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Abstract

We extend traditional tests of factor models to incorporate nonlinearities. The

metric for model evaluation becomes the Sharpe ratio of the mimicking portfolio of

a nonlinear stochastic discount factor (SDF) pricing the model factors. Empirically,

we investigate the implications of an economically meaningful family of nonlinear

SDFs for evaluating popular factor models. We find that, relative to the linear case,

introducing nonlinearities substantially improves pricing performance and changes

rankings among competing models. The preferred model depends on the test assets:

unlike the linear approach, test assets are relevant for model comparison as they

are needed to mimic nonlinearities in the factors.
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1. Introduction

Factor models dominate empirical work in asset pricing. They provide tractability

by determining observable proxies for the unknown marginal rate of substitution of a

representative agent, which according to theory (e.g., Lucas 1978), should be the relevant

stochastic discount factor (SDF) for pricing assets. A seminal example is the capital asset

pricing model (CAPM) of Sharpe (1964) and Lintner (1965), which predicts that the SDF

should be a function of only one factor: the excess return on the market portfolio. This

prediction has been eventually rejected, giving rise not only to hundreds of cross-sectional

anomalies as test assets that are challenging to price (Hou, Xue and Zhang, 2020), but

also to hundreds of alternative factors beyond the market (Harvey, Liu and Zhang, 2016).

Given the existing multitude of candidate factors, evaluating and comparing factor models

is of fundamental importance.

Traditional tests of factor models impose that the marginal rate of substitution is

linear in the set of factors under evaluation.1 This has two main advantages. First, a

linear specification allows the tests to be easily implemented through linear regressions.

Second, the metric of pricing performance has a clear economic interpretation: the linear

factor model prices the test assets if and only if the maximum Sharpe ratio attainable

from the factors cannot be improved by also trading in the test assets (Gibbons, Ross

and Shanken, 1989). In addition, as shown by Barillas and Shanken (2017), traditional

tests have a surprising implication for comparing factor models. Namely, the comparison

of two factor models boils down to comparing the maximum Sharpe ratio of the factors

in each model, such that test assets are irrelevant.

However, enforcing the SDF to be linear in the factors entails important limitations.

One such limitation is that the SDF can attain negative values, which would be inconsis-

tent with the marginal utility of a representative agent and, more generally, the absence

of arbitrage. Additionally, a linear specification imposes restrictive assumptions on the

space of asset payoffs: payoffs that are nonlinear functions of the factors cannot be priced

by a linear SDF on the factors (Bansal and Viswanathan, 1993). Furthermore, investors

care about systematic skewness and kurtosis risk, which is ignored under a linear SDF

(Harvey and Siddique, 2000; Dittmar, 2002). In fact, failing to account for preferences

1The traditional tests we refer to are tests on the intercept of time-series regressions of test assets
excess returns on factors (Gibbons, Ross and Shanken, 1989) and tests on the residuals of cross-sectional
regressions of average excess returns on factor betas (Shanken, 1985). As noted by Barillas and Shanken
(2017), both types of test are equivalent for traded factors.
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for higher moments of factors can give rise to anomalies that would otherwise not exist

(Schneider, Wagner and Zechner, 2020). As a result, a rejection of a linear factor model

may be a rejection of the linear specification, rather than a rejection of the factors as

good proxies for the marginal rate of substitution.

In this paper, we investigate the implications of accounting for nonlinearities in the

evaluation and comparison of factor models. To that end, we extend traditional tests to

allow for the SDF to be a nonlinear function of the factors. Our generalization retains the

main attractive features of the linear approach, as it is still easy to implement and has a

similar economic interpretation. More specifically, it relies on first estimating a nonlinear

SDF pricing the factors of a given model, and then using this SDF as a single factor in

the traditional tests.2 The pricing performance metric becomes the Sharpe ratio of the

mimicking portfolio of the nonlinear SDF pricing the factors.3

Our framework provides a reason why test assets are irrelevant for model comparison

under the linear approach. If the SDF is a linear function of the factors, its mimicking

portfolio (i.e., its projection onto the universe of test assets and factor returns) loads

only on the factors themselves and has zero weights in the remaining test assets. Thus,

a comparison of Sharpe ratios between two models does not depend on the test assets.

In contrast, if a nonlinear SDF pricing the factors of a given model is considered, its

mimicking portfolio will load on the entire universe of test assets and factors. That is,

the relevance of test assets is restored as they are needed to mimic the nonlinearities.

Knowing how to test a factor model under a nonlinear SDF, the natural question is

then which nonlinearities to consider. In fact, under no-arbitrage, there exists an infinity

of admissible SDFs that price the factors beyond the linear one. Each of these alternative

SDFs introduce nonlinearities that are irrelevant to price the factors, but that may be

relevant to price the universe of test assets.4 While the no-arbitrage admissible set is

too large and may contain SDFs that are not economically meaningful, focusing on one

specific nonlinear SDF would require a strong prior on a particular form of nonlinearity.

Instead, we choose to work with a tractable set of well-behaved nonlinear SDFs and

2If the factors are nontraded, the generalization consists in estimating a nonlinear SDF pricing the
mimicking portfolios of the nontraded factors.

3It is easy to see why this generalizes the traditional linear approach: if the linear SDF pricing the
factors (Hansen and Jagannathan, 1991) is used, its mimicking portfolio is precisely the portfolio of the
factors that attains the maximum Sharpe ratio.

4In fact, we derive a sufficient condition for a nonlinear SDF to improve upon the pricing performance
of the linear one: the nonlinearity it adds must provide an insurance for the “true” systematic risk, i.e.,
it must covary positively with the marginal rate of substitution that prices the whole universe of test
assets and factors.

3

Electronic copy available at: https://ssrn.com/abstract=4421179



analyze how pricing performance varies within this set.

More specifically, we propose to work with SDFs minimizing Cressie and Read (1984)

discrepancy functions that generalize the variance metric. These SDFs are thus a direct

generalization of the linear one and satisfy a number of desirable properties. First, they

are all nonnegative and, therefore, guarantee the absence of arbitrage. Second, they are

consistent with risk aversion and associated with the hyperbolic absolute risk aversion

(HARA) class of utility functions, besides capturing a diverse set of preferences for higher

order co-moments with the factors. In this sense, each SDF reflects the return on the

wealth of an investor who is evaluating whether test assets would add value to her portfolio

of factors. Third, the Cressie-Read SDFs and their nonlinearities are indexed by a single

parameter, allowing us to track and economically interpret how pricing performance

depends on it for a given factor model.

Empirically, we analyze whether incorporating nonlinearities matter for the absolute

and relative pricing performance of popular factor models. We consider 10 factor models

encompassing 19 unique traded factors: the market factor (CAPM); the 2-factor interme-

diary asset pricing model of He, Kelly and Manela (HKM, 2017); the betting-against-beta

extension of the CAPM of Frazzini and Pedersen (BAB, 2014); the factor model of Daniel,

Hirshleifer and Sun (DHS, 2018), which adds 2 behavioral factors to the market; the Fama

and French (1993) 3-factor model (FF3); the investment q-factor model of Hou, Xue and

Zhang (2015) (q4); the Fama and French (2015) 5-factor model (FF5); the hedged FF5 of

Daniel et al. (FF5*, 2020); FF5 plus momentum (Carhart, 1997) (FF6); and the Barrilas

and Shanken (2018) 6-factor model (BS). Our baseline set of test assets is given by the

19 unique factors and 44 anomalies from Kozak, Nagel and Santosh (2020).

We find that nonlinearities substantially improve the absolute pricing performance of

nearly all factor models considered.5 In some cases, such as for the CAPM and the BAB,

the Sharpe ratio metric can even double. These results are not only economically, but

also statistically significant, holding for different sets of test assets and out-of-sample.

This is striking as the minimum discrepancy SDFs are not optimized to maximize pricing

performance across the universe of test assets. In fact, just as in the linear case, only

information on the factors is used, such that improvements come solely from economi-

cally meaningful nonlinearities embedded in the SDF. The Cressie-Read SDFs that yield

those improvements are usually the ones associated with investors with higher degrees of

5The exception is the FF3. For this model, we find that the linear factor model is the optimal one
within the family of SDFs we consider.
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absolute risk aversion relative to the linear SDF.

Nonlinear SDFs also have strong implications for factor model comparison. In par-

ticular, nonlinearities improve substantially the performance of the CAPM, imposing a

stronger hurdle to beat it. We find that the market factor outperforms both the HKM

and FF3 models when nonlinearities are allowed, while the opposite happens under the

linear specification. This is consistent with previous evidence that nonlinear versions

of the CAPM perform well in cross-sectional asset pricing (Harvey and Siddique, 2000)

and outperform the FF3 multi-factor model (Dittmar, 2002; Chung, Johnson and Schill,

2006). However, we also show that nonlinearities are not enough to make the CAPM

comparable to the other multi-factor models in our analysis, confirming the need to go

beyond the market return as the only relevant state variable.

More generally, as the relative benefits of nonlinearities vary across models, accounting

for it leads to different rankings between the remaining factor models as well. For instance,

even though BAB is outperformed by FF5 under the traditional linear approach, its best

nonlinear SDF yields a Sharpe ratio that is 46% higher than that of the best nonlinear

model of FF5. Overall, the best performing factor model is the DHS, followed by BS. This

is true both under the linear specification and the nonlinear specification for pricing the

baseline set of anomalies. However, if we consider different sets of test assets (anomalies

from Hou, Xue and Zhang, 2020; the 25 Fama-French size/book-to-market portfolios; or

the 49 Fama-French industry portfolios), the opposite conclusion is obtained under the

nonlinear case: BS is the best performing model. This highlights the relevance of the

test assets once nonlinearities are taken into account and is consistent with the intuitive

notion that the preferred model will depend on the set of assets being priced.

The factor models in our baseline analysis come from a long tradition in asset pricing

attempting to explain cross-sectional variation in expected returns with a small number

of factors that are observable (i.e., defined by sorting on a given observed stock char-

acteristic). The idea that the SDF is a linear function of a few observable factors has

been recently questioned by Kozak, Nagel and Santosh (2020). They show that a sparse

linear SDF on high-variance principal components summarizing information from many

characteristics-based portfolios performs better in pricing the cross-section. We investi-

gate how nonlinearities affect this comparison. We find that low-dimensional observable

factor models can deliver pricing performance comparable to or better than latent factor

models when nonlinearities are taken into account. That is, the SDF is more likely to be
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a sparse function of observable factors if nonlinearities are contemplated.

Finally, we also analyze the implications of nonlinearities for the pricing performance

of 17 nontraded factors from Bryzgalova, Huang and Julliard (2023). The results are even

more impressive than for traded factors. For 9 out of the 17 models, the squared Sharpe

ratio more than doubles under a nonlinear SDF, which leads to several shifts in rankings

across the different models. The performances of the investor sentiment index of Baker

and Wurgler (2006) and the dividend yield factor in the nonlinear case are particularly

remarkable, as the Sharpe ratios associated with these one-factor models are comparable

to those of the best traded multi-factor models we analyze. Furthermore, nonlinearities

are especially important for the pricing performance of consumption factors, supporting

the idea that higher-order co-moments with consumption are relevant and should not be

ignored in the consumption CAPM.

