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Abstract 

There is an ongoing debate about the reproducibility of anomalies and p-hacking (data mining) 

of anomaly discoveries. This paper simulates and evaluates the impact of empirical decisions 

on anomaly replication and p-hacking. To better capture the true anomaly effect, we aggregate 

its return across 96 portfolio construction designs, avoiding dependence on any particular 

design. We develop a two-stage bootstrap approach to account for both sampling and empirical 

decision variations. Our simulations show that 70% of the published 173 anomalies can be 

replicated and the aggregate method in computing anomaly returns in the actual data is robust 

to both types of errors, suggesting that researchers should use the aggregate method to discover 

new anomalies, which alleviates the concerns of p-hacking through different empirical choices. 

Furthermore, we simulate anomaly discoveries through p-hacking activities and publication 

bias behavior. The findings indicate the existence of p-hacking attempts especially when the t-

value threshold is 2 but the extent of p-hacking is not severe in anomaly studies. 
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1. Introduction 

Over the past several decades, numerous anomalies or factors are documented to have 

the capacity to capture cross-sectional return pattern. For example, buying past winner stocks 

and selling short past loser stocks can generate significant returns (Jagadeesh and Titman, 

1993). The ‘factor zoo’ has continuously expanded over time. Harvey and Liu (2019) 

summarize more than 400 factors, and Chen and Zimmerman (2022) review and replicate more 

than 200 existing anomalies. Given the proliferation of anomalies and replication crisis 

experienced in other research fields1, there is growing attention on anomaly replication and  

potential p-hacking (data mining) in asset pricing studies in recent years (Harvey, Liu and Zhu, 

2016; Mclean and Pontiff, 2016; Yan and Zheng, 2017; Hou, Xue and Zhang, 2020; Chen and 

Zimmerman, 2020; Jensen, Kelly and Pedersen, 2023).  

The literature continues to debate three crucial questions. First, ‘Can all published 

anomalies be replicated?’. Second, ‘Is there p-hacking in anomaly discovery?’. Third, ‘if the 

anomaly is genuine, how large is the true anomaly effect?’2. Hou, Xue and Zhang (2020) show 

that 65% of 452 anomalies cannot pass the 5% significance (t = 1.96) hurdle in their replication 

setting. Harvey, Liu and Zhu (2016) argue that many factors might be false due to publication 

bias or p-hacking. They suggest that multiple testing should be considered when evaluate the 

bunch of claimed factors, and the t-value should be raised to 3 to mitigate the false discovery 

rate. In contrast, Yan and Zheng (2017) indicate that at least the top-ranked fundamental signals 

exhibit significant returns, which are less likely to be driven by data mining. Chen and 

Zimmerman (2022) find that the majority of replicated t-values are close to the original studies, 

which confirms the credibility of discovered anomalies. Chen (2021) shows that the anomalies 

are unlikely to be the outcome of p-hacking.  

 
1 See Ioannidis (2005), Head et al. (2015), Camerer et al. (2016) and Chang, Gao and Li (2023). 
2 The true size of anomalies is paid little attention compared with t-statistics. 
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Anomalies’ reproducibility can be affected by two forms of p-hacking. First, 

researchers can search among many variables and only report the significant one. Harvey and 

Liu (2021) and Chordia, Goyal, and Saretto (2020) have documented the evidence by 

simulating scenarios of searching different variables and find that around 50% anomalies are 

false positives. Second, researchers can experiment various empirical decisions (methods) and 

only present the (more) significant result. Menkveld et al. (2023) show that empirical results 

vary among different researchers in finance studies. In addition to data generating process 

(DGP) which leads to standard errors due to randomness in data samples, the variations across 

studies (non-standard error from evidence generating process(EGP) by different researchers) 

are important sources of uncertainties in empirical studies. Walter, Weber and Weiss (2023) 

reveal the size of non-standard error for anomaly returns using different methods of portfolio 

construction and show which empirical choices are the main drivers of the variations of 

anomaly returns. Hasler (2023) shows that method used in original paper produces higher 

anomaly return than alternative methods. Their study highlights the fact that there are non-

negligible uncertainties when replicating anomaly returns. This highlights that empirical 

methods are an important source of statistical biases3. However, a crucial question arises: are 

there replication crisis and p-hacking in anomaly studies when viewed through the lens of 

empirical decisions?   

This paper aims to answer this question by evaluating and quantifying the impact of 

empirical decisions on anomaly replication and p-hacking. To address this question, one should 

consider both “standard errors”, i.e., sampling errors of individual study and “non-standard 

errors”, i.e., specification errors arising from various empirical decision choices across studies. 

The observed anomaly long-short return should be the true effect plus two sources of errors: 

 
3 Other studies include Brodeur, Le, Sangnier and Zylberberg (2016) and Brodeur, Cook and Heyes (2020). 
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sampling and specification (study) errors (see Hedges and Vevea, 1998 and Thompson, Turner 

and Warn, 2001). For any individual anomaly, the observed anomaly return (𝜃𝑘) is the sum of 

the true anomaly return in study k (𝜃𝑘) and the sampling error (𝜀𝑘) from a sample drawn from 

the population: 

𝜃𝑘 = 𝜃𝑘 + 𝜀𝑘 

Different studies have different replication rate…….. 

If all results based on different empirical decisions originate from a homogenous 

population, then different results can be attributed solely to the sampling error. However, if the 

true effects (𝜃𝑘 ) from different empirical specifications are heterogenous, it is difficult to 

conclude which empirical setting is the correct representation of the anomaly return 4 . 

Consequently, it would be unjust to ascertain the number of true anomalies and the replication 

rate based on any specific empirical choice. In light of this, it is imperative to account for the 

fact that the true effect of anomaly returns may conform a distribution. The true effect of 

anomaly under any method choice (𝜃𝑘) should be the sum of the overall (universe) true effect 

(𝜇) and the specification error between methods (𝜗𝑘):  

𝜃𝑘 = 𝜇 + 𝜗𝑘 

Therefore, the observed anomaly return consists of the overall true effect and two sources of 

variance: 

𝜃𝑘 = 𝜇 + 𝜀𝑘 +  𝜗𝑘 

This suggests two implications. First, the overall effect 𝜇  should be a better 

measurement to quantify the true effect size of an anomaly. Second, the heterogeneity in 

empirical decisions leaves the room of data mining or p-hacking due to the publication bias in 

addition to the statistical bias from sampling error. 

 
4 Jensen, Kelly and Pedersen (2023) compare replication rates of their study and empirical settings from different 

papers in Figure 1. The replication rates range from 35% to 82.4%.  
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Our study uses 173 anomalies and 96 portfolio construction designs (i.e., empirical 

specifications) for each anomaly5. First, using permutation test, we show evidence that anomaly 

returns based on different empirical specifications  are not from the same distribution for more 

than 50% anomalies. The finding suggests that the empirical findings of anomalies are likely 

to be affect by the empirical choices.  

Second, we aggregate long-short returns across specifications by using average or 

median as the measurement of true effect size of anomaly returns which does not depend on 

any particular specification. We find that the reported returns from original methods are higher 

than returns based on the aggregate measure. Then we perform permutation to assess whether 

the true size of anomaly performance (aggregate return) follows the same distribution with the 

returns based on the original paper method. Our results reveal that the aggregate returns and 

original-method returns tend to come from the same distribution for most of anomalies albeit 

the original method return tends to be higher.  

Third, more importantly, we propose a two-stage bootstrapping approach to take into 

account of both sampling and empirical specification variations. In the first stage of 

bootstrapping, we randomly draw monthly return with replacement for all anomalies 

simultaneously to preserve the cross-sectional correlation among anomalies (e.g., Harvey and 

Liu, 2021). Similarly, in the second stage of bootstrapping, we bootstrap specifications with 

replacement for all anomalies simultaneously. Overall, we find that about 70% of the published 

anomalies are true when we allow two sources of statistical biases. The 95% confidence 

interval of true anomalies is between 60% and 78%. We gain supporting evidence from the 

out-of-sample analysis using our two-stage bootstrapping approach. The performance of 

anomalies tends to persist both in pre and post out-of-samples by taking into account of the 

publication effect in addition to the sampling and specification errors.  

 
5 Some anomalies do not have all 96 specifications due to data issue. 
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Fourth, we simulate the publications bias and p-hacking behavior using our 

bootstrapping approach. We also perform a binomial test to assess the extent of p-hacking 

efforts. The intuition is that the probability of just below and above around t-value cut-off (e.g., 

2) should be equal in the absence of p-hacking. The results suggest that there exists potential 

p-hacking efforts where researchers try to experiment different specifications when t-value is 

close to 2 but the p-hacking becomes unlikely when t-value is around 3.  

At last, we simulate the p-hacking behavior induced by publication bias using our 

bootstrap approach. We find the FDR monotonically increases with the publication bias when 

t-value is 2 but it remains low (2%) when t-value cutoff raises to 3. In addition, we find the t-

value of 2.6 is sufficient to limit the FDR below 5% when we are less confident about the 

published anomalies (60% anomalies are deemed to be true from our bootstrap approach) and 

there is an extreme publication bias of 90%.    

