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Abstract

We examine the covariances of corporate bonds in emerging markets (EM) and present an asset pricing

framework using instrumented principal component analysis (IPCA) that includes characteristics at the

sovereign and bond levels. Our results indicate that EM bond returns are significantly influenced by

country-specific risks. Incorporating these characteristics can improve both the total and cross-sectional

model fit. We demonstrate that a factor framework tailored to the nuances of the EM universe generates

a significant alpha of 2% per annum and a higher information ratio than alternative asset pricing models,

such as a conditional beta model designed for developed market (DM) bonds.
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1 Introduction

Factor models in credit have experienced a renaissance in the last two decades. Depending on the estimation

technique, they fall into two categories: beta-based and characteristic-based models (Gebhardt et al. (2005)).

Bai et al. (2019), Elkamhi et al. (2020) develop asset pricing models to estimate expected return of corporate

debt. On the other hand, Hottinga et al. (2001), Houweling and Zundert (2017), Brooks et al. (2018), Israel

et al. (2018), Bektić et al. (2019), Henke et al. (2020) have identified a common set of factors that explain

the cross-sectional variation of corporate bond returns based on bond and stock characteristics. Kelly et al.

(2023) has recently proposed a hybrid asset pricing model, whereby time-varying betas are conditioned on

bond and stock characteristics. They find that only a few bond and firm characteristics are able to explain

the latent factor space of corporate bond returns. While the evidence of common factors appears robust

across various currency, such as USD versus EUR, and different risk levels - investment grade (IG) versus

high yield (HY) bonds, there is limited indication that those factors are informative for corporate bonds in

emerging markets (EM). An obstacle to applying existing models to EM credit is that corporate bonds are

often issued by non-listed firms, while factor models typically rely on equity characteristics. Additionally, the

returns of EM bonds can be influenced by country-specific risks. Therefore, it remains unclear what drives

the cross-sectional variation of EM corporate bond returns and in particular, how much can be attributed to

country risk.

Despite the numerous studies on systematic factors for developed market (DM) corporate debt, there is a

lack of research on EM debt. Kang et al. (2019) and Brooks et al. (2020) develop factor models for the

EM sovereign bonds. In the only existing study on factor investing in EM hard currency corporate debt,

Dekker et al. (2021) reproduce the common fixed income signals from developed markets (refer to Houweling

and Zundert (2017)) and discover that size, value, momentum, and the combined portfolio substantially

outperform the emerging market index. However, the model fails to account for other sources of systematic

risk by applying DM credit factors to the fragmented EM universe.

In this study, we describe the cross-sectional variation of EM corporate bond returns using instrumented

principal component analysis (IPCA). The IPCA model incorporates not only bond attributes but also

country-specific data, which accounts for the complexity of the EM universe when constructing factors. We

expect EM corporate bonds to inherit significant country risk, given that evidence from equity markets

shows that EM stock returns are linked to the performance of their respective local countries (Rouwenhorst

(1999), Harvey (1995)). Therefore, in our first hypothesis, we examine the extend to which country-specific

characteristics can account for variations in EM bond returns. Furthermore, prior literature indicates that
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the universe EM bonds is considerably smaller than that of DM indices and non-listed companies issue

up to one-third of EM debt (Vladimirova et al. (2023)). This makes the application of observable factor

models difficult, since they rely heavily on equity characteristics. We use the IPCA model to avoid making

assumptions about the ad-hoc factors and to adapt the exposure to latent factors to the time variation of bond

and country characteristics. Therefore, we hypothesize that a model which takes into account country-specific

information and is not limited to a pre-determined number of observable factors would better describe the

cross-sectional exposure to systematic risks compared to leading factor models.

To evaluate the impact of country-specific information on the model performance, we initialize an IPCA

model with bond and country-specific characteristics. Our findings show that adding country variables to a

10-factor model increases the total R2 by 6.5% to 29.2% and the cross-sectional R2 by 2.6% to 16.9%. This

model performs equally well in assessing test assets, whether corporate bonds or characteristic portfolios.

We discover that relevant for the model fit are not only bond variables, like face value, duration, or bond

volatility1, but also variables of synthetic country portfolios. Additionally, characteristics based on sovereign

instruments, such as change in Credit Default Swap (CDS) spread and change in the value of the currency

against the USD, exhibit significant importance at a p-value of 5%. Altogether, our results indicate the need

to account for country specifics when pricing EM bonds.

Using the findings of the first hypothesis, we assess the benefits of the EM-tailored IPCA model when

compared to leading factor models, such as the market factor, a four-factor model for EM credit proposed by

Dekker et al. (2021), and five-factor models with static and dynamic betas suggested by Kelly et al. (2023)2.

Comparing the out-of-sample (OOS) total and cross-sectional R2, we discover that the EM IPCA model

outperforms not only the models using static betas but also the one using time-varying betas. Hence, the

advantages of our IPCA framework can be observed not only in instrumenting the factor exposures via bond

and country characteristics but also in the employment of a latent number of factors, which appears to differ

from those used in developed markets. Finally, we report that a portfolio utilizing the EM IPCA model

forecast outperforms other competing models, yielding a statistically significant Jensen’s alpha of 2% per

annum and an information ratio (IR) of 1.

Our research relates to the literature on corporate debt empirical asset pricing (Fama and French (1993),

Gebhardt et al. (2005), Elkamhi et al. (2020), Bai et al. (2019), Kelly et al. (2023)). Additionally, using a

conditional factor model, our analysis draws connections to the studies conducted by Avramov and Chordia

(2006) and Ferson and Harvey (1999), which leverage an extensive set of variables to model expected stock
1Bond variables are calculated as the deviation from the average level of a synthetic country portfolio.
2We also refer to these as DM IPCA models.
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returns. However, those studies rely on observable factors, while we make no ad-hoc assumptions about the

number of factors used. Our study closely relates to Kelly et al. (2023), which examine the latent factor

space of US corporate IG and HY bonds. We further extend that analysis by studying the cross-section of

EM corporate bonds. Our study is the first to consider country characteristics that may influence the returns

of EM bonds.

