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1 Introduction 

We focus on capturing multi-factor timing activity where portfolio managers anticipate 

macroeconomic trends and invest in the most profitable factor among multiple available factors. 

Realistically, such timing activity can only be implemented over relatively long horizons: trends, 

like a broad downturn or an upturn in a particular factor, are not matters of just a few months but 

potentially years. In fact, flexible asset allocation and macro investment styles in mutual and hedge 

funds rely on anticipating such trends. Haddad, Kozak, and Santosh (2020) confirm that successful 

multi-factor timing strategies may be implementable by investors over long horizons. On the other 

hand, Chernov, Lochstoer, and Lundeby (2022) demonstrate that linear factor models are not very 

good at pricing long-horizon returns, attributing that to the conditional factor dynamics. Whether 

active portfolio managers can successfully exploit the long-term time-varying nature of investable 

risk factors is an open question, motivating our focus on long-horizon multi-factor timing. 

Furthermore, while the potential and the possibility of successful long-horizon multi-factor timing 

have been documented in the literature, there are currently no measures with documented efficacy 

in capturing such activity by active portfolio managers.1 In this paper, we first explore the efficacy 

of multiple timing measures in capturing long-horizon multi-factor timing with simulated timing 

data. We then apply the measures that proved to be effective in simulations to hedge and mutual 

fund data.  

While multi-factor timing could be considered a straightforward concept, capturing 

successful multi-factor timing activity over long horizons is not trivial. For example, a factor with 

the most profitable long-term trend may not generate the highest monthly return among all factors 

every month in the trend. Moreover, the economic benefit of long-horizon multi-factor timing 

 
1 Given the focus of the extant literature on the single-period single-factor timing activity. 
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depends on the profitability of the optimal factor relative to other available factors over timing 

horizons. This, in turn, depends on the relative strength of the positive return trend in the optimal 

factor compared to other factors, which could vary across time. Perhaps, the most challenging 

aspect in capturing such timing activity is that portfolio managers make errors not only in the 

choice of an optimal factor, but also in the choice of the optimal timing horizon to follow that 

factor. Importantly, timing horizons chosen by portfolio managers are likely to be dynamic, 

depending on contemporaneous economic conditions. These timing horizons, being unobservable, 

are not likely to match any specific measurement horizon, making it impossible to deploy any 

reasonably specified structural model.2 Therefore, we rely on multi-factor simulations and out-of-

sample analysis to evaluate the efficacy of the multi-factor timing measures proposed in this study. 

Single-factor timing has been first studied in pioneering works by Treynor and Mazuy 

(1966), Jensen (1972), and Henriksson and Merton (1981) in the context of market timing, proxied 

by a broad market index (for example, S&P 500). However, the existing literature mainly explores 

one-dimensional timing, while very few papers focus on active portfolio managers timing multiple 

factors.3 On the other hand, the recent popularity of indexing and factor investing highlights the 

need for a comprehensive investigation of multi-factor timing.4 Furthermore, it is prevalent in the 

timing literature to rely on the single-period timing framework, not paying due attention to timing 

activity over long horizons.5  

 
2 The mismatch between the investment horizon and the measurement horizon was considered in Jensen (1969, 1972), 
Fama (1972), Levhari and Levi (1977), Handa, Kothari, and Wasley (1989), Lee, Wu, and Wei (1990), Barberis (2000),  
Kamara, Korajczyk, Lou, and Sadka (2016), among others. 
3 For example, Aragon (2002), Comer (2006), and Duanmu, Malakhov, and McCumber (2018) attempt quantifying 
timing across multiple factors. 
4 See, for example, Ang (2014), Glushkov (2016), Arnott, Harvey, Kalesnik, and Linnainmaa (2019), Gupta and Kelly 
(2019), Haddad, Kozak, and Santosh (2020), Mateus, Mateus, and Soggiu (2020), Ehsani and Linnainmaa (2022), 
Ben-David, Franzoni, Kim, and Moussawi (2023). 
5 In traditional single-period timing literature, managers make factor investment decisions every single time period, 
so the only possible timing error could be a manager choosing a suboptimal factor. In long-term timing, in addition to 
the factor choice, managers also make decisions about specific times to switch into their chosen factor and how long 
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We propose a new indirect measure of long-horizon timing activity, D_ALPHA, building 

on the pioneering work of Jensen (1972). Jensen (1972) demonstrates that, in general, it is 

impossible to separate the market timing component of managerial performance in the context of 

a factor model, and Jensen (1968) alpha (alpha, hereafter) reflects both timing and security 

selection components of managerial performance. The concept of market timing involves active 

portfolio managers who can successfully anticipate market (or, in general, any factor) trends, and 

adjust their market portfolio exposure, beta, according to their forecast. Such time-varying beta 

exposures, if done successfully (i.e., high beta exposures during periods of good market 

performance and low beta exposures during periods of poor market performance), result in 

convexity in portfolio returns relative to the market factor. Jensen (1972) demonstrates that a linear 

factor model estimate of alpha for a successful timer would be upwardly biased from the value of 

alpha that only reflects security selection skills. Jensen (1972) interprets this upward bias in the 

linear factor model alpha as a reflection of timing skills.  

Moreover, Jensen (1972) articulates that capturing timing activity is particularly difficult 

if the length of a timing horizon does not match the length of a measurement horizon. Figure 1 

shows examples of mismatched timing and measurement horizons. If the measurement horizon is 

shorter than the timing horizon, there would be no timing changes in beta over the measurement 

horizon, and alpha would not reflect the timing component at all.6 On the other hand, if the 

measurement horizon is longer than the timing horizon, there would be changes in beta over the 

 
to follow the chosen factor. Notice that the decision on the specific length of the timing window is embedded in the 
decision about the specific time to switch into the next factor.  
6 In a similar spirit, though in a much different context, Lewellen and Nagel (2006) assume that CAPM parameter 
estimates are stable over short time windows and interpret them as conditional estimates in their tests of the conditional 
CAPM.  
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measurement horizon, and, according to Jensen (1972), alpha would reflect both timing and 

security selection components of managerial performance together.  

Hence, we propose a new measure of long-horizon timing activity, D_ALPHA, as the 

difference between the long- and short-term alphas (fully described in Section 2). We conjecture 

for D_ALPHA to capture timing activity over horizons that approximately match the short-term 

time window. We interpret D_APLHA as an indirect measure of timing activity, given that timing 

activity would be captured not by a direct timing factor, but as the indirect result of the upward 

bias in long-horizon alphas.  

We highlight the difficulty of capturing long-horizon multi-factor timing activity, which 

depends on the specific set of investable factors available for timing, through simulations. We 

simulate long-horizon multi-factor timing activity and compare in- and out-of-sample efficacy in 

capturing multi-factor timing activity of D_ALPHA along with multi-factor extensions of the 

Henriksson and Merton (1981) approach (HM approach, hereafter) and multi-factor conditional 

timing measures, introduced in Cederburg, O’Doherty, Savin, and Tiwari (2018) (COST measures, 

hereafter). In simulations, most considered measures successfully capture long-horizon multi-

factor timing in-sample. Out-of-sample, D_ALPHA and most conditional COST measures 

successfully capture long-horizon multi-factor timing, but most of the multi-factor extensions of 

the HM measure fail to capture long-horizon multi-factor timing. 

We then apply the proposed timing measures to hedge and mutual fund data, extending the 

literature on timing as well as performance attribution in mutual and hedge funds.7 We find 

 
7 For mutual funds, for example, Jensen (1968, 1969, 1972), Fama (1972), Sharpe (1975, 1992), Merton (1981), Chang 
and Lewellen (1984), Henriksson (1984), Admati, Bhattacharya, Pfleiderer, and Ross (1986), Jagannathan and 
Korajczyk (1986), Lehmann and Modest (1987), Grinblatt and Titman (1994), Malkiel (1995), Ferson and Schadt 
(1996), Graham and Harvey (1996), Daniel, Grinblatt, Titman, and Wermers (1997), Busse (1999), Edelen (1999), 
Goetzmann, Ingersoll, and Ivkovic (2000), Moskowitz (2000), Wermers (2000), Bollen and Busse (2001, 2004), 
Chance and Hemler (2001), Chan, Chen, and Lakonishok (2002), Jiang (2003), Avramov and Wermers (2006), Comer 
(2006), Kosowski, Timmermann, Wermers, and White (2006), Goetzmann, Ingersoll, Spiegel, and Welch (2007), 
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evidence consistent with successful long-horizon multi-factor timing among macro diversified 

hedge funds and flexible portfolio allocation mutual funds. We conclude that, out of all considered 

measures, only D_ALPHA consistently captures long-horizon multi-factor timing out-of-sample 

in simulations and among hedge and mutual funds with investment styles that rely on long-term 

multi-factor timing.  

2 Motivating Example and D_ALPHA Measure 

2.1 Motivating Example  

Consider timing the broad market index, S&P 500, over 24 months from March 2008 until 

February 2010, assuming the alternative of earning the risk-free rate of return by investing in the 

U.S. Treasury Bills. We assume that it is unrealistic to expect a hypothetical market timer to 

successfully anticipate market movements every month, but a successful long-horizon timer could 

anticipate the broad market downturn from March 2008 to February 2009, followed by the upturn 

from March 2009 to February 2010. Furthermore, we consider an imperfect market timer, who 

switches out of the Treasury Bills into the S&P 500 index not at the optimal switch time in March 

2009, but two months later, in May 2009, as presented in Figure 2. Figure 2 displays cumulative 

excess returns for the market index and the imperfect market timer. While the imperfect timer did 

miss the optimal timing into the S&P 500 index by two months, it is clear from Figure 2 that this 

 
Jiang, Yao, and Yu (2007), Kacperczyk, Sialm, and Zheng (2008), Mamaysky, Spiegel, and Zhang (2008), 
Bergstresser, Chalmers, and Tufano (2009), Cremers and Petajisto (2009), Chen, Ferson, and Peters (2010), Fama and 
French (2010), Ben-Rephael, Kandel, and Wohl (2012), Elton, Gruber, and Blake (2012), Amihud and Goyenko 
(2013), Fulkerson (2013), Hunter, Kandel, Kandel, and Wermers (2014), Kacperczyk, van Nieuwerburgh, and 
Veldkamp (2014), Bodnaruk, Chokaev, and Simonov (2018), Chuprinin and Sosyura (2018), among others.  
  For hedge funds, for example, Fung and Hsieh (1997, 2001, 2004), Agarwal and Naik (2000, 2004), Asness, Krail 
and Liew (2001), Aragon (2002), Fung, Xu and Yau (2002), Chen (2007), Chen and Liang (2007), Fung, Hsieh, Naik, 
and Ramadorai (2008), Bollen and Whaley (2009), Avramov, Kosowski, Naik, and Teo (2011), Bali, Brown, and 
Caglayan (2011, 2012, 2014), Titman and Tiu (2011), Cai and Liang (2012a, 2012b), Cao, Chen, Liang, and Lo (2013), 
Patton and Ramadorai (2013), Namvar, Phillips, Pukthuanthong, and Rau (2016), Agarwal, Green, and Ren (2018), 
Duanmu, Malakhov, and McCumber (2018), among others.  



7 
 

imperfect realistic timing activity results in obvious economic benefits and qualifies as successful 

long-horizon market timing.  

As a motivating example, consider alphas from the single-factor model,  

௧ݎ െ ௧ݎ
௙ ൌ ߙ ൅ ௧ݎ൫ߚ

௠௔௥௞௘௧ െ ௧ݎ
௙൯ ൅  ሺ1ሻ										௧,ߝ

for the imperfect timer from the overall 24 months and from three overlapping 12-month windows, 

rolling annually within the 24-month window, presented in Figure 3 and Table 1. Consistent with 

Jensen (1972), the 24-month positive alpha of 0.012 is the result of the single factor model, applied 

over the long 24-month horizon to the timing activity over shorter horizons.8 Notice that the 

average of three 12-month alphas is only 0.007, reflecting a smaller average upward bias in the 

single factor alpha for the timing activity over 14- and 10-month horizons, measured over three 

overlapping 12-month horizons. It is important to emphasize the overlapping windows approach, 

given that timing horizons of portfolio managers are not observable, and their timing activity may 

not be well reflected by non-overlapping windows. 

Following Jensen (1972), we conclude that the 24-month alpha exceeds the average of 12-

month alphas due to the greater upward bias in alpha, when the measurement horizon exceeds the 

average timing horizon. Hence, we propose a new measure, D_APLHA = long-term alpha – 

average of short-term alphas: in this example, D_ALPHA = 0.012 – (0.000 + 0.016 + 0.006)/3 = 

0.005.  