Our study contributes to the existing literature on anomaly replication and p-hacking in 

several aspects. First, discovered anomalies from the original papers often use different 

methods. There is no standard or unified framework when investigating anomalies. Different 

researchers use different construction designs to test anomalies, which are determined by their 

individual decisions that vary across studies. Consequently, this leads to different replication 

outcomes that are not directly comparable. Indeed, the original papers of 173 anomalies 

included in our paper do not employ the same set of empirical choices. This raises a question 

what is the criteria for verifying a reliable anomaly. Recent studies suggest that the replication 

rates are influenced by empirical choices. For example, Hou, Xue and Zhang (2020) document 

a 65% failure rate of replicated anomalies (long-short deciles) with value-weighted returns (for 

controlling microcap stocks) and around 40% failure rate for equal-weighted returns. Jensen, 

Kelly and Pedersen (2022) apply terciles and capped-value-weighted returns (to control 

overweight for both extremely small and extremely large stocks) and find that about 56% of 
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factors can be verified. This rate increases to 61.3% after removing insignificant anomalies 

from the original studies. However, Chen and Zimmerman (2022 and 2023) try to closely 

follow both the methods and time periods of the original studies and find that nearly all 

anomalies can be replicated. In our study, we address this issue by using a more proper true 

anomaly effect which is not dependent on any specification to justify the replication rate. 

Rather than using a specific empirical design to test the significance of anomaly returns, we 

suggest to use the aggregate measure (mean or median) across specifications, which is shown 

to be robust of sampling and specification errors.    

Second, the observed anomalies suffer the problem of type I error (the probability that 

a positive findings is the result of incorrect rejection of true null hypothesis). The false 

discovery rate will be more apparently if p-hacking induced by publication bias exists. The 

behavior of searching significant findings will increase the probability of false discovery 

because true negative findings will be dropped. Harvey and Liu (2016) raise the concern and 

suggest a higher hurdle of t-value. The variations of long-short returns in different empirical 

specifications may leave more room for (unintended) p-hacking. P-hacking not only  involves 

trying various variables or factors, but also trying different empirical choices. For example, 

researchers may experiment with different numbers of portfolios, NYSE break- points or the 

universe breakpoints and return weighting scheme to search for significant results. In this study, 

we simulate p-hacking behavior and try to quantify of the extent of the p-hacking efforts 

resulting from researchers experimenting different empirical procedures to report significant 

results.  

Our paper is also different from related recent papers. Menkveld et al. (2023) introduce 

the term “non-standard errors” resulting from variations across researchers in generating 

evidence process. This adds a further error to the standard error in which the population 

parameter is estimated with an error in a random sample from a population. Walter, Weber and 
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Weiss (2023) examine 68 anomalies using different methodological choices in portfolio sorts 

and show that non-standard errors are larger than standard errors. Hasler (2023) investigates 

92 predictors with various combinations of empirical decisions and shows that long-short 

returns based on the original paper’s decision are higher than returns using other decisions. 

Instead, we focus on exploring and quantifying the consequences and implications of empirical 

decisions on replication crisis and p-hacking by taking account of both standard errors 

(sampling uncertainties) and non-standard errors (specification uncertainties). In addition, our 

study has a more comprehensive list of anomalies that includes 173 anomalies.  

Harvey and Liu (2021) run a two-step bootstrapping approach by randomly selecting 

factors and shuffling months to evaluate how many observed anomalies are true. Their study 

simulates one aspect of p-hacking scenarios where researchers try many different factors and 

hide insignificant results. In contrast, our study simulate another aspect of p-hacking scenarios 

of trying different empirical specifications by applying the two-stage bootstrapping approach 

to account for variations for both sampling and specification  errors. We aim to capture the true 

effect size of anomaly that is unbiased from specification errors and to examine whether 

published anomalies are likely to be the outcome of sampling and specification variations.  

Our paper is organized as follows. We describe our data and how to construct different 

portfolio specifications in Section 2. In Section 3, we detail the methodologies including the 

procedures of two-stage bootstrapping. We present the results in Section 4. Section 5 concludes. 

 

2. Data and portfolio constructions 

We collect two sets of data from https://www.openassetpricing.com/data/ (Chen and 

Zimmerman, 2022). First, we download returns and t-values of long-short portfolios based on 

methods applied in original papers (the data also extends the OP sample period to December 

2021). Second, we download all 204 available firm characteristics. We also collect data from 
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CRSP to complement 3 anomalies: firm size measured by market value, short-term reversal 

proxied by return in previous month and stock price. In total, there are 207 firm characteristics. 

There are 28 factors that have poor distribution to construct quintile or decile portfolios 

including 27 dummy variable type factors (values are 0 and 1). We, therefore, include 179 

anomalies after removing the 28 anomalies. Further, we require at least 50 anomalies in each 

month and at least 240 months for any single factor. As a result, we have 173 anomalies to be 

included in our analysis. The start date of construction varies across anomalies due to the 

availability of firm characteristics, and the end date is December 2021. All firm characteristics 

are signed based on the characteristics-return relation. For example, there is a negative relation 

between firm size and stock return. Then for the long- minus-short return, we use the return of 

the bottom portfolio minus the return of the top portfolio. With the signed characteristics, we 

can always use top minus bottom as the long short spread. So an anomaly with a t-value greater 

than 2 (5% significance level) can be treated as a significant factor. 

To test the long-short portfolio returns under different empirical designs, we employ 

six layers of empirical decisions. The six layers are identified by summarizing the 

methodologies of original papers. In the stock screening layer, there are 3 choices. One 

researcher can decide to use all stocks, stocks excluding NASDAQ listing or stocks excluding 

financial industry. In the liquidity layer, one can choose no filter or removal of stocks lower 

than 5 dollars. For portfolio breakpoints, the two options are all-universe and NYSE 

breakpoints. There are two choices when deciding the number of portfolios, deciles or quintiles. 

One can also choose stock returns with adjustment of delisting or not. Finally, either equal-

weighted or value-weighted returns can be chosen. There are 3, 2, 2, 2, 2, 2 empirical choices 

across the six layers respectively, resulting in a total 3 × 2 × 2 × 2 × 2 × 2 = 96 specifications. 

We follow each of the 96 specifications to compute long-short returns in each month and take 

the time-series average as the anomaly return. 
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3. Empirical methods 

3.1 Monthly return aggregation 

We construct 96 specifications following the empirical decisions in Section 2 for each 

anomaly. Then we aggregate long-short return for each anomaly in each month as follows: 

𝑟𝑒𝑡𝑖,𝑡
𝑎𝑔𝑔

= 𝑓𝑎𝑔𝑔(𝑟𝑒𝑡𝑖,1,𝑡
𝑠 , 𝑟𝑒𝑡𝑖,2,𝑡

𝑠 , … , 𝑟𝑒𝑡𝑖,96,𝑡
𝑠 ) 

𝑟𝑒𝑡𝑖,𝑡
𝑎𝑔𝑔

 is aggregate long-short return in of anomaly i in month t. 𝑟𝑒𝑡𝑖,𝑗,𝑡
𝑠  is the long-short return 

of anomaly i following specification j in month t. 𝑓𝑎𝑔𝑔(∙) either takes mean or median. 

We finally compute the returns (𝑟𝑒𝑡𝑖
𝑎𝑔𝑔

) of anomaly i by taking the average of time-

series aggregate long-short return over T months: 

𝑟𝑒𝑡𝑖
𝑎𝑔𝑔

=
1

𝑇
∑ 𝑟𝑒𝑡𝑖,𝑡

𝑎𝑔𝑔
𝑇

𝑡=1
 

3.2 Permutation tests 

In this subsection, we perform two permutation tests to compare the difference of 

anomaly returns across specifications and the difference between the aggregate and original 

method returns. The rationale of using permutation tests is to assess whether the observed 

differences in data are statistically significant and not merely due to random sampling variation.  

First, for each anomaly, we conduct a permutation test to examine whether anomaly 

returns from different portfolio constructions (i.e., specifications) have the same mean return. 

We first calculate the observed F-statistics using monthly returns across all specifications. Then 

we pool all monthly long-short returns from all specifications and randomly shuffle and 

reassign them among different specifications so that each specification contains randomly 

selected monthly long-short return that can be from any specification. The F-statistics is 

estimated using random samples. The intuition is that if returns from different specifications 

are from the same distribution and have the same mean, then randomly reassigning the returns 
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among the different specifications should not affect the observed F-statistics. We repeat the 

simulation 1000 times and compute 1000 F-statistics. Then we can calculate the probability (p-

value) of simulated F-statistics (𝐹𝑖) equal or greater than the observed F-statistics (𝐹𝑎) below. 