Our analysis also contributes to the existing factor investing literature, which explains the variation of

corporate bond returns with bond and stock characteristics. Correia et al. (2012), Jostova et al. (2013),

Chordia et al. (2017), Correia et al. (2018),Bektić (2019), Kaufmann and Messow (2020), Bali et al. (2021),

Bartram et al. (2020), among others, develop alternative credit factors by using bond and equity information.

On the other hand, Hottinga et al. (2001), Houweling and Zundert (2017), Brooks et al. (2018), Israel et

al. (2018), Bektić et al. (2019), and Henke et al. (2020) propose multi-factor models to invest in corporate

bonds. Furthermore, Dekker et al. (2021) utilize a factor model to elucidate the EM corporate bonds’

cross-section. However, the study omits the potential of country-specific hazards, which an EM portfolio may

be exposed to but not compensated. By contrast, our analysis does not rely on a pre-specified set of factors

and therefore captures the exposure to systematic country risk. As the IPCA model employs a large number

of characteristics to estimate time-varying betas on latent factors, we take into account information beyond

bond and firm characteristics that further tailors our model to the EM universe.

Section 2 describes the data, and provides an overview of the IPCA and the methodology used to evaluate

our results. Section 3 tests the hypothesis that country-specific information is significant for describing the

variation of EM corporate bond returns. Section 4 compares the model performance with leading factor

models in credit, regarding the findings from our second hypothesis. Section 5 provides a summary of the

primary results.

2 Data and Methodology

2.1 Methodology

2.1.1 Model specification

To understand the risk and return drivers of EM corporate bonds, we utilize the IPCA model framework

proposed by Kelly Bryan et al. (2019). The IPCA estimation of excess return is based on empirical asset

pricing methodology and is presented in the following Equation (1):
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ri,t+1 = αi,t + βi,tft+1 + εi,t+1,

αi,t = z
′

i,tΓα + να,i,t,

βi,t = z
′

i,tΓβ + νβ,i,t,

(1)

where the EM investable universe is structured as a panel of N assets for T periods by L characteristics.

Compared to other models, IPCA has two main advantages. Firstly, it uses conditional betas, also referred to

as instrumented betas. As shown in Equation (1), the betas of a bond i for the period t are computed as the

product of L characteristics zi,t and a mapping matrix Γβ of these L characteristics to K factors and a residual

νβ,i,t. This approach allows for factor loadings to be directly dependent on multiple characteristics, resulting

in the consideration of more information in the model. On the other hand, the IPCA model allows beta to

vary over time, and as a results, it can capture the fluctuating asset’s exposure to factors. Kelly (2019) notes

that modifying asset identity presents a challenge for modeling excess returns. This is particularly relevant

for corporate bonds, as they mature at some time, and thus their price converges to the par value of the bond.

The IPCA framework has an additional benefit in that it does not presuppose any ex-ante assumptions about

the observable factors. Instead, it models K latent factors similarly to PCA using factor realizations ft+1.

The Γβ matrix allows for this by linearly transforming the L characteristics to K orthogonal factors.

In our model framework, we constrain the conditional intercept αi,t to zero, assuming that the latent factors

fully explain the return variation of bond excess returns. This implies that the characteristics serve as a

proxy for exposure to systematic risk factors and not credit returns anomalies, which sets Γα = 0Lx1. To

evaluate the optimal number of K factors for which alpha is insignificant we use a Wald-type test with a wild

bootstrap with 1000 iterations and for K from 1 to 11. The bootstrapped sample created without Γα = 0Lx1

is used to re-estimate the unrestricted model and thus, Γ̃b
α. To determine the presence of unsystematic

alpha, we compare the Wα of the unrestricted model, which is Γ̂′

αΓ̂α, to W b
α of each bootstrapped model,

which is Γ̃b′

α Γ̃b
α. The p-value denotes the proportion of W b

α values exceeding Wα. Rejecting the hypothesis

that the characteristics relate to return anomalies is possible if the bootstrapped values exceed those of the

unrestricted model.

When the model is restricted Equation (1) simplifies in a matrix form to:

rt+1 = ZtΓβft+1 + ε∗
t+1, (2)
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where rt+1 represents the returns of N bonds, Zt has dimensions of N x L, and ε∗
t+1 with dimensions of N x 1

represents bond residuals.

The IPCA estimation is derived from the following optimization problem:

min
Γβ ,F

T −1∑
t=1

(rt+1 − ZtΓβft+1)−1 (rt+1 − ZtΓβft+1) . (3)

To determine the unknown parameters Γβ and ft+1, the Equations (4) and (5) have to be solved simultaneously.

f̂t+1 =
(

Γ
′

βZ
′

tZtΓβ

)−1
Γ

′

βZ
′

trt+1 (4)

vec
(

Γ
′

β

)
=
(

T∑
t=1

[
Zt ⊗ f

′

t

]′ [
Zt ⊗ f

′

t

])−1( T∑
t=1

[
Zt ⊗ f

′

t

]′

rt

)
(5)

The numerical problem is solved iteratively through the alternating least squares (ALS) method. The ALS

algorithm addresses the optimization problem in a quadratic form and reduces the loss function monotonically

by iterating the alternate problem.

Lastly, the model estimation can also be solved approximately in terms of characteristic managed portfolios

xt+1 as test assets instead of corporate bonds. The xt+1 is a vector of size L x 1, where each row l represents

the return of a characteristic l weighted portfolio:

xt+1 = Z
′

trt+1. (6)

In fact, the initial Γβ is based on the first K eigenvectors of the characteristic managed portfolios. By using

characteristic portfolios, the number of parameters are greatly reduced. Rather than minimizing Equation (3)

with N assets, the algorithm only uses L characteristics. This leads to faster conversion of the ALS algorithm,

and also directly maps excess returns to observable characteristics.
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2.1.2 Performance measures

In this section, we describe the asset pricing tests used to assess the effectiveness of our model. When

determining the optimal number of latent factors K, we evaluate each model in a restricted form Γβ = 0.