The remainder of the paper is organized as follows. After a brief review of the related

literature, Section 2 summarizes standard tests of factor models and their implications

for model comparison. Section 3 presents our extension to allow for nonlinearities, while

Section 4 discusses the specific nonlinear SDFs we consider. Section 5 contains our

empirical analysis on the importance of nonlinearities for the pricing performance of

factor models. Section 6 provides robustness results and Section 7 concludes the paper.

1.1. Related literature

Our paper is mainly related to three strands of the literature. The first strand stud-

ies asset pricing tests of factor models. Gibbons, Ross and Shanken (1989) provide a

test for the efficiency of a model with traded factors. Shanken (1985) develops a test

based on a quadratic form of pricing errors from cross-sectional regressions, which Kan

and Robotti (2008) show is analogous to a modified Hansen and Jagannathan (1997)

distance. Kan and Robotti (2009) provide a formal model comparison test using the

Hansen-Jagannathan distance. Lewellen, Nagel and Shanken (2010) discuss how to im-

prove empirical tests. Barillas and Shanken (2017) show that, under traditional tests,

the preferred model is the one with higher maximum squared Sharpe ratio. Barillas and

Shanken (2018) and Bryzgalova, Huang and Julliard (2023) derive Bayesian asset pricing

tests, while Barillas et al. (2020) provide asymptotic tests for model comparison based

on maximum Sharpe ratios. Detzel, Novy-Marx and Velikov (2022) take into account

transaction costs when evaluating factor models. Kozak and Nagel (2023) discuss the
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conditions under which different approaches for factor construction span the linear SDF

pricing individual stocks. While all these papers focus on linear models, we extend the

standard regression-based tests to allow for nonlinearities in the factors.

The second strand of the literature proposes nonlinear models for asset pricing. Bansal

and Viswanathan (1993) and Chapman (1997) use neural networks and orthonormal poly-

nomials, respectively, to estimate a nonlinear SDF as a function of a few state variables.

Harvey and Siddique (2000) consider a conditional version of the three-moment CAPM

of Kraus and Litzenberger (1976) where coskewness is priced, while Dittmar (2002) pro-

poses a cubic SDF taking into account preferences for cokurtosis with the market. Vanden

(2006) provides conditions under which the economy SDF depends on quadratic terms

of index option returns. Schneider, Wagner and Zechner (2020) document that an SDF

that is a quadratic function of market returns can explain low-risk anomalies. While

these papers motivate our work, we do not share the goal of providing a new nonlinear

factor model for the cross-section of returns. Instead, we investigate the implications

of accounting for nonlinearities in the evaluation and comparison of factors previously

proposed by the literature.

The third strand makes use of Cressie-Read discrepancies for different purposes in

finance. A number of papers have considered SDFs minimizing the Cressie-Read family

(Almeida and Garcia, 2012, 2017) or particular members of the family such as variance

(Hansen and Jagannathan, 1991), entropy (Stutzer, 1995; Bansal and Lehmann, 1997;

Alvarez and Jermann, 2005; Backus, Chernov and Zin, 2014; Ghosh, Julliard and Tay-

lor, 2017) and generalized entropy (Snow, 1991; Liu, 2021) for diagnosing asset pricing

models.6 Stutzer (1996) and Almeida and Freire (2022) analyze the option pricing im-

plications of the minimum entropy SDF and the whole family of Cressie-Read SDFs,

respectively. Almeida, Ardison and Garcia (2020) derive performance measures for hedge

funds based on minimum discrepancy SDFs. Ghosh, Julliard and Taylor (2019) show

that the minimum entropy SDF estimated from test assets outperforms popular factor

models out-of-sample, while Sandulescu, Trojani and Vedolin (2021) examine ratios of

minimum entropy SDFs from international markets. We analyze the implications for

model evaluation of using minimum discrepancy SDFs pricing a given set of factors as

the asset pricing model, instead of the minimum variance (linear) SDF.

6More specifically, these papers have analyzed whether the pricing kernel of a candidate equilibrium
model is able to generate enough dispersion as measured by a particular Cressie-Read loss function.
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2. Traditional asset pricing tests of factor models

In this section, we briefly describe the main aspects of traditional asset pricing tests of

factor models. Consider N assets with excess returns R andK traded factors with returns

f that are also in excess of the risk-free rate or return spreads of long-short portfolios.

Traditional tests evaluate whether the unconditional Euler equation holds for the linear

SDF a + bf , which is equivalent to verifying whether the linear expected return-beta

relation is satisfied:7

E[(a+ bf)R] = 0 ⇐⇒ E(R) = βλ, (1)

where β is N ×K and contains the covariances between the assets and the factors, and

λ is the K-vector of expected excess returns of the factors, i.e., their risk premia. The

relation above states that any expected return beyond the risk-free rate should come

as a compensation for exposure to systematic factor risk. Deviations from this relation

characterize pricing errors, or “alphas”: α ≡ E(R)− βλ.

The traditional approach to evaluate a model of traded factors is the Gibbons, Ross

and Shanken (1989) test. This approach consists of a multivariate linear regression with

time-series observations on Rt and ft:

Rt = α + βft + ϵt, t = 1, ..., T, (2)

where all variables are N -vectors, with the exception of the N ×K β matrix and the K-

vector of factors. The error term ϵt has zero mean and an invertible covariance matrix Σ.

The null hypothesis is that the entries of α are jointly equal to zero, that is, that relation

(1) holds. The GRS test is based on a quadratic form in the alphas that they show is

equivalent to the improvement in the maximum squared Sharpe ratio Sh2(.) attainable

from investing in the assets in addition to the factors:8

α′Σ−1α = Sh2(f,R)− Sh2(f). (3)

In other words, a nonzero alpha indicates that the factors do not span the tangency port-

folio, or, equivalently, do not attain the maximum squared Sharpe ratio in the economy.

For models where the factors f are nontraded, the same relation (1) should hold, but

7Conditional asset pricing tests as in, e.g., Lewellen and Nagel (2006), do not fall in this category.
8For any set of returns R̃, the maximum squared Sharpe ratio is given by Sh2(R̃) =

E(R̃)′V ar(R̃)−1E(R̃).
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now the means of the factors are uninformative and different from their risk premia. In

this case, the GRS test is not applicable, and a two-step approach is needed instead as

λ must also be estimated. First, the betas with respect to the factors are obtained from

time-series regressions for each asset i = 1, ..., N :

Ri,t = ci + βift + ui,t, t = 1, ..., T. (4)

Then, a cross-sectional regression (CSR) of expected excess returns on betas obtains the

risk premia as the slope coefficients and the pricing errors as the residuals:

E(R) = βλ+ α. (5)

The regression does not contain an intercept, such that the residuals capture deviations

from the linear expected return-beta relation. The null hypothesis of α = 0 can also

be tested with a quadratic form (Shanken, 1985). Using results from Lewellen, Nagel

and Shanken (2010), Barillas and Shanken (2017) show that, if the CRS is estimated

with generalized least squares (GLS), a quadratic form in the alphas again reduces to the

improvement in the squared Sharpe ratio from trading in the assets, but now in addition

to that of the mimicking portfolios of the factors.9 That is:

α′V −1α = Sh2(R)− Sh2(fp), (6)

where V is the covariance matrix of R and fp are the returns of the mimicking portfolios

of the original factors f .10

In sum, standard asset pricing tests boil down to evaluating the maximum squared

Sharpe ratio obtained from the factors. In fact, both approaches above are equivalent if

the factors are traded and included in the set of asset returns R (Barillas and Shanken,

2017). To see that, note that in this case R includes both the tests assets and the factors,

and the mimicking portfolios of traded factors are the factors themselves. This implies

that the expression in (6) equals that in (3).

Given that all models are misspecified, it is of interest not only to evaluate a given

9Kan and Robotti (2008) show that this test is equivalent to a modified Hansen-Jagannathan distance
when the zero-beta rate is constrained to equal the risk-free rate.

10The mimicking portfolio for a factor f is given by the projection of the factor on the returns
and a constant. More specifically, fp,t = ARt, where A is obtained from the time-series regression
ft = a+ARt + ηt.
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factor model, but also to compare different models. Considering the alpha mispricing

metric implied by traditional asset pricing tests, Barillas and Shanken (2017) provide

a surprising result for model comparison. While most of the empirical literature has

compared the performance of factor models in pricing different sets of test assets, they

argue that a model should also be able to price the traded factors in competing models,

i.e., the whole universe of assets under consideration. As it turns out, this implies that

comparing two models is equivalent to comparing the maximum squared Sharpe ratio of

the factors in each model, such that test assets are irrelevant.

The argument is simple. Let f1 and f2 be two competing models of traded factors

and R the returns of a set of basis test assets, such that the whole universe of test assets

is given by Rall = [R, f1, f2]. According to the alpha mispricing metric, factor model f1

is preferred if its improvement in Sharpe ratio when investing in the test assets is smaller

than that for f2, that is, if:

Sh2(Rall)− Sh2(f1) < Sh2(Rall)− Sh2(f2). (7)

The common term above drops out and we have that the better model is the one which

factors yield the higher maximum squared Sharpe ratio: Sh2(f1) > Sh2(f2). Throughout

the paper, we follow the premise that traded factors are included in the set of test assets.

3. Incorporating nonlinearities

In this section, we extend traditional asset pricing tests to allow for nonlinearities.

In this context, we discuss the implications of nonlinearities for the pricing performance

of a set of factors. In particular, we provide a sufficient condition for nonlinearities to

improve performance relative to the linear case.

3.1. Extending traditional asset pricing tests

To incorporate nonlinearities into asset pricing tests, we propose a simple generaliza-

tion of the traditional methods described in Section 2. Our approach can be conceptually

seen as a three-step procedure. First, for a given traded factor model f , we identify an

SDF m that prices the factors, i.e., that satisfies the Euler equation:
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E(mf) = 0. (8)

Then, we run the two-step GLS CSR using the SDF m as a single nontraded factor to

obtain the pricing errors α. From Equation (6), the following holds:

α′V −1α = Sh2(Rall)− Sh2(mp), (9)

where mp is the mimicking portfolio of the SDF and Rall contains the basis test assets

and the factors f (and any other competing factors).

We now show that the standard asset pricing tests in Section 2 are the particular case

of our approach that uses in the first step the unique linear SDF that prices the factors

(Hansen and Jagannathan, 1991):

m∗ = 1− b′[f − µf ], b = Σ−1
f µf , (10)

where µf = E(f) and Σf = V ar(f). The SDF above is a linear function of the portfolio

of the factors b′f with maximum squared Sharpe ratio. Therefore, if we run the GLS

CSR on m∗ and analyze the quadratic form in the pricing errors alphas, we obtain:

α′V −1α = Sh2(Rall)− Sh2(m∗
p) = Sh2(Rall)− Sh2(−b′f) = Sh2(Rall)− Sh2(f). (11)

The second equality stems from the fact that the mimicking portfolio m∗
p of m∗, i.e., its

projection on Rall, recovers precisely the portfolio −b′f since m∗ is linear in the factors.11

The third equality holds because b′f is already the portfolio of the factors that yields the

maximum squared Sharpe ratio Sh2(f). In other words, the GRS or GLS CSR approaches

on the factors f are equivalent to using the linear SDF pricing f in the GLS CSR.

