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Abstract

A model of portfolio return dynamics is considered in which the price of risk is permitted to be
heterogeneous. In doing this, a novel method is proposed that delivers improved out-of-sample
forecasts of portfolio returns. The main innovation is the use of a set of predictors that account for
variation in risk prices across (segmented) markets. These predictors are the conditional covari-
ances between the returns to the components of the portfolio under consideration and commonly
used state variables (that is, French-French factor returns). The results indicate that the proposed
method dominates competing methods (including those that assume homogeneous risk prices) when
applied to domestic and international data – a finding that is robust to the sample period, perfor-
mance measure and the state variables used. The use of clustered conditional covariances leads to
further improvements in out-of-sample performance.
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1 Introduction

There is enormous interest in understanding the dynamics of stock returns. The ability to

predict future returns brings obvious benefits to investors in terms of optimal decision making from

a speculator and risk management perspective, companies in terms of strategic decisions relating

to resource allocation, and to society in general in terms of financial stability, higher economic

growth, and prosperity. This interest has produced a vast literature that debates whether indeed

(market) portfolio returns are predictable (or not); see, e.g., Goyal et al. (2023) for a recent

assessment.1 Any empirical finding of predictability can be rationalised in one of three ways: it

reflects the misuse of statistical methods leading to data snooping (Bossaerts and Hillion, 1999),

and/or it reflects behavioural factors such as irrational investor behaviour (Cutler et al., 1989),

and/or it reflects time-varying risk premia (Campbell and Cochrane, 1999). The current paper is

consistent with the latter rationale by demonstrating that improved forecasts of portfolio returns

are possible via a simple augmentation of a widely used (rational) economic model such that the

time-varying risk premia is expanded to include those associated with components of the portfolio

under investigation. The motivation for this expansion of the predictor set rests on the frictions

to trade (limited arbitrage) that exist such that the price of risk is allowed to vary over assets and

markets (and hence is applicable to markets that are segmented).

A characteristic feature of integrated (non-segmented) markets is the existence of a single price

of risk across assets (and markets). That is, compensation for taking on a unit of risk is the same

irrespective of the asset (or market). For instance, the capital asset price model (CAPM) predicts

that the price of beta risk is given by the (ex-ante) risk premium to the market portfolio (that is, the

conditional expectation of the market portfolio return over the risk-free rate). There is good reason

to believe that this homogeneous risk price should exist: differences in risk prices across markets

are expected to be arbitraged to ensure a single price of risk. However, impediments to trade such

as information frictions (Merton, 1987) or margin constraints (Garleanu and Pedersen, 2011) and

differences in investors’ preferences across asset classes (Koijen et al., 2022) mean that arbitrage is

often limited (Shleifer and Vishny, 1997). Indeed, there is ample empirical evidence that such risk

1Seminal studies in the area include Campbell and Thompson (2008), Welch and Goyal (2008), and Rapach et al.
(2010). See Rapach and Zhou (2013) for an extensive review. The proliferation of predictors in recent years has led
to several studies employing highly sophisticated techniques that involve machine learning methods to produce more
parsimonious predictor sets; see, e.g., Rapach and Zhou (2020).
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prices appear heterogeneous. For instance, Patton and Wellor (2022) are able to apply a statistical

technique in order to identify clusters of stocks to maximise the cross-sectional variation in risk

prices (cf. Fama and French, 1993, Foerster and Karolyi, 1999, and Griffin, 2002, who identify

groups using a priori information). Irrespective of the approach, cross-sectional variation in risk

prices appears significant. The current paper considers how this feature affects the time-series

dynamics of portfolio returns (that is, returns obtained via cross-sectional aggregation across the

components of the portfolio).

A seminal model of ex ante returns is the intertemporal CAPM (ICAPM) introduced by Mer-

ton (1973). This model allows expected returns to each asset to be determined by the conditional

covariances of the asset’s return with a set of latent state variables (which, in turn, capture changes

in the opportunity set faced by investors). The sensitivities of each expected return to the co-

variances is permitted to vary over time, but not to vary over the assets at each point in time –

as the sensitivities (that is, risk prices) are assumed to be homogeneous (see, e.g., Scruggs, 1998,

Guo and Whitelaw, 2006, Guidolin and Timmermann, 2008, Bali and Engle, 2010, and Rossi and

Timmermann, 2015, for applications in which this assumption is maintained). A key implication of

this model is that when one aggregates in the cross-sectional dimension (over the component assets

within a portfolio), the expected portfolio return will be a function of the conditional covariances

between the portfolio return and each of the state variables. If, however, risk prices are hetero-

geneous, then it follows that this aggregation will produce a specification for expected portfolio

returns in which all the conditional covariances between the component asset returns and the state

variables are present.

To illustrate the proposed approach, consider the highly simplified case. Assume that an equal-

weighted portfolio consists of two assets (with respective returns r1 and r2), and a single state

variable (with return s). The portfolio return (r) is our variable of interest and is given by the

(cross-sectional) mean of the returns to the assets (hence r = (r1+ r2)/2). Ex ante returns to these

assets (with information set F) are given by

E(r1|F) = b1 cov(r1, s|F), E(r2|F) = b2 cov(r2, s|F),

where b1 and b2 represent the risk prices associated with the two assets. Ex ante portfolio returns
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will depend on risk prices such that two different specifications are implied:

E(r|F) =


b1 cov(r, s|F), if b1 = b2 (homogeneous risk prices),

b1 cov(r, s|F) + (b2 − b1) cov(r2, s|F)/2, if b1 ̸= b2 (heterogeneous risk prices).

Thus, in the presence of heterogeneous risk prices (that is, b1 ̸= b2), a predictor equation based on

the first specification (which coincides with the standard ICAPM approach to predictability) will

be misspecified.2 The proposed approach uses a predictor equation based on the second of these

specifications. This amounts to including component conditional covariances (hence disaggregated

information) in the predictor equation (that is, cov(r2, s|F) in this simple case). It is the statistical

and economic significance of this specification (generalised to more than two assets, more than

one state variable, and inclusion of commonly used predictors) that we investigate. To the best of

our knowledge this is the first such study to investigate the time-series implications of risk price

heterogeneity on aggregate returns (cf. Cong et al., 2022, and Patton and Wellor, 2022, study

cross-sectional asset pricing implications, and Evgeniou et al., 2023, investigate firm-level return

predictability). In doing this, the results also add to the ongoing debate on the predictability of

the equity premium.

The results also contribute to the wider debate on the benefits of using disaggregated information

in the context of predictability (see Lutkepohl, 2006, and Hendry and Hubrich, 2011, for theoretical

treatments on the conditions that determine the benefits). A key message in these papers is that

because of the complexity of the conditions, the issue can only be settled by empirical investigation.

In the current context we highlight the use of disaggregated conditional covariances to forecast

portfolio returns. This finding is consistent with other empirical studies in other settings. There

is a growing number of papers that show that empirically, (aggregate) economic variables such

as GDP and inflation can be more accurately predicted using disaggregated predictors (see, e.g.,

Hernandez-Murillo and Owyang, 2006, and Owyang et al. 2015, Aparicio and Bertolotto, 2020,

and Joseph et al., 2022).3 A key issue within these studies is that the number of disaggregated

2The ICAPM does allow that price of risk to vary over time. Indeed, there is ample evidence in this regard; see,
e.g., Chan and Marsh (2022) who document a positive relationship between returns and beta risk only on earnings
announcement days. This variation is considered in the subsequent analysis via use of various sub-periods in which
the models are estimated.

3The benefits of using disaggregated information has now been demonstrated beyond the point forecast setting;
see, e.g., Paulsen et al.(2022), for evidence in the context of density forecasts of economic aggregates.
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predictors can be extremely large. This, in turn, has led to the use of machine learning, shrinkage,

clustering, and/or factor models to reduce the curse of dimensionality (see, e.g., Joseph et al.,

2022, for the use of machine learning techniques). To avoid the use of complex techniques we

consider a decomposition of a large portfolio of returns into a parsimonious set of smaller widely

used portfolios (and hence disaggregated predictors). By adopting this kitchen sink approach, we

deliberately adopt a simple approach and are still able to demonstrate the out-of-sample virtues of

disaggregate predictors. Moreover, we avoid the criticism that the results are reliant on techniques

that were not available when the forecasts were generated (we use data covering the period from

1964), or are data snooping induced using a range of model selection techniques (Cremers, 2002).

The unrestricted specification is estimated using a wide range of domestic and international

portfolio returns and state variables. For all datasets considered, the results are unequivocal: im-

proved measures of out-of-sample fit, and economic significance are always achieved over competing

specifications. For instance, using sixty years of monthly frequency returns to 10 US industry port-

folios and market returns as the state variable in the covariance predictor, an out-of-sample R2

statistic of 2.556% is obtained. This compares to out-of-sample R2 statistic values of 0.883% and

1.419% when using a common set of predictors (as used in Welch and Goyal, 2008) and the aggre-

gated ICAPM specification in which homogeneous risk prices are assumed, respectively. Similar

dominance is observed when the economic significance of the proposed approach is considered,

when the components of the portfolio are changed, or when the sample period is changed. The

results are consistent with other studies that use disaggregated information to forecast the equity

premium. For instance, Lou et al. (2022) show that improved forecasts of quarterly frequency

market returns are obtained via decomposed measures of past smoothed daytime and night-time

returns. The implications of such findings (and ours) are not in breach of the notion that prices

fully reflect all information in a timely fashion. Instead, returns are more predictable because of a

richer set of time-varying risk premia than previously considered.