This evaluation is based on three statistics: total R2, cross-sectional R2, and relative pricing error.

Total R-squared

The first metric, total R2, assesses how well the instrumented characteristics explain the common variation in

corporate bond returns. It is defined as:

Total R2 = 1 −

∑
i,t

(
ri,t+1 − z

′

i,tΓ̂β f̂t+1

)2

∑
i,t r2

i,t+1
, (7)

and it depends on the current characteristics of the assets, the Γβ matrix which is estimated throughout the

whole period, and the factor realization f̂t+1. Note that when assessing the model in OOS, Γβ is estimated

based on the information up to period t, while the factor returns in period t + 1 represent the average factor

realization until period t. Similar to Kelly et al. (2023), return estimates are compared to zero, rather than

the historical average. We hold the view that this is particularly applicable to assets universes undergoing

structural changes since the EM corporate debt market has undergone considerable growth during the past

decade.

Cross-Sectional R-squared

While the total R2 provides an overall statistic of much of the bond returns can be attributed to systematic

risk, it does not indicate the average monthly performance of the model. The second measure, the cross-section

R2, offers insights into the forecast quality for all bonds in a given period. As shown in Equation (8), R2

statistics are recorded for each period and then averaged to determine the overall performance.

Cross Section R2 = 1
T

∑
t

R2
t , where R2

t = 1 −

∑
i

(
ri,t+1 − z

′

i,tΓ̂β f̂t+1

)2

∑
i r2

i,t+1

(8)

Relative Pricing Error

Our final performance measure, the relative pricing error, was proposed in the study of Kelly et al. (2023)

and it is based on Equation (9). This measure evaluates the accuracy of forecasts by measuring the similarity
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between estimated and realized returns. Larger values of the relative pricing error indicate a poorly specified

model. A model with no predictive capacity would have a pricing error of 100%.

Relative Pricing Error =

∑
i

(
1
Ti

∑
t

(
ri,t+1 − β̂

′

i,tf̂t+1

))2

∑
i

(
1
Ti

∑
t ri,t+1

)2 (9)

Testing Instrument Significance

Finally, we describe the methodology for testing the individual variable’s contribution to βi,t. We calculate

the total reduction in R2 when the lth row of Γβ is set to zero, while retaining the rest of the estimated

parameters. To test for statistical significance, we follow the procedure proposed by Kelly Bryan et al. (2019)

and perform a Wald-type test with a wild bootstrap procedure, which compares Wβ,l = γ̂
′

β,lγ̂β,l with the

bootstrapped values of W̃ b
β,l (see Section 3 of Kelly Bryan et al. (2019)). This test is akin to the one used to

assess the existence of unsystematic alpha before we select a restricted model.

2.1.3 Model comparison

We evaluate the added value of our IPCA model with country risk consideration against four leading factor

frameworks - three with static betas and observable factors and one with instrumented betas on observable

factors. Our initial benchmark is the market model because of its simplicity. Dickerson et al. (2023) find that

empirical asset pricing models often cannot outperform the CAPM model. Kelly et al. (2023) also report

that the market factor explains a significant portion of the total and cross-sectional R2, and it frequently

outperforms more complex models. Furthermore, we include the proposed factor model from Dekker et al.

(2021) for systematic factor investing in EM corporate debt. The study employs four factors - bond momentum,

size, value, and low-risk. These factors are constructed solely with corporate bond data, eliminating the need

for equity data. The five-factor model with unconditional betas was proposed by Kelly et al. (2023). Their

analysis demonstrates that a factor model based on the five most relevant bond and firm characteristics -

spread, duration, bond volatility, spread to distance to default (D2D), and an equal-weighted bond market

can approximate the performance of the full-scale IPCA model. As their findings suggest no distinguishable

significance between D2D and credit rating, we decide to implement credit rating as the fifth characteristic.

The fourth and final competing model is comparable to the third, but it employs dynamic betas instead of

static ones. This means that characteristics are utilized as instruments to gauge an asset’s exposure to the

observable factors. Kelly et al. (2023) demonstrate that this approximation produces the same pricing error

and comparable total and cross-sectional R2 values OOS as the initial IPCA framework. We do not use factor

models that require equity information, as proposed by Bektić et al. (2019), Israel et al. (2018), or Henke et
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al. (2020) due to the limited coverage of equity characteristics in EM corporate debt. Also, although the

factor model proposed by Bai et al. (2019) uses only bond features, Dickerson et al. (2023) discover some

imprecision in the factors’ construction when replicating their study. After correction, the study concludes

that these factors do not often outperform the CAPM. Therefore, we decide against using this framework for

comparison.

To align the four benchmark models with our IPCA proposal for EM corporate debt, we apply the same

estimation rules. In particular, we calculate all static betas over a 36-month rolling window, as suggested by

Bai et al. (2019). Additionally, for the five-factor model with instrumented betas but observable factors, we

only need to estimate the Γβ matrix because ft+1 is already known. Following the methodology of Kelly et

al. (2023), if gt represents the five observable factors, then the excess return estimation appears as follows:

ri,t+1 = z
′

i,tΓβgt+1 + ε∗
i,t+1. (10)

Note, that the only difference between Equation (10) and Equation (2) is that the factor realizations are

observed. Lastly, we use the available bond and country variables to condition betas on observed factors

instead of utilizing the set of 29 bond and firm characteristics, as done in the study of Kelly et al. (2023).

