 0.001 0

[1.666] [0.45]
𝐶𝑆𝑉𝑡 0.358 0.092

[4.643] [2.442]
𝐶𝑆𝑆𝑡 0 0

[-0.534] [-0.179]
𝐶𝑆𝐾𝑡 0 0

[-3.26] [-2.429]
MOM𝑡 (12M) -0.032 -0.048

[-1.353] [-1.236]
VAL𝑡 (60M) 0.007 0.011

[0.75] [1.187]
RMSE (‰) 0.907 1.058 0.830 1.081 0.829 1.124 1.129 0.882 0.903 1.140 1.105 1.053 1.139 1.100 1.137 1.079 0.760
𝑅2

adj (%) 36.63 13.68 46.78 9.93 46.79 2.61 1.68 39.88 36.99 -0.20 5.91 14.59 -0.10 6.73 0.38 -0.10 49.05
No. Obs. 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 445 445

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.003 0.003 0.002 0.003 0.002 0.002 0.001 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003

[4.852] [7.285] [32.622] [5.783] [8.135] [9.508] [2.206] [7.398] [5.25] [4.45] [5.05] [5.138] [6.364] [5.307] [4.832] [7.862]
𝐴𝑉𝑡 (12M) 0.716 0.804 0.702

[2.224] [2.429] [2.959]
𝐴𝐶𝑡 (12M) -0.004 -0.003 -0.003

[-1.376] [-0.956] [-1.406]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.106 -1.373 -0.386

[-0.036] [-0.434] [-0.14]
𝐴𝑆𝑡 (12M) 0 0

[-0.842] [-0.98]
𝐴𝐾𝑡 (12M) 0 0

[1.102] [0.945]
𝐶𝑆𝑉𝑡 0.033

[1.336]
𝐶𝑆𝑆𝑡 0

[-1.402]
𝐶𝑆𝐾𝑡 0

[-1.927]
MOM𝑡 (12M) -0.025

[-0.947]
VAL𝑡 (60M) 0.001

[0.057]
INFLTN -0.002 -0.009 -0.009 -0.008 -0.007 -0.006 -0.04 -0.022 -0.024 -0.023

[-0.25] [-2.444] [-1.402] [-1.024] [-0.869] [-0.858] [-4.004] [-2.458] [-2.494] [-3.843]
BDGT.BLNC 0.031 0.037 0.037 0.043 0.046 0.046 0.042 0.03 0.031 0.03

[2.23] [2.859] [2.49] [3.271] [3.626] [3.679] [5.974] [4.517] [4.499] [7.017]
GLBL.M2.SPPLY 0 0 0 0 0 0 0 0 0

[-1.927] [-2.241] [-1.978] [-1.693] [-1.701] [-1.626] [-1.81] [-1.848] [-2.309]
Steep_Yld_Crv -0.006 0.016 0.02 0.019 0.007 0.005 0.005 0.005

[-0.37] [1.446] [1.704] [1.618] [0.657] [0.531] [0.587] [0.798]
CFNAI 0 0 0 0 0 0 0

[0.64] [1.699] [0.474] [0.797] [0.816] [0.42] [0.764]
ADS 0 0 0 0 0 0

[0.65] [0.645] [1.665] [3.076] [3.105] [3.18]
VIX 0.006 0.006 0.004 0.003 0.003

[2.621] [4.225] [4.19] [3.616] [3.628]
RMSE (‰) 1.152 1.038 1.148 1.151 1.150 1.150 1.070 1.007 1.001 0.988 0.971 0.969 0.753 0.610 0.602 0.584
𝑅2

adj (%) 0.03 18.85 0.70 0.20 0.30 0.29 17.42 23.45 24.16 26.10 28.48 28.51 58.35 72.43 72.93 74.17
No. Obs. 510 510 510 510 510 510 337 510 510 510 510 510 337 337 337 337

(b) External Predictors

Table A18: Mean Return Forecasting (60M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) mean returns over the next 60-month period (dependent
variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent
repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(Intercept) 0.002 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.004

[5.784] [11.591] [7.357] [9.612] [7.884] [13.857] [9.264] [10.236] [5.67] [12.732] [15.449] [24.472] [59.992] [39.723] [9.583] [32.206] [11.077]
𝐴𝑉𝑡 (12M) 0.194 0.173 -0.267 0.292 0.218 -1.228

[1.069] [1.099] [-1.5] [2.447] [1.23] [-3.2]
𝐴𝐶𝑡 (12M) -0.005 -0.005 -0.01 -0.013

[-2.233] [-2.309] [-3.232] [-4.989]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.472 5.015 19.311

[0.49] [3.064] [3.907]
VAR𝑡 (12M) -0.283 -1.667 -8.486

[-0.377] [-2.237] [-2.965]
VAR.G𝑡 0.047 -0.535 -0.976

[0.06] [-0.832] [-0.708]
𝐴𝑆𝑡 (12M) 0 0

[-0.916] [-1.872]
𝐴𝐾𝑡 (12M) 0 0

[0.579] [0.301]
𝐶𝑆𝑉𝑡 0.062 0.056

[2.244] [2.998]
𝐶𝑆𝑆𝑡 0 0

[-1.209] [-0.665]
𝐶𝑆𝐾𝑡 0 0

[-0.571] [-0.601]
MOM𝑡 (12M) -0.033 -0.067

[-1.671] [-3.9]
VAL𝑡 (60M) -0.006 -0.01

[-0.846] [-1.643]
RMSE (‰) 0.638 0.611 0.599 0.652 0.586 0.652 0.653 0.629 0.637 0.650 0.647 0.648 0.651 0.652 0.647 0.669 0.548
𝑅2

adj (%) 4.16 12.09 15.34 0.06 18.69 -0.11 -0.22 6.81 4.43 0.68 1.39 1.18 0.31 0.04 1.35 -0.06 30.85
No. Obs. 439 439 439 439 439 439 439 439 439 439 439 439 439 439 439 385 385

(a) Risk Approximations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
(Intercept) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.004 0.003 0.003

[6.486] [27.862] [34.521] [11.712] [12.037] [17.865] [6.05] [13.02] [6.401] [5.968] [6.074] [6.657] [5.282] [5.263] [4.379] [6.91]
𝐴𝑉𝑡 (12M) -0.566 -0.47 -0.637

[-1.58] [-1.423] [-2.554]
𝐴𝐶𝑡 (12M) -0.013 -0.013 -0.015

[-3.639] [-3.98] [-6.185]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 10.772 9.907 11.992

[3.055] [3.202] [4.919]
𝐴𝑆𝑡 (12M) 0 0

[-1.152] [-1.132]
𝐴𝐾𝑡 (12M) 0 0

[-2.124] [-2.689]
𝐶𝑆𝑉𝑡 0.048

[2.873]
𝐶𝑆𝑆𝑡 0

[-1.45]
𝐶𝑆𝐾𝑡 0

[-0.595]
MOM𝑡 (12M) -0.057

[-2.803]
VAL𝑡 (60M) -0.008

[-0.889]
INFLTN -0.001 -0.001 -0.002 -0.001 0 0 -0.012 -0.004 -0.001 0

[-0.281] [-0.761] [-0.623] [-0.344] [0.083] [0.132] [-1.325] [-0.516] [-0.073] [0.068]
BDGT.BLNC -0.001 0 0 0.004 0.013 0.012 0.013 -0.002 -0.005 -0.006

[-1.124] [-0.074] [-0.019] [0.393] [1.234] [1.243] [0.983] [-0.257] [-0.547] [-0.904]
GLBL.M2.SPPLY -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0 0 0

[-2.393] [-2.976] [-2.893] [-3.076] [-2.749] [-2.545] [-2.61] [-2.629] [-2.479]
Steep_Yld_Crv 0.007 0.008 0.014 0.013 0.014 0.006 0.008 0.009

[1.907] [0.755] [1.269] [1.204] [1.126] [0.643] [0.814] [1.594]
CFNAI 0 0 0 0 0 0 0

[1.793] [2.219] [0.436] [0.146] [0.407] [0.22] [0.658]
ADS 0 0 0.001 0.001 0.001 0

[2.229] [1.829] [2.983] [4.139] [4.506] [3.781]
VIX 0 0.001 -0.001 -0.001 -0.001

[0.399] [0.484] [-1.219] [-1.034] [-1.546]
RMSE (‰) 0.653 0.654 0.636 0.648 0.634 0.628 0.777 0.653 0.633 0.628 0.601 0.595 0.671 0.561 0.548 0.530
𝑅2

adj (%) 0.05 -0.19 5.12 1.53 5.61 7.50 -0.26 -0.17 5.48 6.85 14.52 16.02 23.57 45.98 48.09 50.43
No. Obs. 450 450 450 450 450 450 277 450 450 450 450 450 277 277 277 277

(b) External Predictors

Table A19: Mean Return Forecasting (120M) of the Naive Portfolio.
This table reports OLS results of regressing (rolling) mean returns over the next 120-month period (dependent
variable) on contemporaneous risk proxies (Panel a) and external candidate predictors (Panel b). To prevent
repetition, refer to Table A7 or Table A13 for a detailed table description.
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(1) (2) (3) (4)
(Intercept) 0 0 0 0