2.2 D_APLHA Measure in a General Setting  

In a general setting, D_ALPHA reflects the difference between the long-term alpha and the 

annual rolling average of overlapping short-term alphas within the long-term window, where the 

 
8 The timing activity in this example is the change in the market factor exposure, ߚ, from 0 in March 2008 - April 
2009, to 1 in May 2009 - February 2010. This corresponds to timing horizons of 14 and 10 months within the 24-
month measurement horizon. 
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exact number of short-term time windows, N, depends on the difference in length between the 

long-term and the short-term windows. Specifically, D_ALPHA for portfolio manager i, 

௜ܣܪܲܮܣ_ܦ	 ൌ ௜,௟௢௡௚ି௧௘௥௠ߙ െ
௜,௦௛௢௥௧ି௧௘௥௠_ଵߙ ൅ ⋯൅ ௜,௦௛௢௥௧ି௧௘௥௠_ேߙ

ܰ
	,					ሺ2ሻ			 

where ߙ௜,௟௢௡௚ି௧௘௥௠ results from a general linear performance evaluation model over a long-term 

window, and ߙ௜,௦௛௢௥௧ି௧௘௥௠_ଵ, … , ߙ௜,௦௛௢௥௧ି௧௘௥௠_ே result from the same model over N short-term 

windows, rolling annually within the long-term window. The short-term window approximates the 

average timing horizon of portfolio managers, and we apply the overlapping short-term windows 

approach due to unobservability of the timing horizons of portfolio managers. 

Importantly, our definition of D_ALPHA is very general and applies to any potential single 

or multi-factor linear performance evaluation model over any statistically feasible time horizon.9 

Following Jensen (1972), we conjecture that timing activity over horizons that are close to the 

length of the short-term windows on average would result in greater positive alphas over the long-

term window while generating lower average alphas over the short-term windows.10 We interpret 

D_APLHA as an indirect measure of timing activity over any potential set of factors, given that 

successful timing would be captured not by a direct timing factor, but as an indirect result of the 

upward bias in long-term alphas due to timing activity. It is important to emphasize that D_ALPHA 

reflects factor timing from the perspective of generating alpha long-term. In applications to hedge 

and mutual funds, it may reflect other dimensions of active portfolio management that may 

produce time-varying short-term alphas while generating positive long-term alphas. 

 
9 The determination of the appropriate length of long-term and short-term time windows depends on the research 
objectives and the availability of data. The more factors are included in the baseline factor model, the more data points 
are required for a meaningful statistical analysis, necessitating longer time windows.  
10 Under the assumption that alpha generation through security selection is stationary over time. 
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Next, we introduce and discuss the full set of timing measures that we consider as potential 

candidates for capturing long-horizon multi-factor timing. 

3 Multi-Factor Timing: Measures and Factors 

We consider all the timing measures in this paper based on a general multi-factor performance 

evaluation model for a fund i,  

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ ൅෍ߚ௜

௝ݎ݋ݐܿܽܨ௧
௝

ே

௝ୀଵ

൅  ሺ3ሻ										.	௜,௧ߝ

Given our focus on long-horizon timing, we calculate all measures over the 48-month time window. 

Following the logic in Jensen (1972), highlighted in Figure 1, the 48-month long-term window 

allows us to capture timing activity over horizons around the short-term window of 24 months and 

also accommodates a sufficiently large number of factors in multi-factor timing regressions. While 

our choice of the 24-month short-term window reflects the shortest time window over which a 

meaningful statistical analysis based on monthly data may be executed, our analysis may be easily 

extended to different length time windows as a robustness check, based on the availability of data. 

For example, with monthly data, a 30-month window may be considered; with weekly data, 

considering 12- and 6-month windows could be reasonable. 

3.1 Unconditional Measures of Long-Horizon Multi-Factor Timing Activity 

We apply the D_APLHA formula (2) from the previous section to calculate D_ALPHA in the 

context of model (3) with short-term windows of 24 months and the long-term window of 48 

months as follows:  

௜ܣܪܲܮܣ_ܦ	 ൌ ௜,ସ଼ߙ െ
௜,ଶସିଵߙ ൅ ௜,ଶସିଶߙ ൅ ௜,ଶସିଷߙ

3
	,					ሺ4ሻ			 

where ߙ௜,ସ଼ results from model (3) over the 48-month window, and ߙ௜,ଶସିଵ, ߙ௜,ଶସିଶ, ߙ௜,ଶସିଷ result 

from model (3) over three overlapping 24-month windows, rolling annually within the above-
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mentioned 48-month window.11 As mentioned in Section 2, D_ALPHA is very general in its 

definition, and it can be applied to any linear single- or multi-factor evaluation model over any 

statistically feasible time horizon. We interpret D_ALPHA as an indirect measure of timing 

activity over average time horizons of 24 months. 

Extending classic Treynor and Mazuy (1966) and Henriksson and Merton (1981) 

approaches in a multi-factor setting is not trivial, given potential cross-correlations among the 

factors.12 We consider the HM approach of interpreting successful market timing as successfully 

exercising a call option on the market portfolio, max(0, market factor), to be suitable for direct 

multi-factor extensions, as it assumes a manager to be fully invested in the timed factor. Given that 

a manager cannot be fully invested in more than one factor at the same time, cross-correlations 

among the factors are not likely to present additional complications upon adding HM timing 

factors, max(0, Factor1),…, max(0, FactorN), to the regression (3). However, interpreting multiple 

HM timing coefficients is not trivial, given that most of the available factors are not likely to be 

timed into during any given 48-month horizon window. Imperfect timing, when managers make 

errors in the choice of the optimal factor and in the optimal time to switch into the optimal factor, 

further complicates the interpretation of multiple HM timing coefficients. Thus, we consider three 

 
11 It is possible to argue that ߙ௜,ଶସିଶ could be weighed lower than ߙ௜,ଶସିଵ and ߙ௜,ଶସିଷ in the D_ALPHA calculation (4), 
given that it is based on observations partially included into calculating of ߙ௜,ଶସିଵ and ߙ௜,ଶସିଷ. On the other hand, 
 ௜,ଶସିଷ could be less reliable in reflecting long-horizon timing, given that they may misrepresent timingߙ ௜,ଶସିଵ andߙ
activity that either starts before or extends beyond the 48-month window. For this reason, we apply equally weighted 
average to ߙ௜,ଶସିଵ, ߙ௜,ଶସିଶ, and ߙ௜,ଶସିଷ in calculating D_ALPHA in (4). For robustness, we also calculate a weighted 
version of D_ALPHA with ߙ௜,ଶସିଵ, ߙ௜,ଶସିଶ, ߙ௜,ଶସିଷ weights as 0.375, 0.25, 0.375. The results are qualitatively and 
quantitatively similar to the equally weighted approach in (4) and are available upon request. Also, D_ALPHA may 
be calculated with non-overlapping short-term windows as an additional robustness check. 
12 The Treynor and Mazuy (1966) approach relies on including the square term for the timed factor into a linear factor 
model. Its multi-factor extension, introduced in Lehmann and Modest (1987), includes cross-products of the factors 
in addition to squared terms for all factors. Unfortunately, as articulated in Chen, Ferson, and Peters (2010), such an 
approach imposes severe data requirements, and it cannot be meaningfully executed in our setting with 48 monthly 
observations. 
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multi-factor HM extensions with different interpretations for measuring multi-factor timing 

activity.  

First, we consider MAX_ALL measure as the regression coefficient ߛெ஺௑_஺௅௅ for the call 

option on the optimal factor choice at any given time, maxሺ0, ,௧ଵݎ݋ݐܿܽܨ ,௧ଶݎ݋ݐܿܽܨ … ,   ,௧ேሻݎ݋ݐܿܽܨ

modifying model (3) as follows: 

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ ൅෍ߚ௜

௝ݎ݋ݐܿܽܨ௧
௝

ே

௝ୀଵ

൅ ௜,ெ஺௑_஺௅௅ߛ maxሺ0, ,௧ଵݎ݋ݐܿܽܨ ,௧ଶݎ݋ݐܿܽܨ … , ௧ேሻݎ݋ݐܿܽܨ ൅	ߝ௜,௧. ሺ5ሻ 

We interpret MAX_ALL as a measure of success in timing the most profitable factor every month. 

Second, we modify model (3) by adding call options on all individual factors as follows: 

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ ൅෍ߚ௜

௝ݎ݋ݐܿܽܨ௧
௝

ே

௝ୀଵ

൅෍ߛ௜
௝

ே

௝ୀଵ

max൫0, ௧ݎ݋ݐܿܽܨ
௝൯ ൅	ߝ௜,௧.															ሺ6ሻ 

We consider MAX_SINGLE measure based on model (6) as  

௜ܧܮܩܰܫܵ_ܺܣܯ ൌ maxሺߛ௜
ଵ, ௜ߛ

ଶ, … , ௜ߛ
ேሻ.															ሺ7ሻ 

We interpret MAX_SINGLE as a measure of timing activity in the most successfully timed single 

factor.  

Finally, we consider the last extension of the HM measure, SUM_ALL as  

௜ܮܮܣ_ܯܷܵ ൌ෍ߛ௜
௝

ே

௝ୀଵ

,																ሺ8ሻ 

with ߛ௜
௝ coefficients from the model (6). We interpret SUM_ALL as a measure of overall timing 

activity across all factors. 
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3.2 Conditional Measures of Long-Horizon Multi-Factor Timing Activity 

While we interpret D_ALPHA as an unconditional performance measure, it can also be 

interpreted from a conditional performance evaluation perspective.13 Conceptually, any active 

portfolio management is a result of decisions by portfolio managers conditional on 

contemporaneous information. Unfortunately, specific information sets that the managers base 

their investment decisions on, and their decision rules are unobservable. Hence any conditional 

approach that incorporates publicly observable instrument variables into factor regressions could 

be prone to misspecification in case the instruments do not adequately capture contemporaneous 

information utilized by portfolio managers. This particularly applies to long-horizon factor timing, 

when the relevance of specific contemporaneous information heavily depends on the personal 

judgment of the managers. For this reason, we focus on conditional timing measures that are based 

on past decisions by portfolio managers, reflected by beta exposures, introduced in Cederburg, 

O’Doherty, Savin, and Tiwari (2018) (COST, hereafter).  

Following COST, we rely on the past beta exposures of active portfolio managers as 

instrumental variables in the conditional timing evaluation. As we focus on long-horizon timing 

over the 24-month horizon, we use the past 24-month beta estimates as instruments in the 

conditional model for a fund i as follows.  

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ

஼ ൅෍൫ߣ௜,଴
௝ ൅ ௜,ଵߣ

௝ ௜,௧ିଵߚ
௝ ൯ݎ݋ݐܿܽܨ௧

௝
ே

௝ୀଵ

൅  ሺ9ሻ										௜,௧,ߝ

where ߚ௜,௧ିଵ is estimated via the unconditional model (3) over the 24 months preceding a given t, 

i.e. ߬ ∈ ሾݐ െ 1,… , ݐ െ 24ሿ in 

 
13 For example, following Boguth, Carlson, Fisher, and Simutin (2011), D_ALPHA can be interpreted as a conditional 
measure with a positive “overconditioning” bias. However, the focus of Boguth, Carlson, Fisher, and Simutin (2011) 
is on correcting the “overconditioning” due to time-varying betas, while the focus of D_ALPHA is on utilizing time-
varying beta exposures and the resulting difference between short-term and long-term alphas to reflect factor timing 
over horizons comparable to the length of the short-term window. 
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௜,ఛݎ െ ఛݎ
௙ ൌ ௜ߙ ൅෍ߚ௜,௧ିଵ

௝ ఛݎ݋ݐܿܽܨ
௝

ே

௝ୀଵ

൅  ሺ10ሻ										௜,ఛ.ߝ

In the conditional model (9), ߙ௜
஼ represents conditional alpha (COND_ALPHA, hereafter) and  

௜,௧ߚ
௝,஼ ൌ ௜,଴ߣ

௝ ൅ ௜,ଵߣ
௝ ௜,௧ିଵߚ

௝ 										ሺ11ሻ 

represents conditional betas for a fund i.  

COST defines the conditional factor timing measure for a fund i and a factor j as ܨ ௜ܶ
௝ ൌ

௜,௧ߚሺݒ݋ܿ
௝,஼, ௧ݎ݋ݐܿܽܨ

௝ሻ. Following that, we consider three conditional measures of multi-factor timing. 

The first one, COND_MAX_FT, is a multi-factor extension of ܨ ௜ܶ
௝, defined as  

ܨ_ܺܣܯ_ܦܱܰܥ ௜ܶ ൌ maxሺܨ ௜ܶ
ଵ, ܨ ௜ܶ

ଶ, … , ܨ ௜ܶ
ேሻ.											ሺ12ሻ 

We borrow the second and the third conditional measures of multi-factor timing, total 

factor timing (COND_TOTAL_FT) and total volatility timing (COND_VOL), directly from 

COST as follows: 

ܨ_ܮܣܱܶܶ_ܦܱܰܥ ௜ܶ ൌ෍ܨ ௜ܶ
௝

ே

௝ୀଵ

,											ሺ13ሻ 

௜ܮܱܸ_ܦܱܰܥ ൌ෍ሺߚప,௧
ఫ,஼തതതതത െ ௜ߚ

௝ሻ

ே

௝ୀଵ

௧ݎ݋ݐܿܽܨ
ఫതതതതതതതതതതത,											ሺ14ሻ 

where ߚ௜
௝ represents unconditional betas for a fund i from model (3).  