2.2 Data

For this study, we use the ICE BofA Emerging Markets Corporate Plus Index (EMCB) provided by ICE

Merrill Lynch from January 2010 to December 2022. The index comprises corporate bonds in hard currency

issued by companies with operations outside the FX G10 members. Moreover, only bonds with a minimum

notional amount of USD 250 million and a time to maturity exceeding one year are eligible for inclusion. Our

sample solely incorporates USD-denominated bonds with an ultimate parent country located outside the

FX G10. ICE Merrill Lynch reports various information on the index constituents, such as bond duration,

option-adjusted spread (OAS), credit rating, and returns.

Our analysis uses monthly credit excess returns, which are calculated as the total return of a bond in excess

of the return of a duration-matched government bond. Similar to Kelly et al. (2023), we scale the excess

returns with the risk measure Duration Times Spread (DTS) of the previous month. Introduced by Ben

Dor et al. (2007), DTS predicts return volatility and scaling returns with DTS yields less noisy returns. We

adjust the excess return of only the riskiest bonds, which have a DTS higher than the median DTS level of
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our sample. The return transformation follows Equation (11)

r∗
i,t+1 = ri,t+1

max
(

DTSi,t, D̃TS
) . (11)

To explain the variation of the adjusted excess returns, we employ bond and country features. Kelly et al.

(2023) outline a list of 29 bond and firm candidate characteristics to serve as IPCA instruments. In contrast

to DM corporate bonds, EM bonds are often issued by non-listed firms. Consequently, our research examine

14 of the proposed characteristics. These are the bond’s age, coupon, face value, duration, OAS, credit rating,

six-month bond momentum, the product of credit rating and bond momentum, bond skewness, six-month

spread change, bond volatility, bond value at risk (VAR), volatility index (VIX) beta and six-month sector

momentum.

Along with the bond characteristics, sovereign risk is expected to affect EM assets due to the high default

risk of EM economies. Since the credit rating of corporate bonds often correlates with that of the sovereign

entity, we expect that EM debt in hard currency bears the risk of the sovereign entity’s possible inability to

fulfill its obligations. However, integrating country risk is complicated by the limited data coverage of the

countries in the EMCB index. Another concern is that the most frequently used country variables, such as

GDP, CPI, and country credit rating, are updated at most once per quarter and are reported with a lag. We

mitigate these problems by incorporating two categories of country characteristics.

The first group of variables is based on sovereign instruments and includes the CDS spread and the six-month

change of the CDS spread, the six-month change in the current foreign exchange rate against the USD, and

the short-term interest rate. We chose these variables based on previous research findings. For example,

Brooks et al. (2020) examine styles for sovereign entities and demonstrate that a momentum strategy - a

combination of equally-weighted 6-month EM CDS returns, 6-month FX returns, and 6-month country equity

returns - produces the highest long-short Sharpe Ratio of 0.6. Kang et al. (2019) also utilize a 6-month

FX momentum signal to study the predictability of country returns. Lastly, we test whether the short-term

interest rates of the EM countries relate to the returns of corporate bonds. This examination is encouraged by

the findings of Kang et al. (2019), who surprisingly find that hart currency country entities are nevertheless

affected by changes in the local currency, and thus demonstrating that the interdependencies are not always

obvious.

We refer to the second group of country measures as characteristics of synthetic country portfolios. This is
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motivated by the current market segmentation of the EM universe, which requires the inclusion of fixed effects.

We construct monthly equally-weighted country portfolio features using the 14 bond measures previously

described. This approach allows the country-specific effect on corporate bond returns to vary over time.

Including the country levels of each characteristic in the model eliminates the need for a constant as done by

Kelly et al. (2023). Lastly, we demean each bond’s characteristics with the corresponding country’s average

level. The final set of characteristics is summarized in the following Equation (12). For each period t

zi,j =
[(

bi,j − b
′

j ,
)

, b
′

j , c
′

j

]′

,

bj = 1
K

K∑
i=1

bi,j ,

(12)

where bj refers to the average country-level characteristics based on corporate bond information, bi,j − bj

represents the 14 specific bond characteristics adjusted for country-level averages, and cj denotes for variables

based on sovereign instruments. Finally, we normalize the variables on a monthly basis.

3 Model performance and country risk consideration

In our first hypothesis, we evaluate whether EM corporate bonds returns are influenced by country character-

istics. We expect that EM bonds are exposed to systematic country risk and that accounting for this will

improve the explanatory power of our models. To test this hypothesis, we initiate our analysis by evaluating

the IPCA model’s performance across various characteristic sets. In Exhibit 1, the total and cross-section R2

of restricted IPCA models are presented, utilizing the following variations: i) bond characteristics, ii) bond

characteristics that have been demeaned by monthly country average, iii) average bond characteristics of a

country portfolio, iv) the combined effect of demeaned and country-level bond characteristics, and v) the

combined effect of iv) and country characteristics of sovereign instruments. The statistics are provided for

different numbers of latent factors, K. Looking at the total R2, it can be observed that for K=2 or higher, the

model iv) using demeaned bond characteristics and the average country levels yields consistently higher R2

values than the model i) which does not use any country information. The performance disparity increases as

the number of latent factors grows. For K=10, the model that incorporates bond deviations and the average

country levels of bond characteristics has an R2 of 28.2%, which represents over a 5% improvement over

the initial model i). Furthermore, it is evident that the variability in bond returns is better explained by

the characteristics of country portfolios compared to the demeaned bond characteristics. Finally, including
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characteristics of sovereign instruments enhances the explanatory power of the model by approximately 1%,

regardless of the latent factor’s number.

Exhibit 1: IPCA Country Versus Bond Characteristics.
Percentage of total and cross section R2 from IPCA specifications based on total bond characteristics b, cross sectional
deviations from the average country portfolio b − b, average country portfolio characteristics b, the combination of average
country portfolio characteristics and cross section bond deviations b − b, b, and finally the IPCA specification which also includes
sprecific country characteristics b − b, b, c.