[1.322] [0.121] [12.273] [25.12]
𝐴𝑉𝑡 (12M) 0.063

[2.258]
𝐴𝐶𝑡 (12M) 0.001

[5.066]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[2.537]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[1.414]
RMSE (‰) 0.063 0.066 0.075 0.076
𝑅2

adj (%) 30.62 23.48 1.62 0.05
No. Obs. 559 559 558 558

(a) 0M

(1) (2) (3) (4)
(Intercept) 0 0 0 0

[2.792] [4.228] [10.154] [13.992]
𝐴𝑉𝑡 (12M) 0.046

[3.591]
𝐴𝐶𝑡 (12M) 0

[-0.866]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[0.34]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[1.009]
RMSE (‰) 0.091 0.096 0.096 0.096
𝑅2

adj (%) 10.11 0.05 -0.11 0.10
No. Obs. 553 553 552 552

(b) 6M

(1) (2) (3) (4)
(Intercept) 0 0 0 0

[3.238] [4.454] [12.025] [13.229]
𝐴𝑉𝑡 (12M) 0.038

[4.678]
𝐴𝐶𝑡 (12M) 0

[-1.571]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[1.592]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[0.236]
RMSE (‰) 0.070 0.074 0.073 0.074
𝑅2

adj (%) 11.52 1.03 1.22 -0.17
No. Obs. 547 547 546 546

(c) 12M

(1) (2) (3) (4)
(Intercept) 0 0 0 0

[3.874] [5.633] [16.529] [17.343]
𝐴𝑉𝑡 (12M) 0.021

[2.936]
𝐴𝐶𝑡 (12M) 0

[-2.333]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[1.89]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[-0.527]
RMSE (‰) 0.050 0.052 0.051 0.051
𝑅2

adj (%) 7.09 1.55 1.41 -0.14
No. Obs. 535 535 534 534

(d) 24M

(1) (2) (3) (4)
(Intercept) 0 0 0 0

[5.085] [8.148] [28.029] [29.353]
𝐴𝑉𝑡 (12M) 0.001

[0.146]
𝐴𝐶𝑡 (12M) 0

[-1.096]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[1.579]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[0.101]
RMSE (‰) 0.031 0.030 0.030 0.031
𝑅2

adj (%) -0.15 1.02 0.57 -0.20
No. Obs. 499 499 498 498

(e) 60M

(1) (2) (3) (4)
(Intercept) 0 0 0 0

[8.671] [8.415] [46.718] [51.049]
𝐴𝑉𝑡 (12M) 0.009

[2.896]
𝐴𝐶𝑡 (12M) 0

[-0.479]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[0.502]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[-0.445]
RMSE (‰) 0.017 0.019 0.018 0.018
𝑅2

adj (%) 11.50 -0.02 -0.09 -0.18
No. Obs. 439 439 438 438

(f) 120M

Table A20: Variance Forecasting using Level vs. Relative Change of Variance Components.
This table lists the results of OLS regressions of the contemporaneous/future multi-factor return variance (dependent
variable) on estimated contemporaneous AC and AV, both expessed in levels as well as relative differences. Each
panel covers a specific forecast horizon, where the results of the decomposition of contemporaneous variance are
indicated by the horizon labeled ’0M’). Data covers the full investigation period from July 1971 to December
2018. The regressor names are shown at the left margin. For return-based measures, the estimation period (in
months) is disclosed in brackets alongside the regressor’s name. Below each estimated coefficient, the subtable
reports associated t-statistics (adjusted based on the methods proposed in Newey and West (1987) and Newey and
West (1994)) in squared brackets. Coefficients with absolute t-statistics above 2 are highlighted in bold. The last
three rows of both subtables show - for each of the models defined in the columns above - root mean squared error
(RMSE), adjusted 𝑅2 (𝑅2

adj), and the number of observations used for the estimation. Consult Table A4 and Section
3 for an overview of factors constituting the equally-weighted multi-factor portfolio. Detailed data set information
is available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on the variables
that approximate components of multi-factor variance (i.e. 𝐴𝑉𝑡 and 𝐴𝐶𝑡 ). An overview of the abbreviations used
in the course of this paper is provided in Table A3.
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(1) (2) (3) (4)
(Intercept) 0.002 0.003 0.002 0.002

[2.518] [3.101] [6.9] [6.847]
𝐴𝑉𝑡 (12M) 0.949

[1.354]
𝐴𝐶𝑡 (12M) -0.004

[-0.454]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) -0.014

[-2.257]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) -0.002

[-0.63]
RMSE (‰) 8.802 8.823 8.626 8.783
𝑅2

adj (%) 0.34 -0.12 3.80 0.27
No. Obs. 559 559 558 558

(a) 0M

(1) (2) (3) (4)
(Intercept) 0.001 0.002 0.002 0.002

[2.028] [2.301] [5.958] [5.945]
𝐴𝑉𝑡 (12M) 1.349

[2.142]
𝐴𝐶𝑡 (12M) 0.005

[0.728]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) -0.001

[-0.204]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0.001

[1.193]
RMSE (‰) 8.756 8.799 8.809 8.803
𝑅2

adj (%) 0.88 -0.10 -0.17 -0.02
No. Obs. 558 558 557 557

(b) 1M

(1) (2) (3) (4)
(Intercept) 0.001 0.003 0.002 0.002

[2.497] [3.601] [7.049] [8.982]
𝐴𝑉𝑡 (12M) 1.289

[3.308]
𝐴𝐶𝑡 (12M) -0.001

[-0.239]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) -0.001

[-0.315]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0.001

[2.018]
RMSE (‰) 3.785 3.882 3.885 3.874
𝑅2

adj (%) 4.82 -0.16 -0.14 0.42
No. Obs. 553 553 552 552

(c) 6M

(1) (2) (3) (4)
(Intercept) 0.001 0.003 0.002 0.002

[2.616] [4.797] [9.243] [13.518]
𝐴𝑉𝑡 (12M) 1.297

[4.147]
𝐴𝐶𝑡 (12M) -0.007

[-1.425]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[-0.274]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0.001

[1.652]
RMSE (‰) 2.539 2.667 2.671 2.668
𝑅2

adj (%) 10.45 1.19 -0.14 0.14
No. Obs. 547 547 546 546

(d) 12M

(1) (2) (3) (4)
(Intercept) 0.001 0.003 0.002 0.002

[2.55] [4.885] [12.705] [16.792]
𝐴𝑉𝑡 (12M) 1.351

[4.102]
𝐴𝐶𝑡 (12M) -0.003

[-1.108]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[0.246]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[0.36]
RMSE (‰) 1.691 1.918 1.915 1.915
𝑅2

adj (%) 22.53 0.29 -0.16 -0.17
No. Obs. 535 535 534 534

(e) 24M

(1) (2) (3) (4)
(Intercept) 0.001 0.003 0.002 0.002

[5.009] [8.035] [19.925] [24.068]
𝐴𝑉𝑡 (12M) 1

[7.904]
𝐴𝐶𝑡 (12M) -0.009

[-4.318]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0.001

[1.68]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[-0.193]
RMSE (‰) 0.907 1.058 1.130 1.137
𝑅2

adj (%) 36.63 13.68 1.09 -0.19
No. Obs. 499 499 498 498

(f) 60M

(1) (2) (3) (4)
(Intercept) 0.002 0.003 0.002 0.002

[5.784] [11.591] [33.426] [63.544]
𝐴𝑉𝑡 (12M) 0.194

[1.069]
𝐴𝐶𝑡 (12M) -0.005

[-2.233]
(ΔAV𝑡−1:𝑡 )/AV𝑡−1 (12M) 0

[-0.048]
(ΔAC𝑡−1:𝑡 )/AC𝑡−1 (12M) 0

[0.337]
RMSE (‰) 0.638 0.611 0.652 0.652
𝑅2

adj (%) 4.16 12.09 -0.23 -0.22
No. Obs. 439 439 438 438

(g) 120M

Table A21: (Mean) Return Forecasting using Level vs. Relative Change of Variance Components.
This table lists the results of OLS regressions of the contemporaneous/future multi-factor returns (dependent
variable) on estimated contemporaneous AC and AV, both expessed in levels as well as relative differences. Each
panel covers a specific forecast horizon, where the results of the decomposition of contemporaneous returns are
indicated by the horizon labeled ’0M’). Data covers the full investigation period from July 1971 to December
2018. The regressor names are shown at the left margin. For return-based measures, the estimation period (in
months) is disclosed in brackets alongside the regressor’s name. Below each estimated coefficient, the subtable
reports associated t-statistics (adjusted based on the methods proposed in Newey and West (1987) and Newey and
West (1994)) in squared brackets. Coefficients with absolute t-statistics above 2 are highlighted in bold. The last
three rows of both subtables show - for each of the models defined in the columns above - root mean squared error
(RMSE), adjusted 𝑅2 (𝑅2

adj), and the number of observations used for the estimation. Consult Table A4 and Section
3 for an overview of factors constituting the equally-weighted multi-factor portfolio. Detailed data set information
is available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on the variables
that approximate components of multi-factor variance (i.e. 𝐴𝑉𝑡 and 𝐴𝐶𝑡 ). An overview of the abbreviations used
in the course of this paper is provided in Table A3.
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Sample Period Full Sample 6/1972 - 10/1983 11/1983 - 3/1995 4/1995 - 7/2006 8/2006 - 12/2017
(Intercept) 0.001 0.003 0.001 0.002 -0.001