By looking through the lens of the space of SDFs, our framework provides additional

insights into the test asset irrelevance result of Barillas and Shanken (2017) for comparing

factor models. Test assets are irrelevant in the usual approach because they are not

needed to mimic the SDF, which is already a linear function of factors f . In contrast, if a

nonlinear SDF pricing the factors of a given model is considered, its mimicking portfolio

will load on the entire universe of test assets. That is, test assets become relevant as they

11That is, in the regression 1− b′[ft −µf ] = a+ARt + ηt, A is equal to −b for the factors ft and zero
for the remaining test assets in Rt, while a = 1 + b′µf and ηt is zero.
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are needed to mimic the nonlinearities.

While we mostly focus on the case of traded factors f , our framework also analogously

generalizes traditional asset pricing tests for nontraded factors. In this case, our approach

would first identify an SDF m that prices the mimicking portfolios of the nontraded

factors, and then use this SDF in the GLS CSR. As detailed in Appendix A, the traditional

GLS CSR approach applied directly to the nontraded factors is a particular case of our

framework when the linear SDF pricing the mimicking portfolios of the factors is used.

In sum, we propose to use a nonlinear SDF that prices the factors as the single factor

in the GLS CSR. Under no-arbitrage, there exists an infinity of admissible SDFs satisfying

the Euler equation (8) beyond the linear one.12 Each of these alternative SDFs introduce

nonlinearities that are irrelevant to price the factors, but that may be relevant to price

the whole universe of test assets. In the next subsection, we make this statement more

precise and discuss the implications of nonlinearities for the pricing performance of a

traded factor model f .

3.2. Implications of nonlinearities for pricing performance

We start from the following decomposition that any admissible SDF m satisfies

(Cochrane, 2001):

m = m∗ + e, E(e) = 0, E(ef) = 0. (12)

The decomposition shows that the nonlinear term e simply adds noise for pricing f .

However, since any model is potentially misspecified, it is reasonable to assume that

the linear function m∗ of the factors f does not fully capture the systematic risk in the

extended economy with all test assets and factors. In this case, the nonlinearity can

improve the pricing performance in the extended economy relative to the linear SDF.

More precisely, using the decomposition (12), we can rewrite the metric of model

mispricing in (9) as:

α′V −1α = Sh2(Rall)− Sh2(mp) = Sh2(Rall)− Sh2(m∗
p + ep), (13)

where ep is the mimicking portfolio of the nonlinearity e. The maximum squared Sharpe

ratio of mp can be further simplified into:

12This is true under incomplete markets, which is the realistic case where the number of states is
larger than the number of assets in a one-period problem.
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Sh2(m∗
p + ep) =

E(m∗
p + ep)

2

V ar(m∗
p + ep)

=
µ2
m∗

p

σ2
m∗

p
+ σ2

ep

+
µ2
ep

σ2
m∗

p
+ σ2

ep

+
2µm∗

p
µep

σ2
m∗

p
+ σ2

ep

, (14)

where µx and σ2
x denote expected value and variance, respectively, of the variable x in the

subscript. The expression above tells us that, everything else constant, a more volatile

nonlinearity hurts the pricing performance of the nonlinear SDF. However, for reasonable

distortions of m∗ where the variance of e is small relative to that of m∗, we can write

σ2
m∗

p
+ σ2

ep ≈ σ2
m∗

p
and obtain the following approximation:13

Sh2(m∗
p + ep) ≈ Sh2(f) +

µ2
ep

σ2
m∗

p

+
2µm∗

p
µep

σ2
m∗

p

. (15)

Since the second term of (15) is always positive, it is possible to arrive at a sufficient

condition for the nonlinear SDF to improve upon the performance Sh2(f) of the linear

SDF by studying the signs of µm∗
p
and µep . For that, it is helpful to understand what

determines their signs. Both m∗
p and ep are portfolios of traded assets in the extended

economy. Hence, their expected returns depend on how they covary with the economy-

wide SDF, i.e., the benchmark linear SDF m∗
all that prices the whole universe of assets

(and portfolios of these assets) and is associated with Sh2(Rall).
14 More specifically, from

the Euler equations E(m∗
all m

∗
p) = 0 and E(m∗

all ep) = 0, it is easy to show that:

µm∗
p
= −cov(m∗

p,m
∗
all) = −cov(m∗,m∗

all), (16)

µep = −cov(ep,m
∗
all) = −cov(e,m∗

all). (17)

That is, an asset gets a negative expected excess return if it provides insurance for

marginal utility by covarying positively with the extended economy SDF. Arguably, we

should expect that any sensible factor model f produces an SDF m∗ that covaries posi-

tively with the economy-wide SDF. In fact, this is the case empirically for all the factor

models we consider in Section 5. This implies that µm∗
p
< 0. Therefore, under approx-

imation (15), a sufficient condition for nonlinearities to improve upon the linear case is

13Such reasonable distortions would be those consistent with good-deal bounds (Cochrane and Saa-
Requejo, 2000) or, equivalently, the absence of near-arbitrage opportunities (Kozak, Nagel and Santosh,
2020). Moreover, if σ2

e is small relative to σ2
m∗ , σ2

ep is even smaller relative to σ2
m∗

p
. This is because m∗

p

has the same variance as m∗, as m∗
p is equal to m∗ plus a constant, while ep has a smaller variance than

e, as et = a+ ep,t + ηt and V ar(ηt) is nonzero.
14Note that, for the extended economy, it suffices to work with the linear SDF m∗

all as any nonlinear
SDF mall simply adds noise for pricing the entire universe of assets Rall. Note also that m∗

all is the
projection of the “true” unobserved marginal rate of substitution onto the test assets and factors Rall.
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that µep < 0. In other words, if the nonlinearity e is an insurance for systematic risk and

has a small enough variance, the nonlinear SDF m outperforms the linear one m∗. More

than that, the better an insurance e is (the more it covaries with m∗
all), the stronger is

the outperformance of m relative to m∗.

The results above show how nonlinearities can improve the absolute pricing perfor-

mance of a given factor model f relative to the traditional linear case. For model com-

parison between a nonlinear SDF pricing f1 and a nonlinear SDF pricing f2, the first

model would be preferred if Sh2(mp,1) > Sh2(mp,2). Using again (15), this relation can

be approximated by:

Sh2(f1) +
µ2
e1,p

σ2
m∗

1,p

+
2µm∗

1,p
µe1,p

σ2
m∗

1,p

> Sh2(f2) +
µ2
e2,p

σ2
m∗

2,p

+
2µm∗

2,p
µe2,p

σ2
m∗

2,p

. (18)

While it is not possible to derive explicit conditions, nonlinearities can lead to different

conclusions about the preferred model compared to the linear case. That is, we may have

Sh2(f1) < Sh2(f2) but Sh2(mp,1) > Sh2(mp,2) depending on the relative performance

of the nonlinearities in each model (i.e., on the covariance of the nonlinear term of each

model with the economy-wide SDF).

Given that nonlinearities can have important implications for both absolute and rel-

ative asset pricing performance, a natural question is then which nonlinear SDFs to

consider from the no-arbitrage admissible set. On the one hand, this set is too large and

may contain SDFs that are not economically meaningful. On the other hand, focusing

on one specific nonlinear SDF would require a strong prior on a particular form of non-

linearity. In the next section, we propose to work with an economically meaningful and

tractable family of nonlinear SDFs that naturally generalize the linear case.

4. Minimum discrepancy SDFs

As we have shown, traditional tests of factor models are equivalent to using the linear

SDF pricing the factors f as the asset pricing model. The linear SDF is the projection

of any admissible SDF on the space of factors returns, such that m∗ has the minimum

variance among all candidate SDFs (see decomposition 12). We propose to use nonlinear

SDFs that naturally generalize the minimum variance one. More specifically, we consider

SDFs minimizing the Cressie and Read (1984) family of discrepancies:

14
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min
m

E
[
mγ+1−1
γ(γ+1)

]

s.t. E(mf) = 0, E(m) = 1, m ≥ 0,

(19)

where the parameter γ ∈ R indexes the particular Cressie-Read loss function and the

corresponding minimum discrepancy SDF. The minimum variance SDF is a particular

case when γ = 1, with the difference that we impose a nonnegativity constraint in the

SDF.15 This constraint is important to guarantee that the nonlinear SDFs we identify are

consistent with no-arbitrage in the extended economy. This is not necessarily satisfied by

m∗ as it can reach negative values. Whenever the nonnegativity constraint is not binding,

mγ=1 and m∗ are equivalent.

The parameter γ controls the relative importance of higher moments for the minimum

discrepancy SDF and, consequently, the particular shape of its distortion of the linear

SDF. This can be seen by Taylor expanding the expected value of the Cressie-Read loss

function ϕγ(m) = mγ+1−1
γ(γ+1)

around the SDF mean of 1:

E [ϕγ (m)] =
1

2
E (m− 1)2 +

(γ − 1)

3!
E (m− 1)3 +

(γ − 1)(γ − 2)

4!
E (m− 1)4 + . . . (20)

For γ = 1, the minimum discrepancy problem (19) minimizes variance as higher-order

moments are given zero weights. All other discrepancies give the same weight to the

variance, but each one weighs nonlinearities of the SDF differently. The main distinction

comes from whether γ is below or above one. For γ < 1, skewness is maximized as it is

given a negative weight. In contrast, skewness is minimized for γ > 1. The more extreme

the γ, the higher the relative importance of skewness. On the other hand, kurtosis is

minimized for essentially any γ other than one.16

While problem (19) is of infinite dimension, Almeida and Garcia (2017) show that

it can be solved via a much simpler dual problem of dimension equal to the number of

pricing restrictions. Under no-arbitrage, it is equivalent to solve, for γ < 0:17

15This constraint is also considered in Hansen and Jagannathan (1991) as an alternative specification.
16More precisely, the weight to kurtosis is negative for γ between 1 and 2. Even so, it is very close to

zero in the case.
17For γ > 0, the problem is unconstrained with an indicator function in the objective function:

E
[
− 1

γ+1 (1− γθ′f)
( γ+1

γ )
IΘγ(f)(θ)

]
, where Θγ(f) = {θ ∈ RK : (1− γθ′f) > 0} and IA(x) = 1 if x ∈ A,

and 0 otherwise. For γ = 0, the problem is unconstrained and the objective function is exponential:

E
[
−e−θ′f

]
.
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θγ = arg max
{θ∈RK :(1−γθ′f)>0}

E
[
− 1

γ + 1
(1− γ θ′f)

( γ+1
γ

)

]
, (21)

where the minimum discrepancy SDF can be recovered from the first-order condition of

(21) with respect to θ, evaluated at θγ:

mγ =
(
1− γ θ′γf

) 1
γ . (22)

Mathematically, θγ is the vector of Lagrange multipliers associated with the Euler equa-

tions for the factors in (19). Economically, (21) can be interpreted as an optimal portfolio

problem for an investor maximizing a HARA utility function with concavity parameter γ,

where θγ is proportional to the optimal allocation of wealth in the factors f . We discuss

this interpretation in more detail in the next subsection.