3.3 Factor Models for Hedge and Mutual Fund Performance Evaluation  

While the introduced timing measures are very general, we apply them in the context of 

different factor models for hedge and mutual fund performance evaluation. Given the focus of our 

analysis on long-horizon multi-factor timing, we employ performance evaluation models with 

factors that can be interpreted as investable portfolios suitable for realistic long-term timing by 

active portfolio managers. 
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For hedge funds, we use the Fung and Hsieh (2004) eight-factor performance evaluation 

model over 300 months from January 1994 to December 2018 as follows:  

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ ൅ ݅ߚ

1ܵܲ500௧ ൅ ݅ߚ
௧ܯܧ2 ൅ ݅ߚ

310 ௧ܻ ൅	݅ߚ
௧݀ܽ݁ݎ݌ܵ݁ݖ4ܵ݅ ൅	݅ߚ

௧݀ܽ݁ݎ݌ܵݐ݅݀݁ݎܥ5

൅	݅ߚ
௧݀݊݁ݎܶ݀݊݋ܤ6 ൅ ݅ߚ

௧݀݊݁ݎܶ݉݋ܥ7 ൅ ݅ߚ
௧݀݊݁ݎܶݔܨ8 ൅	ݐ,݅ߝ	,						ሺ15ሻ 

where ݎ௜ is the monthly return of a potential timer ݅, ݎ௙ is the risk-free rate proxied by the monthly 

return of the 30-day U.S. Treasury bill. ܵܲ500 is the market risk premium proxied by the excess 

return of the S&P 500 index. ܯܧ is the emerging market risk factor proxied by the excess return 

of the MSCI Emerging Market index. ܵ݅݀ܽ݁ݎ݌ܵ݁ݖ is an equity-oriented risk factor, quantified by 

the Russell 2000 index total return minus the S&P 500 index total return. 10Y and ݀ܽ݁ݎ݌ܵݐ݅݀݁ݎܥ 

are bond-oriented risk factors. 10Y is proxied by the excess return of the 10-year U.S. Treasury 

Bond portfolio from CRSP. ݀ܽ݁ݎ݌ܵݐ݅݀݁ݎܥ  is calculated as the total return on the S&P U.S. 

Investment Grade Corporate Bond BBB index minus the total return on the Fama U.S. Treasury 

bond portfolio from CRSP. ݀݊݁ݎܶ݉݋ܥ ,݀݊݁ݎܶ݀݊݋ܤ, and ݀݊݁ݎܶݔܨ are excess returns on trend 

following factors constructed of look-back straddles on futures contracts of bonds, commodities, 

and currencies, respectively.14 

For mutual funds, we rely on the following five-factor performance evaluation model over 

300 months from January 1994 to December 2018:  

௜,௧ݎ െ ௧ݎ
௙ ൌ ௜ߙ ൅ ݅ߚ

௧ݐ݁݇ݎܽܯ1 ൅	݅ߚ
௧݁ݖ2ܵ݅ ൅	݅ߚ

௧݁ݑ3ܸ݈ܽ ൅ ݅ߚ
௧݉݋ܯ4 ൅ ݅ߚ

510 ௧ܻ ൅	ݐ,݅ߝ	,						ሺ16ሻ 

where ݎ௜ is the monthly return of a potential timer ݅, ݎ௙ is the risk-free rate proxied by the monthly 

return of the 30-day U.S. Treasury bill. ݐ݁݇ݎܽܯ is the market risk premium proxied by the excess 

return of the S&P 500 index. ܵ݅݁ݖ is the size equity-oriented risk factor, quantified by the Russell 

 
14 All return data are from Bloomberg, Morningstar, and CRSP, while trend-following factors are from David Hsieh’s 
website (https://faculty.fuqua.duke.edu/~dah7/HFData.htm). 



15 
 

2000 index total return minus the S&P 500 index total return. ܸ݈ܽ݁ݑ is the value minus growth 

equity risk factor, quantified by the difference in returns between Russell 3000 Value and Russell 

3000 Growth indices.15 ݉݋ܯ is the momentum risk factor, quantified by the momentum index 

from Kenneth French data library.16 10Y is the bond-oriented risk factor, proxied by the excess 

return of the 10-year U.S. Treasury Bond portfolio from the Center for Research in Security Prices 

(CRSP). 

The mutual fund performance evaluation model (16) is based on the model from Cremers, 

Petajisto, and Zitzewitz (2013), utilizing investable proxies for commonly known risk factors of 

market, size, value, and momentum,17 along with the investable proxy for the bond risk factor, 10Y, 

which is included to accommodate common mutual fund timing strategies of flexible portfolio 

allocation between stocks and bonds, depending on market forecasts of portfolio managers. 

As mentioned above, we interpret the factors in models (15) and (16) as investable time-

varying risk factors suitable for long-term timing by active portfolio managers. The difference in 

the set of factors between models (15) and (16) reflects the difference in the space of investable 

time-varying risk factors, potentially available for multi-factor timing, between hedge and mutual 

fund managers.  

We rely on investable factors from models (15) and (16) as the basis for simulations and 

tests that follow. 

 

 

 
15 All index data are from Morningstar. 
16 Available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  
17 These risk factors were considered in Fama and French (1993), Jegadeesh and Titman (1993), and incorporated into 
evaluating mutual fund performance in Carhart (1997). 
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4 Long-Horizon Multi-Factor Timing: Simulations 

As mentioned in the introduction, capturing successful multi-factor timing activity over long 

horizons is not trivial. For example, a factor with the most profitable long-term trend may not 

generate the highest monthly return among all factors every month in the trend. Imperfect long-

horizon timing, when portfolio managers make mistakes in the timing of factor switches and the 

choice of factors, further complicates capturing long-horizon multi-factor timing activity with 

statistical and economic significance. Finally, economic benefits of long-horizon multi-factor 

timing depend on the profitability of the optimal factor relative to other available factors over long 

timing horizons. Hence, the efficacy of the proposed long-horizon timing measures depends on the 

specific set of investable risk factors potentially available for timing. Therefore, we first evaluate 

the efficacy of the proposed measures via the simulation process based on sets of factors for hedge 

and mutual funds from models (15) and (16). The objective of this simulation is to establish 

benchmarks and compare the efficacy of proposed multi-factor timing measures in the context of 

timing different sets of factors.  

4.1 Simulated Long-Horizon Multi-Factor Timing with Hedge Fund Factors 

We consider factor data from the Fung and Hsieh (2004) eight-factor model (15) from January 

1994 to December 2018 and construct the optimal multi-factor timing pattern with an average 

timing horizon of 23.08 months. 18  Then we apply the proposed timing measures to 90,000 

simulated portfolio managers (or imperfect timers), who attempt to follow the optimal timing 

pattern with various levels of accuracy in their multi-factor timing decisions. Thus, we benchmark 

our measures in the context of ex-ante known timing abilities applied to eight-factor data from 

 
18 The average timing horizon of 23.08 months in the optimal eight-factor timing pattern is close to the 24-month 
timing horizon for calculating D_ALPHA in (4). D_ALPHA reflects the difference between the 48-month alpha and 
the average of 24-month alphas.  
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model (15). Most important, this simulation allows us to quantify and compare the out-of-sample 

efficacy of our proposed measures.  

 We construct the optimal long-term timing pattern by considering factor timing switch 

points based on the future return data. Specifically, at any potential switch point, we calculate end 

values from investing $1 in each factor over the next 12-24 months, switching into the highest end 

value factor. After the switch, we hold the new factor over the time period that generated the 

highest end value and then consider switching factors again. In case the highest end value over the 

next 12-24 months is generated by the currently held factor, we hold the current factor for another 

month, and consider switching factors next month. Afterward, we manually review the optimal 

time pattern to ensure that it produces the highest possible end value among other possible timing 

patterns with the same average timing horizon. In the end, following the optimal timing pattern 

yields $6,605.72 in December 2018 based on $1 investment in January 1994, compared to $8.77, 

which is the highest value based on $1 invested in any single factor.19 The optimal timing pattern 

is presented in Figure 4.   

Next, we simulate 90,000 portfolio managers (or imperfect timers) who follow the optimal 

timing pattern with various levels of accuracy in their long-term multi-factor timing decisions. In 

our simulation, imperfect timers can make errors in both timing of switching into the optimal factor 

and in the optimal factor selection. We simulate three levels of accuracy in timing decisions and 

three levels of accuracy in factor selection: combined, this yields nine possible combinations in 

timing accuracy combined with factor selection accuracy; we simulate 10,000 timers for each of 

these combinations. Specifically, we simulate timing errors by allowing the factor switch time 

within N months prior to the optimal switch time. The exact month within the N-month error is 

 
19 The highest end value of $8.77 in December 2018 among all factors was generated by investing $1 in January 1994 
in the S&P 500 index factor. 
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simulated via uniform distribution from zero to N. The three simulated levels in timing accuracy 

correspond to timing errors within N = 2, 4, and 6 months. Factor selection accuracy is simulated 

by assigning one of the three accuracy levels to the probability of selecting the optimal factor at 

timing switches, with the complementary probability assigned to the remaining non-optimal 

factors.20 We simulate the optimal factor selection accuracy at each switch point with probabilities 

of 90%, 60%, and 30%.  

We focus our analysis on seven proposed measures of long-horizon multi-factor timing 

activity: the indirect measure, D_ALPHA, plus three unconditional multi-factor extensions of the 

HM measure, MAX_ALL, MAX_SINGLE, SUM_ALL, and three COST conditional measures, 

COND_MAX_FT, COND_TOTAL_FT, COND_VOL. We also consider the classic performance 

measure, Jensen (1968) alpha (ALPHA, hereafter), and COST-based conditional alpha, 

COND_ALPHA. The inclusion of ALPHA and COND_ALPHA in our analysis is essential for 

three reasons. First, as articulated in Jensen (1972), long-term ALPHA reflects both timing and 

security selection components of managerial performance, so it could be interpreted as a timing 

measure in the context of our timing simulation.21 Second, our proposed indirect long-term timing 

measure, D_ALPHA, is the derivative measure based on ALPHA. Third, as mentioned earlier, 

D_ALPHA could be interpreted from a conditional perspective. Hence it is critical to demonstrate 

that D_ALPHA captures a distinct aspect of long-term timing activity, not reflected in ALPHA 

and COND_ALPHA.  

 Table 2 presents in-sample summary statistics for each measure.22 For each simulated 

timer, we calculate each measure over four-year windows throughout the sample period of 25 years, 

 
20 The exact non-optimal factor is selected at random with equal probabilities from all non-optimal factors. 
21 However, it is important to stress that interpreting ALPHA specifically as a timing measure is limited to the context 
of our simulations, given that timing is the only simulated dimension of active portfolio management.  
22 Standard deviations are presented in the Appendix Table A1. 
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which yields 21 observations for each unconditional measure, D_ALPHA, MAX_ALL, 

MAX_SINGLE, SUM_ALL, ALPHA, and 19 observations for each conditional measure, 

COND_MAX_FT, COND_TOTAL_FT, COND_VOL, COND_ALPHA, given that calculating 

the conditional measures requires 24-month history data to calculate past 24-month beta exposures. 

For unconditional measures, this results in 21,000 (21*10,000 timers) observations for each of the 

nine accuracy options for imperfect timers and in 19,000 (19*10,000 timers) observations for 

conditional measures.  

All measures, except SUM_ALL, COND_MAX_FT, COND_VOL, display a uniform 

pattern reflecting the accuracy of long-term five-factor timing activity: among imperfect timers, 

when one dimension of the timing skill is fixed, measure values monotonically decrease as the 

other dimension of the timing skills goes down.23 Take D_ALPHA as an example. Its highest value 

is achieved for the optimal timing pattern. Among the imperfect timers, when the timing accuracy 

is fixed, D_ALPHA values monotonically decline as the factor selection accuracy decreases. When 

the factor selection accuracy is fixed, the values of D_ALPHA monotonically decrease as the 

timing accuracy goes down.  

Next, we proceed with out-of-sample tests to quantify potential economic benefits to 

investors employing our measures. We form portfolios based on top and bottom deciles of in-

sample values for each measure. For unconditional measures, D_ALPHA, MAX_ALL, 

MAX_SINGLE, SUM_ALL, ALPHA, each portfolio is initially formed on December 31, 1997 

based on ranked measure values over preceding 48 months. For conditional measures, 

COND_MAX_FT, COND_TOTAL_FT, COND_VOL, COND_ALPHA, each portfolio is 

initially formed on December 31, 1999 based on ranked measure values over preceding 48 months, 

 
23 COND_VOL displays a strong pattern with respect to factor selection accuracy. 



20 
 

conditional on preceding 24-month betas. We invest $1 in each timer within a portfolio at the 

beginning of the year, rebalance the portfolio annually based on the updated ranking with respect 

to in-sample four-year window measure values, and track its performance until December 31, 2018. 