[2.616] [2.741] [1.674] [2.147] [-0.975]
𝐴𝑉𝑡 (12M) 1.297 -0.013 2.096 1.172 2.341

[4.147] [-0.029] [3.335] [3.874] [6.588]
RMSE (‰) 2.539 2.887 1.312 2.305 2.704
𝑅2

adj (%) 10.45 -0.74 11.98 18.60 13.23
No. Obs. 547 137 137 136 137

(a) AV

Sample Period Full Sample 6/1972 - 10/1983 11/1983 - 3/1995 4/1995 - 7/2006 8/2006 - 12/2017
(Intercept) 0.003 0.006 0.003 0.002 0.001

[4.797] [4.37] [3.097] [1.388] [1.264]
𝐴𝐶𝑡 (12M) -0.007 -0.025 -0.009 0.009 0.002

[-1.425] [-2.801] [-0.683] [0.59] [0.409]
RMSE (‰) 2.667 2.633 1.364 2.528 2.911
𝑅2

adj (%) 1.19 16.22 4.83 2.07 -0.59
No. Obs. 547 137 137 136 137

(b) AC

Sample Period Full Sample 6/1972 - 10/1983 11/1983 - 3/1995 4/1995 - 7/2006 8/2006 - 12/2017
(Intercept) 0.002 0.004 0.002 0.002 0

[5.088] [4.587] [4.443] [2.035] [0.245]
VAR𝑡 (12M) 3.6 -4.656 7.722 18.928 10.202

[0.96] [-0.836] [1.286] [2.928] [3.576]
RMSE (‰) 2.671 2.845 1.370 2.321 2.823
𝑅2

adj (%) 0.86 2.21 3.93 17.49 5.43
No. Obs. 547 137 137 136 137

(c) Naive Variance

Table A22: Mean Return Forecasting (12M) of the Naive Portfolio Over Subsamples.
This table lists the results of OLS regressions of the (rolling) mean returns over the next 12-month period (dependent
variable) on estimated contemporaneous 𝐴𝑉𝑡 (Panel a), 𝐴𝐶𝑡 (Panel b), and the VAR𝑡 (Panel c), using the full data
set (July 1971 to December 2018) as well as four subsamples with (nearly) equal number of observations. Below
each estimated coefficient, the subtable reports associated t-statistics (adjusted based on the methods proposed in
Newey and West (1987) and Newey and West (1994)) in squared brackets. Consult Table A4 and Section 3 for
an overview of factors constituting the equally-weighted multi-factor portfolio. Detailed data set information is
available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on all variables
that approximate (components of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the
abbreviations used in the course of this paper is provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.4] [3.162] [2.551] [4.148] [2.034] [4.03] [3.94] [2.841] [4.86] [2.596] [3.763] [4.83] [3.435]
𝐴𝑉𝑡 (12M) 0.104 0.102 0.106 0.021

[1.675] [1.561] [1.158] [0.727]
𝐴𝐶𝑡 (12M) 0 0 0

[-1.065] [-0.911] [-0.425]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.621 -0.049

[1.181] [-0.046]
Naive.C 𝐴𝑉𝑡 (12M) 0.166 0.178 0.066 0.134

[3.632] [2.803] [0.28] [1.121]
Naive.C 𝐴𝐶𝑡 (12M) 0 0 0

[-0.767] [-1.366] [-2.127]
Naive.C 𝐴𝑉𝑡 (12M) * Naive.C 𝐴𝐶𝑡 (12M) 0.267 0.242

[3.33] [0.628]
Naive.C VAR𝑡 (12M) 0.067 0.291 0.269

[0.359] [4.212] [4.339]
RMSE (‰) 0.343 0.350 0.343 0.347 0.343 0.332 0.350 0.329 0.336 0.329 0.331 0.334 0.334
𝑅2

adj (%) 3.81 0.26 3.93 1.48 3.76 10.27 -0.06 11.29 7.79 11.56 10.21 8.91 8.85
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(a) Naive.C / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[1.019] [4.798] [1.568] [2.829] [-0.318] [3.006] [4.145] [2.081] [2.5] [1.289] [3.856] [4.752] [1.309]
𝐴𝑉𝑡 (12M) 0.078 0.078 0.139 0.081

[2.945] [2.894] [3.518] [2.656]
𝐴𝐶𝑡 (12M) 0 0 0

[-2.102] [-1.718] [1.979]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.435 -0.69

[1.621] [-3.358]
Naive.E 𝐴𝑉𝑡 (12M) 0.06 0.058 0.086 0.064

[7.623] [7.174] [8.301] [8.327]
Naive.E 𝐴𝐶𝑡 (12M) 0 0 0

[-2.073] [-0.966] [1.712]
Naive.E 𝐴𝑉𝑡 (12M) * Naive.E 𝐴𝐶𝑡 (12M) 0.388 -0.433

[1.597] [-3.562]
Naive.E VAR𝑡 (12M) -0.135 0.161 -0.068

[-1.47] [1.631] [-0.635]
RMSE (‰) 0.068 0.085 0.068 0.080 0.066 0.064 0.084 0.063 0.081 0.061 0.063 0.085 0.068
𝑅2

adj (%) 37.31 1.83 38.30 13.24 41.90 45.56 6.25 45.97 11.28 49.19 46.99 2.39 37.60
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(b) Naive.E / 𝑁 = 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0.001 0.001 0.001 0.001 0 0 0 0 0 0 0 0

[4.791] [3.944] [3.461] [4.445] [3.609] [3.624] [1.561] [1.868] [4.797] [-0.352] [3.047] [4.659] [3.862]
𝐴𝑉𝑡 (12M) -0.013 -0.019 -0.168 -0.078

[-0.211] [-0.293] [-1.491] [-1.411]
𝐴𝐶𝑡 (12M) -0.001 -0.001 -0.003

[-1.572] [-1.559] [-2.297]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -0.403 1.678

[-0.746] [1.886]
Naive.FX 𝐴𝑉𝑡 (12M) 0.136 0.107 0.445 0.097

[2.141] [1.232] [3.648] [0.488]
Naive.FX 𝐴𝐶𝑡 (12M) 0 0 0.001

[1.544] [0.926] [1.98]
Naive.FX 𝐴𝑉𝑡 (12M) * Naive.FX 𝐴𝐶𝑡 (12M) 0.158 -0.481

[2.296] [-3.636]
Naive.FX VAR𝑡 (12M) 0.054 0.172 0.204

[0.247] [2.16] [2.884]
RMSE (‰) 0.530 0.525 0.525 0.529 0.524 0.519 0.522 0.517 0.520 0.513 0.519 0.520 0.518
𝑅2

adj (%) -0.16 1.52 1.40 0.12 1.80 3.66 2.69 4.57 3.33 5.74 3.52 3.51 4.19
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(c) Naive.FX / 𝑁 = 2

Table A23: Variance Forecasting (12M) of Naive Portfolios Based on Asset Classes.
This table lists the results of OLS regressions of the (rolling) measure of multi-factor return variance over the
next 12-month period (dependent variable) on variables proxying (components of) multi-factor variance, when
considering the returns of different equally-weighted multi-factor strategies - based on a factor’s association to an
ASCL - over the full investigation period. The name of each panel shows the respective symbol of the naive strategy,
as well as the number of factor premia covered by the strategy (𝑁). Below each estimated coefficient, the subtable
reports associated t-statistics (adjusted based on the methods proposed in Newey and West (1987) and Newey
and West (1994)) in squared brackets. Consult Table A4 and Section 3 for an overview of factors constituting the
different equally-weighted multi-factor portfolios. Detailed data set information is available in Appendix A.1 and
Vincenz and Zeissler (2024). Refer to Section 4.1 for information on all variables that approximate (components
of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course
of this paper is provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.458] [4.715] [2.915] [3.836] [2.705] [4.134] [3.191] [1.844] [4.185] [1.178] [3.981] [4.145] [3.117]
𝐴𝑉𝑡 (12M) 0.099 0.101 -0.044 0.041

[1.973] [2.113] [-0.425] [0.882]
𝐴𝐶𝑡 (12M) 0 0 -0.001

[0.668] [0.789] [-0.588]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.072 1.634

[2.375] [1.484]
Naive.Market 𝐴𝑉𝑡 (12M) 0.138 0.129 0.126 0.07

[3.12] [3.497] [1.084] [0.84]
Naive.Market 𝐴𝐶𝑡 (12M) 0 0 0

[1.559] [1.362] [0.773]
Naive.Market 𝐴𝑉𝑡 (12M) * Naive.Market 𝐴𝐶𝑡 (12M) 0.226 0.006

[4.626] [0.031]
Naive.Market VAR𝑡 (12M) 0.127 0.214 0.186

[1.107] [4.26] [4.67]
RMSE (‰) 0.452 0.456 0.451 0.450 0.450 0.447 0.452 0.443 0.445 0.443 0.445 0.446 0.446
𝑅2

adj (%) 1.95 0.00 2.04 2.73 2.60 4.24 1.88 5.58 5.12 5.40 4.59 4.39 4.51
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(a) Naive.Market / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[5.368] [6.306] [4.894] [7.31] [6.009] [3.601] [4.291] [2.109] [3.473] [3.004] [3.06] [3.495] [3.02]
𝐴𝑉𝑡 (12M) 0.075 0.073 -0.01 0.029