K Total R2 Cross Section R2

b b − b b b − b, b b − b, b, c b b − b b b − b, b b − b, b, c

1 15.1 8.8 7.8 14.5 15.4 6.7 3.6 2.0 5.9 6.0
2 18.2 10.0 11.2 20.6 21.2 8.2 4.7 4.7 7.0 7.2
3 20.6 10.5 12.8 23.8 24.2 10.1 5.6 6.0 9.6 9.6
4 21.4 10.9 13.9 25.3 26.1 11.0 6.3 6.9 10.8 10.8
5 21.7 11.1 14.4 26.1 26.8 11.8 6.7 7.7 12.0 12.0
6 22.1 11.3 14.7 26.7 27.4 12.7 7.1 8.3 12.9 13.0
7 22.3 11.4 15.0 27.1 28.1 13.1 7.5 8.9 13.9 14.5
8 22.5 11.5 15.2 27.6 28.5 13.6 7.8 9.4 15.2 15.3
9 22.6 11.6 15.4 27.9 28.9 14.0 8.0 10.0 15.8 16.3
10 22.7 11.7 15.5 28.2 29.2 14.3 8.2 10.5 16.3 16.9
11 22.8 11.8 15.6 28.4 29.4 14.5 8.3 11.0 16.9 17.3

The cross-section R2 of the various model setups is presented on the right-hand side of Exhibit 1. It is

noticeable that country information provides benefits in the IPCA model when K is at least five. With K=10,

the consolidated model with demeaned variables and country averages yields an R2 of 16.3%, which is by 2%

higher than the original model i). As for the total R2, the average country portfolio characteristics account for

a larger portion of the variation in cross-sectional returns. Furthermore, the variables of country instruments

augment the overall cross-sectional R2 up to 0.5%. In general, the findings provide evidence of the potential

of country information to explain EM bond returns. Whether the integration of such features enhances the

final IPCA model will depend on the optimal number of latent factors.

After discovering initial signs of the potential of country-specific data, we can use all the characteristics from

Equation (12) to determine the IPCA structure for EM corporate bonds. Including all characteristics does

not pose a challenge for the IPCA model, but it is necessary to identify the factor space of bond returns.

Furthermore, this enables us to assess the contribution of each characteristic to the model’s performance and

determine whether EM corporate bonds are exposed to systematic country risk.

As the IPCA framework requires Γα = 0, we need to first identify the optimal number of latent factors that

explain the variation in corporate bond returns. This implies that bond and country characteristics describe

only systematic risk factors and not market anomalies. Following the terminology of Kelly Bryan et al. (2019),

the model in which alpha holds no statistical significance is also known as a restricted IPCA model. To test
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whether the alpha is statistically significant, we perform a Wald-type test with a wild bootstrap, as described

in Section 3.1. Exhibit 2 presents the IS IPCA performance for varying numbers of latent factors, along with

the Wald-test’s p-value. Furthermore, we report performance metrics for both corporate bonds (Panel) and

characteristic portfolios (Portfolios). Using only one factor, K=1, the model explains 15.4% of the total R2

and 6% of the cross-sectional R2 when the test assets are corporate bonds. However, the relative pricing

error is high at 66.3%, and it increases to 104% when test assets are portfolios. The total and cross-sectional

R2 for the characteristic portfolios are 63.3% and 34.5%, respectively. These values surpass the panel R2s

because the model with L assets is less noisy than when using N bonds. Moreover, as the number of latent

factors increases, all performance measures improve in both scenarios: when test assets are portfolios or

bonds. When K=10, the p-value of the Wald test is statistically insignificant. Consequently, the bond and

country characteristic are related Γβ but not to Γα.

Since the ICPA model with K=10 successfully attributes the variation of corporate debt to systematic risk, we

use its restricted form (see Equation (2)) throughout the remainder of our study. For the panel specification,

the total R2 reaches 29.3%, which is twice as high as when K=1. The cross-section R2 also increases from 6%

to approximately 17%, while the average pricing error decreases by approximately 21%. When test assets

are portfolios, the model can explain almost all of the total and cross-section return variations, with only a

4.7% relative pricing error. Note that Kelly et al. (2023) find that only five latent factors are necessary to

explain bond return deviations and render Γα statistically insignificant. This is an indication of the structural

differences between EM and DM corporate bonds3. Their restricted five-factor IPCA model also shows higher

total and cross-sectional R2, but also a higher pricing error when the test assets are corporate bonds. Overall,

the IS performance of our model specification indicates that the variation of EM corporate bond returns can

be attributed to risk factors, and the EM factor space seems to be more extensive than that of DM corporate

debt.
3Even though Kelly et al. (2023) analyses a global corporate bond universe using Bank of America Merrill Lynch data, EM

credit has been historically underrepresented. As of today, less than 10% of all corporate debt is issued within emerging markets
and denominated in hard currency.

For Personal Use Only. Not for Distribution. 13



Exhibit 2: IPCA In-Sample Model Performance.
The table reports in-sample total, cross section R2 and relative pricing error in percentage for the IPCA model restricted model.
We refer to panel when test assets are corporate bonds and to portfolio when test assets are characteristic portflios. The last row
reports bootstrapped p-values for positive intercept. All statistics are calculated from January 2010 until December 2022.