Thus, each portfolio for the unconditional measures has a time series of 252 monthly observations 

and 228 observations for the conditional measures. For each portfolio, we use the resulting time 

series to calculate the Fung and Hsieh (2004) eight-factor model (15) alpha with its t-value, the 

mean excess return, Sharpe ratio, and the End Value. 24  Table 3 shows the out-of-sample 

performance of top and bottom portfolios. The top portfolio comprises timers with the highest in-

sample measure values in the top decile, and the bottom portfolio comprises the lowest in the 

bottom decile. The Top-Bottom portfolio is equivalent to taking a long position in the top portfolio 

and a short position in the bottom portfolio. Among all proposed measures, D_ALPHA, ALPHA, 

COND_MAX_FT, COND_VOL, and COND_ALPHA provide economic and statistical 

separation in the top and bottom portfolios, confirming that these measures provide valuable 

benefits to investors.25 However, due to volatility in monthly factor performance and simulated 

timing and factor selection errors, MAX_SINGLE, SUM_ALL, and COND_TOTAL_FT 

measures do not deliver statistically significant separation out-of-sample. We conclude that 

D_ALPHA, ALPHA, COND_MAX_FT, COND_VOL, and COND_ALPHA can separate timers 

with various accuracy skills and provide economic benefits to investors in the context of long-

horizon timing eight factors from model (15).  

 
24 The end value is the dollar value as of December 2018 based on the initial $1 investment on December 31, 1997 for 
the unconditional measures, and on the initial $1 investment on December 31, 1999 for the conditional measures. 
25 Note that both top and bottom portfolios may produce economically and statistically significant alphas, because all 
simulated timers possess varied degrees of timing skills. The significant performance separation in the top-bottom 
portfolio captures the difference in the skill level.  
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Last, we examine whether the measures that demonstrate predictive powers in out-of-

sample tests in Table 3, D_ALPHA, ALPHA, COND_MAX_FT, COND_VOL, and 

COND_ALPHA, capture distinct aspects of long-term multi-factor timing activities. Table 4 

provides the mutually exclusive portfolio analysis, where mutually exclusive portfolios isolate the 

top timers unique to each measure. Specifically, we first form top decile portfolios sorted by one 

measure and then exclude timers that are also in the top decile of the other measure. For example, 

“D_ALPHA Excl. ALPHA” includes timers present in the top decile of the D_ALPHA-sorted 

portfolio but not present in the top decile of the ALPHA-sorted portfolio. Table 4 shows the out-

of-sample performance of these isolating portfolios. We observe that the performance metrics for 

the isolating portfolios are close to that of the original top portfolios in Table 3. In other words, 

the performance of the top portfolio from each measure is not impacted by the timers identified by 

other measures. Thus, we confirm that D_ALPHA, ALPHA, COND_MAX_FT, COND_VOL, 

and COND_ALPHA measures capture distinct aspects of long-horizon timing eight factors from 

the Fung and Hsieh (2004) model (15).26 

We conclude that, out of the considered multi-factor timing measures, D_ALPHA, ALPHA, 

COND_MAX_FT, COND_VOL, and COND_ALPHA demonstrate out-of-sample efficacy and 

distinctiveness in reflecting different aspects of long-horizon timing eight factors from the Fung 

and Hsieh (2004) model (15). 

4.2 Simulated Long-Horizon Multi-Factor Timing with Mutual Fund Factors  

Now we consider factor data from the five-factor model (16) for long-horizon multi-factor 

simulation, following the methodology of the eight-factor simulation in the section above. As 

 
26 It is essential to confirm that D_ALPHA captures a unique aspect of multi-factor timing activity, distinct from those 
captured by ALPHA and COND_ALPHA, given that D_ALPHA is the alpha-based measure. 
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mentioned above, the objective of this simulation is to compare the efficacy of proposed long-term 

multi-factor timing measures in the context of timing different sets of factors.  

First, we construct the optimal five-factor timing pattern from January 1994 to December 

2018 with an average timing horizon of 21.43 months.27 The optimal timing pattern yields $372.90 

in December 2018 based on $1 investment in January 1994, compared to $8.77, which is the 

highest value based on $1 invested in any single factor.28 The optimal timing pattern is presented 

in Figure 5. 

We then consider 90,000 simulated timers, described in the previous section, timing the 

five factors from model (16). The in-sample simulation results for D_ALPHA, MAX_ALL, 

MAX_SINGLE, SUM_ALL, ALPHA, COND_MAX_FT, COND_TOTAL_FT, COND_VOL, 

and COND_ALPHA are presented in Table 5. D_ALPHA, MAX_ALL, MAX_SINGLE, ALPHA, 

and COND_ALPHA measures display a uniform pattern reflecting the accuracy of long-term five-

factor timing activity: among imperfect timers, when one dimension of the timing skill is fixed, 

measure values monotonically decrease as the other dimension of the timing skill goes down. 

COND_MAX_FT and COND_TOTAL_FT display a strong pattern with respect to factor selection 

accuracy.  

Next, we proceed with out-of-sample tests to quantify potential economic benefits to 

investors employing our measures. Table 6 provides the out-of-sample performance analysis for 

each measure, following the methodology from the previous section. The results indicate that 

D_ALPHA, MAX_ALL, ALPHA, COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA 

 
27 The average timing horizon of 21.43 months in the optimal five-factor timing pattern is close to the 24-month timing 
horizon for calculating D_ALPHA in (4). D_ALPHA reflects the difference between the 48-month alpha and the 
average of 24-month alphas.  
28 The highest end value of $8.77 in December 2018 among all factors was generated by investing $1 in January 1994 
in the S&P 500 index factor. 
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measures generate economic and statistical separation between the top and bottom portfolios. 

However, due to volatility in monthly factor performance and simulated timing and factor selection 

errors, MAX_SINGLE, SUM_ALL, and COND_VOL measures do not deliver statistically 

significant separation out-of-sample. We conclude that D_ALPHA, MAX_ALL, ALPHA, 

COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA can separate timers with various 

accuracy skills and provide economic benefits to investors in the context of long-horizon timing 

five factors from model (16).  

Last, we examine whether the measures that demonstrate predictive power in out-of-

sample tests in Table 6, D_ALPHA, MAX_ALL, ALPHA, COND_MAX_FT, 

COND_TOTAL_FT, and COND_ALPHA, capture distinct aspects of multi-factor timing 

activities. Table 7 provides the out-of-sample performance analysis for mutually exclusive 

portfolios, following the methodology from the previous section. The results indicate that 

performance metrics for the isolating portfolios are comparable to that of the top portfolios shown 

in Table 6. This confirms that D_ALPHA, MAX_ALL, ALPHA, COND_MAX_FT, 

COND_TOTAL_FT, and COND_ALPHA measures capture distinct aspects of long-horizon 

timing five factors from model (16).  

We conclude that, out of the considered multi-factor timing measures, D_ALPHA, 

MAX_ALL, ALPHA, COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA demonstrate 

out-of-sample efficacy and distinctiveness in reflecting different aspects of long-horizon timing 

five factors from model (16). 

4.3 Timing Simulations Comparison 

Overall, there is high consistency in eight- and five- factor long-horizon timing simulation 

results, with D_ALPHA, ALPHA, COND_MAX_FT, and COND_ALPHA demonstrating high 
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out-of-sample efficacy and distinctiveness in both simulations. It is notable that out-of-sample 

results for D_ALPHA, ALPHA, and COND_ALPHA measures for top decile portfolios appear to 

be quantitatively larger in the eight-factor simulation compared to the five-factor simulation. We 

conjecture that this could be due to the larger set of available factors in the eight-factor model (15), 

as well as considerably higher volatilities among derivative trend-following factors, ݀݊݁ݎܶ݀݊݋ܤ, 

݀݊݁ݎܶ݉݋ܥ , and ݀݊݁ݎܶݔܨ , included in the eight-factor model (15), compared to volatilities 

among the factors in the five-factor model (16).29  

We proceed with the analysis of long-term multi-factor timing activity of hedge and mutual 

fund managers by applying timing measures that exhibit out-of-sample predictive power in 

simulations above to hedge and mutual fund data. However, it is important to emphasize that the 

efficacy of ALPHA and COND_ALPHA as specifically timing measures has been established in 

the context of timing-only simulations based on specific factors included in models (15) and (16), 

with timing being the only simulated dimension of active portfolio management. It is possible for 

real-life portfolio managers to time other investable factors not included in models (15) and (16). 

Furthermore, in real-life applications to hedge and mutual funds, ALPHA and COND_ALPHA 

would also reflect other aspects of active portfolio management unrelated to timing, such as 

security selection, arbitrage, derivative speculation, and risk management, among others. This will 

complicate interpretations of APLHA and COND_ALPHA as timing measures in real-life 

applications. 

 

 

 
29 This is consistent with Jensen (1972) conclusion of positive relationship between the magnitude of the upward bias 
in alpha due to timing activity and the volatility of the timed factor. 
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5 Multi-Factor Timing Activity among Hedge Fund Managers 

In the eight-factor long-horizon timing simulation in Section 4.1, D_ALPHA, ALPHA, 

COND_MAX_FT, COND_VOL, and COND_ALPHA exhibit predictive power in performance 

separation out-of-sample. In this section, we apply these measures, based on the eight-factor Fung 

and Hsieh (2004) model (15), to hedge fund data to investigate long-horizon multi-factor timing 

skills of hedge fund managers. We focus on macro diversified hedge funds, as their “investment 

process is predicated on movements in underlying economic variables and the impact these have 

on equity, fixed income, hard currency and commodity markets, (…) designed to identify 

opportunities in markets exhibiting trending or momentum characteristics” is most consistent with 

long-horizon multi-factor timing.30 We examine whether managers with superior long-horizon 

multi-factor timing skills, according to our measures, deliver significantly superior performance 

in- and out-of-sample. Ultimately, we explore whether employing our measures can provide 

economic value to real-world investors in hedge funds.  

5.1 Hedge Fund Data  

We obtain hedge fund data from Bloomberg for the period from January 1994 to December 

2018. The data includes both live and defunct hedge funds that were acquired, liquidated, or ceased 

to report during the sample period, mitigating the survivorship bias. Our analysis focuses on macro 

diversified hedge funds, given that these hedge fund managers are most likely to engage in long-

term multi-factor timing activities. We eliminate the first 24 monthly observations for all funds to 

partially offset the effects of backfill bias, following the methodology in Jagannathan, Malakhov, 

and Novikov (2010, 2013) and Titman and Tiu (2011). Since reliable hedge fund data without 

survivorship bias only starts in 1994, eliminating the first 24 monthly observations for all funds 

 
30 Quoted from HFR hedge fund style definitions at https://www.hfr.com/hfr-hedge-fund-strategy-definitions-macro. 
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implies that we only use hedge fund data starting from January 1996 in our subsequent analysis. 

Our sample contains 389 macro diversified hedge funds with 17,672 observations over the time 

period from 1996 to 2018. Table 8 reports summary statistics of hedge fund returns, fees, investor 

liquidity measures, and fund longevity.   

5.2 Hedge Fund In-Sample Analysis 

In our hedge fund analysis, we focus on the measures that demonstrate predictive power in 

the long-horizon eight-factor timing simulation, D_ALPHA, ALPHA, COND_MAX_FT, 

COND_VOL, and COND_ALPHA. Table 9 presents in-sample measure values, calculated from 

net hedge fund returns, following the rolling window methodology from Section 4. To interpret 

in-sample variation in long-horizon multi-factor timing skills across macro diversified hedge fund 

managers, we provide the mean of each measure within each quartile of in-sample values. Q4 

represents the average measure value in the top quartile, and Q1 represents the average value in 

the bottom quartile.  

The top quartile values of all measures are significantly higher than those in the bottom 

quartile, suggesting significantly better multi-factor timing skills among the top macro diversified 

hedge fund managers compared to the bottom ones. 

5.3 Hedge Fund Out-of-Sample Analysis 

We now consider whether employing our measures can provide economic value to 

investors. In other words, we explore whether our measures can identify skilled managers with 

statistically and economically superior performance out-of-sample. In Table 10, we follow the 

methodology for out-of-sample tests from Section 4 based on top and bottom quartile portfolios. 

Unlike simulated timers in Section 4, hedge funds have various life spans. In our analysis, when a 

fund stops reporting, we assume the fund is defunct and redistribute the remaining capital in the 
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fund equally among surviving portfolio funds. We report attrition rates as average annual rates at 

which hedge funds stop reporting.  

For macro diversified hedge funds, the top quartile D_ALPHA portfolio generates a 

statistically significant alpha of 0.272, and it outperforms the bottom quartile D_ALPHA portfolio 

by a statistically significant out-of-sample alpha of 0.417. 31  On the contrary, ALPHA, 

COND_MAX_FT, COND_VOL, and COND_ALPHA generate qualitatively opposite out-of-

sample results, with the bottom portfolios performing better than the top portfolios.  

We conclude that the out-of-sample results for D_ALPHA are consistent with the presence 

of persistent skill in long-horizon multi-factor timing activity among macro diversified hedge fund 

managers.32 We further discuss the results in Section 7. 