[1.224] [1.171] [-0.184] [1.038]
𝐴𝐶𝑡 (12M) 0 0 -0.001

[-1.14] [-1.039] [-2.718]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.52 0.933

[1.093] [2.008]
Naive.Carry 𝐴𝑉𝑡 (12M) 0.17 0.156 -0.075 0.197

[2.262] [1.809] [-0.697] [2.16]
Naive.Carry 𝐴𝐶𝑡 (12M) 0 0 -0.001

[-1.962] [-1.222] [-2.35]
Naive.Carry 𝐴𝑉𝑡 (12M) * Naive.Carry 𝐴𝐶𝑡 (12M) 0.356 0.605

[1.941] [2.161]
Naive.Carry VAR𝑡 (12M) -0.077 0.361 0.324

[-0.288] [2.024] [1.991]
RMSE (‰) 0.213 0.218 0.212 0.216 0.211 0.197 0.212 0.194 0.204 0.190 0.197 0.204 0.203
𝑅2

adj (%) 5.10 0.75 5.61 2.81 6.50 18.64 6.04 20.95 12.91 24.00 18.63 13.36 13.88
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(b) Naive.Carry / 𝑁 = 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[3.058] [3.787] [2.141] [3.498] [2.049] [3.561] [2.038] [1.932] [5.078] [-0.234] [3.586] [4.882] [3.108]
𝐴𝑉𝑡 (12M) 0.21 0.208 0.105 0.192

[5.964] [6.819] [0.564] [3.37]
𝐴𝐶𝑡 (12M) -0.001 0 -0.001

[-1.219] [-0.883] [-1.093]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.496 1.157

[2.986] [0.549]
Naive.Mom 𝐴𝑉𝑡 (12M) 0.186 0.184 0.38 0.177

[4.235] [3.962] [2.769] [0.899]
Naive.Mom 𝐴𝐶𝑡 (12M) 0 0 0

[1.086] [0.224] [2.271]
Naive.Mom 𝐴𝑉𝑡 (12M) * Naive.Mom 𝐴𝐶𝑡 (12M) 0.364 -0.516

[3.876] [-1.682]
Naive.Mom VAR𝑡 (12M) 0.023 0.436 0.047

[0.048] [3.994] [0.276]
RMSE (‰) 0.247 0.283 0.246 0.263 0.244 0.251 0.283 0.251 0.260 0.248 0.251 0.255 0.247
𝑅2

adj (%) 24.60 1.13 25.17 14.46 26.00 22.00 0.98 21.89 16.22 23.78 21.86 19.37 24.52
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(c) Naive.Mom / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0 0 0 0 0 0 0 0 0 0 0 0 0

[-0.772] [2.239] [0.955] [2.087] [0.008] [2.307] [0.777] [-0.893] [3.43] [-0.145] [2.557] [3.629] [0.232]
𝐴𝑉𝑡 (12M) 0.28 0.276 0.355 0.128

[3.098] [3.131] [1.332] [2.271]
𝐴𝐶𝑡 (12M) -0.001 -0.001 0

[-1.384] [-1.292] [-0.231]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.63 -0.898

[2.73] [-0.427]
Naive.Other 𝐴𝑉𝑡 (12M) 0.146 0.143 0.083 0.109

[9.576] [21.691] [1.121] [3.293]
Naive.Other 𝐴𝐶𝑡 (12M) 0.001 0.001 0

[1.43] [1.422] [1.124]
Naive.Other 𝐴𝑉𝑡 (12M) * Naive.Other 𝐴𝐶𝑡 (12M) 0.641 0.273

[5.233] [0.761]
Naive.Other VAR𝑡 (12M) 0.207 0.646 0.448

[0.739] [4.947] [2.558]
RMSE (‰) 0.252 0.310 0.248 0.292 0.247 0.226 0.306 0.219 0.220 0.218 0.224 0.240 0.233
𝑅2

adj (%) 35.77 3.10 37.76 14.01 38.12 48.24 5.42 51.44 51.20 51.68 49.36 41.79 45.23
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(d) Naive.Other / 𝑁 = 4

Table A24: Variance Forecasting (12M) of Naive Portfolios Based on Factor Styles. (Caption on the next page.)
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Table A24: Variance Forecasting (12M) of Naive Portfolios Based on Factor Styles.
This table lists the results of OLS regressions of the (rolling) measure of multi-factor return variance over the
next 12-month period (dependent variable) on variables proxying (components of) multi-factor variance, when
considering the returns of different equally-weighted multi-factor strategies - based on a factor’s association to a
certain style - over the full investigation period. The name of each panel shows the respective symbol of the naive
strategy, as well as the number of factor premia covered by the strategy (𝑁). Below each estimated coefficient, the
subtable reports associated t-statistics (adjusted based on the methods proposed in Newey and West (1987) and
Newey and West (1994)) in squared brackets. Consult Table A4 and Section 3 for an overview of factors constituting
the different equally-weighted multi-factor portfolios. Detailed data set information is available in Appendix A.1
and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on all variables that approximate (components
of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course
of this paper is provided in Table A3.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.002 0.005 0.003 0.003 0.001 0.002 0.004 0.003 0.002 0.008 0.002 0.002 0.002

[2.069] [2.925] [1.914] [3.344] [0.861] [1.957] [4.536] [3.174] [3.417] [4.051] [2.026] [3.214] [2.195]
𝐴𝑉𝑡 (12M) 2.384 2.348 3.757 0.957

[2.201] [2.132] [2.286] [2.825]
𝐴𝐶𝑡 (12M) -0.01 -0.008 0.004

[-1.078] [-0.842] [0.32]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 12.954 -15.892

[1.518] [-1.135]
Naive.C 𝐴𝑉𝑡 (12M) 2.895 3.131 -3.67 1.071

[3.14] [2.639] [-1.108] [0.464]
Naive.C 𝐴𝐶𝑡 (12M) -0.002 -0.005 -0.016

[-0.57] [-1.766] [-4.53]
Naive.C 𝐴𝑉𝑡 (12M) * Naive.C 𝐴𝐶𝑡 (12M) 5.307 14.673

[3.308] [2.751]
Naive.C VAR𝑡 (12M) 3.88 5.669 4.651

[1.031] [3.742] [3.193]
RMSE (‰) 5.643 5.847 5.629 5.791 5.616 5.525 5.861 5.478 5.528 5.298 5.486 5.497 5.471
𝑅2

adj (%) 7.34 0.52 7.62 2.40 7.87 11.18 0.02 12.51 11.06 18.01 12.25 12.08 12.73
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(a) Naive.C / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0 0.001 0 0 0.001 0

[0.88] [3.134] [0.976] [1.514] [0.662] [1.087] [2.487] [0.258] [0.723] [0.425] [0.627] [1.578] [0.485]
𝐴𝑉𝑡 (12M) 1.1 1.081 1.42 0.856

[1.554] [1.494] [1.777] [1.208]
𝐴𝐶𝑡 (12M) -0.005 -0.004 -0.001

[-1.087] [-0.854] [-0.155]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 6.18 -3.829

[0.826] [-0.418]
Naive.E 𝐴𝑉𝑡 (12M) 1.097 1.141 0.932 0.983

[6.325] [5.137] [2.661] [6.194]
Naive.E 𝐴𝐶𝑡 (12M) -0.002 0.002 0

[-0.555] [0.637] [0.056]
Naive.E 𝐴𝑉𝑡 (12M) * Naive.E 𝐴𝐶𝑡 (12M) 11.672 3.241

[2.444] [0.517]
Naive.E VAR𝑡 (12M) 3.203 7.725 5.324

[1.24] [2.631] [1.723]
RMSE (‰) 2.882 2.965 2.874 2.942 2.873 2.775 2.972 2.770 2.843 2.768 2.763 2.900 2.850
𝑅2

adj (%) 6.04 0.53 6.35 2.10 6.27 12.90 0.06 13.01 8.56 13.01 13.47 4.83 7.94
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(b) Naive.E / 𝑁 = 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.002 0.002 0.002 0.003

[1.827] [1.56] [1.449] [2.112] [1.105] [1.311] [1.247] [1.232] [1.708] [0.434] [0.841] [1.722] [1.715]
𝐴𝑉𝑡 (12M) -0.227 -0.242 -0.613 -0.309

[-0.195] [-0.207] [-0.227] [-0.245]
𝐴𝐶𝑡 (12M) -0.003 -0.003 -0.007

[-0.193] [-0.204] [-0.274]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -2.364 4.188

[-0.191] [0.14]
Naive.FX 𝐴𝑉𝑡 (12M) 0.405 0.664 1.968 3.235

[0.318] [0.497] [0.392] [0.887]
Naive.FX 𝐴𝐶𝑡 (12M) -0.002 -0.003 -0.001

[-0.369] [-0.592] [-0.142]
Naive.FX 𝐴𝑉𝑡 (12M) * Naive.FX 𝐴𝐶𝑡 (12M) 0.201 -1.857

[0.147] [-0.3]
Naive.FX VAR𝑡 (12M) -3.831 0.127 0.256

[-1.003] [0.092] [0.172]
RMSE (‰) 7.594 7.594 7.592 7.593 7.591 7.589 7.588 7.573 7.594 7.569 7.556 7.595 7.592
𝑅2

adj (%) -0.14 -0.14 -0.28 -0.13 -0.45 -0.02 0.02 0.22 -0.16 0.13 0.65 -0.17 -0.29
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(c) Naive.FX / 𝑁 = 2

Table A25: Mean Return Forecasting (12M) of Naive Portfolios Based on Asset Classes.
This table lists the results of OLS regressions of the (rolling) mean returns over the next 12-month period (dependent
variable) on variables proxying (components of) multi-factor variance, when considering the returns of different
equally-weighted multi-factor strategies - based on a factor’s association to an ASCL - over the full investigation
period. The name of each panel shows the respective symbol of the naive strategy, as well as the number of factor
premia covered by the strategy (𝑁). Below each estimated coefficient, the subtable reports associated t-statistics
(adjusted based on the methods proposed in Newey and West (1987) and Newey and West (1994)) in squared
brackets. Consult Table A4 and Section 3 for an overview of factors constituting the different equally-weighted
multi-factor portfolios. Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024).
Refer to Section 4.1 for information on all variables that approximate (components of) multi-factor variance (i.e.
𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course of this paper is provided in
Table A3.