The rest of the paper is organised as follows. The next section lays out the proposed and

benchmark forecasting methods, and is followed by an empirical investigation of the out-of-sample

quality of these methods. The final section concludes.
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2 Methodology

The forecasting methods are described within the context of the following data generating

process (DGP).

2.1 The DGP

A panel of data exists consisting of disaggregated dependent components, and a set of scaled

predictors (some of which are specific to a particular dependent component, and some that are

common to all components). Let rt be a single time series of interest from a forecasting perspective

(henceforth the variable of interest), which can be decomposed into n (> 1) individual random

variables (henceforth components). In the current context the variable of interest will be (excess)

returns to the portfolio under investigation (henceforth referred to as the main portfolio), and the

components will be the (excess) returns to the ith asset (or portfolio) within the main portfolio

(henceforth referred to the component portfolios).

In the spirit of the ICAPM, we assume that the dynamics of the ith (excess) return (that make

up the main portfolio) are a linear function of a set of predictors that are common to each equation

within the panel (henceforth the common predictors), and the conditional covariances between each

return and a set of state variables designed to measure changes in the opportunity set (henceforth

the component-specific predictors), that is,

ri,t+h = ci +

m∑
j=1

ai,jxj,t +

q∑
k=1

bi,kcov(ri,t+h, sk,t+h|Ft) + ηi,t+h, i = 1, . . . , n, t = 1, . . . , T, (1)

where ai,j is the coefficient associated with the ith asset and the jth common predictor, bi,k is

the price of risk associated with the ith asset and kth state variable, cov(ri,t+h, sk,t+h|Ft) is the

conditional covariance between the ith asset return and kth state variable, and ηt+h is a suitably

defined zero-mean error term. In contrast to the homogeneous price of risk assumed in the ICAPM,

we allow the price of risk (given by bi,k) to vary over the assets.

The variable of interest is the equal-weighted return to the main portfolio (henceforth referred

to as the main portfolio return). The DGP associated with this variable (henceforth the aggregated
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DGP) is obtained by taking the mean across ri,t+h to give

rt+h =
1

n

n∑
i=1

ci +
1

n

n∑
i=1

m∑
j=1

ai,jxj,t +
1

n

n∑
i=1

q∑
k=1

bi,kcov(ri,t+h, sk,t+h|Ft) +
1

n

n∑
i=1

ηi,t+h. (2)

The conditional covariance associated with the first asset in the main portfolio can be written as

cov(r1,t+h, sk,t+h|Ft) = n cov(rt+h, sk,t+h|Ft)−
n∑

i=2

cov(ri,t+h, sk,t+h|Ft), (3)

where cov(rt+h, sk,t+h|Ft) is the conditional covariance between the main portfolio return and the

kth state variable (henceforth referred to as aggregated component-specific predictors).

Substituting (3) into (2) we obtain

rt+h =
1

n

n∑
i=1

ci +
1

n

n∑
i=1

m∑
j=1

ai,jxj,t +

q∑
k=1

b1,kcov(rt+h, sk,t+h|Ft)

+
1

n

n∑
i=2

q∑
k=1

(bi,k − b1,k)cov(ri,t+h, sk,t+h|Ft) +
1

n

n∑
i=1

ηi,t+h. (4)

By expressing the DGP in this way we are able to distinguish between a predictor equation implied

by the ICAPM and the proposed predictor equation. Under the assumptions of the ICAPM, the

price of risk associated with the kth state variable is the same for all assets in the main portfolio.

This amounts to assuming that b1,k equals bi,k such that all coefficients on the component-specific

conditional covariances equal zero. Our conjecture is that these restrictions lead to a deterioration

in out-of-sample performance.

2.2 Forecasting methods and models

The objective of all methods is to generate h-step ahead forecasts of the variable of interest

(that is, the main portfolio return rt+h). Three models are considered: a highly restricted version

of the ICAPM (in which the price of risk is set to zero); an unrestricted version of the ICAPM (in

which a homogeneous price of risk is assumed); and a generalised version of the ICAPM (in which

heterogeneous prices of risk are permitted).

The first method that we consider uses the common predictors only and generates forecasts that

are the fitted values from a model based on a restricted version of the aggregated DGP. Specifically,
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the following model is estimated via ordinary least squares (OLS):

rt+h = c+
m∑
j=1

ajxj,t + ϵt+h, (5a)

where c and aj are free parameters. This method of generating forecasts is based on a restricted

version of the ICAPM and is henceforth referred to as method A. Here, pA = m + 1 parameters

are estimated using T observations. In the absence of common predictors this method coincides

with a naive method in which only the historical mean is used as the predictor.

The second method that we consider uses the common predictors and the aggregated component-

specific predictors (thus no knowledge of the disaggregated information) and generates forecasts

that are the fitted values from a model based on a restricted version of the aggregated DGP, with

parameters estimated by OLS. Specifically,

rt+h = c+
m∑
j=1

ajxj,t +

q∑
k=1

bakcov(rt+h, sk,t+h|Ft) + ϵt+h, (5b)

where c, aj and bak are free parameters. This method of generating forecasts is based on an unre-

stricted version of the ICAPM and is henceforth referred to as method B. Here, pB = m + q + 1

parameters are estimated using T observations.

The third method assumes full knowledge of the disaggregated predictors, and generates fore-

casts that are the fitted values from a unrestricted version of a model based on the aggregated

DGP. Specifically, the following model is estimated via OLS:

rt+h = c+
m∑
j=1

ajxj,t +

q∑
k=1

baj cov(rt+h, sk,t+h|Ft) +
n∑

i=2

q∑
k=1

bdi,kcov(ri,t+h, sk,t+h|Ft) + ϵt+h, (5c)

where c, aj , b
a
k and bdi,j are free parameters. This method of generating forecasts is henceforth

referred to as method C. It is based on a generalised version of the ICAPM in which pC = m+nq+1

parameters are estimated using T observations.

The models, on which the above methods are based, are nested such that the error variances

monotonically decrease as we move from method A to C. However, the number of parameters in

these models monotonically increase over this space. It follows that the out-of-sample performance
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of the methods will depend on how these effects trade-off. This is examined in the next section.

2.3 Out-of-sample performance measures

It is a well-established fact that the true quality of a forecasting method can only be assessed

by examining its out-of-sample performance. To this end, we consider a range of out-of-sample

performance measures that are both statistical and economic in nature.

2.3.1 Traditional performance measures

The forecasts generated by each method are evaluated by considering functions of the conditional

mean squared forecast error (MSFE). In all cases a sample of size T is assumed. For the kth method

above, under the OLS and normal error assumptions, the conditional MSFE is given by

vk ≡ E(ϵ2T+h|Fk,T ) =
Vk

T
×

(T + θ1)(θk,2 + θk,3)

θk,3
, (6a)

where

θ1 ∼ χ2
1, θk,2 ∼ χ2

pk−1, θk,3 ∼ χ2
T−pk+1. (6b)

Here Vk is the error variance associated with the kth method, and Fk,T is the T -size data sample

and model employed by users of the kth method. The expressions are based on a standard result

in the literature; see Leeb (2009).

The moments associated with the conditional MSFE are relatively simple to calculate: the ith

unconditional moment about zero for the kth method is given by

E(vjk) = g(j, pk, T )V
j
k , (7a)

where

g(j, pk, T ) =

(
1

2T

)j Γ((T − pk − 2j + 1)/2)

Γ((T − pk + 1)/2)

j∏
i=1

(T − 2i)

j∑
i=0

2iT j−i

(
j

i

)
Γ(i+ 1/2)

Γ(1/2)
. (7b)

Here Γ(.) is the Euler gamma function, and
(
j
i

)
is the binomial coefficient. For instance, the
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unconditional MSFE is given by the following first moment:

E(vk) = g(1, pk, T )Vk, (8a)

where

g(1, pk, T ) =
T − 2

T − 1− pk

(
T + 1

T

)
. (8b)

As we move from method A to C, g(1, pk, T ) increases (less parsimony), while Vk decreases (better

fit). Thus we have the usual trade-off in order to yield to the best out-of-sample performance in

terms of the unconditional MSFE.