6 Multi-Factor Timing Activity among Mutual Fund Managers  

In the five-factor long-horizon timing simulation in Section 4.2, D_ALPHA, MAX_ALL, ALPHA, 

COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA exhibit predictive power in 

performance separation out-of-sample. In this section, we apply these measures, based on the five-

factor model (10), to mutual fund data to investigate long-horizon multi-factor timing skills of 

mutual fund managers. We focus on flexible portfolio allocation mutual funds, as their investment 

objectives to “allocate investments across various asset classes, including domestic common 

stocks, bonds, and money market instruments with a focus on total return” are most consistent with 

long-horizon multi-factor timing.33 We examine whether managers with superior long-horizon 

 
31 Out-of-sample alphas of 0.272 and 0.417 are based on monthly returns, equivalent to annualized alphas of 3.264% 
and 5.004%. 
32 Considering the full sample of hedge funds, D_ALPHA does not exhibit out-of-sample predictive power, which is 
not surprising, given that hedge funds follow a wide variety of investment styles, most of which do not involve timing. 
These results are available upon request. 
33 Quoting from CRSP Lipper Objective and Classification Codes at 
https://www.crsp.org/products/documentation/lipper-objective-and-classification-codes.  
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multi-factor timing skills, according to our measures, deliver significantly superior performance 

in- and out-of-sample.  

6.1 Mutual Fund Data  

We use the CRSP Survivor-Bias-Free Mutual Fund Database to construct our mutual fund 

sample. The sample period spans the period from January 1994 to December 2018. Our analysis 

focuses on mutual funds with CRSP Lipper objective classifications of Flexible Portfolio Funds, 

Global Flexible Portfolio Funds, and Alternative Global Macro Funds, given that these mutual 

fund investment styles are most consistent with long-term multi-factor timing activities.34 For 

simplicity, we refer to this subsample as “flexible portfolio allocation mutual funds”. To address 

incubation bias (Evans, 2010), we remove funds from the sample until they are at least two years 

old and until they reach at least $15 million in assets. We collapse all fund share classes into a 

single fund using the WFICN variable provided by MFLINKS. Fund characteristics and returns 

are asset-weighted averages of share classes, and the assets are aggregated across all share classes. 

Our sample contains 343 unique funds with 46,925 observations. Table 11 reports summary 

statistics for the sample of flexible portfolio allocation mutual funds of total net assets (TNA), 

expense ratios, turnover rates, and returns.  

6.2 Mutual Fund In-Sample Analysis 

In our mutual fund analysis, we focus on the measures that demonstrate out-of-sample 

predictive power in the five-factor long-horizon timing simulation, D_ALPHA, MAX_ALL, 

ALPHA, COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA. Table 12 presents in-

 
34 For example, according to CRSP Lipper Objective and Classification Codes, for Alternative Global Macro Funds, 
“the strategy is typically based on forecasts and analysis about interest rate trends, the general flow of funds, political 
changes, government policies, intergovernmental relations, and other broad systemic factors.” 
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sample summary statistics, calculated from net and gross mutual fund returns, following the rolling 

window methodology from Section 4. To interpret in-sample variation in long-horizon multi-factor 

timing skills across flexible portfolio allocation mutual fund managers, we provide the mean of 

each measure within each quartile of in-sample values. Q4 represents the average measure value 

in the top quartile, and Q1 represents the average value in the bottom quartile.  

The top quartile values of all measures are significantly higher than those in the bottom 

quartile, suggesting significantly better multi-factor timing skills among the top flexible portfolio 

allocation mutual fund managers compared to the bottom ones. 

6.3 Mutual Fund Out-of-Sample Analysis 

We now consider whether employing our measures can provide economic value to 

investors. In other words, we explore whether our measures can identify skilled managers with 

statistically and economically superior performance out-of-sample. In Table 13, we follow the 

methodology for out-of-sample tests from Section 4 based on top and bottom quartile portfolios. 

Unlike simulated timers in the previous section, mutual funds have various life spans. In our 

analysis, when a fund stops reporting, we assume the fund is defunct and redistribute the remaining 

capital in the fund equally among surviving portfolio funds. We report attrition rates as average 

annual rates at which mutual funds stop reporting.  

For flexible portfolio allocation mutual funds, the top quartile D_ALPHA portfolio 

outperforms the bottom quartile D_ALPHA portfolio, generating statistically significant out-of-

sample separation alphas based on both net and gross mutual fund returns. Every other measure 

fails to provide significant separation between top and bottom portfolios out-of-sample. It is 

notable that the top quartile D_ALPHA portfolio fails to deliver positive out-of-sample net alpha, 
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but delivers positive, yet statistically insignificant, out-of-sample gross alpha, which is consistent 

with prior mutual fund literature, going back to Carhart (1997).  

We conclude that the out-of-sample results for D_ALPHA are consistent with the presence 

of persistent skill in long-horizon multi-factor timing activity among flexible portfolio allocation 

mutual fund managers.35 We further discuss the results in the section that follows. 

7 Discussion and Conclusion 

In this paper, we consider long-horizon multi-factor timing activity of active portfolio managers 

based on macroeconomic trends among multiple factors. Building on Jensen (1972), we introduce 

the new indirect measure of long-horizon timing activity, D_ALPHA, and compare its efficacy 

with multi-factor extensions of the HM timing measure and conditional COST measures. We 

demonstrate that D_ALPHA successfully captures long-horizon multi-factor timing in eight- and 

five-factor long-horizon timing simulations. In simulations, we observe strong positive 

correlations among D_ALPHA, ALPHA, and COND_ALPHA, provided in Table 14.36 

In our simulations, we reduce active portfolio management to specifically simulated long-

horizon multi-factor timing activity. Our multi-factor timing simulation assumes full investment 

in one of the considered factors without leverage or derivatives. It is possible for real-life long-

horizon multi-factor timing activity to have features not well reflected by our simulation and out-

of-sample tests. For example, portfolio managers could be timing other investable factors not 

 
35 Considering the full sample of mutual funds, D_ALPHA does not exhibit out-of-sample predictive power, which is 
not surprising, given that the vast majority of equity mutual funds have investment objectives that preclude 
economically meaningful timing activities. These results are available upon request. 
36 As discussed in Section 4, ALPHA could be interpreted as a timing measure specifically in the context of our 
simulations, given that timing is the only simulated dimension of active portfolio management. Also, D_ALPHA is 
the alpha-based measure; hence it is not surprising to see high correlations among D_ALPHA, ALPHA, and 
COND_ALPHA in timing-only simulations. We confirm that D_ALPHA captures a distinct aspect of long-term multi-
factor timing activity, not reflected in ALPHA and COND_ALPHA, in the mutually exclusive portfolio analysis in 
Tables 4 and 7, further articulating the importance of this analysis in footnote 26. 
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included in models (15) and (16), and strategically employing leverage and derivatives. Also, our 

simulation assumes persistent long-horizon multi-factor timing. It does not account for sporadic 

long-horizon multi-factor timing activity that portfolio managers may undertake infrequently only 

when clear multi-factor timing opportunities present themselves.37  

In our analysis of hedge and mutual funds with strategies that are consistent with long-

horizon multi-factor timing, macro diversified hedge funds and flexible portfolio allocation mutual 

funds, we find D_ALPHA out-of-sample results that are consistent with the presence of persistent 

skill in long-horizon multi-factor timing activity, while all other measures, including ALPHA and 

COND_ALPHA, do not exhibit significant predictive power. ALPHA and COND_ALPHA are 

traditionally interpreted measures of all active portfolio management, including activity unrelated 

to timing, such as security selection, arbitrage, derivative speculation, and risk management, 

among others. It is plausible to conjecture that macro diversified hedge funds engage in a wide 

variety of such activities, reflected by ALPHA and COND_ALPHA, but not captured by 

D_ALPHA, given low correlations of 0.120 between D_ALPHA and ALPHA and 0.021 between 

D_ALPHA and COND_ALPHA (presented in Table 14). We conjecture that such activities either 

have dubious out-of-sample success or interfere with multi-factor timing activity captured by 

D_ALPHA. On the other hand, correlations of 0.363 between D_ALPHA and ALPHA and 0.348 

between D_ALPHA and COND_ALPHA in flexible allocation mutual funds are relatively strong 

and statistically significant. The out-of-sample results for ALPHA and COND_ALPHA in flexible 

allocation mutual funds are qualitatively similar to the results for D_ALPHA but miss to deliver 

statistically significant separation between the top and bottom portfolios. This is consistent with 

 
37 For example, Brunnermeier and Nagel (2004) documented that many hedge fund managers successfully timed into 
growth technology stocks during the “dot com” bubble in the late 1990s, exiting their positions before the bubble burst 
in 2000. In “The Big Short” (2010), Michael Lewis provides accounts of the managers who successfully timed the 
economic meltdown of 2008-2009. 
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the conjecture that multi-factor timing is likely the most prominent portfolio management activity 

in flexible allocation mutual funds. 

Finally, as mentioned earlier, D_ALPHA is an indirect measure of long-horizon timing 

activity, reflecting long-horizon timing activity through differences in long- and short-term alphas.  

Its estimates for individual funds may not be well suited for straightforward quantitative 

interpretation in-sample, given that its measurement windows are not likely to perfectly match 

timing horizons of active portfolio managers. Furthermore, D_ALPHA, being the derivative 

measure of ALPHA, may reflect time-varying profitability from other active portfolio 

management skills, potentially reflected by ALPHA.38 However, such time-varying profitability 

could arguably be considered an indirect form of multi-factor timing.  

We conclude that, based on our analysis and subject to the caveats above, out of all 

considered measures, only the indirect measure, D_ALPHA, consistently captures long-horizon 

multi-factor activity out-of-sample in simulations and in investment styles that rely on long-

horizon multi-factor timing, which are macro diversified in hedge funds and flexible portfolio 

allocation in mutual funds.  

 

  

 
38 It is possible for active portfolio management skills to generate time-varying profitability patterns depending on 
macroeconomic conditions. For example, skills in investing in distressed securities, emerging markets, or convertible 
arbitrage, among others.  
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Figure 1: Timing horizon vs. measurement horizon, based on Jensen (1972) 

Figure 1A displays a long timing horizon relative to a short measurement horizon, with portfolio 
manager’s performance evaluated according to the single factor model from Jensen (1972): 	
௧ݎ െ ௧ݎ

௙ ൌ ߙ ൅ ௧ݎ൫ߚ
௠௔௥௞௘௧ െ ௧ݎ

௙൯ ൅  reflects security selection activity, but does not reflect ߙ .௧ߝ
timing activity.  

Figure 1B displays a short timing horizon relative to a long measurement horizon, with portfolio 
manager’s performance evaluated according to the single factor model from Jensen (1972): 	
௧ݎ െ ௧ݎ

௙ ൌ ߙ ൅ ௧ݎ൫ߚ
௠௔௥௞௘௧ െ ௧ݎ

௙൯ ൅ .௧ߝ ߙ   reflects both security selection activity and timing 
activity together.   
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Figure 2: Market timing of an imperfect realistic long-term timer 

Figure 2A displays cumulative market excess return and an imperfect realistic long-term market timer from 
March 2008 to February 2010. The blue line represents the timer investing in the U.S. Treasury Bills, and 
the red line represents the timer investing in the S&P 500 index fund. Figure 2B illustrates the corresponding 
return payoff of the imperfect realistic timer.  

 

A 

 

B  
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Figure 3: Motivation for the proposed indirect long-term timing measure, D_ALPHA 

Figure 3 displays the return payoff of the imperfect realistic long-term timer from March 2008 to February 
2010 in the motivating example. The text box presents the imperfect realistic timer’s alphas from the single 

factor model,  ݎ௧ െ ௧ݎ
௙ ൌ ߙ ൅ ௧ݎ൫ߚ

௠௔௥௞௘௧ െ ௧ݎ
௙൯ ൅  ௧, evaluated over the overall 24-month window andߝ

three rolling 12-month windows. The detailed regression results are presented in Table 1. 
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Figure 4: Hedge fund factors from model (15) and the optimal timing pattern in the eight-factor simulation  

Figure 4 displays the optimal multi-factor timing pattern for Fung and Hsieh (2004) eight factors (15) and the 30-day U.S. Treasury Bill return, 
along with the evolution of natural log portfolio values from investing $1 on January 1, 1994. The thick solid line represents the optimal timing 
pattern value, and dotted lines represent log portfolio values if invested in suboptimal factors at each switch point. The sample period is from January 
1994 to December 2018.  
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Figure 5: Mutual fund factors from model (16) and the optimal timing pattern in the five-factor simulation  

Figure 5 displays the optimal multi-factor timing pattern for five factors from the mutual fund performance evaluation model (16) and the 30-day 
U.S. Treasury Bill return, along with the evolution of natural log portfolio values from investing $1 on January 1, 1994. The thick solid line represents 
the optimal timing pattern value, and dotted lines represent log portfolio values if invested in suboptimal factors at each switch point. The sample 
period is from January 1994 to December 2018.  
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Table 1: Single factor model results for the motivating example 

Table 1 presents the single-factor model results for the imperfect realistic timer in the motivating example, 
displayed in Figures 3 and 4. The imperfect realistic timer invests in the U.S. Treasury Bills from March 
2008 to April 2009, and in the S&P 500 index fund from May 2009 to February 2010. The timer 

performance is evaluated with the model,  ݎ௧ െ ௧ݎ
௙ ൌ ߙ ൅ ௧ݎ൫ߚ

௠௔௥௞௘௧ െ ௧ݎ
௙൯ ൅  ௧. Panel A presents resultsߝ

over the 24-month window, from March 2008 to February 2010. Panel B presents results over the first 12-
month window, from March 2008 to February 2009. Missing values for t-statistics and P-values are due to 
the dependent variable in the single factor regression being zero for the entire 12-month window from 
March 2008 to February 2009. Panel C presents results over the second 12-month window, from September 
2008 to August 2009. Panel D presents results over the third 12-month window, from March 2009 to 
February 2010. 