𝑝 = 𝑃(𝐹 ≥ 𝐹𝑎|𝐻0) =
∑ 𝐼(𝐹𝑖 ≥ 𝐹𝑎) + 1𝑛

𝑖=1  

𝑛 + 1
 

𝐻0 is that mean returns of all specifications are equal. I is the indicator function that equals to 

1 if the condition is met, and n is the number of permutations. We apply the empirical 

adjustment by adding 1 for both numerator and denominator to avoid zero p-value. Lower p-

value indicates the rejection of null hypothesis 𝐻0 and suggest that the returns from different 

specifications are not from the same distribution and may have different means. 

Next, we perform the second permutation test to assess if the true size of anomaly 

performance (measured by the aggregate return) has the same distribution with the return based 

on the original paper method. For each anomaly, we first compute the monthly average or 

median across all specifications and calculate the difference of sample means between the 

aggregated sample and original method sample, which represents the actual difference between 

the two sets of returns. Then, for each anomaly, we pool the aggregated monthly long-short 

returns with the monthly returns following original paper and apply random allocations of 

returns to the two groups and compute the mean difference in returns between the two groups. 

This procedure is repeated 1000 times and compute 1000 mean differences. The replicated 

returns and original-method returns should be from two different distributions if the p-value 

(proportion of differences between means which are at least as extreme as observed mean 

difference) is low. The p-value is estimated as following: 

𝑝 = 𝑃((|𝐷| ≥ |𝐷𝑎|)|𝐻0) =
∑ 𝐼(|𝐷𝑖| ≥ |𝐷𝑎|) + 1𝑛

𝑖=1  

𝑛 + 1
 

𝐻0 is that aggregate returns and original-method returns come from the same distribution. 𝐷𝑖 

is the difference between return based on aggregate method and return following original 
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method from a random sample while 𝐷𝑎 is the actual difference. We take absolute value to 

perform two-sided test.  

3.3 Two-stage bootstrapping 

To account for two sources of errors, we propose a two-stage bootstrapping approach. 

We first bootstrap the time-series data for all anomaly returns to allow sampling variations. To 

preserve the cross-sectional correlation6 among different anomalies, we follow Harvey and Liu 

(2021) and Chen and Zimmerman (2023) to bootstrap the months with replacement for all 

anomalies at the same time in order to take into account the fact that monthly performance of 

anomalies might be correlated cross sectionally. In the second stage of bootstrapping, we allow 

variations of specifications by bootstrapping all specifications with replacement for all 

anomalies simultaneously. This ensures that the specifications are consistent across anomalies. 

In other words, each anomaly is subjected to the same set of empirical choices during the 

bootstrapping process. Moreover, this stage of bootstrapping helps simulate scenarios in which 

researchers try different specifications to obtain (more) significant results. Then we aggregate 

long-short returns across all specifications by taking either mean or median in each month, and 

calculate t-value of time-series aggregated returns. We simulate 100 times in each of the two 

bootstrapping steps, resulting in in a total of 10,000 (100*100) samples.  

Using the two-stage bootstrapping, we conduct four main tests. First, we compute the 

cross-sectional mean return of 173 anomalies (using monthly returns based on either average 

or median aggregate) for each bootstrapped sample and then we obtain the average and 95% 

confidence interval of the 10,000 simulations. We also compute the 10 percentiles (from 10% 

to 90%) along with minimum (0% percentile) and maximum (100% percentile) of t-values 

(estimated by the aggregated long-short returns) across the 173 anomalies in each simulation. 

 
6 Similar technique is applied by Fama and French (2010) and Ben-David, Li, Rossi and Song (2022) when they 

capture the cross-sectional correlations of mutual fund returns in bootstrap. 
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Then we compute the 95% confidence interval of each t-value percentile based on the 

distribution of that percentile from 10,000 samples. With the 10,000 bootstrapped samples of 

each cross-sectional t-value percentile, we estimate the empirical cumulative distribution 

function (ECDF) as following 

𝐹𝑛(𝑡) =
1

𝑛
∑ 𝐼(𝑡𝑖 ≤ 𝑡)

𝑛

𝑖=1
 

𝐼(∙) is an indicator function to assign 1 and else 0 if t-value of any percentile in a random 

sample is smaller than a fixed t-value. The ECDF enables us to present the distribution of 

bootstrapped t-value percentiles. 

Second, to formally test if the t-value percentiles of anomalies are not the result of pure 

chance, we demean the monthly long-short returns and perform the two-step bootstrapping. 

The demeaned returns assume the anomaly returns to be zero, and this enables us to quantify 

how likely that the simulated cross-sectional percentile of t-value of the 173 anomalies is 

greater than the actual percentile of t-value if there is no predictability of the predictor. And 

the ECDF is estimated by the equation as shown below 

𝐹𝑛(𝑡|𝐻0: 𝑛𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =
1

𝑛
∑ 𝐼(𝑡𝑖 ≤ 𝑡)

𝑛

𝑖=1
 

We show the bootstrapped distribution of cross-sectional percentiles of t-values under the null 

hypothesis of no predictability. More importantly, we can fit the ECDF to the actual percentiles 

of t-values, and then compute 1 - 𝐹𝑛(𝑡), the p-value, which  represents the chance to observe at 

least as extreme of the actual t-value percentiles. In addition, we use the actual percentiles of 

t-value greater than 2 as the benchmark for large t-values to test how likely to observe the t-

value of anomalies from simulated samples exceeding the benchmark, assuming zero anomaly 

return.  
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 Third, we implement the bootstrap method to investigate out-of-sample performance of 

anomalies. Out-of-sample periods are defined as 3 and 5 years before the start of the original 

paper sample period and 3 and 5 years after the end of the original paper sample period.  

Lastly, we evaluate p-hacking and the false discovery rate (FDR) of published 

anomalies. To detect the extent of p-hacking, following Andrews and Kasy (2019) and Brodeur, 

Cook and Heyes (2020), we perform the binomial test. The assumption is that the probability 

of just below and just above around t-value cut-off (usually 2) should be equal if there is no p-

hacking or publication bias. Suppose there are N anomalies in a window around t-value cut-off 

and we observe that 𝑘𝑜𝑏𝑠  of N are significant anomalies. Under the null hypothesis that 

probability of significant findings is 0.5, the one-sided p-value of observing as or more extreme 

outcome is 

𝑃(𝑘 ≥ 𝑘𝑜𝑏𝑠) = ∑ (
𝑁

𝑘
) 𝑝𝑘(1 − 𝑝)𝑁−𝑘

𝑁

𝑘=𝑘𝑜𝑏𝑠

 

Our bootstrapping procedure with the average aggregate is the measurement without p-

hacking, so we expect that the proportion of significant findings in any window should be 50%, 

and the p-value is greater than 5%. If the OP anomalies have no p-hacking, then similar results 

should be observed. In contrast, if there is p-hacking, we should observe p-values to be less 

than 5%.  

Regarding the estimation of FDR, we first identify the percentage of true and false 

anomalies before the bootstrapping. We keep the monthly return intact for true anomalies and 

demean monthly return for false anomalies. In the second step of bootstrapping, instead of 

bootstrapping specifications for anomalies simultaneously and calculating aggregate return 

across specifications, we randomly select one specification to act as no publication bias. To 

simulate publication bias behavior, in each bootstrapped sample, we select one specification 

for each anomaly after we drop 70%, 80% and 90% of insignificant specifications to simulate 

the p-hacking (the higher the proportion we drop the more p-hacking effort). The intuition is 
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that by dropping insignificant specifications, there would be a higher likelihood of selecting 

significant specifications for false anomalies. In turn, we artificially increase the probability of 

false anomalies becoming significant. For each of the 10,000 simulations, we compute FDR as 

the ratio of the number of significant anomalies that are actually false divided by the total 

number of significant findings. 

 

4. Empirical results 

4.1 Uncertainties of anomaly performance from different empirical designs 

For each of the 173 anomalies, we use 96 different empirical specifications to compute 

the long-short returns and t-values. Figure 1 plots boxplot of returns and t-values across 

specifications for each anomaly. The plot is sorted by the mean return across all specifications 

of each anomaly. In Panel A, it is evident that that most of anomalies have long-short mean 

returns above zero. This is consistent with Walter, Weber and Weiss (2023) that the predictors 

tend to have positive premium in most of specifications. In addition, all anomalies exhibit large 

uncertainties in their return performance across different empirical designs. While some 

anomalies yield returns up to around 3% per month, they can also have return close to or even 

below zero. Panel B plots the boxplot of t-values for each anomaly in different specifications. 

Similarly, the mean of t-values across specifications indicates that most of anomalies can pass 

the 5% significance level (t >= 2) hurdle. However, the range of t-values shows that many 

anomalies can be insignificant in some certain specifications.  

[Insert Figure 1 about here] 

The sizeable range of returns and t-values have several implications. First, anomalies 

are sensitive to empirical designs, and their significance is dependent on empirical choices. 