4.1. Economic interpretation

Consider a standard optimal portfolio problem for an investor with HARA utility:

uγ(W ) = − 1

γ + 1
(b− aγW )

γ+1
γ , (23)

where a > 0 and b − aγW > 0, which guarantees that the function uγ is well-defined,

concave and strictly increasing. The investor distributes her initial wealthW0 by investing

θ̃ units of wealth on the factors with excess returns f , such that the end-of-period wealth

is given by W (θ̃) = W0Rf + θ̃′f , where Rf is the risk-free rate. The optimal allocation is

chosen as to maximize expected utility:

θ̃γ = max
θ̃∈RK

E
[
uγ(W (θ̃))

]
. (24)

Almeida and Freire (2022) show that there is a one-to-one mapping between problem (24)

and the dual problem (21) for a given γ. This is such that the SDF mγ is proportional to

the marginal utility of the HARA investor with concavity parameter γ. Moreover, it holds

that θγ = θ̃γa/(b−aγW0Rf ), i.e., the optimal Lagrange multipliers θγ are proportional to

the optimal portfolio weights θ̃γ. Importantly, the parameter γ also indexes the attitude

towards risk of the investor: the higher the γ, the higher the coefficient of absolute risk

aversion −uγ ′′(W )/uγ ′(W ) = a/(b− γaW ).
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The SDF mγ is economically meaningful as it reflects the return on the wealth of a

risk averse investor who is evaluating whether test assets would add value to her portfolio

of factors. While the interpretation is not necessarily that of an equilibrium asset pricing

model, mγ can be mapped to popular models for specific values of γ and specifications

of f . To see that, let Wγ = θ̃′γf be the endogenous wealth of the investor and Taylor

expand the marginal utility uγ ′(W (θ̃)) around the initial wealth w0 = W0Rf to obtain:18

(25)uγ ′(W (θ̃)) = uγ ′(w0) + uγ ′′(w0)Wγ +
1

2
uγ ′′′(w0)W

2
γ +

1

3!
uγ ′′′′(w0)W

3
γ + ...

If γ = 1, the utility function is quadratic and the weights to all nonlinearities are zero,

such that the linear SDF characterizing the CAPM is obtained when f equals the market

factor. If γ = 1/2, higher terms beyond W 2
γ are set to zero, and a three-moment CAPM

(Kraus and Litzenberger, 1976; Harvey and Siddique, 2000) is obtained. If instead γ =

1/3, higher terms beyond W 3
γ are zero and the SDF is consistent with a four-moment

CAPM (Dittmar, 2002). In general, however, the minimum discrepancy SDFs will depend

on all nonlinearities of the optimal portfolio returnsWγ in different ways. This is desirable

given the importance of higher moments other than the third and the fourth to capture

investors’ preferences towards tail probabilities (Chung, Johnson and Schill, 2006).

Relatedly, the minimum discrepancy SDFs account for a diverse set of preferences

towards higher co-moments with the endogenous wealth when evaluating the abnormal

performance of a generic asset with excess return Ri. To show that, we Taylor expand

the risk-neutralized excess return (1− γ Wγ)
1
γ Ri around E[Wγ] and take expectations:

(26)

E[(1− γ Wγ)
1
γ Ri] = (1− γE[Wγ])

1
γE[Ri]− (1− γE[Wγ])

1−γ
γ E[Ri(Wγ − E[Wγ])]

+
1

2
(1− γ)(1− γE[Wγ])

1−2γ
γ E[Ri(Wγ − E[Wγ])

2]

− 1

6
(1− γ)(1− 2γ)(1− γE[Wγ])

1−3γ
γ E[Ri(Wγ − E[Wγ])

3] + ...

The expression above reveals that the pricing error αi ≡ E[(1− γ Wγ)
1
γ Ri], or the abnor-

mal performance of asset i with respect to the factors, depends on a particular combina-

tion of co-moments withWγ. Since (1−γWγ) is nonnegative by construction, (1−γE[Wγ])

is also nonnegative and the signs of the weights given to co-moments are determined only

by γ. All SDFs imply a negative weight to the covariance: any expected return that

is earned by covarying with Wγ (and thus negatively covarying with the SDF) gets dis-

counted, leading to a smaller αi.

18The derivatives are given by uγ ′(w0) = a(b− aγw0)
1
γ , uγ ′′(w0) = −a2(b− aγw0)

−1+ 1
γ , uγ ′′′(w0) =

a3(1− γ)(b− aγw0)
−2+ 1

γ , uγ ′′′′(w0) = −a4(1− γ)(1− 2γ)(b− aγw0)
−3+ 1

γ and so on.
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Preferences for coskewness, on the other hand, depend on whether γ is below or above

one. For γ < 1, investors value assets that offer protection against extreme deviations

of wealth from its mean (i.e., asset returns that go up when Wγ is volatile), such that

positive coskewness increases αi. For γ > 1, assets compensating for intermediate states

of wealth are preferred (i.e., returns that go up when Wγ is not volatile), such that

negative coskewness increases the αi. As for cokurtosis, its weight is negative for nearly

all γ’s (with exception of 1/2 < γ < 1). This means that positive cokurtosis decreases

abnormal performance as investors discount asset returns that do not help make the

tails of the wealth distribution thinner. In the particular linear case with γ = 1, higher

co-moments are given zero weights and only factor covariance risk is accounted for.

4.2. Illustration

To illustrate how γ affects the shape of the SDF, the left panel of Figure 1 plots

three SDFs obtained from the market factor as a function of the factor returns.19 Each

market return state corresponds to one time-series observation in our data. The minimum

variance SDF m∗ is a linear function of the market. Since it never attains negative values

for these returns, m∗ is equal to the SDF minimizing the Cressie-Read loss function with

γ = 1. For γ = −2, the SDF maximizes skewness and is thus a convex function of market

returns, giving more weight to both large negative and positive returns compared to m∗.

In particular, “bad” states of nature with the lowest returns get highly overweighted.

In contrast, for γ = 4, skewness is minimized and the SDF is a concave function of the

market, reducing the weight given to extreme returns compared to the linear case. For

the largest returns, which represent “good” states of nature with low marginal utility,

the nonegativity constraint is binding and an indicator function sets SDF values to zero.

The shape of the SDF is directly related to the shape of the nonlinearity it adds to m∗.

The right panel of Figure 1 depicts, as a function of market returns, the nonlinear term

eγ = mγ−m∗ for both γ = −2 and γ = 4. Nonlinear SDFs minimizing discrepancies with

γ < 1 increase skewness of m∗ by adding more weight to extreme returns, while those

for γ > 1 decrease skewness by reducing compensation for both bad and good states of

nature. The smaller (greater) the γ below (above) one, more (less) importance is given to

19As can be seen in Equation (22), the SDF is a function of the returns of the optimal portfolio of the
factors: θ′γf . Since the CAPM is a one-factor model, θγ is only a scaling parameter, such that we can
plot the SDF directly as a function of f . In the case of a multi-factor model, the same patterns discussed
below will hold, but with the SDF plotted as a function of θ′γf .
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extreme returns. This also helps understand the preferences for coskewness embedded in

the Cressie-Read SDFs. Investors associated with γ < 1 have higher marginal utility for

extreme factor returns relative to the linear case, such that they value assets with returns

that go up during those states. In contrast, for γ > 1, marginal utility is higher, compared

tom∗, for intermediate factor returns, such that asset returns offering protection for those

states are preferred.

4.3. Restricting the admissible set

The no-arbitrage admissible set of nonlinear SDFs pricing a given set of factors is

very large. This is such that one needs to impose additional structure to study how

nonlinearities affect pricing performance. We propose to restrict the admissible set to

SDFs minimizing Cressie-Read discrepancies. These SDFs satisfy a number of important

properties. More specifically, as previously shown, they embed the minimum variance

SDF as a particular case; impose no-arbitrage by construction; are associated with eco-

nomically meaningful preferences; and are indexed by a single parameter γ that controls

the nonlinear term added to the benchmark linear SDF. The latter property allows us to

assess pricing performance as a function of γ and interpret it in light of the nonlinearities

this parameter represents.

In principle, the parameter γ coves the whole real line. However, Almeida and Freire

(2022) show that there is no solution to the minimum discrepancy problem when γ → −∞

or γ → ∞. This is because, for large negative and positive γ’s, distortions become too

extreme to still be able to satisfy the pricing restrictions for the basis assets (in our case,

the factors f). In fact, they show that solution exists within an interval [γ, γ] and provide

an algorithm to find this set. This interval depends on the basis assets under considera-

tion. In our empirical analysis, to be able to compare different models on the same basis,

we consider a fixed interval between γ = −3 and γ = 30 that guarantees solution for all

the factor models we analyze.20 Our results do not depend on this particular choice as

this interval is broad enough to capture the main effects of nonlinearities. In practice,

for each factor model f , we estimate minimum discrepancy SDFs pricing f indexed by

γ ∈ [−3, 30], with a grid with spacing of 1.21

20The absolute value of γ is much higher than that of γ because the set of solutions for negative γ’s
is smaller as they enforce distortions that are more extreme than those for positive γ’s.

21This spacing is sufficient as the minimum discrepancy SDFs change continuously with γ.
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4.4. How restrictive is the Cressie-Read family?

As detailed above, the Cressie-Read SDFs are hyperbolic functions of a linear combi-

nation of the factors, which can be traced back to the marginal utilities of HARA investors

solving a one-period optimal portfolio problem. The HARA class is a considerably large

class of risk averse investors. In fact, Almeida and Freire (2022) show that this class

comes close to generating the same pricing implications as the entire set of SDFs com-

patible with risk aversion, with the advantage that the Cressie-Read SDFs are indexed

by a single parameter. Therefore, going beyond the set of nonlinear SDFs we propose

would essentially mean considering SDFs inconsistent with risk aversion in a one-period

problem. In this sense, any improvements we document coming from the Cressie-Read

SDFs relative to the linear SDF can be seen as a lower bound to the added value of

nonlinearities coming from meaningful preferences.

Even so, it is worth discussing how our approach compares to popular alternatives

in the literature for introducing nonlinearities. One such alternative, as in Harvey and

Siddique (2000) and Dittmar (2002), has been to Taylor expand the marginal rate of

substitution to get the SDF as a polynomial of a state variable, usually the market

return. While this can work well for obtaining a nonlinear CAPM, it quickly becomes

unfeasible as the number of factors increases and the powers of each factor need to be

included. The Cressie-Read SDFs overcome this issue by introducing nonlinearities in a

meaningful portfolio of the factors. In fact, as shown in (25), these SDFs can be seen as

a polynomial with all powers of the optimal portfolio of the factors in a given model.

One could also be tempted to employ machine learning techniques, such as neural

networks as in Bansal and Viswanathan (1993), to estimate a general nonlinear SDF.

These methods could be well-suited if one wanted to find a nonlinear function of the

factors that maximizes the Sharpe ratio of its mimicking portfolio when projected onto

test assets. However, this would require using information from the test assets, thus not

fulfilling our goal of extending traditional tests of factor models, where only data on the

factors can be used to obtain the SDF. In this case, a neural network is uninteresting: if

the criterion is to maximize the Sharpe ratio obtainable from the factors, this is already

done by the linear SDF that minimizes variance. Similarly, if the criterion is to minimize

different discrepancy functions, this is already achieved by the Cressie-Read SDFs.
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5. Empirical analysis

In this section, we describe the factor models and test assets we consider in our

analysis and discuss the empirical results. More specifically, we first analyze how the

nonlinear models compare to the linear model for a given factor model f , i.e., we study

the implications of nonlinearities for absolute pricing performance. Then, we investigate

the implications for model comparison by examining how the best nonlinear model of

factors f1 compares to that of f2 and contrasting that with the relative performance

under the linear case. Our goal is not to formally test which factor model is the best,

but rather to explore and interpret how pricing performance varies when we entertain

alternative functional forms for the model state variables beyond the linear one.