K
1 2 3 4 5 6 7 8 9 10 11

Panel
Total R2 15.4 21.2 24.2 26.1 26.8 27.4 28.1 28.5 28.9 29.2 29.4
Cross Section R2 6.0 7.2 9.6 10.8 12.0 13.0 14.5 15.3 16.3 16.9 17.3
Rel. Pricing Error 66.3 53.0 51.1 49.9 49.9 47.8 46.1 46.3 45.5 45.5 44.9

Portfolio
Total R2 63.3 74.0 88.0 91.1 93.2 94.2 95.5 96.4 97.1 97.6 97.8
Cross Section R2 34.5 39.8 58.7 63.8 69.0 71.8 77.5 80.7 83.7 85.8 86.8
Rel. Pricing Error 104.0 86.7 80.3 56.9 56.1 35.8 9.3 8.7 4.9 4.7 4.3

Wa p-value
2.6 0.5 1.8 0.5 0.3 0.0 0.6 0.1 0.5 78.2 53.3

To understand how essential the country variables are to the final IPCA model when K=10, we report the

Γβ matrix, which contains the loadings of each characteristic on the latent factors. If both country and

bond characteristics are significant for the model, they should load on dissimilar latent factors. Exhibit 3

displays the squared factor loadings of each characteristic. These findings have two implications. First, it

is evident that most bond and country characteristics, which have a common underlying variable, load on

different components. For example, the aggregated momentum, rating, and their cross-product are mainly

related to the first factor, while their demeaned bond characteristics approximate factors seven, eight, and

nine. The country variable spread and CDS spread change mostly load on the second component, while the

demeaned bond spread is correlated to the eighth component. Secondly, it is evident that the exposure of

country variables to latent factors is greater than the exposure of bond variables. This allows investors to

evaluate individual corporate bonds using aggregated information and thus supports our hypothesis that EM

bonds are affected by country risks. Finally, our findings align with those of Kelly et al. (2023), who report

OAS and volatility as among the most crucial variables.
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Exhibit 3: Factor loadings on characteristics.
The values are calculated from the squared Γβ matrix.
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Latent factors

Similar to Kelly Bryan et al. (2019), we analyze the statistical significance of the characteristics by assessing

the importance of each variable while controlling for the remaining L characteristics. With the exception of

country variables established by sovereign instruments, all other characteristics are included twice in Γβ - once

as monthly characteristics of equally-weighted country portfolios and once as demeaned bond characteristics.

As a result, it is necessary to assess whether a feature is overall relevant to the model and which component

makes a greater impact. Additionally, we use a bootstrap of 1000 samples to conduct a Wald-type test for
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measuring the variables’ statistical significance.

Exhibit 4 presents variable importance based on total R2 reduction and statistical significance. Column two

shows the importance of a characteristic as a whole, column three as an average characteristic of a country

portfolio, and column four as the deviation of an individual bond from the aggregated country average.

Among the characteristics b and c, bond volatility, duration, face value, credit rating, spread change, sector

momentum, and age stand out with p-values under 1%. Their contribution to the total R2 varies from 1.1%

for face value to 8.2% for bond credit rating. Moreover, the OAS, the coupon and the VAR of corporate

bonds are also statistically significant with a p-value of 5%. From the variables that exist on a country

level, it is observed that the changes in the CDS spread and the FX rates against the USD are statistically

significant. Omitting these variables from the model yields a reduction in R2 of 2.2% and 1.9%, respectively.

Exhibit 4: IPCA Variable Importance.
The table reports the variable importance of each individual characteristic as total contribution b, c, average country
contribution b, and contribution of the bond deviations from the average country effect b − b. The contribution of characteristic
l is measured as the reduction in total R2 from setting all elements in row l of Γβ to zero. The significance of each characteristic
is based on bootstrapped significance test decribed in Section 2.1. * Significant at the 5% level. ** Significant at the 1% level.

b, c b b − b

Age 2.2** 1.9* 0.4***
Coupon 3.1* 2.8* 0.3**
Face Value 1.2*** 1.1*** 0.2***
Duration 4.4*** 1.9** 2.9***
Momentum 5 4.3 1
Momentum x Rating 9 8.3 1.3
OAS 5.5* 4.9 0.6**
Rating 8.2** 7.6 0.5**
Skewness 2.3 2.2 0.1
Oas Change 2** 1.5* 0.4**
Volatility 6.6*** 3.5* 3.3***
VAR 3.6* 2.3 1.4**
VIX beta 1 0.7 0.4**
Sector Momentum 4** 3.6* 1**
CDS Spread 0.6
CDS Spread Change 2.2*
FX Rate Change 1.9*
Short-term Interest
Rate

0.6

Furthermore, columns three and four provide information on the relative importance of different sub-

components for the model specification. The results demonstrate that all bond characteristics that were

significant overall also have significant sub-components. Notably, the bond characteristics calculated as

deviations from equally-weighted country portfolios are highly significant. However, it is interesting to find

that half of the country-level characteristics b are carrying relevant information for the model. This indicates
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the impact of country risk on the variation of EM bond returns.

In a nutshell, we find that most of the bond variables proposed by Kelly et al. (2023) contribute significantly

to the EM IPCA framework. Additionally, our results indicate that country-specific variables play a vital role

in describing the factor space of EM bond returns. Finally, we find that the aggregated attributes of country

portfolios refine the model estimation and these features exhibit a high contribution to the overall R2.

4 OOS performance and comparison with existing models

In the previous section, we analyzed the IPCA model’s performance calibrated over the entire period. However,

a pricing model must perform well in OOS to be competitive. In Exhibit 5, we report the OOS model’s

performance. Note that in OOS, unlike in IS, the Γβ matrix is recalibrated monthly using expanding window

data with a minimum of 36 months. The factor returns for period t + 1 are calculated as the average factor

realizations until period t, ensuring that the return forecast is free of forward-looking bias. When the test

assets are corporate bonds, the IPCA model with 10 factors achieves a total R2 of 24.2% out-of-sample,

compared to 29.2% in-sample. These differences are expected, as the IS model uses the entire data set to

estimate the Γβ matrix. Notably, when comparing the IS and OSS cross-sectional R2, the model demonstrates

relative stability and accounts for 17% of the variation in returns.