2.3.2 Distributional performance measures

It is possible to go further and derive an expression for the unconditional distribution of the

conditional MSFE. To this end we first note from (6a) that the conditional MSFE consists of the

product of T + θ1 and Vk(θk,2 + θk,3)/θk,3T ; enabling us to apply standard techniques to yield

the distribution of the product of two independent random variables. Given the (chi-squared)

distributions of θ1, θk,2 and θk,3, the cumulative density function for the conditional MSFE can be

simplified to

Fvk(v) =


erf

(√
(v−Vk)T

2Vk

)
, if pk = 1,

Γ(T/2)
Γ((pk−1)/2)Γ((T−pk+1)/2)

∫ v/Vk

1 u−T/2(u− 1)(pk−3)/2erf

(√
(v−uVk)T

2uVk

)
du, if pk > 1,

(9)

where erf(.) is the Gauss error function. In both cases, the functions are defined over the domain

v > Vk. Use of this function extends the notion of out-of-sample performance beyond the usual

approach.

The traditional approach to measuring forecasting performance is based on the first moment of

the conditional MSFE, that is, the unconditional MSFE. A set of forecasts that yield the smallest

unconditional MSFE is deemed to be the best. This approach does, however, ignore the variation

of MSFE values (performance risk) due to the particular sample of data used. To incorporate this

element of performance we consider the best set of forecasts to be those that coincide with the

least chance of obtaining a poor (that is, high) MSFE value. Given this risk metric, we introduce
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the following performance-at-risk (PaR) measure analogous to the value-at-risk (VaR) performance

measure:

PaRα(vk) = inf{v ∈ R : Pr(vk ≥ v) < α} = F−1
vk

(1− α). (10)

where F−1
vk

(1−α) is the (1−α)-quantile of vk. Typical values of α would be 0.01 (1% PaR measure),

and 0.05 (5% PaR measure). The cumulative density in (9) can be used to calculate these PaR

measures.

2.3.3 An economic significance measure

In addition, a measure of out-of-sample economic value is possible. The (out-of-sample) perfor-

mance fee associated with a dynamic asset allocation strategy based on the kth method (relative to

a static strategy in which the mean and variance of returns are known) can be shown to be given

by

δk = −
ΨkSR

2 + ln(Ψk/R
4
k)

2γ
, (11a)

where

Ψk =
R4

k

2 + g(1, pk, T )(R
2
k − 1) +R4

k

. (11b)

Here γ is the Arrow-Pratt relative risk aversion parameter associated with an exponential utility

function, SR is the Sharpe ratio associated with the buy-and-hold strategy, and R2
k is the in-sample

goodness-of-fit associated with the kth method. See the Appendix for a full description of the

assumptions and subsequent derivation of this measure.

2.3.4 Efficiency

To isolate the benefits of risk price heterogeneity (that is, using component-specific predictors),

we calculate the efficiency of method j with respect to method A (with no common predictor

included). Efficiency is defined as

effj = 1− Mj

MA
, (12)

where Mj represents a measure of forecasting (non-)performance. If we use the unconditional

MSFE, then as the sample size grows (that is, T → ∞), this particular efficiency approaches the
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in-sample goodness of fit (R2) associated with method j. In this sense, for finite T values, the

efficiency represents the out-of-sample goodness of fit (OOS-R2). In a similar vein, the MSFE

value can be replaced by the PaR value, to produce the relative efficiency of performance risk

(denoted ∇PaR).

3 Empirical results

The dataset used, and the results associated with application of forecasting methods A to C to

these data are described in this section.

3.1 Data

The data used consists of three separate parts: component portfolio returns, state variables and

common predictors. For all parts, monthly frequency data are used.

In terms of US data, we make use of industry portfolios and portfolios sorted on firm char-

acteristics. Specifically, we consider the 10-industry portfolio, and 25-component portfolios based

on various bivariate sorts on size, book-to-market value, operating profitability, investment, mo-

mentum, short-term reversal, long-term reversal, accruals, market beta, net share issues, return

variance (total), and return variance (residual).4 This yields 14 different main portfolios (each

with 25-component portfolios).5 In addition, we consider 6-component portfolios based on various

bivariate sorts on size, book-to-market value, operating profit, investment, momentum, short-term

reversal, long-term reversal, earnings, cashflow, and dividend yield. This yields nine different main

portfolios (each with 6-component portfolios).6 Within each component portfolio we use value-

weighted returns (inclusive of dividends) over the period January 1964 to December 2022. These

data were downloaded from the Kenneth French data library at https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.

4The industries in the 10-industry portfolio are consumer non-durables, consumer durables, manufacturing, energy,
hi-tech, telecoms, shops, health, utilities and other (mines, construction, building materials, transport, hotels, business
services, entertainment, and finance).

5The 14 bivariate sorts are: size/book-to-market value, size/operating profitability, size/investment,
size/momentum, size/short-term reversal, size/long-term reversal, size/accruals, size/market beta, size/net share is-
sues, size/return variance (total), size/return variance (residual), book-to-market value/investment, book-to-market
value/operating profitability, and operating profitability/investment.

6The nine bivariate sorts are: size/book-to-market value, size/operating profitability, size/investment,
size/momentum, size/short-term reversal, size/long-term reversal, size/cash flow, size/earnings, and size/dividend
yield.
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For international region data we consider the following markets: Asia-Pacific (excluding Japan),

developed, developed (excluding the US), Europe, Japan, and North American. In each case we

consider 6-component and 25-component portfolios based on various bivariate sorts on size, book-

to-market value, operating profit, investment and momentum. This yields four main portfolios per

region (each with 6- and 25-component portfolios).7 Within each component portfolio we use value-

weighted returns (inclusive of dividends) over the period January 1991 to December 2022. These

data were downloaded from the Kenneth French data library at https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.

The state variables in the conditional covariance predictors consist of the Fama-French five

factors plus the momentum factor; see Bali and Engle (2010) for use of these factors within the

context of the ICAPM. That is, returns to the market (MK), small-minus-big (SMB), high-minus-

low (HML), robust-minus-weak (RMW), conservative-minus-aggressive (CMA), and momentum

(MOM) factors. These factors are collected for the US, and each of the international regions

previously described. In all cases, we use value-weighted returns (inclusive of dividends) over

the period January 1964 to December 2022 (US data only) or January 1991 to December 2022

(international regions). These data were downloaded from the Kenneth French data library at

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Four common predictors are employed (see, e.g., Brandt and Santa-Clara, 2006, for use of these

‘classic’ predictors): the short term interest rate (given by the 3-month Treasury bill rate) denoted

TB; the term spread (the difference between the long term yield on government bonds and the short

term interest rate) denoted TMS; the default yield (the difference between BAA- and AAA-rated

corporate bond yields) denoted DFY; and the dividend price ratio (the difference between the log

of 12-month sum of dividends paid to stocks in the S&P500 index and the log of the S&P500 index)

denoted DP. These data are collected over the period from January 1964 to December 2021 and

were downloaded from Amit Goyal’s website at https://sites.google.com/view/agoyal145/

?redirpath=/.

The objective is to generate accurate forecasts of main portfolio returns, that is, forecasts of the

equal-weighted average of the returns to the component portfolios. As such, these returns represents

7The four bivariate sorts are: size/book-to-market value, size/operating profitability, size/investment, and
size/momentum.
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a measure of market returns. To see this we calculate the (contemporaneous) correlation between

each main portfolio return and various measures of market returns. Several US portfolios are

considered: eight different industry portfolios, 14 different 25-component bivariate-sort portfolios,

and nine different 6-component bivariate-sort portfolios. Market returns are given by returns to

the value-weighted CRSP market portfolio index (CRSP-VW), the equal-weighted CRSP market

portfolio index (CRSP-EW), the S&P 500 index, and a S&P 500 ETF (that is, the SPDR ETF)

– all of which were collected from the CRSP database (accessed via WRDS). The correlations are

provided in Table 1 and are based on monthly frequency data observed over the period January

1994 to December 2022.

Insert Table 1 here

The correlations are (unsurprisingly) close to unity. For instance, the correlation between the

return to the aggregate 25-component portfolio based on the size/book-to-market sort and the

CSRP-VW return is 0.945. This correlation falls when considering the less broad S&P 500 index

and S&P 500 ETF returns, though remains above 0.9. Similar results hold for the other portfolios.

Thus, our variables of interest (that is, main portfolio returns) represent a reasonable measure of

the market return, and thus the subsequent results can be viewed within the wider context of the

equity premium predictability literature.

3.2 In-sample results

We begin with an examination of the in-sample fit of the models associated with methods A,

B and C, with a one-month forecasting horizon. The main portfolio consists of the 10-industry

component portfolio. The dependent variable is the main portfolio return, which in turn is the

equal-weighted average of the returns to each of the 10 industry returns. It follows that the

dependent variable is a (pseudo) market return. The component predictors are the conditional

covariances between the component portfolio returns and the state variable. Conditional covariances

are constructed using the 60-month moving average (MA) of the product of the component portfolio

return and the state variable return and using the exponentially weighted moving average (EWMA)

method with a decay factor of 0.97 (as recommended by RiskMetrics). The state variable is the

MK return. Using this state variable means that the aggregated covariance between the component
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portfolio returns and the MK return will be approximately equal to the conditional variance of MK

returns. The common predictors are the TB, TMS, DFY and DP variables. Restricted, unrestricted,

and generalised versions of the ICAPM as given by (5a), (5b) and (5c), respectively, are estimated

by OLS. Results are provided in Table 2.