84



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.003 0.003 0.005 0.003 0.004 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.003

[2.604] [2.092] [2.339] [2.852] [1.643] [0.981] [0.665] [0.502] [0.97] [2.222] [1.097] [0.934] [2.104]
𝐴𝑉𝑡 (12M) -1.939 -2.01 -0.541 -2.781

[-1.684] [-1.641] [-0.207] [-4.154]
𝐴𝐶𝑡 (12M) -0.014 -0.016 -0.003

[-0.923] [-1.092] [-0.196]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -21.545 -16.565

[-1.708] [-0.635]
Naive.Market 𝐴𝑉𝑡 (12M) 0.154 0.144 -2.228 -0.93

[0.119] [0.119] [-1.674] [-0.638]
Naive.Market 𝐴𝐶𝑡 (12M) 0 0 -0.005

[0.09] [0.08] [-1.588]
Naive.Market 𝐴𝑉𝑡 (12M) * Naive.Market 𝐴𝐶𝑡 (12M) 0.766 4.593

[0.359] [1.687]
Naive.Market VAR𝑡 (12M) 2.022 0.857 2.732

[0.649] [0.398] [1.436]
RMSE (‰) 6.665 6.756 6.619 6.609 6.607 6.791 6.792 6.791 6.783 6.753 6.771 6.781 6.572
𝑅2

adj (%) 3.53 0.87 4.67 5.15 4.84 -0.16 -0.17 -0.33 0.09 0.60 0.27 0.15 6.03
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(a) Naive.Market / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.001 0.003 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0 0.002 0.002 0.002

[1.908] [3.341] [2.041] [2.876] [0.997] [2.248] [0.886] [0.556] [2.114] [0.08] [2.072] [2.115] [1.559]
𝐴𝑉𝑡 (12M) 1.082 1.055 1.856 1.244

[1.426] [1.365] [1.453] [2.014]
𝐴𝐶𝑡 (12M) -0.007 -0.006 0.001

[-1.034] [-0.89] [0.06]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 4.833 -9.026

[0.662] [-0.661]
Naive.Carry 𝐴𝑉𝑡 (12M) 0.138 0.258 1.587 -0.061

[0.148] [0.269] [0.655] [-0.034]
Naive.Carry 𝐴𝐶𝑡 (12M) 0.002 0.002 0.005

[0.612] [0.638] [0.809]
Naive.Carry 𝐴𝑉𝑡 (12M) * Naive.Carry 𝐴𝐶𝑡 (12M) 0.549 -3.478

[0.232] [-0.573]
Naive.Carry VAR𝑡 (12M) 0.563 0.427 -1.163

[0.112] [0.172] [-0.394]
RMSE (‰) 5.004 5.046 4.995 5.045 4.991 5.057 5.050 5.048 5.056 5.043 5.056 5.056 4.999
𝑅2

adj (%) 1.90 0.28 2.07 0.30 2.08 -0.16 0.10 -0.01 -0.12 0.01 -0.33 -0.15 1.94
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(b) Naive.Carry / 𝑁 = 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) 0.004 0.006 0.005 0.004 0.005 0.003 0.008 0.007 0.004 0.006 0.003 0.004 0.004

[4.435] [4.07] [3.377] [4.712] [3.02] [4.041] [5.39] [4.814] [4.954] [2.6] [4.35] [4.829] [4.411]
𝐴𝑉𝑡 (12M) 0.782 0.74 0.287 0.406

[1.179] [1.095] [0.191] [0.254]
𝐴𝐶𝑡 (12M) -0.01 -0.01 -0.014

[-1.2] [-1.152] [-1.096]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 2.982 5.104

[0.482] [0.353]
Naive.Mom 𝐴𝑉𝑡 (12M) 1.418 1.769 3.52 5.608

[1.92] [3.248] [1.918] [3.322]
Naive.Mom 𝐴𝐶𝑡 (12M) -0.009 -0.011 -0.007

[-2.503] [-3.061] [-1.274]
Naive.Mom 𝐴𝑉𝑡 (12M) * Naive.Mom 𝐴𝐶𝑡 (12M) 1.461 -4.611

[0.871] [-1.041]
Naive.Mom VAR𝑡 (12M) -11.256 1.84 1.019

[-2.723] [0.937] [0.218]
RMSE (‰) 5.364 5.366 5.343 5.385 5.342 5.292 5.275 5.123 5.370 5.111 5.160 5.363 5.362
𝑅2

adj (%) 0.78 0.68 1.35 -0.02 1.22 3.43 4.04 9.30 0.55 9.59 8.00 0.79 0.67
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(c) Naive.Mom / 𝑁 = 4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(Intercept) -0.004 0 -0.005 -0.003 -0.005 -0.002 0 -0.002 -0.001 -0.002 -0.002 -0.002 -0.003

[-2.646] [0.036] [-2.127] [-1.933] [-1.905] [-2.243] [-0.129] [-1.785] [-1.93] [-1.288] [-2.45] [-1.961] [-2.619]
𝐴𝑉𝑡 (12M) 4.888 4.934 5.516 2.97

[3.498] [3.434] [2.905] [2.863]
𝐴𝐶𝑡 (12M) 0.006 0.01 0.016

[0.583] [0.989] [0.883]
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 38.677 -6.575

[2.547] [-0.581]
Naive.Other 𝐴𝑉𝑡 (12M) 2.446 2.442 3.275 2.171

[15.75] [25.032] [1.657] [2.451]
Naive.Other 𝐴𝐶𝑡 (12M) 0.004 0.001 0.004

[0.668] [0.113] [0.365]
Naive.Other 𝐴𝑉𝑡 (12M) * Naive.Other 𝐴𝐶𝑡 (12M) 9.868 -3.767

[13.039] [-0.422]
Naive.Other VAR𝑡 (12M) 1.541 10.254 5.648

[0.348] [8.048] [3.78]
RMSE (‰) 5.070 6.040 5.045 5.353 5.043 4.815 6.037 4.814 4.952 4.808 4.808 5.109 4.920
𝑅2

adj (%) 29.57 0.06 30.14 21.49 30.08 36.49 0.16 36.38 32.82 36.43 36.56 28.49 33.57
No. Obs. 547 547 547 547 547 547 547 547 547 547 547 547 547

(d) Naive.Other / 𝑁 = 4

Table A26: Mean Return Forecasting (12M) of Naive Portfolios Based on Factor Styles. (Caption on the next page.)
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Table A26: Mean Return Forecasting (12M) of Naive Portfolios Based on Factor Styles.
This table lists the results of OLS regressions of the (rolling) mean returns over the next 12-month period (dependent
variable) on variables proxying (components of) multi-factor variance, when considering the returns of different
equally-weighted multi-factor strategies - based on a factor’s association to a certain style - over the full investigation
period. The name of each panel shows the respective symbol of the naive strategy, as well as the number of factor
premia covered by the strategy (𝑁). Below each estimated coefficient, the subtable reports associated t-statistics
(adjusted based on the methods proposed in Newey and West (1987) and Newey and West (1994)) in squared
brackets. Consult Table A4 and Section 3 for an overview of factors constituting the different equally-weighted
multi-factor portfolios. Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024).
Refer to Section 4.1 for information on all variables that approximate (components of) multi-factor variance (i.e.
𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An overview of the abbreviations used in the course of this paper is provided in
Table A3.

Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 0.20 0.01 0.94
𝐴𝐶𝑡 (12M) -1.32 -0.06 -6.08

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) -0.55 -0.02 -2.53
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 0.74 0.03 3.46

VAR𝑡 (12M) -0.08 0.00 -0.38

(a) 𝑅 = 91 / 𝑃 = 466 / 𝜋 = 5.12

Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 0.91 0.04 3.91
𝐴𝐶𝑡 (12M) -0.28 -0.01 -1.19

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) 0.85 0.03 3.63
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.28 0.05 5.54

VAR𝑡 (12M) 0.24 0.01 1.05

(b) 𝑅 = 131 / 𝑃 = 426 / 𝜋 = 3.25

Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 1.11 0.05 4.34
𝐴𝐶𝑡 (12M) -0.23 -0.01 -0.87

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) 1.08 0.04 4.20
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) 1.45 0.06 5.69

VAR𝑡 (12M) 0.30 0.01 1.15

(c) 𝑅 = 171 / 𝑃 = 386 / 𝜋 = 2.26

Table A27: OS Return Forecasting (1M) of the Naive Portfolio.
This table reports the results of the OS test for forecasting (rolling) mean returns of the equally-weighted benchmark
over the next month. Specifically, each panel shows the results for a different number of observations (𝑅) used
to make the first prediction; in this context, 𝑃 denotes the related number of OS forecasts and 𝜋 equals 𝑃/𝑅.
The first column specifies the respective model by stating the independent variables considered in excess of the
intercept. The remaining columns present OS statistics that compare the respective model to the historical mean
model, using only the constant term as explanatory variable. Positive 𝑂𝑆-𝑅2 and positive difference in root mean
squared forecast error (RMSE) indicate superior forecasting ability compared to the benchmark model. 𝑀𝑆𝐸-𝐹
defines the F-statistic suggested by McCracken (2007). Consult Table A4 and Section 3 for an overview of factors
constituting the equally-weighted multi-factor portfolio. Detailed data set information is available in Appendix A.1
and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on all variables that approximate (components
of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An explaination of the OS methodology, including
the measures OS-𝑅2, ΔRMSE, and MSE-𝐹, is provided in Section A.4.1. An overview of the abbreviations used in
the course of this paper is provided in Table A3.
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Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 10.36 0.14 51.30
𝐴𝐶𝑡 (12M) -10.18 -0.13 -41.02

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) 0.90 0.01 4.04
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -5.01 -0.07 -21.20

VAR𝑡 (12M) -2.12 -0.03 -9.24

(a) 𝑅 = 80 / 𝑃 = 444 / 𝜋 = 5.55

Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 13.40 0.18 62.50
𝐴𝐶𝑡 (12M) -9.06 -0.12 -33.58

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) 5.06 0.07 21.54
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -1.98 -0.03 -7.83

VAR𝑡 (12M) 0.38 0.01 1.53

(b) 𝑅 = 120 / 𝑃 = 404 / 𝜋 = 3.37

Model OS-𝑅2 (%) ΔRMSE (‰) MSE-𝐹
𝐴𝑉𝑡 (12M) 13.48 0.19 56.73
𝐴𝐶𝑡 (12M) -7.12 -0.10 -24.18

𝐴𝑉𝑡 (12M) + 𝐴𝐶𝑡 (12M) 7.14 0.10 27.99
𝐴𝑉𝑡 (12M) * 𝐴𝐶𝑡 (12M) -1.51 -0.02 -5.42

VAR𝑡 (12M) 0.44 0.01 1.61

(c) 𝑅 = 160 / 𝑃 = 364 / 𝜋 = 2.28

Table A28: OS Mean Return Forecasting (12M) of the Naive Portfolio.
This table reports the results of the OS test for forecasting (rolling) mean returns of the equally-weighted benchmark
over the next 12-month period. Specifically, each panel shows the results for a different number of observations (𝑅)
used to make the first prediction; in this context, 𝑃 denotes the related number of OS forecasts and 𝜋 equals 𝑃/𝑅.
The first column specifies the respective model by stating the independent variables considered in excess of the
intercept. The remaining columns present OS statistics that compare the respective model to the historical mean
model, using only the constant term as explanatory variable. Positive 𝑂𝑆-𝑅2 and positive difference in root mean
squared forecast error (RMSE) indicate superior forecasting ability compared to the benchmark model. 𝑀𝑆𝐸-𝐹
defines the F-statistic suggested by McCracken (2007). Consult Table A4 and Section 3 for an overview of factors
constituting the equally-weighted multi-factor portfolio. Detailed data set information is available in Appendix A.1
and Vincenz and Zeissler (2024). Refer to Section 4.1 for information on all variables that approximate (components
of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). An explaination of the OS methodology, including