Second, it provides researchers opportunities and incentives to try and search for the (more) 

significant one. Third, the uncertainty of returns and t-values does not necessarily mean that an 
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anomaly is not reproducible. Some of anomalies are always significant across various empirical 

decisions although there are large variations across different portfolio construction methods. In 

Figure 2, we plot the distribution of averaged standard error across specifications and the non-

standard error among different methods. For each anomaly, following Menkveld et al. (2022) 

and Walter, Weber and Weiss (2023), the non-standard error, which is used to  measure 

uncertainty between methods, is defined as the 3rd quartile of anomaly returns minus the 1st 

quartile of anomaly returns from the 96 specifications. In total, there are 173 averaged standard 

errors and non-standard errors. Figure 2 shows that the anomalies exhibit similar standard error 

(sampling error), but the non-standard error (between-method error) displays more variability 

and extreme values. This finding confirms that the empirical design is another critical source 

to affect the observed anomaly returns.  

[Insert Figure 2 about here] 

Overall, the variations across different empirical choices imply that the anomaly 

replication rate may differ if different empirical decisions are made, and some of the published 

predictors could be the outcome of specific method picking rather than true anomalies.  

4.2. Actual long-short returns across all specifications 

For each anomaly, we follow  96 different specifications to construct time-series long-

short returns. We aggregate long-short return by taking the average or median of all 

specifications in each month to generate the aggregate monthly returns. The anomaly returns 

are then calculated as the time-series average of aggregate returns. The aggregate anomaly 

return provides  a more accurate representation of the  true effect of anomaly performance, and 

anomalies are more likely to be true if they can be replicated using aggregate returns since they 

are less likely to be the result of specification searching. Table 1 summarizes the anomaly 

returns based on aggregate return. The mean return of 173 anomalies is 0.36% per month based 

on average-specification aggregation and 0.35% per month based on median-specification 
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aggregation. Our aggregate return is similar with Hasler (2023) who reports an average of 0.34% 

per month with more empirical choices. This suggests that the additional empirical decisions 

do not have impact on our results. When using the method in the original papers, the mean 

return of all anomalies is 0.5% per month7.  

[Insert Table 1 about here] 

To test whether the sample mean returns across specification for each anomaly are same, 

we conduct the permutation test and find that (at the 5% significance level,  55.5% of anomalies 

reject the null hypothesis that mean returns from different specifications are the same and from 

the same distribution. This finding indicates that more than half of anomalies have between-

specification or between-study heterogeneity and those anomaly returns are likely to be 

affected by the empirical choices. Next, we run the permutation test to investigate whether the 

aggregate long-short return distribution is as same as that following original method. When 

using average aggregation, around 13.9% anomalies reject the null hypothesis of same 

distribution at the 5% significant level. The median aggregation exhibits the similar proportion 

of rejections. Taken together, our results indicate that although the reported returns are higher 

from original paper methods (published) than aggregate returns across specifications, the 

aggregate returns and original-method returns come from the same distribution for most of 

anomalies.  

Following Chen, Lopez-Lira and Zimmermann (2023), we group anomalies into three 

categories, risk-based, mispricing and agnostic explanations. Specifications should have little 

effect on risk-based anomalies. However, mispricing induced returns should be influenced 

more by empirical choices especially weighting scheme since those returns can be more easily 

arbitraged away for large firms than small firms. As expected, we observe that more 

 
7 The long-short returns are constructed by following the empirical choices in the original papers, and the sample 

period is extended to the end of 2021.  
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mispricing-based anomalies than risk-based anomalies (56% vs. 48.5%) reject the hypothesis 

of same distribution of long-short returns across all specifications. More mispricing-based 

anomalies (15.4%) than risk-based anomalies (12.1%) have larger returns following original 

method. The results suggest that empirical decisions have relatively larger impact on returns of 

mispricing-based anomalies.  

We follow Chen and Zimmermann (2022) to group them into accounting, trading and 

other groups. We find other anomalies which do not use CRSP and Compustat data has the 

lowest percentage of rejection. Specifically, 24% of the other anomalies reject the null 

hypothesis of having the same mean and being from the same distribution across all 

specifications and 4% (8%) reject the null hypothesis that average (median) aggregate anomaly 

return has same distribution  as the original-method returns.  

In Table 2, we present the results for 6 anomalies in detail. These anomalies are chosen 

because they are probably the most well-known and are used to construct factors in asset 

pricing models (Fama-French (FF) (1992) 3- and FF (2015) 5-factors; Carhart (1997) 4-factor 

and Hou, Xue and Zhang (2015) q-factor model). Specifically, the 6 anomalies are used to 

construct returns of size (size), value (BMdec), investment (AssetGrowth), profitability (GP 

and RoE) and momentum (Mom12m) factors. We also report the results for each of the 173 in 

Table A1. We first find that different specifications are likely to generate different long-short 

returns given by lower p-values of F-test from the permutation test for all of the 6 anomalies 

except for return on equity (RoE). Second, the premutation test of same distribution between 

the aggregate and original-method returns shows 5 out of the 6 p-values are larger than 0.05,  

suggesting the aggregate and original-method returns tend to share the same distribution. The 

only exception is asset growth anomaly, which has a lower aggregate return than the original 

method. Therefore, the anomaly variables used to construct factor returns are reproducible after 
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taking different specifications into account, and there is no significant difference between the 

aggregate returns and returns using the original paper method.   

[Insert Table 2 about here] 

We further breakdown the replication performance using specification aggregation 

based on different empirical choices in Tables 3 and 4. The aggregation of monthly long-short 

return for each anomaly is based on specifications following a particular empirical decision 

rather than all specifications. Table 3 shows that the price filter (excluding stocks with price 

less than 5 or not), return weighting scheme and the number of portfolios have significant 

impact on replication results. For example, the average return of all anomalies for equal-

weighted (EV) specifications regardless of other empirical decisions is 0.43%, while the 

counterparty of value-weighted (VW) is 0.29%. The averaged t-value across all EW 

specifications is 4.28 which is the double that of the VW specifications (averaged t-value is 

2.2). In addition, 80% and 53% of  anomalies have t-value greater than 2 for EW and VW 

respectively, and the proportions are 61% and 26% if we apply 3 as the t-value threshold. We 

also find that excluding NASDAQ stocks has relatively weak impact and other empirical 

choices (desilting return adjustment, NYSE breakpoints and exclusion of financial firms) have 

no significant influence on the replication rate. Finally, we find around 70% replication success 

under all decisions except for the value-weighted scheme. This echoes Hou, Xue and Zhang 

(2020) that many anomalies cannot be replicated when applying value-weighted returns. We 

also confirm these findings in Table 4 by the regression of t-values estimated from some certain 

specification on t-values of 173 anomalies following original empirical choices. The R2 ranges 

from 0.63 to 0.82. These imply a strong correlation between averaged t-values across different 

specifications and t-values generated by the original method. In summary, most of anomalies 

seem to be replicated successfully even there are variations between specifications. Although 
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the original choices result in larger anomaly returns than replicated aggregate returns, this 

should not be the evidence to deny the reproducibility of most of anomalies.  

[Insert Table 3 about here] 

[Insert Table 4 about here] 

4.3 Reproducibility based on the two-stage bootstrapping 

To verify the reproducibility of anomalies, , we perform the two-stage bootstrapping 

approach to account for both sampling and specification errors. By conducting 100 bootstraps 

of months and 100 bootstraps of specifications, a total of 10,000 bootstrapped samples of time-

series long-short returns are generated for each anomaly. For each sample, we aggregate returns 

across all specifications using average or median in each month to compute time-series 

aggregate long-short returns. Therefore, there are 173 anomaly returns and t-values for each 

bootstrap sample, and we then compute average return and t-values of the 173 anomalies.  

In Table 5 Panel A, we report the average statistics of 10,000 bootstrapped samples. 

The mean return of anomalies based on average aggregate is 0.36% per month and the average 

t-value is 3.45. More than 70% and 50% of anomalies are significant at t-value of 2 andl 3 

respectively. The 95% confidence interval for return and t-values are 0.31% to 0.41% and from 

2.93 to 3.93 respectively. Hence, taking both sampling and specification errors into account, 

the reproducibility of 173 anomalies is quite achievable. Similar results using median aggregate 

are shown in Panel B of Table 5. Since the aggregate measure better reflects the true effect of 

anomaly return, the reported cross-sectional mean of anomaly returns from the simulated 

distribution should be more reliable. Therefore, the cross-sectional mean return of anomaly is 

around 0.35% per month and 4.2% when annualized.  