5.1. Data on factor models and test assets

We consider 10 traded factor models in total, ranging from more classical models to

recent specifications proposed by the literature. The first model is the seminal CAPM,

consisting of the value-weighted market excess return (MKT). The second model, by He,

Kelly and Manela (HKM, 2017), adds a financial intermediary capital risk factor (FIRFT)

to the market factor. Their motivation is that intermediaries are marginal investors in

many markets, such that their financial soundness should be important for asset prices.

The third is the Frazzini and Pedersen (2014) model, which adds to the MKT a portfolio

long on low-market-beta stocks and short on high-beta stocks (BAB). The economic

intuition behind their factor is that constrained investors who cannot use leverage bid up

high beta assets, causing those assets to offer lower returns. The fourth factor model, by

Daniel, Hirshleifer and Sun (DHS, 2018), augments the market factor with two factors

that capture long- and short-horizon mispricing (FIN and PEAD).22 These factors are

based on behavioral theories of investor overconfidence and limited attention.

Fifth, we consider the three-factor model of Fama and French (FF3, 1993), which

includes the small-minus-big (SMB) and high-minus-low (HML) factors capturing the

size effect and the value effect, respectively. The sixth model is the investment q-factor

model (q4) of Hou, Xue and Zhang (2015). Motivated by the neoclassical q-theory of

investment, they include beyond the market their own size factor (ME), an investment

factor (IA) and a profitability factor (ROE). The seventh model is the five-factor model

22FIN is a financing factor exploiting underreactions to issuance/repurchase activity. PEAD is based
on the post-earnings announcement drift, which reflects delayed price response to information.
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of Fama and French (FF5, 2015), that adds to the FF3 two factors capturing profitability

(RMW) and investment (CMA) patterns in stock returns. The eighth is the hedged-

FF5 (FF5*) of Daniel et al. (2020) that statistically removes unpriced risk from each

of the original FF5 factors. Ninth, we add the momentum factor (UMD) to FF5 to

obtain a six-factor model (FF6). The momentum factor is motivated by Carhart (1997).

Finally, the tenth model is composed of the six factors statistically selected by Barrilas

and Shanken (BS, 2018) using a Bayesian method. The model includes the market, the

q4 investiment and profitability factors, the small-minus-big of FF3, the high-minus-low

updated monthly (HMLm) from Asness and Frazzini (2013) and the momentum factor.

Since there is some overlap across the 10 factors models, in the end we have 19 unique

factors. Our sample ranges monthly from July 1972 to October 2018, encompassing 556

months. This is the largest sample range for which data on all factors is readily available.23

Table 1 provides summary statistics for the monthly returns of each factor. All factors

have positive average returns. The FIRFT is the factor with the highest premium, but

it is also the most volatile one. Average returns are all statistically significant at the

5% level, with the exception of the size factors. In fact, SMB, ME and SMB* yield the

lowest Sharpe ratios. The highest Sharpe ratios come from the PEAD and BAB factors.

Moreover, while the hedged FF5* factors command smaller premiums than their original

counterparts, they reduce the volatility substantially, ultimately increasing the t-statistic

and the Sharpe ratio.

Figure 2 reports the factor correlations. Alternative versions of the same factor (e.g.,

SMB and ME, CMA and IA, RMW and ROE, HML and HMLm) are naturally highly

correlated. Similarly, each of the FF5 factors has a strong positive correlation with its

hedged FF5* counterpart. FIRFT and FIN have the highest positive and highest negative

correlations with the market factor, respectively. FIN also correlates substantially with

HML, IA, RMW and CMA, while PEAD has very low correlations with other factors.

The UMD factor mostly displays low correlations, with the exception of a strong negative

correlation with HMLm. Finally, BAB correlates mildly with FIN and MKT*.

As test assets, we follow the common practice in the recent empirical asset pricing

literature of considering anomaly portfolios. We use 44 anomalies from Kozak, Nagel and

Santosh (2020) that are available for the same sample period as the factors. The complete

list of anomalies is provided in Appendix B. The entire universe of test assets Rall in

23In Appendix B, we describe our data sources.
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our baseline analysis consists of the 44 anomalies plus the 19 unique factors, totaling

63 assets. That is, we assess the ability of each model to price not only the basis test

assets, but also the factors in the competing models. In additional tests, we alternatively

consider a different set of 118 anomalies from Hou, Xue and Zhang (2020) and traditional

test assets such as the 25 size/book-to-market portfolios of Fama and French (1993) and

49 industry portfolios.

We also analyze the pricing performance of 17 nontraded factors from Bryzgalova,

Huang and Julliard (2023): LIQNT, the liquidity factor of Pastor and Stambaugh (2003);

INTERMCAPRATIO, innovations to the intermediaries’ capital ratio of He, Kelly and

Manela (2017); measures of financial (FINUNC), real economic activity (REALUNC)

and macroeconomic (MACROUNC) uncertainty of Jurado, Ludvigson and Ng (2015);

the term spread and default spread, TERM and DEFAULT, respectively; DIV, the div-

idend yield; UNRATE, unemployment rate; PE, Price-earnings ratio; the investor sen-

timent measures from Baker and Wurgler (2006) and Huang et al. (2015), BWISENT

and HJTZISENT, respectively; the growth rate of nondurable consumption (NONDUR),

service expenditure (SERV), industrial production (IPGrowth) and the producer price

index for crude petroleum (OIL); and the slope of the yield curve (DeltaSLOPE). The

nontraded factors are available from October 1973 to December 2016.

5.2. Baseline analysis

In Section 3, we show how to incorporate nonlinearities into asset pricing tests. The

relevant metric of pricing performance and model comparison becomes the squared Sharpe

ratio (SR2) of the mimicking portfolio of the nonlinear SDF pricing the factors of a

given model. While we discuss population results in the theory, it is straightforward to

implement our approach by using sample analogues. Therefore, for each factor model f ,

we first compute Sh2(m∗
p), which is simply the maximum SR2 attainable from the factors,

that is, the usual metric Sh2(f) from traditional tests. Then, for each γ in the grid we

consider, we obtain mγ from (22) and compute the SR2 of its mimicking portfolio. This

analysis uses the whole sample from July 1972 to October 2018.

Figure 3 plots, for each factor model, the SR2 across γ. The horizontal line depicts the

performance of the linear SDF. A clear pattern can be observed across all factor models.

For γ < 1, the SR2 is always below the linear benchmark and rapidly decreases as γ de-

creases. In contrast, pricing performance increases substantially for γ > 1 relative to the
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linear SDF. In some cases, such as for the CAPM and the BAB, the SR2 can even double.

This is striking as the minimum discrepancy SDFs do not use any information about the

test assets in their construction, nor are they optimized to maximize performance across

the entire universe of test assets. Instead, such improvement in absolute pricing perfor-

mance comes solely from economically meaningful nonlinearities in the factors embedded

in mγ(f). The only exception is the FF3, for which the linear specification is already the

optimal one within the set of SDFs we consider.

To help understand the patterns in SR2 across γ, we report in Figures OA.1 and OA.2

in the Online Appendix how the volatility and mean of the mimicking portfolio of mγ

varies with γ for each factor model. First, the volatility of the mimicking portfolio of all

the nonlinear SDFs is above that of the linear SDF, which is natural as the latter is the

minimum variance SDF. However, the volatility is much higher for γ’s below one, while

it is close to the linear case for γ’s above one. This is because, as discussed in Section 4,

for γ < 1 skewness is maximized, such that the SDF is convex and reaches much higher

values for extreme factor returns. This makes the SDF considerably more volatile than

the ones for γ > 1 that minimize skewness and give less weight to extreme returns.

The result above could in principle already explain the low SR2 associated with γ < 1.

However, for γ > 1, the mean of the SDF mimicking portfolio must be compensating its

additional volatility to yield a higher SR2 than the linear SDF. In fact, we find that

this is the case for all factor models except for FF3: for γ’s above one, the mean of the

mimicking portfolio is more negative than that of the linear SDF. This means that the

nonlinearity eγ covaries positively with the economy-wide SDF, i.e., it offers an additional

insurance against systematic risk. In contrast, for γ < 1, the nonlinear term eγ has a

positive mean, reducing the mimicking portfolio insurance capacity relative to the linear

case and contributing even more for a low SR2. Therefore, higher degrees of absolute

risk aversion embedded in nonlinear SDFs indexed by γ > 1 increase the covariance with

the true marginal rate of substitution.

To assess whether the improvements in SR2 coming from nonlinearities in Figure 3 are

statistically significant, we rely on the asymptotic test for differences in SR2 from Barillas

et al. (2020). More specifically, we consider the version of their test for nontraded factors,

which fits to our case since we use an SDF as the asset pricing model. This test takes

into account the additional uncertainty involved in computing the mimicking portfolio of

a nontraded factor for the calculation of its SR2. Figure 4 plots, for each factor model
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and each γ, the t-statistics for the difference between the SR2 of the mimicking portfolio

of mγ and that of the linear SDF m∗. As can be seen, for 7 out of the 9 factor models

(excluding FF3), there are statistically significant improvements in SR2 associated with

γ’s above one. The exceptions are the HKM and the FF5 factor models. This indicates

that the substantial increase in pricing performance by allowing for nonlinearities cannot

be explained by estimation uncertainty.

While so far we have analyzed the impact of nonlinearities for absolute pricing per-

formance, we now focus on its implications for comparison across different factor models.

Figure 5 depicts, for each factor model, the SR2 associated with the best nonlinear SDF

(within the Cressie-Read family) and the one coming from the linear SDF. Interestingly,

nonlinearities substantially improve the performance of the CAPM, imposing a stronger

hurdle to beat it. While the traditional linear approach implies that both the HKM and

FF3 models outperform the CAPM, the opposite is true when we allow for nonlinearities.

This is aligned with the literature showing that nonlinear versions of the CAPM perform

well in cross-sectional asset pricing (Harvey and Siddique, 2000; Dittmar, 2002; Chung,

Johnson and Schill, 2006).

Another model that benefits substantially from incorporating nonlinearities is the

BAB. Even though it is outperformed by FF5 under the linear metric, its best nonlinear

SDF yields a SR2 that is 46% higher than that of the best nonlinear model of FF5. A

similar change in ranking can be observed for q4 and FF6, where the latter becomes the

preferred model under nonlinearities. Overall, the best performing factor model is the

DHS, followed by BS and FF5*. Since these three factor models benefit similarly from

nonlinearities, the ranking between them is the same compared to the linear case. In

this sense, such ranking is robust within the Cressie-Read family of nonlinearities when

considering the anomalies of Kozak, Nagel and Santosh (2020) as test assets.

It is worth noting that for nested factor models like the CAPM and FF3, it is not

possible under the traditional linear approach for the nested model to have a higher

SR2 in-sample than the nesting model. This is simply because with the nesting model

one has access to more investment opportunities and can find a risk-return trade-off at

least as good as the one attainable with the nested factors. The same is not true when

nonlinearities are allowed for. In fact, we see that the best nonlinear model of the CAPM

outperforms that of the FF3. The reason is that, in contrast to the linear case, the

mimicking portfolio of a nonlinear SDF loads on the entire universe of test assets, such
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that investment opportunities are not nested anymore.

In sum, we show that allowing for nonlinearities has deep implications for asset pricing.