the measures OS-𝑅2, ΔRMSE, and MSE-𝐹, is provided in Section A.4.1. An overview of the abbreviations used in
the course of this paper is provided in Table A3.
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𝐻 Signal Scaling Obs Mean Std SR CE IR Skewness Kurtosis 𝑤𝑃50 𝑤𝑃75 𝑤𝑃90 𝑤𝑃99
- - - 558 2.90 3.05 0.95 2.71 0.00 -0.15 0.31 1.00 1.00 1.00 1.00
1 VAR𝑡 (12M) MM 558 2.33 3.05 0.76 2.15 -25.99 -0.05 0.78 0.71 1.25 1.97 3.63
1 VAR𝑡 (12M) SQRT 558 2.45 3.05 0.80 2.27 -34.05 0.07 0.86 0.71 0.85 1.28 1.87
1 VAR𝑡 (12M) LIN 558 1.85 3.05 0.61 1.67 -46.51 0.50 1.74 0.37 0.53 1.20 2.56
1 𝐴𝐶𝑡 (12M) MM 558 2.46 3.05 0.81 2.27 -28.11 0.07 0.58 0.82 1.09 1.47 3.29
1 𝐴𝐶𝑡 (12M) SQRT 558 2.88 3.05 0.94 2.69 -3.01 -0.20 0.43 0.92 1.14 1.30 1.51
1 𝐴𝐶𝑡 (12M) LIN 558 2.73 3.05 0.90 2.55 -12.26 -0.20 0.64 0.77 1.17 1.54 2.07
1 𝐴𝑉𝑡 (12M) MM 558 2.52 3.05 0.82 2.33 -22.45 -0.14 0.33 0.97 1.30 1.89 2.82
1 𝐴𝑉𝑡 (12M) SQRT 558 2.64 3.05 0.87 2.46 -22.52 0.07 0.85 0.74 0.93 1.24 1.79
1 𝐴𝑉𝑡 (12M) LIN 558 2.09 3.05 0.69 1.91 -37.80 0.38 2.74 0.41 0.66 1.17 2.45
6 VAR𝑡 (12M) MM 558 2.55 3.05 0.84 2.36 -17.47 0.11 0.41 0.73 1.24 1.90 3.27
6 VAR𝑡 (12M) SQRT 558 2.54 3.05 0.83 2.35 -28.83 -0.01 0.60 0.76 0.90 1.34 1.96
6 VAR𝑡 (12M) LIN 558 1.97 3.05 0.64 1.78 -41.39 0.35 1.46 0.42 0.58 1.30 2.77
6 𝐴𝐶𝑡 (12M) MM 558 2.60 3.05 0.85 2.42 -20.65 0.15 0.69 0.85 1.06 1.40 2.81
6 𝐴𝐶𝑡 (12M) SQRT 558 2.85 3.05 0.94 2.67 -6.90 -0.19 0.38 0.94 1.14 1.31 1.51
6 𝐴𝐶𝑡 (12M) LIN 558 2.72 3.05 0.89 2.54 -14.32 -0.18 0.50 0.82 1.19 1.58 2.09
6 𝐴𝑉𝑡 (12M) MM 558 2.56 3.05 0.84 2.37 -20.83 -0.07 0.25 0.98 1.28 1.91 2.75
6 𝐴𝑉𝑡 (12M) SQRT 558 2.69 3.05 0.88 2.51 -18.92 0.01 0.75 0.75 0.94 1.25 1.78
6 𝐴𝑉𝑡 (12M) LIN 558 2.18 3.05 0.72 2.00 -34.46 0.18 2.61 0.43 0.69 1.22 2.46
12 VAR𝑡 (12M) MM 558 2.62 3.05 0.86 2.44 -15.28 0.07 0.32 0.79 1.19 1.91 2.82
12 VAR𝑡 (12M) SQRT 558 2.64 3.05 0.86 2.45 -23.00 -0.03 0.45 0.79 0.94 1.33 1.98
12 VAR𝑡 (12M) LIN 558 2.13 3.05 0.70 1.94 -36.39 0.31 1.20 0.46 0.70 1.42 2.90
12 𝐴𝐶𝑡 (12M) MM 558 2.74 3.05 0.90 2.56 -12.37 0.09 0.56 0.86 1.04 1.51 2.36
12 𝐴𝐶𝑡 (12M) SQRT 558 2.84 3.05 0.93 2.65 -11.14 -0.19 0.32 0.96 1.13 1.29 1.49
12 𝐴𝐶𝑡 (12M) LIN 558 2.68 3.05 0.88 2.49 -19.24 -0.23 0.46 0.88 1.19 1.56 2.04
12 𝐴𝑉𝑡 (12M) MM 558 2.42 3.05 0.79 2.23 -30.51 -0.16 0.36 0.98 1.26 1.87 2.57
12 𝐴𝑉𝑡 (12M) SQRT 558 2.79 3.05 0.91 2.60 -11.19 -0.01 0.60 0.77 0.96 1.27 1.74
12 𝐴𝑉𝑡 (12M) LIN 558 2.38 3.05 0.78 2.19 -27.08 0.11 1.82 0.47 0.74 1.30 2.45
24 VAR𝑡 (12M) MM 558 2.45 3.05 0.80 2.26 -31.14 -0.16 0.45 0.88 1.24 1.95 2.51
24 VAR𝑡 (12M) SQRT 558 2.84 3.05 0.93 2.65 -6.68 -0.03 0.33 0.82 1.09 1.36 1.80
24 VAR𝑡 (12M) LIN 558 2.51 3.05 0.82 2.33 -22.18 0.17 0.59 0.54 1.04 1.57 2.64
24 𝐴𝐶𝑡 (12M) MM 558 2.80 3.05 0.92 2.61 -12.11 -0.01 0.35 0.92 1.10 1.44 1.77
24 𝐴𝐶𝑡 (12M) SQRT 558 2.91 3.05 0.95 2.72 2.86 -0.18 0.30 1.00 1.08 1.25 1.46
24 𝐴𝐶𝑡 (12M) LIN 558 2.88 3.05 0.94 2.69 -2.43 -0.20 0.31 0.97 1.14 1.53 2.02
24 𝐴𝑉𝑡 (12M) MM 558 2.28 3.05 0.75 2.09 -43.17 -0.35 0.70 0.97 1.24 1.75 2.24
24 𝐴𝑉𝑡 (12M) SQRT 558 2.94 3.05 0.96 2.76 4.99 0.02 0.41 0.82 0.99 1.27 1.62
24 𝐴𝑉𝑡 (12M) LIN 558 2.74 3.05 0.90 2.56 -9.41 0.20 0.83 0.56 0.83 1.41 2.25
60 VAR𝑡 (12M) MM 558 2.53 3.05 0.83 2.34 -31.34 -0.19 0.46 0.88 1.04 1.73 1.98
60 VAR𝑡 (12M) SQRT 558 2.93 3.05 0.96 2.74 3.73 -0.00 0.33 0.93 1.08 1.27 1.68
60 VAR𝑡 (12M) LIN 558 2.75 3.05 0.90 2.56 -9.55 0.24 0.67 0.74 1.03 1.45 2.42
60 𝐴𝐶𝑡 (12M) MM 558 2.93 3.05 0.96 2.74 4.44 -0.07 0.40 0.94 1.12 1.26 1.41
60 𝐴𝐶𝑡 (12M) SQRT 558 2.82 3.05 0.92 2.63 -22.73 -0.21 0.33 0.98 1.12 1.17 1.22
60 𝐴𝐶𝑡 (12M) LIN 558 2.69 3.05 0.88 2.51 -28.39 -0.27 0.40 0.94 1.23 1.34 1.47
60 𝐴𝑉𝑡 (12M) MM 558 2.28 3.05 0.75 2.09 -56.89 -0.38 0.60 0.92 1.28 1.52 1.72
60 𝐴𝑉𝑡 (12M) SQRT 558 3.08 ∗ 3.05 1.01 ∗ 2.89 ∗ 27.90 ∗ 0.01 0.30 0.91 1.01 1.31 1.43
60 𝐴𝑉𝑡 (12M) LIN 558 3.09 3.05 1.01 2.91 15.33 0.17 0.39 0.75 0.95 1.61 1.81
120 VAR𝑡 (12M) MM 558 2.83 3.05 0.93 2.65 -6.16 -0.09 0.38 0.95 1.29 1.46 1.57
120 VAR𝑡 (12M) SQRT 558 2.78 3.05 0.91 2.60 -16.81 -0.09 0.39 0.91 1.02 1.18 1.62
120 VAR𝑡 (12M) LIN 558 2.53 3.05 0.83 2.35 -25.81 0.09 0.67 0.76 0.92 1.29 2.29
120 𝐴𝐶𝑡 (12M) MM 558 2.98 . 3.05 0.98 2.80 . 19.51 . -0.07 0.34 1.02 1.07 1.13 1.28
120 𝐴𝐶𝑡 (12M) SQRT 558 2.84 3.05 0.93 2.65 -24.84 -0.20 0.31 1.01 1.06 1.14 1.21
120 𝐴𝐶𝑡 (12M) LIN 558 2.76 3.05 0.90 2.57 -27.76 -0.24 0.32 1.01 1.12 1.29 1.45
120 𝐴𝑉𝑡 (12M) MM 558 2.70 3.05 0.89 2.51 -24.45 -0.21 0.29 1.02 1.22 1.43 1.58
120 𝐴𝑉𝑡 (12M) SQRT 558 2.89 3.05 0.95 2.70 -3.04 -0.10 0.36 0.91 1.03 1.14 1.39
120 𝐴𝑉𝑡 (12M) LIN 558 2.79 3.05 0.91 2.60 -12.17 -0.04 0.45 0.76 1.07 1.24 1.76