Insert Table 2 here

The standard prediction model based on the TB, TMS, DFY and DP predictors achieves an ad-

justed R2 of 0.884%. The fit of the unrestricted ICAPM depends on the method used to construct

the conditional variances: the MA method delivers an adjusted R2 of 0.870%, while the EWMA

method delivers an adjusted R2 of 1.420%. When all the component-specific conditional covariances

are included in the model the adjusted R2 value reaches 2.569%. More importantly, we test whether

the coefficients on the component-specific conditional covariances jointly equal zero via a likelihood

ratio test. The p-values equal 0.015 and 0.044 when using the MA and EWMA conditional covari-

ance construction methods. This lends support to the generalised ICAPM (over the unrestricted

ICAPM) in which component-specific conditional covariances (disaggregated information) play a

role in the prediction of market returns.

3.3 Out-of-sample results (US data)

To assess the 1-step ahead out-of-sample performance of methods A, B and C, we estimate the

models using the 10-industry component portfolio. The true error variance (Vk) is replaced by its

sample counterpart and the formulae laid out in section 2.3 are applied. This calibrated approach

is adopted in all subsequent analysis.

Method A is based on a constant and the classic predictors, method B is based on a constant,

the classic predictors, and the conditional covariance of main portfolio returns with state variable

returns, method C is based on a constant, the classic predictors, the conditional covariance of

main portfolio returns with state variable returns and the conditional covariances of component

portfolio returns with the state variable. We use MK returns as the state variable, and the MA

and EWMA conditional covariance construction methods. The models are also estimated without

the classic predictors. The R2, OOS-R2 and 5% ∇PaR values are provided in Table 3. To examine

the impact of sample size on out-of-sample performance, the OOS-R2 statistics are calculated for
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the following sample sizes: T = {120, 240, 360, 480}, and the sample size that corresponds to the

actual number of observations in the full sample (which is, T = 708). To avoid the use of model

selection techniques that could bias the results, method C assumes that all covariances terms are

included in the associated model. In doing this we hope to avoid the data snooping critique.

Insert Table 3 here

The results indicate that if the sample size is sufficiently high (that is, T ≥ 360) then method C is

the dominant forecasting strategy. For instance, this method delivers an OOS-R2 statistic of 2.566%

when common predictors are included, the EWMA method is used to construct the covariances,

and the maximum number of observations are used. By contrast, methods A and B have OOS-R2

statistics of 0.883 and 1.419, respectively. Regarding the ∇PaR values, the respective results are

0.476%, 0.915%, and 1.688%, for methods A, B and C. Collectively, the results are supportive of

forecasting methods that make use of the disaggregated information in the form of the component

conditional covariances (and thus the generalised ICAPM in which heterogeneous risk prices are

present). The caveat is that the sample size must be sufficiently large.

Turning to economic significance, we calculate the performance fees where the benchmark port-

folio is either one in which wealth is equally split between the risk-free and risky asset, or one in

which all wealth is allocated to the risky asset (that is, the buy-and-hold portfolio benchmark).

The data and estimation assumptions are the same as those used above. Results are provided in

Table 4.

Insert Table 4 here

It is clear from the results that method C remains the dominant forecasting strategy. For

instance, this method delivers an annualised performance fee of 4.462% when common predictors

are included, the EWMA method is used to construct the covariances, the maximum number of

observations are used, and the buy-and-hold benchmark strategy is adopted. This compares to

fees of 1.306% and 2.260% when methods A and B are considered, respectively. Again, sample size

plays an important role in ensuring that this conclusion holds.
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3.4 Out-of-sample results (international data)

The results thus far pertain to only one main portfolio (the 10-industry component portfolio),

one state variable (that is, MK returns), and one sample period with which the error variances are

estimated. We generalise the out-of-sample performance results in three ways. First, we consider

the forecasting methods in the context of 6- and 25-component US main portfolios based on various

bivariate sorts of firm-specific information (such as size). This yields nine different 6-component

main portfolios and 14 different 25-component main portfolios. Second, we consider the following

international region data: Asia-Pacific (excluding Japan), developed, developed (excluding the US),

Europe, Japan, and North America. In each case, we consider 6-component and 25-component

portfolios based on various bivariate sorts. This yields four main portfolios per region (each with 6-

and 25-component portfolios). Finally, to allow for time variation in prediction equation parameters,

we consider all sub-samples of the (maximum) sample period (with different start and end points),

subject to the restriction that the sample size is equal to 60 observations or greater, and that the

start of the sample is January, and the end of the sample is December.8 In doing this, we consider

1540 sub-samples (when the maximum sample period is 1964 to 2022) and 406 sub-samples (when

the maximum sample period is 1991 to 2022).

In terms of state variables, we consider the Fama-French five factors plus the momentum factor.

These are combined in various ways to yield a variety of conditional covariances. We consider MK

returns (denoted FF1); MK, SMB and HML returns (denoted FF3); MK, SMB, HML and MOM

returns (denoted FF4); and MK, SMB, HML, RMW and CMA returns (denoted FF5). The use of

these groups corresponds to the use of groups of conditional covariances (and hence a larger number

of predictors). For instance, use of a 25-component main portfolio and the FF3 factors will involve

75 separate conditional covariance predictors. This is clearly over- parametrised. To overcome this

issue, we invoke the following assumption. When using method B we use the conditional covariances

associated the main portfolio return and each of the above state variable combinations. By contrast,

for method C, we limit the conditional covariances such that we only use the MK return state

variable (hence we only consider the conditional covariances between component portfolio returns

and MK returns).

8See Kolev and Karapandza (2017) for use of sub-sample analysis in the context of out-of-sample equity premium
prediction.
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The use of such a variety of data means that there is a huge expansion in the number of

different method comparisons. For instance, when using US data over the period 1964 to 2022,

and 25-component main portfolios, we make 21,560 (14× 1540) method performance comparisons.

Moreover, as we consider four different state variable combinations, this amounts to 86,240 com-

parisons for the US data alone. To summarise this information, we present the number of successes

per dataset and state variable grouping. In particular, the results in Tables 5 to 8 provide the per-

centage of times each method is superior to all other methods within each region and state variable

combination. A success (that is, when a method performs better than all other methods) is regis-

tered for each main portfolio, and each sub-sample, and then aggregated over all these dimensions.

Performance is defined in terms of the OOS-R2 and 5% PaR values, and two different methods of

constructing the conditional covariances (that is, the MA and EWMA methods). Tables 5 and 6

contain the aggregated success rates for the 6-component main portfolios, for all regions, all state

variable combinations, and the MA and EWMA conditional covariance methods, while Tables 7

and 8 contain the aggregated success rates for the 25-component main portfolios, for all regions,

all state variable combinations, and the MA and EWMA conditional covariance methods. The

international data is only available over the period 1991 to 2022, while the US data is available

over the period 1964 to 2022. For comparison purposes we also consider US data over the period

1991 to 2022.

Insert Tables 5, 6, 7 and 8 here

The results highlight the superiority of method C over the other methods. For instance, when

using US data over the period 1991 to 2022, 25-component main portfolios, the EWMA covariance

method, the FF5 state variable grouping, and the OOS-R2 performance criterion, method C achieves

a success rate of 96.622% (the corresponding success rates for methods A and B are 0.616% and

2.762%). Similar findings are observed over all the non-US datasets. For instance, the corresponding

success rates when using European data for methods A, B and C are 0.308%, 5.788% and 93.904%,

respectively. Thus, use of component conditional covariances is a sensible general approach if one

seeks improved out-of-sample forecasts of market returns.

While method C is, in general, the dominant method, the results do reveal interesting variations

in the degree of dominance over three dimensions. First, when considering the PaR performance
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criteria there is a drop in the method C success rates. For instance, when using US data over the

period 1991 to 2022, 25-component main portfolios, the EWMA covariance method, the FF5 state

variable combination, and the PaR performance criterion, the success rates for methods A, B and

C are 6.175%, 7.477% and 86.348%, respectively. Thus, distributional aspects of the performance

of the methods suggest that method C can occasionally deliver poor performance (albeit still to a

lesser extent than the other methods). Second, the number of components in the main portfolio is

a determinant of performance. Specifically, when using the 6-component main portfolio there is a

drop in the dominance of method C. For instance, when using US data over the period 1991 to 2022,

6-component main portfolios, the EWMA covariance method, the FF5 state variable combination,

and the PaR performance criterion, the success rates for methods A, B and C are 24.001%, 25.780%

and 50.219%, respectively. Third, replacing the EWMA with the MA covariance method, we see

that these values become 40.394%, 30.679%, and 28.927%, respectively. Thus, the results indicate

that the choice of the main portfolio size and the conditional covariance construction method are

important considerations when using method C to forecast market returns.