For nearly all factor models, absolute pricing performance improves substantially by

considering nonlinear SDFs. This means that economically meaningful nonlinear versions

of these factor models come closer to spanning the mean-variance frontier of the extended

economy that includes all factors and test assets. Furthermore, model comparison is also

affected, as it is often the case that the ranking between two factor models changes if

we incorporate nonlinearities. In the next subsection, we provide further evidence from

different sets of test assets.

5.3. Different test assets

In this subsection, we conduct our analysis considering three alternative sets of test

assets: 118 anomalies from Hou, Xue and Zhang (2020); the 25 size/book-to-market port-

folios of Fama and French (1993); 49 industry portfolios; and only the factors themselves

(in this case, Rall consists only of the 19 unique factors across the 10 factor models). In

particular, we investigate whether the patterns of absolute pricing performance across γ

observed for the anomalies are similar for other sets of test assets. Moreover, while test

assets are irrelevant for model comparison under the traditional linear tests (Barillas and

Shanken, 2017), we show in Section 3 that they are relevant in the case of nonlinear SDFs

as they are needed to mimic nonlinearities. Therefore, we analyze how relative pricing

performance varies with the set of test assets under consideration.

Figure 6 depicts, for each factor model and for each set of test assets, the SR2 across

γ. Again, the horizontal line denotes the performance of the linear SDF, which does not

depend on the test assets. For most factor models, patterns are similar across the different

test assets. Namely, the squared Sharpe ratio is usually below the linear case for γ < 1,

while it is above for γ > 1. This reinforces our finding that nonlinear SDFs associated

with higher degrees of risk aversion tend to increase co-movement with the economy-wide

SDF. One interesting exception is the CAPM, for which SDFs associated with γ’s below

1 lead to the highest Sharpe ratios for the alternative sets of test assets. This means

that, for pricing those sets of assets, accounting for positive coskewness with the market

factor is relatively more important than higher absolute risk aversion, which is consistent

with Harvey and Siddique (2000). Overall, with the exception of FF3, incorporating

nonlinearities often leads to improvements in absolute pricing performance compared to
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the linear SDF when considering other sets of test assets.24

Figure 6 further shows that, for a given factor model, improvements in pricing per-

formance from nonlinearities can depend on the set of test assets being priced. This

implies that relative model comparison should also depend on test assets. In fact, this

is readily seen in Figure 7, which plots the SR2 associated with the linear SDF, and

the best nonlinear SDF for each factor model and each set of test assets. In particular,

the most important implication is for defining the best performing factor model. While

under the linear case and the nonlinear case with anomalies the DHS outperforms BS,

the opposite is true for all other sets of test assets, where BS attains the highest SR2.

The SR2 of the best nonlinear model of BS can be even 35% higher than that of the DHS

when pricing the 49 industry portfolios. This highlights the relevance of test assets for

model comparison once nonlinearities are contemplated.

5.4. Observable factors vs. latent factors

The factor models we have analyzed so far come from a long tradition in asset pricing

attempting to explain cross-sectional variation in expected returns with a small number

of factors that are observable (i.e., defined by sorting on a given observed stock char-

acteristic). The idea that the SDF is a linear function of a few observable factors has

been recently questioned by Kozak, Nagel and Santosh (2020). Considering a large num-

ber of characteristics-based portfolios, they use model selection techniques to show that

an SDF that is a sparse linear function of those portfolios performs worse in pricing

the cross-section than a sparse linear SDF on high-variance principal components (PCs)

summarizing information from all the portfolios.

In this subsection, we analyze how nonlinearities affect the comparison between low-

dimensional observable factor models proposed by the literature and low-dimensional

latent factor models based on PCs of the test assets. More specifically, we consider the

Barillas and Shanken (2018) six-factor model, which performs best among the observable

factor models across the different test assets (as seen in Section 5.3), and a model with

the top six PCs explaining most of the variation in the test assets returns. We also

include a model with the top six risk-premium principal components (RP-PCs) following

24In Figure OA.3 in the Online Appendix, we report the statistical significance of the difference
between the SR2 of the mimicking portfolio of mγ and that of the linear SDF for each set of test assets.
For 7 out of 9, 5 out of 9 and 5 out of 9 factor models, there are statistically significant improvements
for the 25 size/book-to-market portfolios, 49 industry portfolios and only the factors as test assets,
respectively.
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the method of Lettau and Pelger (2020), which extracts latent factors that maximize

explained return variation while minimizing cross-sectional pricing errors.

The upper panel of Figure 8 reports, for each set of test assets, the maximum squared

Sharpe ratio attainable from the different models. As can be seen, the BS observable

factor model always outperforms the PC model under the linear metric, often by a large

extent. On the other hand, RP-PCs perform much better than PCs, which is expected

as this method is designed to extract latent factors with high Sharpe ratios. This is such

that RP-PCs deliver higher maximum Sharpe ratios than BS for anomaly portfolios,

while the opposite is true for size/book-to-market and industry portfolios. The lower

panel depicts the squared Sharpe ratio associated with the best nonlinear SDF pricing

each factor model.25 The BS benefits relatively more from nonlinearities, such that now

it is comparable to RP-PCs for the HXZ anomalies, and even better than before for the

size/book-to-market and industry portfolios. For the KNS anomalies, RP-PC is still the

best model, but the difference with respect to BS is smaller than under the linear metric.

The performance of the traditional PC factors is generally poor also under nonlinearities.

The results above show that there is still hope for low-dimensional observable factor

models in explaining the cross-section of returns, at least relatively to latent factor models

when nonlinearities are taken into account. Under a nonlinear SDF, the BS delivers

pricing performance that is comparable to or better than RP-PCs, which are based on

a method that uses information from the test assets to extract latent factors with low

cross-sectional pricing errors. The evidence in favor of observable factors is even stronger

if PCs are considered as the benchmark. In other words, the SDF is more likely to be

a low-dimensional function of observable factors if nonlinearities are contemplated. This

suggests that considering nonlinear functions of such state variables can be an alternative

to extracting latent factors from a large cross-section of assets.

5.5. Nontraded factors

In this subsection, we investigate the implications of incorporating nonlinearities when

evaluating one-factor models composed of each of the 17 nontraded factors obtained from

Bryzgalova, Huang and Julliard (2023). The universe of test assets is the same as that of

the baseline analysis, i.e., the 19 traded factors and the 44 KNS anomalies. As we show in

25In Figure OA.4 in the Online Appendix, we show that the same pattern observed in Figure 3 of
maximum Sharpe ratios being higher (lower) than the linear case for γ > 1 (γ < 1) holds for the latent
factor models.
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Appendix A, for a given SDF specification (linear or nonlinear), the pricing performance

metric of a nontraded factor boils down to the squared Sharpe ratio of the mimicking

portfolio of the SDF that prices the mimicking portfolio of the nontraded factor.

Figure 9 plots, for each nontraded factor, the squared Sharpe ratio associated with

the linear SDF and the best nonlinear SDF within the Cressie-Read family.26 Similarly

to the results for traded factors, nonlinearities substantially improve pricing performance

relative to the linear case. In fact, for 9 out of the 17 models, the squared Sharpe ratio

more than doubles when nonlinearities are taken into account. There is one important

difference, however: for nontraded factors, the mimicking portfolios of both the linear

and nonlinear SDF load on all assets, while for traded factors the mimicking portfolio of

the linear SDF loads only on the factors in the model. Therefore, the evidence that non-

linearities also improve performance for nontraded factors indicates that the relevance of

nonlinearities in the traded factor case cannot be explained by the fact that the mimicking

portfolio of the nonlinear SDF trades on more assets than that of the linear SDF.

Figure 9 further shows that nonlinearities have strong implications for comparing non-

traded factors. This is evident from the notable shifts in rankings across different models.

For instance, among the 17 models, UNRATE jumps from the 12th position under lin-

earity to the 5th one under the nonlinear case. Moreover, while BWISENT is by far the

best overall model under the linear metric, it is matched by DIV when nonlinearities are

incorporated. This is because DIV benefits substantially from the nonlinear specifica-

tion, which is aligned with the fact that dividends are nonlinearly related to returns (see,

e.g., Giglio, Kelly and Kozak, 2023). The performances of BWISENT and DIV under

the nonlinear case are remarkable, as the Sharpe ratios associated with these one-factor

models are comparable to those of the best traded multi-factor models in Figure 5.

Nonlinearities are especially important for the pricing performance of consumption

factors: the squared Sharpe ratios of NONDUR and SERV more than triplicate with

the best nonlinear SDF. Breeden, Gibbons and Litzenberger (1989) discuss how the tra-

ditional consumption-CAPM (CCAPM) relies on a linear approximation that ignores

higher-order co-moments with consumption. Our results suggest that such approxima-

tion comes with a high cost. In particular, Breeden, Gibbons and Litzenberger (1989)

show that the empirical pricing performance of the CCAPM is similar to that of the

CAPM. We find the same for the CAPM and SERV under the linear metric. However,

26In the Online Appendix, Figure OA.5 reports the SR2 across γ, showing that for most factor models
the usual pattern of Sharpe ratios being higher (lower) than the linear case for γ > 1 (γ < 1) holds.
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under the nonlinear specification, SERV leads to higher Sharpe ratios, supporting the

idea of a nonlinear CCAPM.

6. Robustness

In this section, we provide additional empirical results providing support and robust-

ness to our main empirical analysis. For all these results, we consider the baseline set

of 10 traded factor models and the 44 anomalies of Kozak, Nagel and Santosh (2020) as

test assets, such that the entire universe of assets is comprised of the 19 unique factors

and the anomalies.

6.1. Out-of-sample in the time-series

The results in Section 5 are out-of-sample in the cross-sectional dimension, in the

sense that we investigate the performance of SDFs obtained from a set of factors in

pricing test assets that were not used in the estimation. However, the results are based

on the whole sample period, such that they focus on ex-post maximum Sharpe ratios.

In the presence of estimation risk, these Sharpe ratios will be biased upward and differ

from what investors can actually attain in practice. In this subsection, we address this

concern with a pricing exercise that is also out-of-sample in the time-series dimension.

For each factor model, we first estimate the mimicking portfolio of the linear SDF

pricing the factors using the entire past history of returns. Then, we keep the portfolio

weights in the next month to compute the out-of-sample return of selling the mimicking

portfolio.27 We repeat this procedure until the whole sample is exhausted, where we

require an estimation window of at least 30 years. For each factor model, we follow the

same procedure to compute the out-of-sample returns of selling the mimicking portfolio

of the best nonlinear SDF pricing the factors. The best nonlinear SDF is the one that

yields the highest SR2 in each (expanding) estimation window.

Figure 10 plots, for each factor model, the cumulative return over the out-of-sample

window of the mimicking portfolio of the best nonlinear SDF and the linear SDF. Cu-

mulative returns are directly comparable and reflect risk-adjusted performance as all

portfolio returns have been scaled to have the same volatility as the market factor. As

27The mimicking portfolio of an SDF has negative mean as it provides insurance against systematic
risk, such that one needs to sell it to get a risk premium. This is easily seen in the linear case where the
mimicking portfolio of the linear SDF is minus the tangency portfolio (see Equations 10 and 11).
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can be seen, the nonlinear SDF outperforms the linear SDF across all factor models.