[Insert Table 5 about here] 

Next, we investigate the replication rate by grouping anomalies based on their 

explanations and types. Table 6 reports the results. We find that the replication rates do not 
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vary too much across the three categories of underlying explanations. Specifically, Panel A of 

Table 6 shows that the average replication rate of risk-based anomalies from the 10,000 

simulations is 68.9%, while the replication rate of mispricing-based and agnostics anomalies 

are above 70%. In panel B of Table 6, the anomalies are categorized into accounting, trading 

and other anomalies. Anomalies constructed with accounting data are classified as accounting 

anomalies, and trading anomalies are those using pricing data. Anomalies using other data, like 

analyst data, are assigned into other group. Other group, which does not use CRSP and 

Compustat data, exhibits a lower replication rate (around 55%) compared with accounting and 

trading group (above 70%) when using the t-value threshold of 2. The replication rate of other 

group is below 40% when using the threshold of 3. This discrepancy is likely due to the lower 

quality data used in other group compared to CRSP and Compustat data. As a result, the 

replication rate of the other group is more susceptible to empirical choices, resulting in a lower 

average replication rate. Overall, our two-step bootstrapping approach shows that around 70% 

anomalies can be repeatedly replicated and are not dependent on certain specifications. 

[Insert Table 6 about here] 

At last, we evaluate whether anomalies, as measured based on aggregate return in the 

actual data, can be attributed to sampling and specification errors. To address this, we compare 

the cross-sectional distribution of anomaly returns in the actual data with that in the simulated 

data using the two-stage bootstrapping. We first show the percentiles of realized t-values of the 

average (median) aggregate anomalies in Table 7. Starting from the 30% percentile, the t-

values are greater than 2. The bootstrapped 95% confidence interval for each percentile is also 

reported. Panel A of Figure 3 plots the empirical cumulative distribution of 3 selected 

percentiles at 30%, 50% and 90%. It is very common to observe those percentiles or even large 

t-values in the simulations.  

[Insert Table 7 about here] 
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[Insert Figure 3 about here] 

To formally test whether the actual cross-sectional percentiles of t-values (greater than 

2) are just by pure chance due to sampling and specification variations, we use the two-stage 

bootstrapping with demeaned returns. The demeaned returns implies that we assume the 

anomalies returns are zero. This allows us to test the probability (p-value) of observing extreme 

outcomes for each percentile of t-values given that the anomaly return is zero. If the p-value is 

lower than 0.05, then we could conclude that it is less likely to observe the percentile just by 

pure chance. In other words, if we find very few simulations generate returns that are as extreme 

as those in the actual data, this would suggest that the sampling and specification variations are 

not the source of the significant anomaly return.  

We compute the cross-sectional percentiles of t-values across 173 anomalies in each 

simulation and obtain 10,000 bootstrapped samples for each percentile. Panel B of Figure 3 

plots the ECDF for 30%, 50% and 90% percentiles, indicating that it is impossible to observe 

the actual percentiles by sampling and specification variations if there is no return predictability. 

Table 7 shows that bootstrapped p-values are zero from 30% percentiles to 100% percentiles 

for both average and median aggregate procedures. The bootstrapped p-value is the percentage 

of simulations in which the corresponding simulated percentile of t-value is greater than the 

corresponding value in the actual data. Hence, none of the 10,000 random samples can generate 

the percentile of t-value as extreme as the actual percentile. Such evidence confirms that 70% 

of published anomalies cannot be explained by sampling and specification variations.  

In addition, using the t-values from 30% percentiles and 100% percentiles, we test how 

likely to observe those t-statistics from the 173 anomalies in each bootstrapped sample. That 

is, we calculate the proportion of all anomalies (p-value) in each bootstrapped sample whose t-

value exceeds the t-value of the percentile in the actual data.  Then we calculate the average p-

value from 10,000 samples. It can be seen from the last column of Table 7 that, for average 
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aggregate method, the chance to observe t-value of at least 2.08, 2.70 and 3.03 are 2.27%,  0.37% 

and 0.12% respectively by allowing sampling and specification variations under the null 

hypothesis that anomalies have zero returns. And for even larger t t-values, the p-values are 

zero. We therefore reject the null. The results suggest that it is very difficult to observe the t-

values purely by chance if the null hypothesis of zero anomaly return is true. This implies that 

researchers are almost impossible to produce those t-values by experimenting with different 

samples and empirical choices if they are false anomalies. For instance, more than half of 

anomalies (around 86 anomalies) have t-values greater than 3.03 in the actual data. One should 

experiment 833 (1/0.0012) samples to find only one sample (with specific months and 

specifications) with the t-value greater than 3.03. Suppose the 86 anomalies are discovered by 

86 researchers, it means that each researcher should try samples and specifications 833 times 

and in total 71,638 (833*86) times collectively to produce those significant anomalies.  

Overall, it is highly creditable that around 70% of published anomalies should be true 

and they are less likely to be identified by experimenting different samples and  empirical 

decisions. 

4.4 Out-of-sample performance 

If anomalies are indeed true, they should not disappear in out-of-sample. In this section, 

we perform the two-stage bootstrapping analysis in the out-of-sample. As mentioned in 

methodology, we define a short period, 3 or 5 years before the start of sample and after the end 

of sample rather than using all available period in the pre-sample (before the start date of 

original paper) and post-sample (after the publication year). We use a shorter out-of-sample 

period for three main reasons. First if anomaly returns are generated purely by chance, the 

returns should fall dramatically in a short period before or after in-sample period. Second, since 

McLean and Pontiff (2016) document that anomaly decay is due to investor learning after the 

publication of anomalies, post-publication returns should be affected by the publication effect. 
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Third, the pre-sample should avoid the publication effect, but there are many other factors 

driving the anomaly returns in different sample periods. The anomaly generating environment 

is different between in-sample and far-away periods from the in-sample. Taken together, it 

seems to be more suitable to compare the in-sample and out-of-sample returns during a closer 

period to control for effects from various anomaly driving factors.  

We perform the two-stage bootstrapping for in-sample and each of the two out-of-

sample periods to obtain distributions of cross-sectional statistics, accounting for both sampling 

and specification errors. We then compare the distribution of cross-sectional mean return of 

anomalies between the in-sample and out-of-sample. We focus on the return distribution rather 

than t-value because the in-sample period is much longer than the out-of-sample period, and as 

a result, the standard error for the in-sample is much smaller than the out-of-sample. Panel A 

of Figure 4 plots the distribution of cross-sectional mean return of 173 anomalies from 10,000 

simulated samples. The mean of cross-sectional mean returns for in-sample is 0.5% per month, 

and the in-sample distribution of mean returns is located on the right of post 3- and 5-year out-

of-sample. The distributions are similar for post 3- and 5-year out-of-samples ,which center 

around 0.34% and 0.31% per month, respectively. Thus, the mean return in the post out-of-

sample is around 60% of the in-sample mean.  

[Insert Figure 4 about here] 

Panel B of Figure 4 shows that the distribution of pre out-of-sample is closer to the in-

sample distribution compared to the post out-of-sample, and the mean of pre out-of-sample 

distribution is around 0.36% per month which is 70% of the in-sample mean. The higher of 

mean returns in the pre-sample than the post-sample may be due to investor learning after the 

publication of anomalies learning (McLean and Pontiff, 2016). 

To alleviate the effect of investor learning after the publication of anomalies, we 

separate anomalies into two groups that are published before and after 1993. In 1993, the SEC 
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started to implement the Electronic Data Gathering, Analysis and Retrieval (EDGAR), which 

facilitates information dissemination and eases the investor learning (see Gibbons, Iliev and 

Kalodimos 2021; Goldstein, Yang and Zuo, 2023). Therefore, the decay due to the publication 

effect should be larger for anomalies published after 1993 during the 3- to 5-year periods after 

publication. As shown in Panel A of Figure 5, which plots the distribution for anomalies 

published after 1993, anomalies during the in-sample outperforms the out-of-sample but the 

out-of-sample still accounts for 60% of the mean returns of the in-sample. Panel B provides 

the distribution for anomalies published before 1993 when investor learning is not as easy as 

after 1993. The distribution of out-of-sample more overlaps with the distribution of in-sample 

(the mean returns are 0.6% and 0.4% per month for in-sample and out-of-sample respectively). 

As the returns from our two-step bootstrapping are less likely the results of data-mining, the 

out-of-sample performance seems to persist. After accounting for investor learning, other 

factors seem to contribute at most 30% (1-0.4%/0.6%) of anomaly returns.  