3.5 Predicting global stock returns

The variable of interest in the above analysis is the main portfolio (market) return within

each international region. By contrast, we now consider the case where one seeks a forecast of

global portfolio returns using a selection of international portfolios. To this end, the main portfolio

consists of the Asia-Pacific (excluding Japan), Japan, Europe, North America, US, and developed

(excluding US) market portfolios, and is thus a 6-component portfolio. The global stock return is

defined as the equal-weighted average of these market portfolio returns. The MK return is used as

the state variable.

A graphical representation of the results is provided in Figure 1. We plot the OOS-R2 and∇PaR

efficiency values of method C against those associated with method B (efficiencies are relative to

method A). Each point in the plots represents a result from each sub-sample. Both conditional

covariance construction methods are considered. Points above the 45-degree line indicate cases

where method C is superior to method B, and above the x-axis indicate cases where method C is

superior to method A. The proportion of points above both lines represents the success rate of

method C. Use of the plots also provides an indication of the magnitudes of the efficiencies.
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Insert Figure 1 here

The results confirm the dominance of method C, with efficiencies up to 10% common. Moreover,

when method C fails to be dominant, the corresponding inefficiency is close to zero. The plots also

indicate that the dominance of method C increases when using the EWMA method to construct

the conditional covariances and diminishes when using the PaR efficiency criteria.

The results thus far have focused entirely on the relative quality of one-step ahead monthly

forecasts. To examine longer horizons, we present results for 3-month and 12-month forecasting

horizons. Results based on the 6-component international market portfolio and the EWMA condi-

tional covariance construction methods are provided in Figure 2.

Insert Figure 2 here

The results indicate that large OOS-R2 method C efficiencies are possible when the 3-month

forecasting horizon is considered. These efficiencies fall when using the PaR criteria, though method

C remains dominant. Somewhat unsurprisingly the dominance of method C falls over the longer

12-month forecasting horizon. Indeed, when using the PaR criterion over this horizon, method

A appears to dominate. Thus, the dominance of method C appears to be confined to forecasting

horizons of up to three months.

3.6 Method refinement

Up to this point we have assumed that the methods have either no conditional covariance

predictors (method A), one conditional covariance predictor (method B), or all available conditional

covariance predictors (method C). As such, no attempt has been made to differentiate amongst

the quality of the conditional covariance predictors. To address this issue, we perform cluster

analysis to group together similar conditional covariance predictors, while maintaining a degree of

heterogeneity across the groups. By grouping in this way, one is able to aggregate the conditional

covariances within each group such that a smaller number of conditional covariances are used. The

ambition is that this will reduce the number of parameters required, but will maintain a high level

of fit.

The k-means clustering technique is used to group together the conditional covariances with

similar attributes. The k-means algorithm is applied as follows. The full model is estimated by
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OLS using all component conditional covariances for each state variable. The estimated coefficients

represent the attribute (that is, the observation) that is grouped in the algorithm. Then the fol-

lowing steps are taken. First, in the assignment step, each observation is assigned to the cluster

with the nearest mean (where distance is measured by the squared Euclidean distance). Second,

in the update step, the mean of each cluster is recalculated. This process is repeated until conver-

gence occurs. The sum of the conditional covariances within each group are then constructed and

form part of the new predictor equation, which is estimated by OLS. Henceforth we refer to the

forecasting method based on clustering as method C (with clustering).

To demonstrate the virtues of clustering we use 14 different US main portfolios each consisting of

25-component portfolios (as described in the data section), all available sub-samples (taken from the

January 1964 to December 2022 sample), and the MK return state variable. Component conditional

covariances are constructed using the MA and EWMA methods, and out-of-sample efficiencies are

measured via OOS-R2 and ∇PaR. Box-and-whisker plots of the out-of-sample efficiencies against

the number of clusters are provided in Figure 3. At the two extremes we have method B (one

cluster) and method C (25 ‘clusters’, where each cluster consists of just one conditional covariance).

Between these we have the results associated with method C (with clustering).

Insert Figure 3 here

Each box contains the out-of-sample efficiencies with respect to method A based on 1540 differ-

ent sub-samples, and each of the 14 main portfolios. Thus, for each box we have 21,560 (= 1540×14)

out-of-sample efficiency measures. As we consider 25 different cluster numbers, each plot in Figure

3 represents 539,000 (= 21, 560 × 25) efficiencies. Moreover, as there are four plots, the figure

depicts over two million efficiencies in total.

The results support the use of clustered conditional covariances. Consistent with results in the

previous tables, the EWMA method of constructing the conditional covariances is superior to the

MA method, and the OOS-R2 results are slightly more supportive of the proposed methods. In

terms of clustered predictors, the results show a clear improvement over methods B and C, with

a sweet spot occurring when around 12 to 16 clusters are used. For instance, using the EWMA

conditional covariances, methods B and C deliver median OOS-R2 values of around 1.5% and 10%,

respectively. By contrast, use of 14 clustered predictors delivers median OOS-R2 values of around
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16%. The whiskers in the plots also show some variation in the spread of efficiencies when using

different numbers of clusters. For method B, the spread is very small. This spread increases as the

number of clusters increases (indicating variation in efficiencies across the 1540 sub-samples and

14 main portfolios). However, it is noticeable that the highest OOS-R2 values achieved by method

C are still below the lowest OOS-R2 values delivered by method C (with clustering) when using 12

to 16 clustered predictors. Overall, these results give credence to the use of clustered predictors

within the context of the proposed forecasting method.

4 Conclusion

The statistical and economic benefits of using component conditional covariances when fore-

casting market returns are robust to the use of data from different international regions. This

novel finding does not rely on use of a sophisticated forecasting method, does not require a com-

plex method to construct conditional covariances, and is not confined to particular markets. Thus,

taking advantage of the heterogeneity in risk prices across markets is a worthy pursuit when an

out-of-sample prediction of aggregate (market) returns is the objective. It does not violate any

notion of market efficiency, as the predictors are (component-specific) proxies for the time-varying

variation in risk premia – a finding that is fully consistent with heterogeneous risk prices over

segmented markets (and a generalised version of the ICAPM).

The approach taken in this paper has been fairly simple, and hence is easy to implement by

users. Moreover, the benchmark methods have been allowed to use a richer set of variables (for

instance, method B permits use of a richer set of state variables, while method C is restricted to the

MK return state variable). Notwithstanding this bias towards to competing methods, the proposed

method is successful and robust to variation in the design of the experiment.

The size (that is, the number of component assets or portfolios) of the main portfolio is an

important consideration as this determines the number of predictors in the proposed method.

The virtues of dimension reduction via clustering have been demonstrated on a moderately sized

portfolio. In future research one could consider a very large main portfolio, perhaps consisting

individual stocks. This would then amount to a big data problem, in which the number of predictors

is potentially greater than the number of (time-series) observations. In this context, one could
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use factor models such that one achieves a reduction in the number of component conditional

covariances used in the predictor equation.
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Appendix A Measuring economic significance

Economic significance is measured by the performance fee an investor is willing to pay to switch

from a static buy-and-hold trading strategy to a dynamic trading strategy. The assumptions and

derivation of this measure are laid out below.

Assumption 1 (Return dynamics). The returns to the risky asset (or portfolio) under management

are given by

rt = E(rt|Fk,t−1) + ϵt, (A.1)

where E(rt|Fk,t−1) ∼ N(µ, σ2
e) is the conditional expectation of 1-step ahead returns held by the

kth investor, and ϵt ∼ N(0, σ2 − σ2
e) is an error term. It follows that rt ∼ N(µ, σ2).

Remark. Here predictability is controlled by the magnitude of σ2
e . Moreover, in-sample predictabil-

ity is given by the R2 statistic. Specifically, R2 = 1− (σ2 − σ2
e)/σ

2.

Assumption 2 (Trading strategies returns). The kth trading strategy involves taking positions in a

risk-free asset (earning rf ) and a risky asset (earning rt) to maximise the conditional expectation of

next period utility. The returns to the kth trading strategy portfolio (based on the kth information

set) are given by

rk,t = 1 + rf + wk,t(rt − rf ). (A.2)

where wk,t is the portfolio weight used by the kth strategy at time t based on information at time

t− 1.

Two trading strategies are considered. The assumptions underlying these strategies are given

next.

Assumption 3 (The static trading strategy). The static trading strategy adopts a buy-and-hold

strategy and has full knowledge of the true mean and variance of the risky asset returns. This

amounts to assuming that conditional mean of risky asset returns is given by µ and the conditional

variance of risky asset returns is given by σ2.

Assumption 4 (The dynamic trading strategy). The dynamic strategy takes a time-varying position

in the asset to maximise the conditional expectation of next period utility. Moreover, the dynamic

strategy considers the parameter uncertainty associated with use of a sample size T . This amounts
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to assuming that the conditional mean of risky asset returns is given by E(rt|Fk,t−1) and the

conditional variance of risky asset returns is given by g(1, pk, T )(σ
2 − σ2

e), where g(1, pk, T ) is the

adjustment factor to reflect use of a method that employs a model with pk parameters and a sample

of size T .