Moreover, the relative pricing error in OOS rises from 45.5% to 55.5%. Our findings contrast with those of

Kelly et al. (2023), who discover high stability between IS and OOS performance. One possible reason for the

discrepancy is the exponential growth in market value of the EM universe, as well as structural modifications

in the index countries. For instance, by the end of 2010, Chinese bonds made up only 6% of the EM index,

but by the end of 2022, their share had risen to nearly 30%. As the EM IPCA model requires additional

latent factors to adequately account for the variability in corporate bond returns, this leads to increased

complexity of the model. The analysis by Kelly et al. (2023) utilizes only five factors, resulting in fewer

parameters to define. Our OOS results for characteristic portfolios suggest comparable conclusions. Overall,

the IPCA model exhibits consistent performance in OOS testing.

Exhibit 5: IPCA OOS Model Performance.
The table reports Out-of-sample total, cross section R2 and relative pricing error in percentage for the IPCA model restricted
model with K=10. We refer to panel when test assets are corporate bonds and to portfolio when test assets are characteristic
portflios. All statistics are calculated from January 2013 until December 2022.

Total R2 Cross Section R2 Rel. Pricing Error
Panel 24.2 17.0 55.5
Portfolio 91.6 85.1 21.0
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To determine if the IPCA model, which includes country effects, has better performance, we must compare

it to other asset pricing models. In particular, Exhibit 6 presents the OOS results of the IPCA model

and other models mentioned in Section 3.1.2. Moreover, we report statistics for the whole period as well

as for sub-periods: 2013-2016, 2017-2019, and 2020-2022 to account for any structural changes of the EM

universe. Looking at the statistics calculated over the entire period, we find a clear separation between the

unconditional and conditional beta models. The model that solely employs the market beta obtains a total

R2 of 4.6%, cross-sectional R2 of 4.3%, and exhibits a notably higher pricing error of 96%. Interestingly, the

four-factor model that utilizes bond momentum, size, value, and a low-risk signal fails to achieve superior

OOS performance, with an even lower cross-sectional R2 than the market model. Likewise, the five-factor

model with static betas only accounts for 6.5% of the total R2 and has a slightly lower pricing error when

compared to other static models. Only when bond and country characteristics are used to instrument loadings

on the observable factors, serious performance improvements are noticeable. The five-factor model with

conditional betas proposed by Kelly et al. (2023) provides more than twice the total and cross-sectional R2s

of the static five-factor model. This highlights the advantages of utilizing instrumental variables, such as

bond and country characteristics, which allows for time-varying factor loadings.

Finally, the EM IPCA model outperforms the competing models in all three performance measures. When

compared to models that use static betas with observable factors, IPCA delivers up to five times greater

total R2, four times higher cross-sectional R2, and significantly reduced relative pricing errors. Looking at

the performance differences between the EM IPCA model and the DM five-factor model with conditional

betas, we can evaluate the added value of using latent factors instead of pre-specified observable factors from

developed markets. It is evident that the EM IPCA model provides a better description of the EM factor

space, as it almost doubles the performance of the model using dynamic betas on observable factors. This

also provides evidence that EM and DM corporate bonds are spanned by different sets of factors.

As the IPCA model requires a large data set to find the optimal parameters, there is a concern that its

superior performance may be driven by the most recent estimates using the longest data set. Looking at

the various sub-periods, it is apparent that the IPCA model estimation improved over time, and it is most

effective during the period of 2020-2022. However, it is evident that among the various asset pricing models,

the IPCA-based model reveals the highest total and cross-sectional R2 for each sub-period. As a result, it can

be concluded that utilizing bond and country attributes to instrument betas to underlying factors currently

provides the most accurate representation of the variation of EM corporate bond returns.
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Exhibit 6: OOS model comparison of asset pricing models.
Out-of-Sample model comparison.
The table reports out-of-sample total, cross-sectional R2 and relative pricing error in percentage for the IPCA model restricted
model with K=10 in comparison to alternative models. The market model, the four factor model and the DM five factor static
model are based on constant beta loading on the respective factors estimated in a rolling window of 36 months. The DM five
factor conditional model uses instrumented betas calculated on observable factors, while the IPCA calculates the instumented
betas on unobservable factors. All statistics are calculated from January 2013 until December 2022.

Total R2 Cross Section
R2

Rel. Pricing
Error

2013-2016
Market 4.1 3.2 94.7
Four Factors 3.8 2.4 95.5
DM 5F static 3.9 3.2 96.4
DM 5F cond 11.0 8.6 103.3
IPCA 17.1 15.1 96.9

2017-2019
Market 3.6 3.6 92.6
Four Factors 4.2 3.4 93.4
DM 5F static 3.4 3.4 96.0
DM 5F cond 12.5 10.3 88.8
IPCA 21.0 16.9 87.2

2020-2022
Market 4.7 6.3 96.1
Four Factors 5.0 4.7 95.5
DM 5F static 7.1 6.8 89.1
DM 5F cond 15.9 12.9 78.2
IPCA 25.3 19.4 61.2

2013-2022
Market 4.6 4.3 96.0
Four Factors 4.8 3.4 95.5
DM 5F static 6.5 4.3 89.1
DM 5F cond 15.2 10.4 74.3
IPCA 24.2 17.0 55.5

A full comparison of various asset pricing models requires assessing their efficacy in the investment process.

As such, we analyze how well the factor models can predict the subsequent return of EM corporate bonds. We

create quintile portfolios based on forecasted returns and rebalance them monthly. Exhibit 7 compares the

performance of the quintile portfolios to that of the market portfolio. Notice, that the reported performance

is calculated from bond excess return, which is not scaled by DTS. The Q1 portfolio includes bonds with

the lowest expected return forecasts, while the Q5 portfolio selects the best-performing assets based on the

signal. By examining the average return and SR of the portfolios, it is apparent that only the IPCA and the

five-factor model with conditional betas can establish a linear connection between estimated and realized

returns. For both Q1 models, the annual returns generated are 1.9% and 2.4% respectively, compared to

the index portfolio’s 3.1%. Meanwhile, the Q5 long portfolios yield 5.9% and 4.2% p.a. Additionally, when

comparing the two portfolios, we observe that the IPCA model better separates corporate bonds based on
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their returns, with a performance gap between the long and short portfolios of 4%. This is in contrast to the

five-factor model with conditional betas, which yields a 1.8% performance of a long-short strategy. Besides,

the Q1 IPCA portfolio has the lowest Sharpe Ratio compared to the others, while the Q5 IPCA portfolio

achieves the highest Sharpe Ratio of 0.8. This is consistent with our prior findings that the IPCA model

provides the highest cross-sectional R2 value.