[Insert Figure 5 about here] 

4.5 P-hacking and false discovery rate 

In this section, we investigate the extent of p-hacking among published anomalies, 

using the two-stage bootstrapping approach. We first calculate t-values for each of the 173 

anomalies in each simulation run based on the average aggregate long-short return and then 

compute the average of t-value for each anomaly across 10,000 samples. This serves as the t-

value distribution of 173 anomalies without p-hacking. To simulate the effort of p-hacking, we 

modify the second stage of bootstrapping by randomly selecting a fraction of anomalies only 

using specifications yielding higher t-values rather than all specifications. By doing so, we are 

mimicking potential p-hacking behavior, where researchers might selectively choose specific 

specifications that yield higher t-values to highlight significant results, increasing the 

probability of publication.  
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Panel A of Figure 6 plots the t distribution of 173 anomalies based on the OP method 

in which less than 17% anomalies are not significant and t-values from 2 to 2.58 are observed 

considerably more frequent than t-values just below 2. In contrast,  Panel B, which plots the t 

distribution without p-hacking,  shows that the proportion of insignificant anomalies increases 

substantially to 27% compared with the OP method in Panel A (17%), and there is a slightly  

higher proportion of anomalies whose t-values are from 2 to 2.58 than t-values that are 

marginally below 2. The findings in Panels A and B indicate a potential p-hacking effort where 

t-values around 2 have an abnormally larger probability for the OP specification. This is 

confirmed by our simulation of p-hacking behavior. We create two scenarios of p-hacking in 

Panels C and D, in which we randomly choose 10% (20%) anomalies and use 70% (60%) 

percentile return  across specifications rather than all specifications for those anomalies. As 

such, we artificially increase the probability of observing larger returns and therefore higher t-

values. We observe consistent evidence in Panels C and D, suggesting potential p-hacking 

efforts from researchers by experimenting various specifications. 

[Insert Figure 6 about here] 

Next, we perform the binominal test to assess whether the observed t-values of OP 

anomalies are around a threshold with equal probability. The results are reported in Table 8. 

We define the t-value windows around 2 using different distances. Under the assumption of no 

p-hacking, the probability to obtain t-values below and above 2 should be equal within the 

window around 2. We present the one-sided p-value to examine whether there is a tendency 

that the probability is higher to observe t-value greater than 2. We find that for simulated 

anomalies which are free of p-hacking, the percent of significant anomalies is around 50% for 

all windows and the p-values to observe t-value greater than 2 are all above 5%. Therefore we 

cannot reject the null hypothesis that the probability is 0.5, indicating no evidence of p-hacking 

for simulated anomalies through two-stage bootstrapping. However, for the OP anomalies, 
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many windows exhibit around 70% significant anomalies. Further, many p-values are below 

10% or 5% and therefore we can reject the null hypothesis, suggesting the presence of p-

hacking for the t-value threshold of 2. When we adjust the t-value threshold to 3, p-values from 

all windows are above 30% for the OP anomalies. This suggests that there may be no 

motivation to engage in p-hacking when the t-value is large. 

[Insert Table 8 about here] 

Given that OP anomalies have potential p-hacking, we run the two-stage bootstrapping 

to estimate the false discovery rate (FDR) of the published anomalies. To compute FDR, we 

first need to identify how many anomalies are true. Our bootstrapping results suggest that 70% 

of anomalies should be true. The conservative estimate (lower bound of confidence interval) 

suggests that at least 60% anomalies are true. Next, we demean the monthly long-short returns 

of false anomalies whose t-values are below 30% percentiles of t-values based on the actual 

aggregate returns. In the two-stage of bootstrapping, we do not apply any aggregate. Instead, 

we pick up one specification randomly from all bootstrapped specifications for each anomaly. 

This is the sample without p-hacking as we do not intend to choose the significant one. As 

detailed in methodology section, we simulate different degrees of p-hacking behavior by 

excluding a fractional of insignificant specifications. For example, 70% publications bias 

means that 70% of insignificant specifications will be removed, and then we select one 

specification for each anomaly from the remaining specifications in each bootstrap sample. By 

doing this, we are able to estimate how many significant findings that are actually true and false 

given p-hacking effort.  

Considering that 70% anomalies are true and a t-value threshold is 2, Panel A of Table 

9 shows that the FDR is less than 3% when there is no any p-hacking effort on samples and 

specifications. However, the FDR exceeds 5% if p-hacking is moderate or high (publication 

bias is more than 70%). When t-value threshold increases to 3, the FDR can be restricted under 
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2%. Panel A of Figure 7 illustrates that t-value of 2.3 is sufficient to limit the FDR under 5% 

in the presence of high publication bias of 90% if we assume 70% of anomalies are true based 

on our two-stage bootstrapping approach. Panel B of Table 9 and Panel B of Figure 7 use the 

lower bound of 95% confidence interval form Table 5 where 60% of anomalies are deemed to 

be true. When the t-value cutoff is 2, the FDR is 4% without publication bias, indicating that 

the FDR is likely to be higher than 5% even the publication bias is moderate. Panel B of Figure 

7 suggests that the t-value should raise to 2.6 to maintain the FDR below 5% if publication bias 

is high. 

[Insert Table 9 about here] 

[Insert Figure 7 about here] 

 

5. Conclusions 

In this study, we examine a comprehensive list of 173 published anomalies with 96 

different specifications based on a range of possible empirical decisions. We compute anomaly 

returns and t-values based on the aggregated monthly long-short returns across various 

specifications by taking the average or median. This is a more proper measurement of the true 

anomaly effect which does not depend on any particular specification. 

We propose a two-stage bootstrap approach, which allows for variations from both 

sampling and specification (i.e., standard and non-standard errors). We find that 70% of 

anomalies are not the outcome of the two sources of those variations. It is reasonable to infer 

that 70% of the published anomalies are true. Our simulations also find persistent out-of-

sample evidence after excluding other effects such as investors learning due to the publication 

effect. The findings suggest that the replication crisis in anomalies/factors studies might not be 

severe, and a substantial number of significant results are creditable. We also find supportive 

evidence from our p-hacking and false discovery tests by using the two-stage bootstrap 
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approach. Although the original papers do produce more significant results compared with the 

true effects from our methodology, our simulations reveals that only a small fraction of 

anomalies with some extent of p-hacking can match the OP results. Additionally, a t-value of 

2.6 is sufficient to limit the FDR below 5% in the scenario that we are less confident about the 

published anomalies and there is an extreme publication bias.    
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Figure 1. Returns and t-values of anomalies 

The figure plots returns and t-values of anomaly for each specification. Panel A plots boxplot 

of returns for each anomaly across specifications. Panel B plots boxplot of t-values for each 

anomaly across specifications. Returns are time-series average of monthly long-short returns. 

There are 173 anomalies and 96 specifications. The red dot indicates the mean of all possible 

specifications. 

    

Panel A: returns of across specifications 

 
 

Panel B: t-values of across specifications 
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Figure 2. Distribution of standard and non-standard errors 

The figure plots distribution of standard error and non-standard error. Long-short returns and 

standard error are computed in each of 96 specifications for each of 173 anomalies. Standard 

error of an anomaly is the average of standard errors across specifications. Non-standard error 

is the difference between 75% percentile of standard error and 25% percentile of standard error.  
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Figure 3. Empirical cumulative distribution of bootstrapped percentiles 

The figure plots the empirical cumulative distribution function (ECDF) of cross-sectional 

percentiles (30%, 50% and 90%) based on two-step bootstrapping. In each bootstrap, the 

monthly long-short returns are computed using the average across specifications and then the 

cross-sectional percentiles are calculated. There are 10,000 simulations in total. In Panel A, 

raw returns are used and Panel B uses demeaned returns. The red vertical line is the actual 

cross-sectional percentile.  

 

Panel A: bootstrap with raw return 

 
 

Panel B: bootstrap with demeaned return 
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Figure 4. Out-of-sample performance 

The figure provides distribution of bootstrapped cross-sectional mean returns of 173 anomalies 

in sample and out-of-sample. In sample is the time period that is used in the original paper. 

Out-of-samples include post 3 (5) years and pre 3 (5) years. Post samples use data from the end 

of date used in the original paper up to 3 or 5 years. Pre samples use the data that is from 3 or 

5 years before the start of date used in the original paper. We run two-stage bootstrap in out-

of-sample and in-sample periods. In each simulation, we calculate the cross-sectional mean of 

all anomalies and obtain the 10,000 averages. 

 

Panel A: post 3- and 5-years out-of-sample 

 
 

Panel B: pre 3- and 5-years out-of-sample  
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Figure 5. Post sample performance based on publication dates 

The figure provides distribution of bootstrapped cross-sectional mean returns of 173 anomalies 

in sample and out-of-sample. In sample is the time period that used in the original paper. Out-

of-samples include post 3- and 5-year. Post samples use data from the end of date used in the 

original paper up to 3 or 5 years. We run two-stage bootstrap in out-of-sample and in-sample 

periods. In each simulation, we calculate the cross-sectional mean of all anomalies and obtain 

the 10,000 averages. Panel A plots the distribution based on anomalies published after 1993 

and Panel B plots the distribution based on anomalies published before 1993. 

 

Panel A: anomalies published after 1993 

 
Panel B: anomalies published before 1993 
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Figure 6. Histogram of 173 anomalies 

The figure plots histogram of t-values in four settings: t-values estimated using OP methods, 

average t-value of anomaly from 10,000 bootstrapped samples based on the average aggregate, 

10% anomalies select 70% percentiles and 20% anomalies select 60% percentiles. For the latter 

2 settings, in each simulation, we randomly choose 10% (20%) anomalies which take the 70% 

(60%) percentile of the t-value across specifications rather than using the average. 
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Figure 7. False discovery rates 

The figure plots the false discovery rates (FDR) when the t-value cut-off between 2 and 3 under 

different extents of publications bias. Panel A (B) assume 70% (60%) anomalies are true, and 

we demean the returns of anomalies whose t-values are below 30% (40%) percentiles. In each 

bootstrapped sample, we calculate FDR as the number of significant findings that are false 

anomalies divided by the total number of significant findings. The significance is decided by 

t-values from 2 to 3. Publication bias is determined by how many insignificant specifications 

are dropped in each simulation. 