While the difference is small for HKM, FF3 and q4, the improvement is substantial for

the remaining seven models. The cumulative return when incorporating nonlinearities

can be up to twice as high as the linear approach, as observed for BAB. Interestingly,

the cumulative return associated with the nonlinear SDF is nearly always above that of

the linear SDF over time. For most factor models, the outperformance of the nonlinear

approach appears to be more acute after the 2008 financial crisis. Overall, this provides

further evidence that nonlinearities consistently improve upon the linear case.

In terms of model comparison, nonlinearities also lead to different conclusions relative

to the traditional approach. Figure 10 shows that the best performing linear model in the

out-of-sample period is FF5*. In contrast, under the best nonlinear SDF, the factor model

with highest cumulative return is BAB. The DHS comes in third place. In particular, even

though the linear SDF of DHS is almost tied with that of BS, the nonlinear specification

of the former factor model delivers much stronger performance than that of the latter.

Moreover, while q4 outperforms FF5 and FF6 under the linear metric, the opposite is

true when taking nonlinearities into account. Finally, the CAPM is preferred over HKM

and FF3 under both the linear and nonlinear SDFs.

In sum, we show that the substantial improvements in maximum squared Sharpe ratios

associated with nonlinearities are robust to estimation uncertainty and hold out-of-sample

in the time-series dimension. The implications of nonlinearities for model comparison are

also nontrivial in the out-of-sample exercise, often leading to different conclusions about

relative model pricing performance.

6.2. Bootstrap simulations

In this subsection, we adopt an alternative approach to account for sampling error in

both in-sample and out-of-sample Sharpe ratios. More specifically, we conduct bootstrap

simulations to statistically assess differences in pricing performance, following a similar

methodology to Fama and French (2018) and Detzel, Novy-Marx and Velikov (2022). We

split the 555 months of our sample period into 185 adjacent triads: months (1, 2, 3), (4,

5, 6), . . . , (553, 554, 555).28 A simulation run draws a random sample of 185 triads with

replacement. The in-sample (IS) simulation run chooses two months randomly from each

triad in the run, reusing the same two months if the triad is drawn more than once. We

28To make the number of months divisible by three, we drop the first month of our sample.
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calculate the IS SR2 for each factor model and γ on that sample of months. We then

apply the respective mimicking portfolio weights in the unused months of the simulation

triads to produce the corresponding out-of-sample (OOS) estimates.

Table 2 reports, for each factor model and for the IS and OOS samples, the mean SR2

across bootstrap runs of both the linear SDF pricing the factors and the best nonlinear

SDF. We also report the percentage of times that the best nonlinear SDF outperforms

the linear SDF. Results are based on 1,000 bootstrap runs. It is worth noting that the

“optimal” γ that yields the highest SR2 is allowed to vary across bootstrap runs, that

is, we view the optimal γ as random. Focusing first on the IS estimates, the mean SR2

of the best nonlinear specification is always higher than that of the linear specification.

In fact, for all factor models, the nonlinear SDF beats its linear counterpart for the vast

majority of the bootstrap runs, ranging from 84.2% to 99.7% of the times.

As for the OOS estimates, results are similar to in-sample. The main difference is that

the maximum Sharpe ratios are generally smaller, which is expected given the upward

bias of IS estimates. The mean SR2 of the best nonlinear SDF is again always higher

than that of the linear SDF, but the improvement is relatively smaller compared to in-

sample. This is due to the estimation uncertainty associated with the selection of the

optimal γ and the weights in the mimicking portfolio of the nonlinear SDF. Even so, this

uncertainty is small compared to the overall improvement in performance coming from

nonlinearities. The nonlinear SDF still outperforms the linear benchmark in the majority

of the simulation runs, across all factor models.

We next focus on the implications of nonlinearities for model comparison. Table 3

shows, for each factor model and for the IS and OOS samples, the mean rank of its linear

SDF among the other linear models and the mean rank of its best nonlinear SDF among

the other candidate best nonlinear models. We also report the percentage of bootstrap

runs that the specification of a given factor model was chosen as the best in terms of

SR2. Starting with the IS estimates, under the traditional linear approach the CAPM is

always the worst performing model, while DHS is most often the best one. In contrast,

when allowing for nonlinearities, the CAPM becomes comparable to HKM and BS is

most often the model with highest SR2.

Focusing now on the OOS estimates, nonlinearities once more matter for relative

pricing performance. First, the CAPM is again more competitive than under the linear

case, being the best model 3 and 6 times more often than HKM and FF3, respectively.
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Second, BS is the best model more often than FF5* under the nonlinear specification,

while the opposite happens under the linear specification. Third, model comparison is

more democratic based on the best nonlinear SDF of each factor model. The best model

overall under nonlinearities is now the DHS, rather than BS as in the IS test. Arguably,

since DHS is a three-factor model, it is less subject to estimation uncertainty than the

six-factor model of BS.

In sum, the bootstrap analysis shows that the importance of incorporating nonlinear-

ities for evaluating and comparing factor models, whether in- or out-of-sample, cannot

be explained by sampling error.

7. Conclusion

We provide a general approach allowing for nonlinearities in asset pricing tests of

factor models. Traditional regression-based tests can be seen as a particular case of our

method when the linear SDF pricing a set of factors is used as the asset pricing model.

We propose to use a comprehensive family of nonlinear SDFs pricing the model factors.

This family naturally generalizes the linear case and is economically meaningful. Empir-

ically, we investigate the implications of nonlinearities for both the absolute and relative

pricing performance of a number of leading factor models. We find that, for nearly all

factor models, their nonlinear versions significantly improve upon the linear specification.

Furthermore, nonlinearities affect model comparison and often lead to different rankings

between models relative to the linear case. Overall, our analysis provides extensive evi-

dence that nonlinearities have deep implications for cross-sectional asset pricing.
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A. A general approach for nontraded factors

In this appendix, we take as given a model of nontraded factors f . In this case,

our framework can be seen as a four-step procedure. First, the mimicking portfolios of

the nontraded factors fp are calculated by projecting each factor onto the returns of the

universe of test assets Rall. Second, we identify an SDF m that prices fp:

E(mfp) = 0. (A.1)

Then, we run the two-step GLS CSR using the SDF m as a single nontraded factor to

obtain the pricing errors α. From Equation (6), the following holds:

α′V −1α = Sh2(Rall)− Sh2(mp), (A.2)

where mp is the mimicking portfolio of the SDF.

We now show that the traditional GLS CSR in Section 2 is the particular case of our

approach that uses in the second step the linear SDF that prices fp:

m∗ = 1− b′[fp − µfp ], b = Σ−1
fp
µfp . (A.3)

The SDF above is a linear function of the portfolio of the factors mimicking portfolios

b′fp with maximum squared Sharpe ratio. Therefore, if we run the GLS CSR on m∗ and

analyze the quadratic form in the pricing errors alphas, we have:

α′V −1α = Sh2(Rall)− Sh2(m∗
p) = Sh2(Rall)− Sh2(−b′fp) = Sh2(Rall)− Sh2(fp). (A.4)

The second equality stems from the fact that the mimicking portfolio of m∗ recovers

precisely the portfolio −b′fp since m
∗ is linear in the mimicking portfolios of the factors.29

The third equality holds because b′fp is already the portfolio of the factors mimicking

portfolios that yields the maximum squared Sharpe ratio Sh2(fp). That is, the GLS CSR

approach on the nontraded factors f is equivalent to using the linear SDF pricing fp in

the GLS CSR.

29First, note that fp,t = ApRt, where Ap is obtained from the regression ft = ap +ApRt + ut. This is
such that 1−b′[fp,t−µfp ] = 1−b′[ApRt−µfp ]. Then, in the regression 1−b′[ApRt−µfp ] = a+ARt+ηt,
A is equal to −b′Ap, while a = 1 + b′µfp .
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B. Data sources

Below we describe the sources for the data on the factors and test assets used in our

empirical analysis.

• Market factor, FF3, FF5, FF6, 25 size/book-to-market portfolios and 49 industry

portfolios: Kenneth French’s Data Library (https://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html).

• HKM intermediary risk factor: Asaf Manela’s website (https://apps.olin.wustl.

edu/faculty/manela/data.html).

• BAB factor: AQR website (https://www.aqr.com/Insights/Datasets/

Betting-Against-Beta-Equity-Factors-Monthly).

• DHS behavioral factors and FF5*: Kent Daniel’s website (http://www.kentdaniel.

net/data.php).

• q4 factors and 118 anomalies from Hou, Xue and Zhang (2020): Authors’ website

(https://global-q.org/factors.html).

• High-minus-low factor updated monthly: AQR website (https://www.aqr.com/

Insights/Datasets/The-Devil-in-HMLs-Details-Factors-Monthly).

• 44 anomalies from Kozak, Nagel and Santosh (2020): Serhiy Kozak’s website

(https://sites.google.com/site/serhiykozak/data).

• 17 nontraded factors from Bryzgalova, Huang and Julliard (2023): Jiantao Huang’s

website (https://sites.google.com/view/jiantaohuang/home).

The complete list of anomalies from Kozak, Nagel and Santosh (2020) considered in

our analysis is (we include those available for our sample period): size,value,prof,

dur,valprof,fscore,nissa,accruals,growth,aturnover,gmargins,divp,ep,cfp,noa,

inv,invcap,igrowth,sgrowth,lev,roaa,roea,sp,divg,mom,indmom,valmom,valmomprof,

mom12,momrev,lrrev,valuem,nissm,strev,ivol,betaarb,season,indrrev,indrrevlv,

indmomrev,ciss,price,age,shvol. For their definitions and original papers where they

first appeared, see Kozak, Nagel and Santosh (2020).

The complete list of anomalies from Hou, Xue and Zhang (2020) considered in our

analysis is (we include those available for our sample period): cim_12,cim_1,cim_6,ile_
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1,ilr_12,ilr_1,ilr_6,im_12,im_1,im_6,p52w_12,p52w_6,r11_12,r11_1,r11_6,r6_

12,r6_1,r6_6,resid11_12,resid11_1,resid11_6,resid6_12,resid6_6,rs_1,sim_12,

sim_1,sue_1,sue_6,bmj,bmq_12,bm,cpq_12,cpq_1,cpq_6,cp,dp,dur,ebp,em,epq_12,

epq_1,epq_6,ep,ir,rev_12,rev_1,rev_6,spq_12,spq_1,spq_6,sp,vhp,aci,cei,dac,

dbe,dcoa,dfin,dfnl,dii,dlno,dnca,dnco,dnoa,dpia,dwc,ia,ig2,ig,ivc,ivg,noa,

nsi,oa,pda,poa,pta,ta,ato,cla,cop,cto,droe_12,droe_1,droe_6,eg_12,eg_1,eg_

6,gpa,opa,ope,roe_1,roe_6,sgq_1,tbiq_12,tbiq_6,eprd,etl,etr,hs,ioca,oca,ol,

r10a,r10n,r15a,r1a,r1n,r20a,r5a,r5n,beta_1,dtv_12,isff_1,ivff_1,me,srev,tv_

1. For their definitions and original papers where they first appeared, see Hou, Xue and

Zhang (2020).
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Table 1: Summary statistics for factor returns