Exhibit 7: Performance of quintile sorted portfolios based on different asset pricing models.
This table reports performance statistics of quintile sorted portfolios based on different signals over the period from January
2013 until December 2023. The Q1 portfolio contain the assets with the lowest expected return forcast, while Q5 portfolio the
one with the highest return forecast.

Quintile Avg.
Return

Avg.
Volatility

SR

Index
3.1 5.5 0.6

Four Factors
Q1 3.9 6.0 0.7
Q2 2.5 4.6 0.5
Q3 2.4 4.4 0.5
Q4 2.4 6.0 0.4
Q5 4.2 8.5 0.5

DM 5F static
Q1 4.0 7.8 0.5
Q2 1.9 5.7 0.3
Q3 2.3 4.3 0.5
Q4 2.6 4.1 0.6
Q5 4.5 6.9 0.7

DM 5F conditional
Q1 2.4 6.0 0.4
Q2 2.8 5.4 0.5
Q3 3.3 5.6 0.6
Q4 3.4 5.2 0.7
Q5 4.2 7.1 0.6

IPCA
Q1 1.9 5.8 0.3
Q2 2.1 5.1 0.4
Q3 3.2 5.2 0.6
Q4 3.7 5.8 0.6
Q5 5.9 7.3 0.8

In fixed income, investors often cannot short corporate debt and are therefore only interested in the performance

of long-only portfolios. Therefore, our analysis focuses exclusively on the Q5 portfolios, highlighting additional

performance characteristics for the various return forecasts. We report in Exhibit 8 Jensen’s alpha, IR, and

the turnover of the top quinitile portfolios. It is evident that the IPCA portfolio generates the highest Jensen’s

alpha of nearly 2% p.a., which is also the only statistically significant result. Similarly, this portfolio achieves

the highest IR of 1, while the competing models exhibit IR in the range of 0.3 to 0.5. Lastly, all portfolios

For Personal Use Only. Not for Distribution. 20



have reasonable two-sided turnover, where the four-factor model signals is the slowest with a turnover of

151% p.a., and the IPCA signals it the fastest with a turnover of 219%.

Exhibit 8: Performance of top quintile sorted portfolios based on different asset pricing models.
This table reports the Jensen’s alpha, Information Ratio and the turnover of the top quintile sorted portfolios based on different
signals over the period from January 2013 until December 2023. Jensen’s alpha is calculated as the intercept of regressing the
portfolio return on the value-weighted index return. The reported significance is based on a one-sided t-test. We test the
portfolios’ IR for significance using a two-sided chi-squared test proposed by Wright, Yam, and Yung (2014) based on a
heteroskedasticity- and autocorrelation-consistent (HAC) covariance matrix. Turnover represents the two-sided portfolio
turnover. All statistics are annualized. * Significant at the 5% level. ** Significant at the 1% level.

Portfolio Jensen’s Alpha IR Turnover
Four Factors -0.4 0.3 151
DM 5F static 1.0 0.5 149
DM 5F conditional 0.6 0.4 218
IPCA 1.9* 1.0* 219

Finally, we visualize the cumulative active return of the Q5 portfolios over time in Exhibit 9. The graph

illustrates the consistent alpha of the IPCA model, which outperforms the other models throughout the entire

holding period. Overall, we find evidence that the IPCA model accounting for the specifics of the emerging

markets provides the best results in OOS compared to other established models. Therefore, we encourage

systematic credit investors willing to invest in EM corporate debt to consider country risk when modeling

credit factors.
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Exhibit 9: Active performance of top quintile sorted portfolios from January 2013 until
December 2022.
The active performance is calculated over value-weighted market portfolio.
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5 Conclusion

In this study, we propose an asset pricing model using IPCA for EM corporate debt. In particular, we analyze

the implications of country risk on the cross-section of bond returns and the benefits of building a distinct

model rather than relying on established models from developed markets.
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In our first hypothesis, we examine whether country-specific information improves the explanatory power

of an IPCA model. We discover that country-specific characteristics enhance the total R2 by 6.5% and

the cross-sectional R2 by 2.6% when K equals 10. Additionally, over half of the researched country-specific

characteristics seem to be statistically significant and, therefore, relevant to the model formation.

In the second hypothesis, we compare the OOS performance of the IPCA model with that of leading factor

models. Our findings suggest that the proposed model is not only stable but also dominant among other

factor models. The EM IPCA model achieves a higher R2 than models utilizing observable factors with static

betas or those employing observable factors with dynamic betas. This highlights the need to tailor DM factor

models to the unique characteristics of EM credit. Finally, we find that a long-only portfolio built on the EM

IPCA model yields a statistically significant Jensen’s alpha of nearly 2% annually, while competitive factor

models yield at most 1% alpha per year, which is also statistically insignificant.

In total, our study presents the initial evidence of the significance of country-specific information for

constructing asset pricing models in EM credit. We discover that the emerging markets credit universe is

spanned by more latent factors than Kelly et al. (2023) find for developed markets. Furthermore, incorporating

country characteristics can significantly enhance the efficacy of a factor model. A natural extension of this

study would be to analyze the performance of an IPCA model of EM corporate bonds denominated in local

currency. We expect that local EM debt will necessitate an even more intricate model, given the stronger

influence of the sovereign on the performance of corporate debt.
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