 

Panel A: 70% anomalies are true 

 
Panel B: 60% anomalies are true 
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Table 1. Average anomaly returns and permutation test 

The table reports average long-short return of the 173 anomalies and the percentage of rejection 

of null hypothesis using permutation test. Monthly long-short returns are first aggregated by 

either using the average or median across all specifications. The anomaly return is the time-

series average of the monthly aggregate returns. Then we compute the cross-sectional average 

of all anomaly returns, ret(avg.) and ret (median). Column of ret (OP) is the average returns of 

all anomalies that are constructed following the methods in the original paper. Two permutation 

tests include hypothesis of same mean across specifications and hypothesis of same distribution 

of aggregate returns and OP returns. We also apply two grouping methods based on the 

explanations of anomaly and the data sources used to construct the anomaly.   

 

 ret (avg.) ret (median) ret (OP) 

pct. rejection 

 H0: same 

sample mean 

across 

specifications 

pct. rejection 

H0: same 

distribution 

of true (avg.) and 

OP 

pct. rejection 

H0: same 

distribution of true 

(median) and OP 

All 0.36 0.35 0.50 55.5% 13.9% 17.3% 
       

Agnostic 0.39 0.38 0.55 62.2% 13.3% 15.6% 

Mispricing 0.38 0.37 0.52 56.0% 15.4% 18.7% 

Risk 0.32 0.30 0.44 48.5% 12.1% 18.2% 
       

Accounting 0.32 0.31 0.44 62.1% 16.1% 20.7% 

Other 0.35 0.35 0.47 24.0% 4.0% 8.0% 

Trading 0.42 0.41 0.60 59.0% 14.8% 16.4% 
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Table 2. Detailed results for selected predictors 

This table reports returns, t values and permutation tests for 6 selected anomalies. Monthly long-short returns are first aggregated by either using 

the average or median across all specifications. The anomaly return is the time-series average of the monthly aggregate returns and t value for each 

anomaly is calculated. OP returns and t values of the 6 anomalies are also reported. The first two columns reports the results of permutation tests 

which are used to test hypothesis of same mean across specifications. F-value and the corresponding p-value are reported. The remaining columns 

reports the results of permutation tests which are used to test hypothesis of same distribution of aggregate (average or median) returns and OP 

returns. 

 
    Average agg.  Median agg.  OP 

predictor F p (perm.)  Ret t OP diff p (perm.)  Ret t OP diff p (perm.)  Ret t 

size 4.71 0.0010  0.66 4.02 0.27 0.1918  0.52 3.29 0.12 0.5465  0.39 3.24 

BMdec 1.83 0.0010  0.46 4.12 -0.25 0.1209  0.45 4.08 -0.26 0.1079  0.71 6.32 

AssetGrowth 7.58 0.0010  0.44 5.46 -0.47 0.0020  0.40 5.08 -0.52 0.0010  0.91 7.32 

GP 1.27 0.0460  0.47 5.25 0.06 0.6733  0.45 5.17 0.04 0.7622  0.40 3.87 

RoE 0.74 0.9670  0.06 0.59 -0.15 0.3047  0.10 0.99 -0.11 0.4496  0.22 2.25 

Mom12m 1.88 0.0010  0.82 4.38 0.07 0.8232  0.84 4.67 0.09 0.7592  0.75 3.01 
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Table 3. Replication rate across empirical decisions 

This tables reports average returns, t-values and replication rate for different empirical 

decisions. For each anomaly, the monthly long-short returns are aggregated based on some 

certain specifications rather than all specifications and we take average of time-series returns 

as the anomaly return for that empirical decision. We report the results using the average 

aggregate in this table. 

 
 Avg. ret Avg. t Pct. sig. (t>=2) Pct. sig. (t>=3) 

Delisting adj. ret = yes 0.36 3.41 0.72 0.51 

Delisting adj. ret = no 0.36 3.40 0.72 0.51 

Diff 0.00    

 (0.01)    

     

Ex. Price<=$5 0.33 3.21 0.69 0.47 

No price filter 0.39 3.50 0.69 0.56 

Diff -0.06**    

 (-1.98)    

     

NYSE breakpoints 0.34 3.35 0.71 0.50 

All stocks breakpoints 0.38 3.45 0.73 0.51 

Diff -0.03    

 (-1.25)    

     

VW 0.29 2.20 0.53 0.26 

EW 0.43 4.28 0.80 0.61 

Diff -0.15***    

 (-4.96)    

     

Quintiles 0.32 3.24 0.71 0.50 

Deciles 0.41 3.44 0.73 0.51 

Diff -0.09***    

 (-3.15)    

     

Ex. NASDAQ = yes 0.33 3.05 0.70 0.48 

Ex. NASDAQ = no 0.37 3.45 0.71 0.51 

Diff -0.05*    

 (-1.76)    

     

Ex. Fin. = yes 0.37 3.38 0.71 0.50 

Ex. Fin. = no 0.35 3.33 0.71 0.50 

Diff 0.03    

 (0.94)    
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Table 4. Regression: original-method anomaly returns and aggregate anomaly returns 

The table reports the regression of t-values estimated from aggregate return on t-values 

estimated by method in the original paper. For each anomaly, the monthly long-short returns 

are aggregated based on some certain specifications rather than all specifications and we take 

average of time-series returns as the anomaly return for that empirical decision. We report the 

results using the average aggregate in this table. 

 
 Coef t R2 

Delisting adj. ret = yes 0.72*** 18.27 0.73 

Delisting adj. ret = no 0.72*** 18.26 0.73 
    

Ex. Price<=$5 0.64*** 13.59 0.63 

No price filter 0.76*** 20.53 0.74 
    

NYSE breakpoints 0.71*** 18.27 0.73 

All stocks breakpoints 0.72*** 18.01 0.73 
    

VW 0.39*** 7.41 0.40 

EW 0.99*** 27.87 0.82 
    

Quintiles 0.69*** 19.15 0.73 

Deciles 0.71*** 15.38 0.67 
    

Ex. NASDAQ = yes 0.63*** 15.25 0.66 

Ex. NASDAQ = no 0.74*** 18.58 0.74 
    

Ex. Fin. = yes 0.72*** 17.96 0.73 

Ex. Fin. = no 0.70*** 17.99 0.72 
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Table 5. Bootstrapped replication rate 

This table reports average return, t-value and replication rate from 10,000 two-stage 

bootstrapped samples. 95% confidence interval for each of the statistics is also reported. In the 

first stage of bootstrap, we randomly select months for all anomalies simultaneously. In the 

second stage of bootstrap, we randomly select specifications for all anomalies at the same time. 

Then we aggregate (average or median) long-short returns in each month using the 

bootstrapped sample and compute return and t value for each anomaly for that sample. We run 

first stage 100 times and we draw 100 times of the second stage for each run in the first stage. 

For each bootstrapped sample, we compute cross sectional mean of return, t value and 

replication rate (t cut-off at 2 and 3) of the 173 anomalies. 

 
 Mean 95% CI lower 95% CI upper 

Panel A: average agg.  

Ret 0.36 0.31 0.41 

t 3.45 2.93 3.93 

Pct. t>=2 70.5% 60.1% 77.5% 

Pct. t>=3 54.4% 45.1% 63.6% 
    

Panel B: median agg.  

Ret 0.35 0.29 0.41 

t 3.43 2.71 4.14 

Pct. t>=2 69.7% 58.4% 78.0% 

Pct. t>=3 53.2% 40.5% 64.7% 
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Table 6. Bootstrapped replication rate: theory and data source groups 

This table reports average return, t-value and replication rate from 10,000 two-step 

bootstrapped samples for different anomaly classifications. We define mispricing, risk and 

agnostic anomalies based on the explanations of anomaly using the classifications from Chen, 

Lopez-Lira and Zimmermann (2023). Using the classifications from Chen and Zimmermann 

(2022) based on the data sources, we also group anomalies to accounting, trading and other 

categories. In the first stage of bootstrap, we randomly select months for all anomalies 

simultaneously. In the second stage of bootstrap, we randomly select specifications for all 

anomalies at the same time. Then we aggregate (average or median) long-short returns in each 

month using the bootstrapped sample and compute return and t-value for each anomaly for that 

random sample. We run first stage 100 times and we draw 100 times of the second stage for 

each run in the first stage. For each bootstrapped sample, we compute cross sectional mean of 

return, t-value and replication rate (t cut-off at 2 and 3) of available anomalies in each 

classification. 

 
 Average agg.  Median agg. 