Table A29: Summary Statistics of Timing Strategies. (Caption on the next page.)

88



Table A29: Summary Statistics of Timing Strategies.
This table presents summary statistics for the set of 54 timing strategies (constructed for different holding periods
(𝐻), signals, and methods to scale the signals) as well as for the static multi-factor benchmark (in the first row).
In detail, I report the number of monthly return observations, followed by annualized arithmetic mean returns
(as percentages) with associated significance levels, annualized standard deviations (as percentages), annualized
Sharpe Ratios with associated significance levels, annualized certainty equivalents (applying a CRRA utility with
𝛾 = 4; as percentages) with associated significance levels, annualized information ratios (vs. static benchmark,
as percentages) with associated significance levels, annualized skewness, annualized excess kurtosis, and various
quantiles of the distribution of weights 𝑤 in the other respective columns. Monthly mean returns and certainty
equivalents are annualized by multiplying with 12, while standard deviations, Sharpe Ratios and information
ratios are multiplied with

√
12. Furthermore, I annualize monthly excess kurtosis by multiplying with 1

12 and
skewness by multiplying with 1√

12
. For the performance measures, i.e. mean, Sharpe Ratio, certainty equivalent

and information ratio, I additionally report significance levels of tests with the null hypothesis of no outperformance
compared to the relevant estimate of the static benchmark over the same period, whereby p-values are obtained
via bootstrapping (see Appendix A.6 for more information). In this sense, the levels ∗∗∗,∗∗ ,∗ ,. indicate whether a
given estimate is significantly greater as the relevant estimate of the static benchmark at the 0,01%, 1%, 5% or 10%
level, respectively. Consult Table A4 and Section 3 for an overview of factors constituting the equally-weighted
multi-factor portfolio. Detailed data set information is available in Appendix A.1 and Vincenz and Zeissler (2024).
Refer to Section 4.1 for information on all variables that approximate (components of) multi-factor variance (i.e.
𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). A description of the timing methodology, including the different scaling methods
MM, LIN, and SQRT , can be found in Section A.5.1. An overview of the abbreviations used in the course of this
paper is provided in Table A3.
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𝐻 Signal Scaling Obs Mean Std SR CE IR Skewness Kurtosis 𝑤𝑃50 𝑤𝑃75 𝑤𝑃90 𝑤𝑃99
- - - 558 5.33 5.64 0.94 4.69 0.00 -0.08 0.24 1.00 1.00 1.00 1.00
1 VAR𝑡 (12M) MM 558 4.47 5.64 0.79 3.81 -22.63 -0.26 1.20 0.77 1.20 1.77 2.90
1 VAR𝑡 (12M) SQRT 558 4.30 5.64 0.76 3.68 -42.82 0.30 0.90 0.71 0.94 1.27 1.77
1 VAR𝑡 (12M) LIN 558 2.99 5.64 0.53 2.40 -56.47 0.80 2.05 0.37 0.65 1.19 2.31
1 𝐴𝐶𝑡 (12M) MM 558 4.98 5.64 0.88 4.35 -12.95 0.03 0.36 0.79 1.09 1.54 2.73
1 𝐴𝐶𝑡 (12M) SQRT 558 5.16 5.64 0.91 4.52 -13.78 -0.06 0.29 0.96 1.16 1.30 1.46
1 𝐴𝐶𝑡 (12M) LIN 558 4.83 5.64 0.86 4.19 -21.47 -0.02 0.42 0.84 1.23 1.55 1.95
1 𝐴𝑉𝑡 (12M) MM 558 4.90 5.64 0.87 4.26 -13.44 -0.09 0.24 0.94 1.28 1.91 3.22
1 𝐴𝑉𝑡 (12M) SQRT 558 4.74 5.64 0.84 4.11 -31.95 0.23 0.65 0.77 0.98 1.13 1.71
1 𝐴𝑉𝑡 (12M) LIN 558 3.72 5.64 0.66 3.12 -46.44 0.62 1.55 0.49 0.78 1.05 2.39
6 VAR𝑡 (12M) MM 558 4.93 5.64 0.87 4.29 -11.40 -0.06 0.50 0.83 1.19 1.79 3.01
6 VAR𝑡 (12M) SQRT 558 4.44 5.64 0.79 3.82 -38.92 0.24 0.73 0.74 0.94 1.28 1.79
6 VAR𝑡 (12M) LIN 558 3.15 5.64 0.56 2.55 -52.95 0.71 2.05 0.40 0.68 1.21 2.36
6 𝐴𝐶𝑡 (12M) MM 558 5.26 5.64 0.93 4.62 -2.91 -0.02 0.33 0.84 1.10 1.52 2.25
6 𝐴𝐶𝑡 (12M) SQRT 558 5.10 5.64 0.90 4.46 -21.17 -0.05 0.27 0.97 1.14 1.30 1.43
6 𝐴𝐶𝑡 (12M) LIN 558 4.77 5.64 0.84 4.13 -27.14 0.01 0.33 0.88 1.21 1.57 1.89
6 𝐴𝑉𝑡 (12M) MM 558 4.81 5.64 0.85 4.16 -16.87 -0.13 0.27 0.94 1.26 1.90 3.05
6 𝐴𝑉𝑡 (12M) SQRT 558 4.85 5.64 0.86 4.22 -27.54 0.15 0.50 0.80 0.99 1.14 1.73
6 𝐴𝑉𝑡 (12M) LIN 558 3.94 5.64 0.70 3.33 -41.99 0.46 1.24 0.53 0.82 1.09 2.50
12 VAR𝑡 (12M) MM 558 4.66 5.64 0.83 4.01 -21.50 -0.13 0.39 0.85 1.20 1.80 2.53
12 VAR𝑡 (12M) SQRT 558 4.78 5.64 0.85 4.15 -25.64 0.23 0.66 0.76 0.97 1.22 1.84
12 VAR𝑡 (12M) LIN 558 3.65 5.64 0.65 3.05 -42.23 0.67 2.09 0.45 0.73 1.16 2.49
12 𝐴𝐶𝑡 (12M) MM 558 5.39 5.64 0.95 4.75 2.89 -0.10 0.39 0.87 1.11 1.53 1.95
12 𝐴𝐶𝑡 (12M) SQRT 558 5.08 5.64 0.90 4.44 -26.70 -0.07 0.26 0.99 1.12 1.28 1.38
12 𝐴𝐶𝑡 (12M) LIN 558 4.74 5.64 0.84 4.11 -32.63 -0.05 0.30 0.93 1.20 1.55 1.78
12 𝐴𝑉𝑡 (12M) MM 558 4.43 5.64 0.78 3.78 -29.96 -0.19 0.37 0.94 1.24 1.85 2.85
12 𝐴𝑉𝑡 (12M) SQRT 558 5.07 5.64 0.90 4.44 -15.59 0.14 0.46 0.81 1.00 1.14 1.70
12 𝐴𝑉𝑡 (12M) LIN 558 4.35 5.64 0.77 3.74 -30.54 0.43 1.14 0.56 0.85 1.08 2.44
24 VAR𝑡 (12M) MM 558 4.29 5.64 0.76 3.63 -37.46 -0.26 0.56 0.88 1.21 1.71 2.28
24 VAR𝑡 (12M) SQRT 558 5.18 5.64 0.92 4.56 -8.46 0.14 0.42 0.85 1.01 1.15 1.83
24 VAR𝑡 (12M) LIN 558 4.50 5.64 0.80 3.88 -25.30 0.42 1.06 0.59 0.86 1.12 2.63
24 𝐴𝐶𝑡 (12M) MM 558 5.29 5.64 0.94 4.65 -2.38 -0.05 0.27 0.91 1.14 1.37 1.79
24 𝐴𝐶𝑡 (12M) SQRT 558 5.25 5.64 0.93 4.61 -10.84 -0.09 0.25 1.01 1.09 1.16 1.36
24 𝐴𝐶𝑡 (12M) LIN 558 5.14 5.64 0.91 4.50 -13.98 -0.09 0.25 0.98 1.17 1.32 1.75
24 𝐴𝑉𝑡 (12M) MM 558 4.29 5.64 0.76 3.64 -36.59 -0.26 0.49 0.93 1.31 1.77 2.44
24 𝐴𝑉𝑡 (12M) SQRT 558 5.29 5.64 0.94 4.66 -2.93 0.11 0.36 0.83 1.02 1.13 1.68
24 𝐴𝑉𝑡 (12M) LIN 558 4.87 5.64 0.86 4.26 -16.10 0.33 0.66 0.60 0.92 1.11 2.42
60 VAR𝑡 (12M) MM 558 4.61 5.64 0.82 3.96 -31.80 -0.22 0.30 0.97 1.20 1.71 1.86
60 VAR𝑡 (12M) SQRT 558 5.33 5.64 0.95 4.71 0.40 0.12 0.36 0.88 0.96 1.27 1.59
60 VAR𝑡 (12M) LIN 558 4.92 5.64 0.87 4.30 -13.69 0.40 0.84 0.68 0.80 1.47 2.12
60 𝐴𝐶𝑡 (12M) MM 558 5.46 5.64 0.97 4.82 11.94 -0.07 0.23 1.01 1.12 1.21 1.48
60 𝐴𝐶𝑡 (12M) SQRT 558 5.18 5.64 0.92 4.54 -26.72 -0.11 0.27 0.98 1.06 1.15 1.20
60 𝐴𝐶𝑡 (12M) LIN 558 5.00 5.64 0.89 4.35 -30.78 -0.16 0.32 0.95 1.10 1.32 1.41
60 𝐴𝑉𝑡 (12M) MM 558 4.40 5.64 0.78 3.75 -39.26 -0.26 0.35 0.93 1.32 1.71 1.96
60 𝐴𝑉𝑡 (12M) SQRT 558 5.43 5.64 0.96 4.80 7.44 0.11 0.33 0.89 0.99 1.24 1.50
60 𝐴𝑉𝑡 (12M) LIN 558 5.21 5.64 0.92 4.59 -4.51 0.32 0.57 0.70 0.87 1.45 2.01
120 VAR𝑡 (12M) MM 558 5.00 5.64 0.89 4.35 -16.39 -0.12 0.27 1.00 1.29 1.45 1.53
120 VAR𝑡 (12M) SQRT 558 5.18 5.64 0.92 4.55 -10.59 0.06 0.36 0.86 0.93 1.22 1.55
120 VAR𝑡 (12M) LIN 558 4.72 5.64 0.84 4.10 -21.76 0.29 0.74 0.64 0.77 1.35 2.04
120 𝐴𝐶𝑡 (12M) MM 558 5.48 . 5.64 0.97 4.83 . 20.63 . -0.11 0.23 1.03 1.08 1.13 1.16
120 𝐴𝐶𝑡 (12M) SQRT 558 5.22 5.64 0.93 4.58 -29.70 -0.08 0.24 0.98 1.03 1.14 1.18
120 𝐴𝐶𝑡 (12M) LIN 558 5.10 5.64 0.90 4.46 -32.06 -0.10 0.24 0.96 1.07 1.29 1.39
120 𝐴𝑉𝑡 (12M) MM 558 4.88 5.64 0.86 4.24 -22.70 -0.14 0.25 1.01 1.29 1.54 1.62
120 𝐴𝑉𝑡 (12M) SQRT 558 5.28 5.64 0.94 4.65 -4.08 0.04 0.33 0.87 0.98 1.20 1.47
120 𝐴𝑉𝑡 (12M) LIN 558 5.01 5.64 0.89 4.39 -13.51 0.21 0.53 0.69 0.86 1.36 1.93

Table A30: Summary Statistics of Timing Strategies without Ex-Ante Volatility Scaling of Factors. (Caption on
the next page.)

90



Table A30: Summary Statistics of Timing Strategies without Ex-Ante Volatility Scaling of Factors.
This table presents summary statistics for the set of 54 timing strategies (constructed for different holding periods
(𝐻), signals, and methods to scale the signals) as well as for the static multi-factor benchmark (in the first row),
similar to Table A29. However, while the factor TS used in Table A29 are ex-ante volatility scaled (see Section
3), the given table presents the same analysis based on the unscaled series. In detail, I report the number of
monthly return observations, followed by annualized arithmetic mean returns (as percentages) with associated
significance levels, annualized standard deviations (as percentages), annualized Sharpe Ratios with associated
significance levels, annualized certainty equivalents (applying a CRRA utility with 𝛾 = 4; as percentages) with
associated significance levels, annualized information ratios (vs. static benchmark, as percentages) with associated
significance levels, annualized skewness, annualized excess kurtosis, and various quantiles of the distribution of
weights 𝑤 in the other respective columns. Monthly mean returns and certainty equivalents are annualized by
multiplying with 12, while standard deviations, Sharpe Ratios and information ratios are multiplied with

√
12.

Furthermore, I annualize monthly excess kurtosis by multiplying with 1
12 and skewness by multiplying with 1√

12
.

For the performance measures, i.e. mean, Sharpe Ratio, certainty equivalent and information ratio, I additionally
report significance levels of tests with the null hypothesis of no outperformance compared to the relevant estimate
of the static benchmark over the same period, whereby p-values are obtained via bootstrapping (see Appendix A.6
for more information). In this sense, the levels ∗∗∗,∗∗ ,∗ ,. indicate whether a given estimate is significantly greater
as the relevant estimate of the static benchmark at the 0,01%, 1%, 5% or 10% level, respectively. Consult Table A4
and Section 3 for an overview of factors constituting the equally-weighted multi-factor portfolio. Detailed data set
information is available in Appendix A.1 and Vincenz and Zeissler (2024). Refer to Section 4.1 for information
on all variables that approximate (components of) multi-factor variance (i.e. 𝐴𝑉𝑡 , 𝐴𝐶𝑡 , VAR𝑡 , and VAR.G𝑡 ). A
description of the timing methodology, including the different scaling methods MM, LIN, and SQRT , can be found
in Section A.5.1. An overview of the abbreviations used in the course of this paper is provided in Table A3.
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