Assumption 5 (Utility). The benefits of consuming the portfolio return to the kth strategy are

measured via the negative exponential utility function. Specifically, utility at time t is given by

u(rk,t, γ) = − exp(−γrk,t), t = 1, . . . , T, (A.3)

where γ is the Arrow-Pratt relative risk aversion parameter.

We are now ready to define the measure of the benefits of using a dynamic strategy with respect

to a static strategy. Specifically, the formal definition of economic value in this regard is given in

the following definition.

Definition (The performance fee set). The performance fee set contains the fees the user of the

dynamic strategy is willing to pay to enjoy the unconditional expected utility over that enjoyed by

the static strategy. Specifically, this set is given by {δ ∈ R|Φ[δ]} with

Φ[δ] = E(u(r1,t − δ, γ)− u(r0,t, γ)) ≥ 0. (A.4)

Here r1,t is the dynamic trading strategy return, and r0,t is the static trading strategy return.

Proposition 1 (The maximum performance fee). Under Assumptions 1 to 5, the maximum per-

formance fee an investor is willing to pay to maintain use of the dynamic trading strategy (instead

of the static trading strategy) is given by

δ = −ΨSR2 + ln(Ψ/R4)

2γ
,

where

Ψ =
R4

2 + g(1, p, T )(R2 − 1) +R4
,

where SR is the Sharpe ratio associated with the buy-and-hold strategy, and R2 is the in-sample

goodness-of-fit associated with the dynamic trading strategy.
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Proof. The portfolio weights to each strategy are obtained by differentiating the conditional ex-

pectation of next period utility, setting to zero, and solving for the weight. Doing this under the

distribution assumptions associated with (A.1), we obtain the following expressions for the weights

to the static and dynamic strategies:

w0 =
µ− rf
γσ2

, w1,t =
E(rt|Fk,t−1)− rf

γg(1, p, T )(σ2 − σ2
e)
. (A.5)

Substituting these expressions into (A.2) we obtain expressions for the returns to each strategy

portfolio, which are then substituted into the utility function expression in (A.3). The final step is

to calculate the unconditional expectation of the performance fee set defined in (A.4) and solve for

the performance fee.

Remark. Using the expression in (A.5), and the distribution assumptions in (A.1), it follows that

the weights associated with the dynamic strategy are normally distributed with mean and variance

given by

E(w1,t) =
µ− rf

γg(1, p, T )(σ2 − σ2
e)
, var(w1,t) =

σ2
e

(γg(1, p, T )(σ2 − σ2
e))

2
, (A.6)

respectively. From here we see that variation in the dynamic strategy weights depends on the

degree of predictability.

Corollary 1 (The no-predictability case). When there is no in-sample predictability (as measured

by the in-sample R2 statistic), the maximum performance fee is negative in finite samples. Specifi-

cally,

lim
R2→0

δ = − ln(1/(2− g(1, p, T ))

2γ
≤ 0,

which equals zero only when an infinite sample is available (that is, when g(1, p, T ) equals unity).

Proof. The results follows directly from the expression given in Proposition 1.

Remark. It follows that in-sample predictability is not a sufficient condition for economic signifi-

cance. This result is consistent with an upper bound on predictability in efficient markets; see, e.g.,

Ross (2005), Huang and Zhou (2017) and Poti (2018).
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Table 1 – The correlation between main portfolio returns and market returns

Market Measure

Component Portfolios CRSP-VW CRSP-EW S&P 500 SPY ETF

Panel A. Industry portfolios

5-industry portfolios 0.985 0.841 0.989 0.986
10-industry portfolios 0.972 0.845 0.974 0.973
12-industry portfolios 0.973 0.844 0.975 0.973
17-industry portfolios 0.956 0.853 0.948 0.948
30-industry portfolios 0.953 0.856 0.944 0.943
38-industry portfolios 0.941 0.852 0.929 0.929
48-industry portfolios 0.952 0.869 0.938 0.938
49-industry portfolios 0.954 0.871 0.940 0.940

Panel B. 6-component portfolios

Size/book-to-market value sorted 0.952 0.924 0.916 0.915
Size/operating profitability sorted 0.953 0.899 0.928 0.927
Size/investment sorted 0.911 0.825 0.907 0.905
Size/momentum sorted 0.965 0.934 0.925 0.924
Size/short-term reversal sorted 0.954 0.895 0.930 0.929
Size/long-term reversal sorted 0.967 0.934 0.927 0.926
Size/cash flow sorted 0.967 0.946 0.927 0.927
Size/earnings sorted 0.956 0.943 0.922 0.923
Size/dividend yield sorted 0.951 0.924 0.921 0.920

Panel C. 25-component portfolios

Size/book-to-market value sorted 0.945 0.946 0.918 0.919
Size/operating profitability sorted 0.969 0.908 0.960 0.961
Size/investment sorted 0.974 0.927 0.957 0.958
Size/momentum sorted 0.954 0.954 0.923 0.924
Size/short-term reversal sorted 0.950 0.943 0.923 0.924
Size/long-term reversal sorted 0.953 0.947 0.926 0.927
Size/accruals sorted 0.957 0.950 0.929 0.930
Size/market beta sorted 0.952 0.946 0.925 0.926
Size/net share issues sorted 0.956 0.963 0.926 0.928
Size/return variance (total) sorted 0.950 0.964 0.921 0.922
Size/return variance (residual) sorted 0.942 0.948 0.916 0.918
Book-to-market value/investment sorted 0.954 0.959 0.926 0.927
Book-to-market value/operating profitability sorted 0.952 0.957 0.924 0.925
Operating profitability/investment sorted 0.991 0.912 0.983 0.983

Notes: This table contains the correlation coefficients between each main portfolio return and each of four market returns
(that is, value-weighted CRSP market portfolio index returns, equal-weighted CRSP market portfolio index returns, S&P
500 index returns, and S&P 500 (SPDR) ETF returns). Monthly frequency data observed over the period January 1994 to
December 2022 are used.
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Table 2 – In-sample performance

MA cov. EWMA cov.

Predictor/test A1 A2 B C B C

Constant 0.630∗∗∗ 3.731 3.327 8.750∗∗ 2.158 5.244
(0.161) (2.329) (2.314) (3.943) (2.379) (4.266)

Term spread 0.000 −0.068 0.227 −0.098 −0.021
(0.194) (0.214) (0.242) (0.202) (0.223)

Default yield 0.306 0.270 0.210 0.147 0.087
(0.296) (0.318) (0.355) (0.335) (0.414)

Dividend yield 0.342 0.322 1.109∗∗∗ 0.258 0.728∗

(0.212) (0.214) (0.406) (0.216) (0.438)
Treasury bill yield −0.556∗∗ −0.577∗∗ −0.119 −0.521∗ −0.259

(0.283) (0.275) (0.428) (0.277) (0.388)
Cond. var. (pseudo MK) 0.024 0.278 0.068∗ 1.332

(0.031) (1.699) (0.037) (1.601)
Cond. cov. (non-durables/MK) 0.055 −0.111

(0.470) (0.391)
Cond. cov. (durables/MK) −0.025 −0.183

(0.158) (0.190)
Cond. cov. (manufacturing/MK) −0.324 −0.227

(0.385) (0.291)
Cond. cov. (energy/MK) 0.129 −0.026

(0.217) (0.170)
Cond. cov. (hi-tech/MK) −0.036 −0.171

(0.191) (0.179)
Cond. cov. (telecoms/MK) 0.318 0.083

(0.284) (0.243)
Cond. cov. (shops/MK) −0.498∗∗ −0.416∗∗

(0.206) (0.196)
Cond. cov. (health/MK) 0.433∗∗∗ 0.167

(0.147) (0.162)
Cond. cov. (utilities/MK) −0.092 −0.294

(0.201) (0.204)

100×Adj.R2 0.000 0.884 0.870 2.468 1.420 2.569
LR p-value (all predictors) 0.037 0.049 0.005 0.014 0.004
LR p-value (disagg. predictors only) 0.015 0.044

Notes: This table contains the in-sample estimated coefficients associated with OLS regressions (and restricted variants
thereof) of main portfolio returns on the term spread, default yield, dividend yield, Treasury bill yield, the conditional
variance of (pseudo) market returns, and the conditional covariances of market returns with returns to each component
of the main portfolio. Standard errors are in parentheses. Fit is measured by the adjusted R2 statistic. The p-values
associated with likelihood-ratio tests under the null that all coefficients on the predictors equal zero, and under the null
that all coefficients on the disaggregated predictors (that is, the conditional covariances) equal zero. Conditional variance
and covariance are measured using the MA and EWMA methods. The main portfolio consists of 10-industry portfolios.
Monthly frequency data observed over the period January 1964 to December 2021 are used. Coefficient significance is
indicated by ∗∗∗ (1%), ∗∗ (5%) and ∗ (10%).
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Table 5 – The aggregated success rates of forecasting methods (MA covariance, 6-component portfolios)