 

 

 

  

Panel A: Results for the 24-month Window, March 2008 - February 2010
Coefficient t-stat P-value

α 0.012 2.433 0.024
R market - R f 0.177 2.491 0.021

Panel B: Results for the First 12-month Window, March 2008 - February 2009
Coefficient t-stat P-value

α 0 . .
R market - R f 0 . .

Panel C: Results for the Second 12-month Window, September 2008 - August 2009
Coefficient t-stat P-value

α 0.016 2.207 0.052
R market - R f 0.135 1.656 0.129

Panel D: Results for the Third 12-month Window, March 2009 - February 2010
Coefficient t-stat P-value

α 0.006 0.501 0.627
R market - R f 0.424 1.970 0.077
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Table 2: Summary statistics from the eight-factor timing simulation 

Table 2 presents summary statistics of proposed timing measure values for the nine types of imperfect 
timers. All measures are based on the Fung and Hsieh (2004) eight-factor model (15). The imperfect timers 
make errors in both timing of switching into the optimal factor and in the optimal factor selection. We 
simulate three levels of accuracy in both dimensions, which yields nine possible combinations in timing 
accuracy combined with factor selection accuracy: we simulate 10,000 timers for each combination. We 
simulate timing accuracy by allowing the factor switch time within two, four, and six months prior to the 
optimal switch time (the optimal switch time included) via uniform distribution. We simulate factor 
selection accuracy in that the optimal factor at each switch point is selected with probabilities of 90%, 60%, 
and 30%. For each timer, we calculate each measure over four-year rolling windows over the sample period 
of 25 years from January 1994 to December 2018. This yields 21,000 (21*10,000 timers) observations for 
each category of accuracy for the unconditional measures, D_ALPHA, MAX_ALL, MAX_SINGLE, 
SUM_ALL, ALPHA, and 19,000 (19*10,000 timers) observations for conditional measures, 
COND_MAX_FT, COND_TOTAL_FT, COND_VOL, COND_ALPHA, given that calculating the 
conditional measures requires 24-month history data to calculate past 24-month beta exposures. Standard 
deviations are presented in the Appendix.  

Timing Accuracy
90% 60% 30%

D_ALPHA 0.818 0.509 0.195
MAX_ALL 0.188 0.117 0.046

MAX_SINGLE 2.405 2.169 1.940
SUM_ALL 0.211 0.138 0.040

2 months ALPHA 2.220 1.379 0.536
COND_MAX_FT 0.863 0.850 0.793

COND_TOTAL_FT 0.580 0.377 0.146
COND_VOL 0.121 0.067 0.029

COND_ALPHA 1.437 0.884 0.341

D_ALPHA 0.772 0.479 0.185
MAX_ALL 0.157 0.097 0.039

MAX_SINGLE 2.345 2.108 1.901
SUM_ALL -0.118 -0.072 -0.028

4 months ALPHA 1.815 1.127 0.442
COND_MAX_FT 0.922 0.859 0.973

COND_TOTAL_FT 0.414 0.303 0.157
COND_VOL 0.140 0.069 -0.002

COND_ALPHA 1.142 0.682 0.260

D_ALPHA 0.711 0.442 0.171
MAX_ALL 0.130 0.081 0.031

MAX_SINGLE 2.250 2.028 1.852
SUM_ALL -0.369 -0.220 -0.084

6 months ALPHA 1.400 0.873 0.336
COND_MAX_FT 1.073 0.852 1.354

COND_TOTAL_FT 0.411 0.302 0.097
COND_VOL 0.154 0.070 0.052

COND_ALPHA 0.682 0.408 0.151

Factor Selection Accuracy
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Table 3: Out-of-sample performance in the eight-factor timing simulation 

Table 3 reports out-of-sample performance of portfolios based on top and bottom deciles of past values of 
each measure. Each portfolio is rebalanced annually based on the updated ranking with respect to preceding 
four-year window measure values. For D_ALPHA, MAX_ALL, MAX_SINGLE, SUM_ALL, ALPHA, 
portfolios are initially formed on December 31, 1997. For COND_MAX_FT, COND_TOTAL_FT, 
COND_VOL, COND_ALPHA, portfolios are initially formed on December 31, 1999. We invest $1 in each 
timer within a portfolio at the beginning of the year and track its performance until December 31, 2018. 
The top-bottom portfolio is equivalent to taking a long position in the top decile portfolio and a short 
position in the bottom decile portfolio. The reported alpha and its corresponding T-value are from the Fung 
and Hsieh (2004) eight-factor model (15). Return is the mean excess return. The End Value is the dollar 
value of the initial $1 investment as of December 2018.  

 

Variable Portfolio Alpha T-Alpha Return Sharpe End Value

Top 2.122 4.429 1.542 0.167 26.774
D_ALPHA Bottom 0.449 1.625 0.081 0.014 1.232

Top-Bottom 1.673 3.650 1.461 0.197 20.699

Top 1.322 3.562 0.930 0.130 8.280
MAX_ALL Bottom 1.146 3.562 0.791 0.123 6.592

Top-Bottom 0.176 0.515 0.139 0.026 1.004

Top 1.412 3.532 1.056 0.131 9.877
MAX_SINGLE Bottom 0.965 3.688 0.790 0.160 8.025

Top-Bottom 0.447 1.631 0.266 0.053 1.458

Top 1.424 3.352 0.842 0.100 5.475
SUM_ALL Bottom 1.173 3.313 1.020 0.153 11.323

Top-Bottom 0.251 0.518 -0.178 -0.022 0.308

Top 2.382 4.823 1.851 0.201 57.585
ALPHA Bottom 0.519 2.013 0.092 0.016 1.262

Top-Bottom 1.863 4.741 1.759 0.285 51.837

Top 1.327 3.525 1.084 0.145 8.770
COND_MAX_FT Bottom 0.749 3.091 0.688 0.146 5.042

Top-Bottom 0.577 2.629 0.396 0.100 2.075

Top 1.501 3.567 1.257 0.153 11.535
COND_TOTAL_FT Bottom 1.154 3.940 0.897 0.151 7.050

Top-Bottom 0.346 1.473 0.360 0.098 1.952

Top 1.832 3.883 1.550 0.182 21.542
COND_VOL Bottom 0.713 2.286 0.493 0.078 2.692

Top-Bottom 1.120 2.792 1.057 0.178 7.619

Top 1.588 4.252 1.468 0.210 22.147
COND_ALPHA Bottom 0.892 2.556 0.520 0.075 2.647

Top-Bottom 0.696 2.926 0.949 0.265 7.466
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Table 4: Mutually exclusive portfolio performance in the eight-factor timing simulation 

Table 4 presents out-of-sample performance of mutually exclusive portfolios. We first form top decile 
portfolios sorted by one measure and then exclude any timers that are also in the top decile of the other 
measure. For example, D_ALPHA ex ALPHA is the portfolio consisting of timers present in the top decile 
of the D_ALPHA-sorted portfolio but not in the top decile of the ALPHA-sorted portfolio. We only 
consider measures that demonstrate predictive power in the out-of-sample test in Table 3. Portfolios based 
on unconditional measures, D_ALPHA and ALPHA, are formed on December 31, 1997. All portfolios that 
involve conditional measures, COND_MAX_FT, COND_VOL, COND_ALPHA, are formed on December 
31, 1999. The reported alpha and its corresponding T-value are from the Fung and Hsieh (2004) eight-factor 
model (15). Return is the mean excess return. The End Value is the dollar value of the initial $1 investment 
as of December 2018.  

 

 

  

Variable Mutually Exclusive Portfolio Alpha T-Alpha Return Sharpe End Value

D_ALPHA ex ALPHA 1.718 4.277 1.143 0.161 12.717
D_ALPHA ex COND_MAX_FT 1.761 3.691 1.480 0.168 17.448

D_ALPHA D_ALPHA ex COND_VOL 1.711 3.697 1.415 0.163 15.482
D_ALPHA ex COND_ALPHA 1.760 3.707 1.427 0.161 15.392

ALPHA ex D_ALPHA 2.135 4.787 1.672 0.215 60.092
ALPHA ex COND_MAX_FT 1.967 4.070 1.813 0.209 37.423

ALPHA ALPHA ex COND_VOL 1.907 4.100 1.753 0.208 34.191
ALPHA ex COND_ALPHA 2.035 4.000 1.824 0.198 35.397

COND_MAX_FT ex D_ALPHA 1.286 3.407 1.080 0.147 8.831
COND_MAX_FT ex ALPHA 1.299 3.450 1.080 0.147 8.811

COND_MAX_FT COND_MAX_FT ex COND_VOL 1.249 3.359 1.001 0.134 7.258
COND_MAX_FT ex COND_ALPHA 1.321 3.486 1.073 0.143 8.497

COND_VOL ex D_ALPHA 1.825 3.886 1.575 0.188 23.331
COND_VOL ex ALPHA 1.807 3.863 1.539 0.184 21.570

COND_VOL COND_VOL ex COND_MAX_FT 1.883 3.863 1.609 0.186 24.090
COND_VOL_FT ex COND_ALPHA 1.822 3.862 1.552 0.183 21.780

COND_ALPHA ex D_ALPHA 1.447 4.155 1.437 0.224 22.311
COND_ALPHA ex ALPHA 1.338 4.061 1.285 0.207 16.287

COND_ALPHA COND_ALPHA ex COND_MAX_FT 1.590 4.262 1.473 0.211 22.444
COND_ALPHA ex COND_VOL 1.576 4.235 1.476 0.213 22.759
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Table 5: Summary statistics from the five-factor timing simulation 

Table 5 presents summary statistics of proposed timing measure values for the nine types of imperfect 
timers. All measures are based on the five-factor model (16). The imperfect timers make errors in both 
timing of switching into the optimal factor and in the optimal factor selection. We simulate three levels of 
accuracy in both dimensions, which yields nine possible combinations in timing accuracy combined with 
factor selection accuracy: we simulate 10,000 timers for each combination. We simulate timing accuracy 
by allowing the factor switch time within two, four, and six months prior to the optimal switch time (the 
optimal switch time included) via uniform distribution. We simulate factor selection accuracy in that the 
optimal factor at each switch point is selected with probabilities of 90%, 60%, and 30%. For each timer, 
we calculate each measure over four-year rolling windows over the sample period of 25 years from January 
1994 to December 2018. This yields 21,000 (21*10,000 timers) observations for each category of accuracy 
for the unconditional measures, D_ALPHA, MAX_ALL, MAX_SINGLE, SUM_ALL, ALPHA, and 
19,000 (19*10,000 timers) observations for conditional measures, COND_MAX_FT, COND_TOTAL_FT, 
COND_VOL, and COND_ALPHA, given that calculating the conditional measures requires 24-month 
history data to calculate past 24-month beta exposures. Standard deviations are presented in the Appendix.  

 

Timing Accuracy
90% 60% 30%

D_ALPHA 0.337 0.199 0.061
MAX_ALL 0.224 0.132 0.041

MAX_SINGLE 0.849 0.729 0.625
SUM_ALL 0.207 0.126 0.033

2 months ALPHA 0.876 0.518 0.157
COND_MAX_FT 0.293 0.206 0.135

COND_TOTAL_FT 0.308 0.172 0.046
COND_VOL -0.084 -0.044 -0.012

COND_ALPHA 0.715 0.427 0.135

D_ALPHA 0.315 0.186 0.057
MAX_ALL 0.192 0.114 0.035

MAX_SINGLE 0.811 0.710 0.621
SUM_ALL 0.019 0.014 -0.002

4 months ALPHA 0.744 0.441 0.132
COND_MAX_FT 0.296 0.211 0.137

COND_TOTAL_FT 0.321 0.179 0.048
COND_VOL -0.072 -0.038 -0.009

COND_ALPHA 0.550 0.333 0.103

D_ALPHA 0.275 0.162 0.050
MAX_ALL 0.153 0.091 0.028

MAX_SINGLE 0.801 0.697 0.609
SUM_ALL -0.081 -0.046 -0.016

6 months ALPHA 0.571 0.338 0.103
COND_MAX_FT 0.277 0.203 0.135

COND_TOTAL_FT 0.306 0.167 0.045
COND_VOL -0.055 -0.024 -0.005

COND_ALPHA 0.357 0.216 0.069

Factor Selection Accuracy
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Table 6: Out-of-sample performance in the five-factor timing simulation 

Table 6 reports out-of-sample performance of portfolios based on top and bottom deciles of past values of 
each measure. Each portfolio is rebalanced annually based on the updated ranking with respect to preceding 
four-year window measure values. For D_ALPHA, MAX_ALL, MAX_SINGLE, SUM_ALL, ALPHA, 
portfolios are initially formed on December 31, 1997. For COND_MAX_FT, COND_TOTAL_FT, 
COND_VOL, COND_ALPHA, portfolios are initially formed on December 31, 1999. We invest $1 in each 
timer within a portfolio at the beginning of the year and track its performance until December 31, 2018. 
The top-bottom portfolio is equivalent to taking a long position in the top decile portfolio and a short 
position in the bottom decile portfolio. The reported alpha and its corresponding T-value are from the five-
factor model (16). Return is the mean excess return. The End Value is the dollar value of the initial $1 
investment as of December 2018.  