Factor Mean (%) Std (%) t-stat SR

MKT 0.55 4.49 2.90 0.42
FIRFT 1.01 6.69 3.55 0.52
BAB 0.89 3.44 6.14 0.90
FIN 0.75 3.83 4.61 0.67
PEAD 0.61 1.87 7.76 1.14
SMB 0.18 3.01 1.44 0.21
HML 0.35 2.91 2.85 0.41
ME 0.25 3.07 1.97 0.29
IA 0.37 1.86 4.70 0.69
ROE 0.53 2.54 4.99 0.73
RMW 0.27 2.30 2.78 0.40
CMA 0.31 1.94 3.86 0.56
MKT* 0.54 3.13 4.08 0.59
SMB* 0.14 1.94 1.69 0.24
HML* 0.24 1.67 3.38 0.49
RMW* 0.24 1.45 4.02 0.59
CMA* 0.23 1.20 4.49 0.65
UMD 0.65 4.36 3.53 0.51
HMLm 0.33 3.55 2.22 0.32

This table reports summary statistics (mean, standard deviation,

t-statistic of the mean and annualized Sharpe ratio) for each of

the factors in our analysis. The sample ranges from July 1972 to

October 2018 (556 months).
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Table 2: Best nonlinear model vs. linear model - Bootstrap analysis

In-Sample Out-of-Sample
Mean-SR2 Lin Mean-SR2 Nonlin % SR2 Nonlin > SR2 Lin Mean-SR2 Lin Mean-SR2 Nonlin % SR2 Nonlin > SR2 Lin

CAPM 0.23 0.78 99.7 0.31 0.60 74.2
HKM 0.36 0.78 97.9 0.31 0.51 70.5
BAB 1.25 2.71 99.6 1.20 1.70 76.3
DHS 3.14 4.10 94.4 2.84 3.05 61.5
FF3 0.65 0.97 84.2 0.48 0.61 59.3
q4 2.19 3.36 97.0 1.85 2.27 73.5
FF5 1.53 2.21 94.0 1.08 1.26 62.1
FF5* 2.90 3.61 91.6 2.36 2.47 56.8
FF6 2.03 3.10 96.4 1.39 1.77 71.8
BS 3.13 4.25 96.1 2.40 2.73 68.0

This table reports statistics of our bootstrap analysis as detailed in Section 6.2 based on 1,000 bootstrap runs. For both the in-sample and
out-of-sample samples, and for each factor model, we report the mean SR2 across bootstrap runs of the linear SDF pricing the factors and of
the best nonlinear SDF pricing the factors. On a given run, the best nonlinear model is the one within γ ∈ [−3, 30], with a grid with spacing of
1, that yields the highest SR2 in-sample. We also report the percentage of runs for which the SR2 of the best nonlinear SDF is higher than that
of the linear SDF. The complete sample from which we draw random samples ranges from August, 1972 to October, 2018.
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Table 3: Factor model comparison - Bootstrap analysis

In-Sample Out-of-Sample
Linear Nonlinear Linear Nonlinear

Mean-Rank % Best Mean-Rank % Best Mean-Rank % Best Mean-Rank % Best

CAPM 10.0 0 9.08 0 9.00 0.1 8.40 0.6
HKM 8.90 0 9.05 0 8.84 0.1 8.64 0.2
BAB 6.72 0.1 5.32 3.8 5.85 1.4 5.32 5.7
DHS 2.06 38.5 2.46 34.7 2.07 46.2 2.43 39.5
FF3 7.99 0 8.66 0 8.25 0 8.34 0.1
q4 4.18 0 4.03 3.8 3.95 3.2 3.89 7.0
FF5 6.18 0 6.49 0.2 6.35 0.1 6.53 0.6
FF5* 2.51 27.8 3.39 15.2 2.83 28.2 3.36 21.7
FF6 4.54 0.1 4.46 3.4 5.33 0.1 5.22 2.6
BS 1.92 33.5 2.05 38.9 2.54 20.6 2.89 22.0

This table reports statistics of our bootstrap analysis as detailed in Section 6.2 based on 1,000 bootstrap
runs. For both the in-sample and out-of-sample samples, for each factor model, and for both the linear SDF
and the best nonlinear SDF of each factor model, we report its mean rank in terms of SR2 across bootstrap
runs and the percentage of times this specification was chosen as the best across factor models. On a given
run, the best nonlinear model is the one within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the
highest SR2 in-sample. The complete sample from which we draw random samples ranges from August,
1972 to October, 2018.
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Fig. 1: CAPM minimum discrepancy SDFs. This figure plots in the left panel three SDFs
pricing the market factor (γ = −2, m∗ and γ = 4) as a function of the factor returns. The right
panel plots the difference between each nonlinear SDF (γ = −2 and γ = 4) and the linear SDF
m∗. The sample ranges from July, 1972 to October, 2018.
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Fig. 2: Factor correlations. This figure depicts a heatmap plot of the correlation matrix of
the factors. The sample ranges from July, 1972 to October, 2018.
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Fig. 3: Maximum squared Sharpe ratio across γ. This figure plots, for each factor model,
the maximum squared Sharpe ratio (SR2) across γ in blue. For each γ, the corresponding
minimum discrepancy SDF pricing the factor model is obtained. Then, the SR2 of its mimicking
portfolio is reported. We consider γ ∈ [−3, 30], with a grid with spacing of 1. The red horizontal
line depicts the SR2 of the linear SDF. Sharpe ratios are annualized. The sample ranges from
July, 1972 to October, 2018.
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Fig. 4: Statistical significance of Sharpe ratio difference across γ. This figure plots,
for each factor model f and each γ, the t-statistics for the difference between Sh2(mγ,p) and
Sh2(m∗

p) = Sh2(f). The t-statistics is derived using the asymptotic test of Barillas et al. (2020).
We consider γ ∈ [−3, 30], with a grid with spacing of 1. The gray area denotes the region of
statistical insignificance at the 10% level. The sample ranges from July, 1972 to October, 2018.
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Fig. 5: Maximum squared Sharpe ratio of linear vs. best nonlinear model. This
figure plots, for each factor model, the maximum squared Sharpe ratio (SR2) coming from
the best nonlinear SDF and from the linear SDF. The best nonlinear model is the one within
γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2. Sharpe ratios are
annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. 6: Maximum squared Sharpe ratio across γ for different test assets. This figure
plots, for each factor model, the maximum squared Sharpe ratio (SR2) across γ for different sets
of test assets. For each γ, the corresponding minimum discrepancy SDF pricing the factor model
is obtained. Then, the SR2 of its mimicking portfolio is reported. We consider γ ∈ [−3, 30],
with a grid with spacing of 1. The black horizontal line depicts the SR2 of the linear SDF.
Sharpe ratios are annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. 7: Maximum squared Sharpe ratio of linear vs. best nonlinear model for
different test assets. This figure plots, for each factor model, the maximum squared Sharpe
ratio (SR2) coming from the best nonlinear SDF, for each set of test assets, and from the linear
SDF. The best nonlinear model is the one within γ ∈ [−3, 30], with a grid with spacing of 1,
that yields the highest SR2. Sharpe ratios are annualized. The sample ranges from July, 1972
to October, 2018.
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Fig. 8: Observable factors vs. latent factors. This figure plots, in the upper panel, for
each set of test assets, the maximum squared Sharpe ratio (SR2) associated with the linear
SDF pricing each of the following models: the BS observable factor model, the top six PCs
factor model, and the top six RP-PCs factor model. The latter follows the method of Lettau
and Pelger (2020) with tuning parameter of 20 for the importance of the cross-sectional pricing
error penalization (results are similar for alternative parameter values). The latent factors
are extracted from the corresponding test assets returns. The lower panel plots the analogous
pricing performance for the universe of test assets plus observable factors associated with the
best nonlinear SDF pricing each of the factor models. The best nonlinear model is the one
within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2. Sharpe ratios
are annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. 9: Maximum squared Sharpe ratio of linear vs. best nonlinear model for
nontraded factors. This figure plots, for each nontraded one-factor model, the maximum
squared Sharpe ratio (SR2) coming from the best nonlinear SDF and from the linear SDF.
The best nonlinear model is the one within γ ∈ [−3, 30], with a grid with spacing of 1, that
yields the highest SR2. Sharpe ratios are annualized. The sample ranges from October, 1973
to December, 2016.
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Fig. 10: Out-of-sample performance of linear vs. best nonlinear model. This figure
plots, for each factor model, the cumulative return of selling the out-of-sample mimicking port-
folio of its best nonlinear SDF (in red) and its linear SDF (in blue). We consider an expanding
estimation window, with a minimum of thirty years to estimate the models. The best nonlinear
model is the one within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2

in the estimation window. The out-of-sample returns of each model have been scaled to have
the same volatility as the market, such that plotted cumulative returns reflect risk-adjusted
performance and are directly comparable. Shaded areas depict NBER recession dates. The
sample ranges from July, 1972 to October, 2018.
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OA.1. Additional Empirical Results

Fig. OA.1: Volatility of SDF mimicking portfolio across γ. This figure plots, for each
factor model, the standard deviation (in %) of the mimicking portfolio of mγ across γ in blue.
For each γ, the corresponding minimum discrepancy SDF pricing the factor model is obtained.
Then, the standard deviation of its mimicking portfolio is reported. We consider γ ∈ [−3, 30],
with a grid with spacing of 1. The red horizontal line depicts the standard deviation of the
mimicking portfolio of the linear SDF. The sample ranges from July, 1972 to October, 2018.
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Fig. OA.2: Mean of SDF mimicking portfolio across γ. This figure plots, for each factor
model, the mean (in %) of the mimicking portfolio of mγ across γ in blue. For each γ, the
corresponding minimum discrepancy SDF pricing the factor model is obtained. Then, the mean
of its mimicking portfolio is reported. We consider γ ∈ [−3, 30], with a grid with spacing of
1. The red horizontal line depicts the mean of the mimicking portfolio of the linear SDF. The
sample ranges from July, 1972 to October, 2018.
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Fig. OA.3: Statistical significance of Sharpe ratio difference across γ for different
test assets. This figure plots, for each factor model f and each γ, the t-statistics for the
difference between Sh2(mγ,p) and Sh2(m∗

p) = Sh2(f), for different sets of test assets. The t-
statistics is derived using the asymptotic test of Barillas et al. (2020). We consider γ ∈ [−3, 30],
with a grid with spacing of 1. The gray area denotes the region of statistical insignificance at
the 10% level. The sample ranges from July, 1972 to October, 2018.
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Fig. OA.4: Maximum squared Sharpe ratio across γ for latent factors. This figure
plots, for each factor model, the maximum squared Sharpe ratio (SR2) across γ for different
latent factor models. The label 1 − x in the plot title indicates that the top 1 to x PCs have
been included in the model. For each γ, the corresponding minimum discrepancy SDF pricing
the factor model is obtained. Then, the SR2 of its mimicking portfolio is reported. We consider
γ ∈ [−3, 30], with a grid with spacing of 1. The black horizontal line depicts the SR2 of the
linear SDF. Sharpe ratios are annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. OA.5: Maximum squared Sharpe ratio across γ for nontraded factors. This figure
plots, for each nontraded factor model, the maximum squared Sharpe ratio (SR2) across γ in
blue. For each γ, the corresponding minimum discrepancy SDF pricing the mimicking portfolio
of the nontraded factor is obtained. Then, the SR2 of its mimicking portfolio is reported. We
consider γ ∈ [−3, 30], with a grid with spacing of 1. The red horizontal line depicts the SR2 of
the linear SDF. The first plot depicts the results for the traded CAPM as a benchmark. Sharpe
ratios are annualized. The sample ranges from October, 1973 to December, 2016.
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