Performance measure

OOS-R2 success rate ∇PaR success rate

Method FF1 FF3 FF4 FF5 FF1 FF3 FF4 FF5

Panel A. US data: 1964 to 2022 (max sample)

A 20.166 22.302 22.229 21.075 45.195 60.253 64.704 65.916
B 33.297 30.455 30.794 32.381 40.657 20.620 16.962 15.065
C 46.537 47.244 46.977 46.544 14.149 19.127 18.333 19.019

Panel B. US data: 1964 to 1990 (max sample)

A 12.762 17.271 19.002 13.446 45.129 55.878 54.791 50.483
B 20.048 15.177 23.752 35.467 27.415 10.467 20.733 21.377
C 67.190 67.552 57.246 51.087 27.456 33.655 24.477 28.140

Panel C. US data: 1991 to 2022 (max sample)

A 11.357 12.315 13.273 7.827 32.540 39.956 44.171 40.394
B 29.995 30.843 28.517 44.007 46.853 29.721 24.330 30.679
C 58.648 56.842 58.210 48.166 20.608 30.323 31.500 28.927

Panel D. Asia-Pacific (excluding Japan) data: 1991 to 2022 (max sample)

A 9.360 12.131 5.480 13.547 39.470 40.579 33.067 38.793
B 8.128 6.773 29.126 14.039 4.988 3.941 20.567 13.424
C 82.512 81.096 65.394 72.414 55.542 55.480 46.367 47.783

Panel E. Developed data: 1991 to 2022 (max sample)

A 3.387 5.049 4.865 3.571 13.177 14.286 14.101 15.764
B 7.759 10.099 36.946 30.727 13.793 11.700 40.825 27.217
C 88.855 84.852 58.190 65.702 73.030 74.015 45.074 57.020

Panel F. Developed (excluding US) data: 1991 to 2022 (max sample)

A 3.264 4.187 4.372 4.126 12.131 12.377 11.268 11.700
B 5.111 10.406 44.643 16.379 8.621 13.608 51.416 15.456
C 91.626 85.406 50.985 79.495 79.249 74.015 37.315 72.845

Panel G. Europe data: 1991 to 2022 (max sample)

A 3.325 2.586 2.340 1.416 13.670 20.874 12.315 20.259
B 7.943 12.254 51.108 38.916 16.256 12.007 54.680 33.374
C 88.732 85.160 46.552 59.667 70.074 67.118 33.005 46.367

Panel H. Japan data: 1991 to 2022 (max sample)

A 14.409 8.682 7.882 9.544 38.362 28.879 20.135 29.741
B 11.576 50.616 66.749 58.498 16.564 51.663 66.441 52.094
C 74.015 40.702 25.369 31.958 45.074 19.458 13.424 18.165

Panel I. North America data: 1991 to 2022 (max sample)

A 8.990 8.190 8.313 7.389 28.448 27.340 25.616 23.153
B 6.034 15.517 24.384 26.355 19.150 16.995 26.416 21.429
C 84.975 76.293 67.303 66.256 52.401 55.665 47.968 55.419

Notes: This table contains the proportion of times (as a percentage) that each method is the dominant method (that is,
has a higher OOS-R2 or ∇PaR value than the other methods) under various Fama-French factor model specifications.
When using the 1964 to 2022 sample (US dataset only), dominance is aggregated over 1540 sub-samples and 14 different
portfolio sorts, when using the 1964 to 1990 sample (US dataset only), it is 171 sub-samples and 14 different portfolio sorts,
and when using the 1991 to 2022 sample (all datasets) it is 406 sub-samples and four different portfolio sorts. Conditional
covariance is measured using the MA method. The main portfolio consists of 6-component portfolios based on sorts of
various firm characteristics. Monthly frequency data observed over the period January 1964 to December 2022 (US data
only) and the period January 1991 to December 2022 are used.
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Table 6 – The aggregated success rates of forecasting methods (EWMA covariance, 6-component portfolios)

Performance measure

OOS-R2 success rate ∇PaR success rate

Method FF1 FF3 FF4 FF5 FF1 FF3 FF4 FF5

Panel A. US data: 1964 to 2022 (max sample)

A 7.893 8.001 5.851 6.659 24.076 31.342 35.548 34.473
B 28.925 33.434 34.105 38.968 47.655 35.967 27.107 30.483
C 63.182 58.564 60.043 54.372 28.268 32.691 37.345 35.043

Panel B. US data: 1964 to 1990 (max sample)

A 5.354 8.132 5.636 5.193 20.531 27.899 28.060 19.646
B 27.939 27.134 36.151 56.200 50.604 35.507 36.071 52.657
C 66.707 64.734 58.213 38.607 28.865 36.594 35.870 27.697

Panel C. US data: 1991 to 2022 (max sample)

A 6.349 5.337 5.911 3.886 20.881 25.534 29.475 24.001
B 10.947 18.966 14.587 28.188 30.022 24.658 14.833 25.780
C 82.704 75.698 79.502 67.926 49.097 49.808 55.692 50.219

Panel D. Asia-Pacific (excluding Japan) data: 1991 to 2022 (max sample)

A 1.355 0.924 0.493 1.355 12.192 12.685 9.852 11.268
B 1.663 5.603 26.786 15.025 7.759 6.404 32.081 15.271
C 96.983 93.473 72.722 83.621 80.049 80.911 58.067 73.461

Panel E. Developed data: 1991 to 2022 (max sample)

A 3.017 2.894 3.079 2.833 9.236 11.946 10.406 9.791
B 5.172 6.835 27.155 52.340 10.653 13.793 33.867 51.539
C 91.810 90.271 69.766 44.828 80.111 74.261 55.727 38.670

Panel F. Developed (excluding US) data: 1991 to 2022 (max sample)

A 1.909 2.155 2.278 1.601 9.236 9.667 9.421 8.190
B 5.049 10.899 30.357 26.416 10.837 14.347 36.145 25.369
C 93.042 86.946 67.365 71.983 79.926 75.985 54.433 66.441

Panel G. Europe data: 1991 to 2022 (max sample)

A 1.970 1.847 0.862 0.985 14.717 15.579 8.990 9.052
B 5.234 14.347 43.904 48.707 13.424 19.581 47.106 47.044
C 92.796 83.805 55.234 50.308 71.860 64.840 43.904 43.904

Panel H. Japan data: 1991 to 2022 (max sample)

A 8.682 8.067 7.266 8.867 27.771 23.830 19.951 25.062
B 7.635 27.709 32.081 30.234 13.054 31.466 33.867 28.571
C 83.682 64.224 60.653 60.899 59.175 44.704 46.182 46.367

Panel I. North America data: 1991 to 2022 (max sample)

A 2.894 3.264 3.079 3.633 18.473 12.685 16.379 16.441
B 4.926 20.135 20.751 22.906 14.594 26.170 21.059 23.399
C 92.180 76.601 76.170 73.461 66.933 61.145 62.562 60.160

Notes: This table contains the proportion of times (as a percentage) that each method is the dominant method (that is,
has a higher OOS-R2 or ∇PaR value than the other methods) under various Fama-French factor model specifications.
When using the 1964 to 2022 sample (US dataset only), dominance is aggregated over 1540 sub-samples and 14 different
portfolio sorts, when using the 1964 to 1990 sample (US dataset only), it is 171 sub-samples and 14 different portfolio sorts,
and when using the 1991 to 2022 sample (all datasets) it is 406 sub-samples and four different portfolio sorts. Conditional
covariance is measured using the EWMA method. The main portfolio consists of 6-component portfolios based on sorts of
various firm characteristics. Monthly frequency data observed over the period January 1964 to December 2022 (US data
only) and the period January 1991 to December 2022 are used.
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Table 7 – The aggregated success rates of forecasting methods (MA covariance, 25-component portfolios)

Performance measure

OOS-R2 success rate ∇PaR success rate

Method FF1 FF3 FF4 FF5 FF1 FF3 FF4 FF5

Panel A. US data: 1964 to 2022 (max sample)

A 3.618 3.664 3.669 3.131 25.877 31.331 32.259 31.011
B 3.780 3.961 5.079 6.749 19.244 10.649 9.740 11.039
C 92.602 92.375 91.252 90.121 54.879 58.019 58.001 57.950

Panel B. US data: 1964 to 1990 (max sample)

A 3.623 3.546 3.856 2.562 31.082 43.375 39.855 31.910
B 9.627 9.420 15.114 20.109 33.049 17.417 23.810 31.004
C 86.749 87.034 81.030 77.329 35.870 39.208 36.335 37.086

Panel C. US data: 1991 to 2022 (max sample)

A 3.413 3.835 4.293 2.797 17.365 18.526 19.775 14.743
B 2.709 2.604 2.041 6.756 13.406 9.096 7.196 14.409
C 93.878 93.561 93.666 90.447 69.229 72.379 73.030 70.848

Panel D. Asia-Pacific (excluding Japan) data: 1991 to 2022 (max sample)