 

  

  

Variable Portfolio Alpha T-Alpha Return Sharpe End Value

Top 0.708 4.452 0.929 0.308 13.601
D_ALPHA Bottom 0.320 3.911 0.543 0.321 5.593

Top-Bottom 0.388 2.506 0.386 0.148 2.431

Top 0.740 4.625 0.984 0.338 15.725
MAX_ALL Bottom 0.453 3.616 0.646 0.225 6.774

Top-Bottom 0.286 1.703 0.338 0.109 2.080

Top 0.499 4.012 0.755 0.314 9.172
MAX_SINGLE Bottom 0.484 4.946 0.695 0.340 8.057

Top-Bottom 0.016 0.140 0.060 0.031 1.109

Top 0.409 3.644 0.639 0.290 6.947
SUM_ALL Bottom 0.508 3.686 0.733 0.235 8.251

Top-Bottom -0.099 -0.650 -0.093 -0.029 0.693

Top 0.905 5.123 1.148 0.356 23.055
ALPHA Bottom 0.255 3.315 0.473 0.277 4.691

Top-Bottom 0.650 3.977 0.675 0.253 4.988

Top 0.833 4.973 1.068 0.356 13.752
COND_MAX_FT Bottom 0.351 4.569 0.574 0.360 4.837

Top-Bottom 0.482 3.391 0.494 0.217 2.906

Top 0.810 4.857 1.048 0.350 13.146
COND_TOTAL_FT Bottom 0.347 3.675 0.595 0.307 5.002

Top-Bottom 0.464 2.908 0.453 0.171 2.595

Top 0.583 4.885 0.829 0.366 8.363
COND_VOL Bottom 0.651 4.777 0.905 0.341 9.725

Top-Bottom -0.068 -0.588 -0.076 -0.040 0.805

Top 0.890 4.877 1.138 0.352 15.839
COND_ALPHA Bottom 0.314 4.184 0.571 0.329 4.777

Top-Bottom 0.576 3.761 0.567 0.243 3.420
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Table 7: Mutually exclusive portfolio performance in the five-factor timing simulation 

Table 7 presents out-of-sample performance of mutually exclusive portfolios. We first form top decile 
portfolios sorted by one measure and then exclude any timers that are also in the top decile of the other 
measure. For example, D_ALPHA ex ALPHA is the portfolio consisting of timers present in the top decile 
of the D_ALPHA-sorted portfolio but not in the top decile of the ALPHA-sorted portfolio. We only 
consider measures that demonstrate predictive power in the out-of-sample test in Table 6. Portfolios based 
on unconditional measures, D_ALPHA, MAX_ALL, and ALPHA are formed on December 31, 1997. All 
portfolios that involve conditional measures, COND_MAX_FT, COND_TOTAL_FT, COND_ALPHA, 
are formed on December 31, 1999. The reported alpha and its corresponding T-value are from the five-
factor model (16). Return is the mean excess return. The End Value is the dollar value of the initial $1 
investment as of December 2018.  

 

Variable Mutually Exclusive Portfolio Alpha T-Alpha Return Sharpe End Value

D_ALPHA ex MAX_ALL 0.635 4.091 0.863 0.290 11.576
D_ALPHA ex ALPHA 0.625 4.294 0.830 0.293 10.755

D_ALPHA D_ALPHA ex COND_MAX_FT 0.741 4.404 0.993 0.323 11.556
D_ALPHA ex COND_TOTAL_FT 0.745 4.505 1.001 0.329 11.779

D_ALPHA ex COND_ALPHA 0.712 4.407 0.944 0.319 10.423

MAX_ALL ex D_ALPHA 0.672 4.438 0.919 0.333 13.488
MAX_ALL ex ALPHA 0.631 4.526 0.873 0.339 12.177

MAX_ALL MAX_ALL ex COND_MAX_FT 0.694 4.181 0.951 0.327 10.609
MAX_ALL ex COND_TOTAL_FT 0.667 4.107 0.932 0.327 10.211

MAX_ALL ex COND_ALPHA 0.674 4.317 0.902 0.328 9.596

ALPHA ex D_ALPHA 0.892 4.956 1.124 0.348 21.776
ALPHA ex MAX_ALL 0.725 4.090 0.969 0.298 14.773

ALPHA ALPHA ex COND_MAX_FT 0.883 4.736 1.141 0.343 15.817
ALPHA ex COND_TOTAL_FT 0.882 4.767 1.141 0.347 15.868

ALPHA ex COND_ALPHA 0.833 4.699 1.075 0.338 13.797

COND_MAX_FT ex D_ALPHA 0.823 4.966 1.057 0.356 13.442
COND_MAX_FT ex MAX_ALL 0.852 5.090 1.088 0.360 14.345

COND_MAX_FT COND_MAX_FT ex ALPHA 0.811 4.944 1.045 0.355 13.105
COND_MAX_FT ex COND_TOTAL_FT 0.841 4.989 1.084 0.361 14.253

COND_MAX_FT ex COND_ALPHA 0.822 4.924 1.056 0.354 13.379

COND_TOTAL_FT ex D_ALPHA 0.805 4.915 1.046 0.353 13.106
COND_TOTAL_FT ex MAX_ALL 0.795 4.941 1.035 0.353 12.811

COND_TOTAL_FT COND_TOTAL_FT ex ALPHA 0.781 4.856 1.017 0.349 12.323
COND_TOTAL_FT ex COND_MAX_FT 0.784 4.738 1.030 0.344 12.636
COND_TOTAL_FT ex COND_ALPHA 0.803 4.810 1.039 0.347 12.885

COND_ALPHA ex D_ALPHA 0.876 4.900 1.112 0.359 15.068
COND_ALPHA ex MAX_ALL 0.840 4.687 1.078 0.346 13.936

COND_ALPHA COND_ALPHA ex ALPHA 0.825 4.791 1.046 0.354 13.113
COND_ALPHA ex COND_MAX_FT 0.881 4.834 1.126 0.350 15.429

COND_ALPHA ex COND_TOTAL_FT 0.885 4.873 1.130 0.353 15.580
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Table 8: Summary statistics of macro diversified hedge fund data 

Table 8 presents summary statistics for the sample of macro diversified hedge funds from 1996 to 2018. 

 

 

  

Mean Median 10th pct 90th pct Std Dev

Monthly Excess Return (%) 0.114 0.210 -4.247 4.386 4.752

Assets Under Management (AUM, $Millions) 235.770 59.000 4.155 539.665 519.216

Minimum Investment ($Millions) 1.179 0.100 0.028 1.000 4.998

Management Fee (%) 1.480 1.500 0.300 2.000 0.841

Performance Fee (%) 16.956 20.000 0.000 20.000 7.811

Hurdle Rate (%) 0.249 0.000 0.000 0.000 1.380

Lockup Period (days) 32.282 0.000 0.000 0.000 107.815

Redemption Notice (days) 14.046 0.000 0.000 35.000 23.569

Longevity (months) 97.084 78.000 52.000 175.000 52.354
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Table 9: In-sample measure values for macro diversified hedge funds 

Table 9 presents in-sample statistics for the measures that demonstrate predictive power in the out-of-
sample test in the eight-factor timing simulation in Table 3. The mean and standard deviation of each 
measure are calculated over rolling four-year windows for each macro diversified hedge fund over the 
sample period, based on the Fung and Hsieh (2004) eight-factor model (15). We sort all in-sample values 
into quartiles and present the average measure value in each quartile. Q4 represents the average of the 
highest measure value, and Q1 represents the average of the lowest. The last column presents the t-statistic 
for the difference in means between Q4 and Q1. 

 

 

  

Variable Mean St Dev Q4 Q3 Q2 Q1 Q4-Q1 t-stat

D_ALPHA 0.048 0.324 0.436 0.110 -0.023 -0.334 26.173

ALPHA 0.162 0.679 0.959 0.301 -0.006 -0.606 23.881

COND_MAX_FT 0.349 0.514 0.876 0.300 0.144 0.062 10.170

COND_VOL 0.021 0.174 0.211 0.045 -0.042 -0.147 15.090

COND_ALPHA 0.105 0.648 0.738 0.274 -0.056 -0.606 15.130
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Table 10: Out-of-sample performance for macro diversified hedge funds  

Table 10 presents out-of-sample performance of portfolios based on top and bottom quartiles of past values 
of each measure. Each portfolio is rebalanced annually based on the updated ranking with respect to 
preceding four-year window measure values. For unconditional measures, D_ALPHA and ALPHA, 
portfolios are initially formed on December 31, 1999. For conditional measures, COND_MAX_FT, 
COND_VOL, and COND_ALPHA, portfolios are initially formed on December 31, 2001, given that 
calculating the conditional measures requires 24-month history data to calculate past 24-month beta 
exposures. We invest $1 in each fund within a portfolio at the beginning of the year and track its 
performance until December 31, 2018. When a fund stops reporting, we assume the fund is defunct and 
redistribute the remaining capital in the fund equally among surviving portfolio funds. The top-bottom 
portfolio is equivalent to taking a long position in the top quartile portfolio and a short position in the bottom 
quartile portfolio. The reported alpha and its corresponding T-value are from the Fung and Hsieh (2004) 
eight-factor model (15). Return is the mean excess return. The End Value is the dollar value of the initial 
$1 investment as of December 2018. The Attrition Rate is the average annual rate at which funds stop 
reporting. 

 

 

  

Variable Portfolio Alpha T-Alpha Return Sharpe End Value Attrition Rate

Top 0.272 1.774 0.452 0.167 3.463 4.38%
D_ALPHA Bottom -0.146 -0.991 -0.027 -0.011 1.186 15.77%

Top-Bottom 0.417 2.132 0.478 0.166 2.704 -

Top 0.072 0.485 0.241 0.092 2.160 6.43%
ALPHA Bottom 0.207 1.457 0.357 0.126 2.776 12.44%

Top-Bottom -0.135 -0.813 -0.116 -0.045 0.712 -

Top -0.156 -0.733 0.087 0.025 1.297 15.97%
COND_MAX_FT Bottom -0.022 -0.198 0.245 0.113 1.928 9.80%

Top-Bottom -0.134 -0.619 -0.158 -0.053 0.662 -

Top -0.174 -0.944 0.040 0.013 1.209 11.32%
COND_VOL Bottom -0.014 -0.082 0.152 0.059 1.565 14.31%

Top-Bottom -0.160 -0.667 -0.112 -0.034 0.710 -

Top 0.037 0.316 0.170 0.094 1.678 10.83%
COND_ALPHA Bottom 0.298 1.497 0.554 0.154 3.329 15.10%

Top-Bottom -0.261 -1.261 -0.385 -0.123 0.412 -
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Table 11: Summary statistics of flexible portfolio allocation mutual fund data 

Table 11 presents summary statistics for the sample of flexible portfolio allocation mutual funds from 1994 
to 2018.  

 

 

 

  

Mean Median 10th pct 90th pct Std Dev

Monthly Net Return (%) 0.427 0.610 -3.255 3.946 3.339

Monthly Gross Return (%) 0.514 0.690 -3.165 4.036 3.340

Total Net Assets (TNA, $Millions) 2091.478 202.000 18.100 3904.807 7505.951

Expense Ratio (%) 1.181 1.150 0.566 1.860 0.525

Turnover Ratio (%) 102.347 58.000 14.000 208.000 180.450

Age (months) 183.329 124.000 40.000 365.500 188.256
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Table 12: In-sample measure values for flexible portfolio allocation mutual funds 

Table 12 presents in-sample statistics for the measures that demonstrate predictive power in the out-of-
sample test in the five-factor timing simulation in Table 6. The mean and standard deviation of each measure 
are calculated over rolling four-year windows for each flexible portfolio allocation mutual fund over the 
sample period, based on the five-factor model (16). We sort all in-sample values into quartiles and present 
the average measure value in each quartile. Q4 represents the average of the highest measure value, and Q1 
represents the average of the lowest. The last column presents the t-statistic for the difference in means 
between Q4 and Q1. Panel A presents results based on mutual fund net returns. Panel B presents results 
based on gross returns. Gross returns are calculated by adding monthly expenses (annual expense ratio 
divided by 12) to mutual fund net returns. 

 

 

  

Panel A: Statistics Based on Net Returns

Variable Mean St Dev Q4 Q3 Q2 Q1 Q4-Q1 t-stat

D_ALPHA -0.001 0.152 0.160 0.034 -0.023 -0.176 32.339

MAX_ALL -0.023 0.125 0.122 0.000 -0.050 -0.166 36.614

ALPHA -0.109 0.310 0.243 -0.025 -0.168 -0.485 39.601

COND_MAX_FT 0.046 0.061 0.116 0.042 0.020 0.005 19.940

COND_TOTAL_FT -0.003 0.115 0.119 0.013 -0.028 -0.117 24.276

COND_ALPHA -0.109 0.333 0.197 -0.025 -0.158 -0.459 23.284

Panel B: Statistics Based on Gross Returns

Variable Mean St Dev Q4 Q3 Q2 Q1 Q4-Q1 t-stat

D_ALPHA -0.001 0.152 0.160 0.034 -0.023 -0.176 32.261

MAX_ALL -0.024 0.125 0.121 0.000 -0.050 -0.166 36.542

ALPHA -0.019 0.311 0.334 0.060 -0.078 -0.394 39.327

COND_MAX_FT 0.046 0.061 0.116 0.043 0.020 0.006 20.034

COND_TOTAL_FT -0.003 0.115 0.119 0.013 -0.028 -0.118 24.270

COND_ALPHA -0.021 0.332 0.286 0.056 -0.073 -0.361 22.706
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Table 13: Out-of-sample performance for flexible portfolio allocation mutual funds 

Table 13 presents out-of-sample performance of portfolios based on top and bottom quartiles of past values 
of each measure. Each portfolio is rebalanced annually based on the updated ranking with respect to 
preceding four-year window measure values. For unconditional measures, D_ALPHA, MAX_ALL, and 
ALPHA, portfolios are initially formed on December 31, 1997. For conditional measures, 
COND_MAX_FT, COND_TOTAL_FT, and COND_ALPHA, portfolios are initially formed on December 
31, 1999, given that calculating the conditional measures requires 24-month history data to calculate past 
24-month beta exposures. We invest $1 in each fund within a portfolio at the beginning of the year and 
track its performance until December 31, 2018. When a fund stops reporting, we assume the fund is defunct 
and redistribute the remaining capital in the fund equally among surviving portfolio funds. The top-bottom 
portfolio is equivalent to taking a long position in the top quartile portfolio and a short position in the bottom 
quartile portfolio. The reported alpha and its corresponding T-value are from the five-factor model (16). 
Return is the mean excess return. The End Value is the dollar value of the initial $1 investment as of 
December 2018. The Attrition Rate is the average annual rate at which funds stop reporting. Panel A 
presents results based on mutual fund net returns. Panel B presents results based on gross returns. Gross 
returns are calculated by adding monthly expenses (annual expense ratio divided by 12) to mutual fund net 
returns.  

 

 

  

Panel A: Out-of-Sample Results for Flexible Portfolio Allocation Mutual Funds, Net Returns

Variable Portfolio Alpha T-Alpha Return Sharpe End Value Attrition Rate

Top -0.005 -0.062 0.301 0.113 2.897 2.31%
D_ALPHA Bottom -0.144 -2.359 0.197 0.066 2.180 4.43%

Top-Bottom 0.140 1.817 0.104 0.082 1.275 -

Top -0.181 -2.440 0.150 0.056 1.973 4.26%
MAX_ALL Bottom -0.022 -0.287 0.302 0.101 2.834 4.57%

Top-Bottom -0.159 -1.865 -0.153 -0.105 0.663 -

Top -0.039 -0.599 0.284 0.099 2.735 1.89%
ALPHA Bottom -0.160 -1.954 0.132 0.051 1.902 6.83%

Top-Bottom 0.121 1.342 0.153 0.104 1.430 -

Top -0.075 -0.975 0.224 0.082 2.069 4.02%
COND_MAX_FT Bottom -0.094 -1.471 0.207 0.079 2.004 2.99%

Top-Bottom 0.019 0.231 0.017 0.014 1.023 -

Top -0.089 -1.183 0.189 0.067 1.898 5.72%
COND_TOTAL_FT Bottom -0.016 -0.192 0.269 0.097 2.281 3.53%

Top-Bottom -0.073 -0.844 -0.080 -0.063 0.819 -

Top 0.009 0.133 0.317 0.110 2.528 2.43%
COND_ALPHA Bottom -0.148 -1.562 0.143 0.055 1.736 6.16%

Top-Bottom 0.158 1.389 0.175 0.099 1.436 -
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Table 13: Out-of-sample performance for flexible portfolio allocation mutual funds (cont.) 

 

 

 

  

Panel B: Out-of-Sample Results for Flexible Portfolio Allocation Mutual Funds, Gross Returns

Variable Portfolio Alpha T-Alpha Return Sharpe End Value Attrition Rate

Top 0.094 1.269 0.401 0.151 3.717 2.31%
D_ALPHA Bottom -0.056 -0.914 0.286 0.096 2.725 4.43%

Top-Bottom 0.151 1.955 0.115 0.090 1.308 -

Top -0.073 -1.019 0.258 0.095 2.586 3.84%
MAX_ALL Bottom 0.075 0.998 0.399 0.134 3.612 4.32%

Top-Bottom -0.148 -1.765 -0.141 -0.099 0.682 -

Top 0.065 0.990 0.389 0.136 3.555 2.20%
ALPHA Bottom -0.045 -0.545 0.244 0.096 2.525 6.09%

Top-Bottom 0.110 1.185 0.145 0.097 1.401 -

Top 0.033 0.427 0.340 0.121 2.682 4.02%
COND_MAX_FT Bottom -0.008 -0.132 0.287 0.111 2.407 2.41%

Top-Bottom 0.042 0.520 0.054 0.044 1.112 -

Top -0.012 -0.169 0.267 0.094 2.266 5.28%
COND_TOTAL_FT Bottom 0.058 0.666 0.341 0.121 2.681 3.75%

Top-Bottom -0.070 -0.803 -0.073 -0.057 0.830 -

Top 0.060 0.842 0.362 0.123 2.788 2.43%
COND_ALPHA Bottom -0.041 -0.419 0.256 0.097 2.240 6.25%

Top-Bottom 0.101 0.872 0.106 0.058 1.225 -
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Table 14: Correlations among D_ALPHA, ALPHA, and COND_ALPHA  

Table 14 presents correlations among D_ALPHA, ALPHA, and COND_ALPHA. Panel A presents results 
for hedge funds; Panel B presents results for mutual funds. All measures are calculated over rolling four-
year windows over the sample period, based on the Fung and Hsieh (2004) eight-factor model (15), for 
hedge funds in Panel A, and on the five-factor model (16), for mutual funds in Panel B. P-values are 
presented below the correlation coefficients. 

 

 

  

Panel A: Correlations in Hedge Funds

D_ALPHA × ALPHA D_ALPHA × COND_ALPHA ALPHA × COND_ALPHA

0.757 0.525 0.754
<0.001 <0.001 <0.001

0.120 0.021 0.887
0.006 0.705 <0.001

Panel B: Correlations in Mutual Funds

D_ALPHA × ALPHA D_ALPHA × COND_ALPHA ALPHA × COND_ALPHA

0.792 0.583 0.865
<0.001 <0.001 <0.001

0.363 0.348 0.935
<0.001 <0.001 <0.001

Macro Diversified 
Hedge Funds

Flexible Allocation 
Mutual Funds

Simulated Timers

Simulated Timers
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Appendix 

Table A1: Summary statistics from the eight-factor timing simulation (cont.) 

Table A1 presents standard deviations of proposed timing measure values for the nine types of imperfect 
timers. All measures are based on the Fung and Hsieh (2004) eight-factor model (15). The imperfect timers 
make errors in both timing of switching into the optimal factor and in the optimal factor selection. We 
simulate three levels of accuracy in both dimensions, which yields nine possible combinations in timing 
accuracy combined with factor selection accuracy: we simulate 10,000 timers for each combination. We 
simulate timing accuracy by allowing the factor switch time within two, four, and six months prior to the 
optimal switch time (the optimal switch time included) via uniform distribution. We simulate factor 
selection accuracy in that the optimal factor at each switch point is selected with probabilities of 90%, 60%, 
and 30%. For each timer, we calculate each measure over four-year rolling windows over the sample period 
of 25 years from January 1994 to December 2018. This yields 21,000 (21*10,000 timers) observations for 
each category of accuracy for the unconditional measures, D_ALPHA, MAX_ALL, MAX_SINGLE, 
SUM_ALL, ALPHA, and 19,000 (19*10,000 timers) observations for conditional measures, 
COND_MAX_FT, COND_TOTAL_FT, COND_VOL, COND_ALPHA, given that calculating the 
conditional measures requires 24-month history data to calculate past 24-month beta exposures. 

Timing Accuracy
90% 60% 30%

D_ALPHA 0.904 0.938 0.904
MAX_ALL 0.239 0.250 0.237

MAX_SINGLE 2.405 2.169 1.940
SUM_ALL 4.542 4.165 3.779

2 months ALPHA 1.547 1.660 1.593
COND_MAX_FT 1.432 5.336 6.958

COND_TOTAL_FT 1.125 1.641 3.209
COND_VOL 0.584 1.367 3.051

COND_ALPHA 1.563 1.501 1.402

D_ALPHA 0.819 0.869 0.850
MAX_ALL 0.240 0.245 0.230

MAX_SINGLE 2.345 2.108 1.901
SUM_ALL 4.534 4.118 3.721

4 months ALPHA 1.399 1.497 1.453
COND_MAX_FT 1.201 4.047 82.791

COND_TOTAL_FT 1.143 1.240 11.034
COND_VOL 0.762 0.949 10.781

COND_ALPHA 1.415 1.363 1.289

D_ALPHA 0.782 0.836 0.820
MAX_ALL 0.236 0.236 0.221

MAX_SINGLE 2.250 2.028 1.852
SUM_ALL 4.603 4.160 3.749

6 months ALPHA 1.457 1.464 1.395
COND_MAX_FT 73.646 4.820 133.635

COND_TOTAL_FT 10.828 1.158 18.853
COND_VOL 10.571 0.856 18.444

COND_ALPHA 1.373 1.294 1.223

Factor Selection Accuracy
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Table A2: Summary statistics from the five-factor timing simulation (cont.) 

Table A2 presents standard deviations of proposed timing measure values for the nine types of imperfect 
timers. All measures are based on the five-factor model (16). The imperfect timers make errors in both 
timing of switching into the optimal factor and in the optimal factor selection. We simulate three levels of 
accuracy in both dimensions, which yields nine possible combinations in timing accuracy combined with 
factor selection accuracy: we simulate 10,000 timers for each combination. We simulate timing accuracy 
by allowing the factor switch time within two, four, and six months prior to the optimal switch time (the 
optimal switch time included) via uniform distribution. We simulate factor selection accuracy in that the 
optimal factor at each switch point is selected with probabilities of 90%, 60%, and 30%. For each timer, 
we calculate each measure over four-year rolling windows over the sample period of 25 years from January 
1994 to December 2018. This yields 21,000 (21*10,000 timers) observations for each category of accuracy 
for the unconditional measures, D_ALPHA, MAX_ALL, MAX_SINGLE, SUM_ALL, ALPHA, and 
19,000 (19*10,000 timers) observations for conditional measures, COND_MAX_FT, COND_TOTAL_FT, 
COND_VOL, and COND_ALPHA, given that calculating the conditional measures requires 24-month 
history data to calculate past 24-month beta exposures. 

 

Timing Accuracy
90% 60% 30%

D_ALPHA 0.352 0.335 0.302
MAX_ALL 0.439 0.385 0.325

MAX_SINGLE 0.482 0.512 0.489
SUM_ALL 1.453 1.335 1.194

2 months ALPHA 0.707 0.659 0.572
COND_MAX_FT 0.313 0.288 0.231

COND_TOTAL_FT 0.399 0.366 0.326
COND_VOL 0.220 0.223 0.215

COND_ALPHA 0.568 0.562 0.504

D_ALPHA 0.334 0.322 0.292
MAX_ALL 0.449 0.388 0.322

MAX_SINGLE 0.470 0.506 0.494
SUM_ALL 1.536 1.391 1.230

4 months ALPHA 0.665 0.610 0.525
COND_MAX_FT 0.325 0.326 0.302

COND_TOTAL_FT 0.417 0.404 0.343
COND_VOL 0.235 0.258 0.229

COND_ALPHA 0.554 0.519 0.457

D_ALPHA 0.324 0.311 0.279
MAX_ALL 0.420 0.364 0.302

MAX_SINGLE 0.468 0.496 0.483
SUM_ALL 1.465 1.332 1.180

6 months ALPHA 0.609 0.552 0.472
COND_MAX_FT 0.261 0.300 0.197

COND_TOTAL_FT 0.380 0.380 0.308
COND_VOL 0.215 0.246 0.191

COND_ALPHA 0.542 0.482 0.412

Factor Selection Accuracy