A 1.416 1.047 0.431 1.416 7.266 7.204 6.527 5.172
B 0.246 0.800 2.032 2.032 1.786 2.032 2.833 5.603
C 98.337 98.153 97.537 96.552 90.948 90.764 90.640 89.224

Panel E. Developed data: 1991 to 2022 (max sample)

A 1.909 2.586 2.709 1.970 11.453 11.207 11.823 10.714
B 2.586 2.278 1.909 4.187 5.850 5.911 7.882 10.406
C 95.505 95.135 95.382 93.842 82.697 82.882 80.296 78.879

Panel F. Developed (excluding US) data: 1991 to 2022 (max sample)

A 2.833 2.894 3.633 2.709 10.037 9.175 9.113 8.559
B 1.909 2.463 3.264 3.325 2.956 5.296 14.532 6.650
C 95.259 94.643 93.103 93.966 87.007 85.530 76.355 84.791

Panel G. Europe data: 1991 to 2022 (max sample)

A 1.847 1.355 1.293 0.862 11.884 10.961 9.729 9.544
B 2.463 4.926 7.266 11.884 7.143 9.483 21.675 25.924
C 95.690 93.719 91.441 87.254 80.973 79.557 68.596 64.532

Panel H. Japan data: 1991 to 2022 (max sample)

A 3.633 5.049 4.618 5.480 25.554 20.874 17.796 20.074
B 6.404 13.054 15.333 18.842 14.963 35.099 40.025 37.808
C 89.963 81.897 80.049 75.677 59.483 44.027 42.180 42.118

Panel I. North America data: 1991 to 2022 (max sample)

A 3.695 4.310 4.803 4.372 20.012 20.012 20.628 17.919
B 2.894 3.264 2.894 6.158 16.995 14.470 14.778 15.825
C 93.411 92.426 92.303 89.470 62.993 65.517 64.594 66.256

Notes: This table contains the proportion of times (as a percentage) that each method is the dominant method (that is,
has a higher OOS-R2 or ∇PaR value than the other methods) under various Fama-French factor model specifications.
When using the 1964 to 2022 sample (US dataset only), dominance is aggregated over 1540 sub-samples and 14 different
portfolio sorts, when using the 1964 to 1990 sample (US dataset only), it is 171 sub-samples and 14 different portfolio sorts,
and when using the 1991 to 2022 sample (all datasets) it is 406 sub-samples and four different portfolio sorts. Conditional
covariance is measured using the MA method. The main portfolio consists of 25-component portfolios based on sorts of
various firm characteristics. Monthly frequency data observed over the period January 1964 to December 2022 (US data
only) and the period January 1991 to December 2022 are used.
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Table 8 – The aggregated success rates of forecasting methods (EWMA covariance, 25-component portfolios)

Performance measure

OOS-R2 success rate ∇PaR success rate

Method FF1 FF3 FF4 FF5 FF1 FF3 FF4 FF5

Panel A. US data: 1964 to 2022 (max sample)

A 1.438 1.433 0.779 0.965 12.175 13.868 14.374 13.182
B 2.890 3.353 4.443 5.441 13.646 10.645 9.272 12.166
C 95.673 95.213 94.777 93.595 74.179 75.487 76.354 74.652

Panel B. US data: 1964 to 1990 (max sample)

A 1.449 2.019 1.449 1.087 12.189 17.107 17.314 12.759
B 5.564 5.978 7.790 13.742 32.764 24.534 23.473 35.637
C 92.987 92.003 90.761 85.171 55.047 58.359 59.213 51.605

Panel C. US data: 1991 to 2022 (max sample)

A 0.827 0.686 0.757 0.616 9.289 8.023 8.955 6.175
B 0.352 1.108 0.968 2.762 2.270 4.082 2.604 7.477
C 98.821 98.205 98.276 96.622 88.441 87.896 88.441 86.348

Panel D. Asia-Pacific (excluding Japan) data: 1991 to 2022 (max sample)

A 0.185 0.123 0.123 0.000 2.032 1.724 1.478 0.862
B 0.062 0.431 0.924 1.416 1.355 2.217 2.771 4.187
C 99.754 99.446 98.953 98.584 96.613 96.059 95.751 94.951

Panel E. Developed data: 1991 to 2022 (max sample)

A 0.677 0.800 0.616 0.616 5.788 5.542 5.234 4.803
B 0.369 0.431 0.800 2.648 2.340 4.926 4.803 7.020
C 98.953 98.768 98.584 96.736 91.872 89.532 89.963 88.177

Panel F. Developed (excluding US) data: 1991 to 2022 (max sample)

A 1.970 1.478 1.909 1.601 10.222 7.512 7.943 7.389
B 1.108 4.187 6.342 5.542 5.480 9.914 13.300 11.207
C 96.921 94.335 91.749 92.857 84.298 82.574 78.756 81.404

Panel G. Europe data: 1991 to 2022 (max sample)

A 0.739 0.616 0.308 0.308 5.788 4.495 3.818 2.833
B 0.554 2.155 3.510 5.788 3.510 7.574 11.761 17.118
C 98.707 97.229 96.182 93.904 90.702 87.931 84.421 80.049

Panel H. Japan data: 1991 to 2022 (max sample)

A 1.909 2.094 1.293 1.663 13.793 16.441 12.069 16.318
B 3.941 4.741 6.835 5.172 9.360 8.682 13.362 8.498
C 94.150 93.165 91.872 93.165 76.847 74.877 74.569 75.185

Panel I. North America data: 1991 to 2022 (max sample)

A 0.677 0.308 0.369 0.185 8.190 7.143 8.498 7.820
B 0.246 1.539 1.047 2.401 7.697 8.374 6.342 7.943
C 99.076 98.153 98.584 97.414 84.113 84.483 85.160 84.236

Notes: This table contains the proportion of times (as a percentage) that each method is the dominant method (that is,
has a higher OOS-R2 or ∇PaR value than the other methods) under various Fama-French factor model specifications.
When using the 1964 to 2022 sample (US dataset only), dominance is aggregated over 1540 sub-samples and 14 different
portfolio sorts, when using the 1964 to 1990 sample (US dataset only), it is 171 sub-samples and 14 different portfolio sorts,
and when using the 1991 to 2022 sample (all datasets) it is 406 sub-samples and four different portfolio sorts. Conditional
covariance is measured using the EWMA method. The main portfolio consists of 25-component portfolios based on sorts
of various firm characteristics. Monthly frequency data observed over the period January 1964 to December 2022 (US
data only) and the period January 1991 to December 2022 are used.
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(a) OOS-R2 with MA cov. (88.889% success)
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(b) OOS-R2 with EWMA cov. (92.063% success)
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(c) ∇PaR with MA cov. (66.402% success)
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(d) ∇PaR with EWMA cov. (74.339% success)
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Figure 1 – Relative performance (global stock market prediction)
This figure contains the scatter plots of the OOS-R2 (∇PaR) values associated with method C against the OOS-R2 (∇PaR)
values associated with method B. The main portfolio consists of the Asia-Pacific (excluding Japan), Japan, North America,
US, and developed (excluding US) market portfolios. The MK return is used as the state variable. Each point in the plot
corresponds to a sub-sample result (a total of 406 sub-samples are considered). Conditional covariance is measured using the
MA and EWMA methods. Monthly frequency data observed over the period January 1991 to December 2022 are used.
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(a) OOS-R2 with EWMA cov. 3 month (87.302%
success)
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(b) OOS-R2 with EWMA cov. 12 month (56.878%
success)
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(c) ∇PaR with EWMA cov. 3 month (69.841% suc-
cess)
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(d) ∇PaR with EWMA cov. 12 month (8.466% suc-
cess)
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Figure 2 – Relative performance (global stock market prediction and alternative horizons)
This figure contains the scatter plots of the OOS-R2 (∇PaR) values associated with method C against the OOS-R2 (∇PaR)
values associated with method B. The forecasting horizons considered are 3-month and 12-month step ahead. The main
portfolio consists of the Asia-Pacific (excluding Japan), Japan, Europe, North America, US, and developed (excluding US)
market portfolios. The MK return is used as the state variable. Each point in the plot corresponds to a sub-sample result (a
total of 406 sub-samples are considered). Conditional covariance is measured using the EWMA method. Monthly frequency
data observed over the period January 1991 to December 2022 are used.
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(a) OOS-R2 with MA cov.
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(b) OOS-R2 with EWMA cov.
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(c) ∇PaR with MA cov.
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(d) ∇PaR with EWMA cov.
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Figure 3 – Relative performance with clustered predictors
This figure contains box-and-whisker plots of the OOS-R2 (∇PaR) values associated with methods B, C, and C (with clustering),
plotted against the number of clusters used to construct the conditional covariances. Each box contains results based on using
14 US main portfolios each consisting of 25-component portfolios, and 1540 sub-samples. The MK return is used as the state
variable. Component conditional covariances are constructed using the MA and EWMA methods. Monthly frequency data
observed over the period January 1991 to December 2022 are used.
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