Panel A: anomaly theory      

 Mispricing Risk Agnostic  Mispricing Risk Agnostic 

Ret 0.38 0.32 0.40  0.38 0.30 0.39 

t 3.59 3.29 3.62  3.61 3.15 3.61 

Pct. t>=2 73.3% 68.9% 72.3%  72.6% 65.3% 72.9% 

Pct. t>=3 57.2% 50.3% 56.4%  56.5% 47.9% 55.2% 
        

Panel B: anomaly type       

 Accounting Trading Other  Accounting Trading Other 

Ret 0.32 0.43 0.36  0.31 0.42 0.36 

t 3.63 3.56 2.55  3.61 3.53 2.55 

Pct. t>=2 74.7% 70.6% 55.9%  73.7% 69.3% 56.3% 

Pct. t>=3 61.2% 52.2% 36.0%  60.2% 50.2% 36.6% 
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Table 7. Bootstrapped percentiles of t-values and p-values 

This table presents actual percentiles of t-value, 95% confidence interval and p-values for each 

of percentile from 10,000 two-step bootstrapped samples. The two-step bootstrap procedure is 

as follow: in the first stage of bootstrap, we randomly select months for all anomalies 

simultaneously. In the second stage of bootstrap, we randomly select specifications for all 

anomalies at the same time. Then we aggregate (average or median) long-short returns in each 

month using the bootstrapped sample and compute return and t value for each anomaly for that 

random sample. We run first stage 100 times and we draw 100 times of the second stage for 

each run in the first stage. For 95% confidence interval, in each bootstrapped sample, we 

compute percentiles of t values of the 173 anomalies and obtain the distribution of different 

percentiles to compute the confidence interval for each percentile. For p-values, we demean 

monthly long-short anomaly returns first to assume zero anomaly return, and then perform the 

two-stage bootstrap. P-value (sim. pctl.  act. pctl) measures how likely simulated percentiles 

are greater than the counterparty of actual percentiles. P-value (t) is how likely the 173 

anomalies exceed each of the t-value.   

 

Panel A: average aggregate 
 Actual  95% CI of t  H0: Ret = 0 

 Ret t  2.5% 97.5%  p-value (sim. pctl.act. pctl.) p-value (t) 

P0 -0.39 -2.57  -4.38 -1.02    

P10 0.06 0.45  -0.22 0.81    

P20 0.18 1.40  0.79 1.81    

P30 0.26 2.08  1.40 2.56  0.0000 0.0227 

P40 0.30 2.70  2.02 3.26  0.0000 0.0037 

P50 0.35 3.03  2.69 3.83  0.0000 0.0012 

P60 0.39 3.73  3.29 4.54  0.0000 0.0000 

P70 0.45 4.46  3.92 5.29  0.0000 0.0000 

P80 0.49 5.17  4.68 6.21  0.0000 0.0000 

P90 0.59 6.45  5.76 7.51  0.0000 0.0000 

P100 1.49 11.72  10.71 14.25  0.0000 0.0000 

 

Panel B: median aggregate 
 Actual  95% CI of t  H0: Ret = 0 

 Ret t  2.5% 97.5%  p-value (sim. pctl.act. pctl.) p-value (t) 

P0 -0.31 -2.15  -4.07 -1.09    

P10 0.06 0.55  -0.19 0.79    

P20 0.16 1.43  0.68 1.84    

P30 0.25 2.10  1.31 2.61  0.0000 0.0228 

P40 0.30 2.68  1.91 3.32  0.0000 0.0053 

P50 0.34 2.96  2.50 4.02  0.0000 0.0024 

P60 0.37 3.67  3.02 4.72  0.0000 0.0001 

P70 0.42 4.43  3.60 5.63  0.0000 0.0000 

P80 0.48 5.10  4.28 6.61  0.0000 0.0000 

P90 0.56 6.50  5.27 8.01  0.0000 0.0000 

P100 1.49 12.49  10.45 15.73  0.0000 0.0000 
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Table 8. Binominal test: p-hacking 

The table provides binominal test under the hypothesis that probability of above and below a 

threshold in a close window is equal. The thresholds are 2 and 3 and the widths away the 

threshold are 0.3 to 0.6 with a increment of 0.05. We report the number of anomaly, percentage 

of significant anomalies and p-value of observing as more extreme outcomes than the observed 

value. We run the test for OP anomalies in each window. The simulation results are based on 

the two-stage bootstrapped samples, and the results are the average of 10,000 simulations.   

 
 OP  Simulation 
 Num. of anomaly Pct. sig. p-value  Num. of anomaly Pct. sig. p-value 

2  0.6 32 68.8% 0.0251  30.6 52.9% 0.4584 

2  0.55 27 63.0% 0.1239  28.0 52.6% 0.4750 

2  0.5 22 63.6% 0.1431  25.5 52.3% 0.4893 

2  0.45 19 68.4% 0.0835  22.9 52.0% 0.5042 

2  0.4 16 75.0% 0.0384  20.4 51.6% 0.5201 

2  0.35 14 71.4% 0.0898  17.9 51.3% 0.5348 

2  0.3 10 70.0% 0.1719  15.3 51.1% 0.5465 
        

3  0.6 49 49.0% 0.6123  34.8 50.0% 0.5509 

3  0.55 45 46.7% 0.7243  32.1 50.0% 0.5542 

3  0.5 44 47.7% 0.6742  29.3 50.0% 0.5558 

3  0.45 40 50.0% 0.5627  26.4 50.0% 0.5594 

3  0.4 33 54.5% 0.3642  23.5 49.9% 0.5638 

3  0.35 28 50.0% 0.5747  20.7 49.9% 0.5668 

3  0.3 25 52.0% 0.5000  17.8 49.9% 0.5708 
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Table 9. False discovery rate 

The table reports false discovery rate (FDR) of published anomalies. Based on the 

bootstrapping results in Tables 5 and 7, we assume 70% of anomalies are true or 60% are true 

(if we apply lower bound of 95% confidence interval to be less confident about the published 

anomalies). The monthly long-short returns are demeaned if the t-values of anomalies are 

below 30% percentiles. Then we run the two-stage bootstrapping and select one specification 

randomly for each anomaly. For each bootstrap, we compute the FDR as the ratio between 

number of false anomalies that are significant and total number of significant anomalies. The 

reported FP, TP and FDR are the averaged number from 10,000 bootstrapped samples for 

number of false positive, number of true positive and false discovery rate. We use 2 and 3 as t 

value cut-offs. We repeat the procedure for simulation with publication bias. The publication 

bias is determined by how much proportion of insignificant specifications are dropped from 

each bootstrapped sample.    

 

Panel A: 70% anomalies are true 
 t-cutoff t=2  t-cutoff t=3 

pub bias FP TP FDR  FP TP FDR 

0% 2.7 95.8 2.7%  0.6 77.6 0.8% 

70% 6.0 109.3 5.2%  1.1 86.7 1.3% 

80% 6.8 112.3 5.7%  1.3 89.0 1.5% 

90% 9.5 116.1 7.6%  1.7 91.3 1.8% 

 

Panel B: 60% anomalies are true 
 t-cutoff t=2  t-cutoff t=3 

pub bias FP TP FDR  FP TP FDR 

0% 3.6 85.8 4.0%  0.8 71.4 1.1% 

70% 7.2 95.8 7.0%  1.4 78.6 1.8% 

80% 9.2 98.4 8.6%  1.6 80.8 2.0% 

90% 12.5 100.8 11.1%  2.1 82.6 2.5% 

 

 



 49 

Appendix 

Table A1. Average anomaly returns and permutation test for each anomaly 

This table reports returns, t-values and permutation tests for each of the 173 anomalies. 

Monthly long-short returns are first aggregated by either using the average or median across 

all specifications. The anomaly return is the time-series average of the monthly aggregate 

returns and t value for each anomaly is calculated. OP returns and t values of the 6 anomalies 

are also reported. The first two columns reports the results of permutation tests which are used 

to test hypothesis of same mean across specifications. F-value and the corresponding p-value 

are reported. The remaining columns reports the results of permutation tests which are used to 

test hypothesis of same distribution of aggregate (average or median) returns and OP returns. 
        Average agg.  Median agg. 
  F-stat p (perm.)   ret t diff p (perm.)   ret t diff p (perm.) 

AM 3.55 0.001  0.38 2.74 -0.11 0.584  0.29 2.16 -0.20 0.284 

AOP 0.28 1.000  0.14 1.16 -0.03 0.836  0.13 1.11 -0.04 0.818 

AbnormalAccruals 0.96 0.602  0.40 6.73 0.22 0.040  0.38 7.06 0.20 0.063 

Accruals 1.55 0.001  0.37 5.43 -0.05 0.569  0.36 5.62 -0.06 0.495 

AdExp 1.71 0.006  0.47 2.70 0.02 0.944  0.45 2.69 -0.01 0.980 

AgeIPO 0.30 1.000  0.70 3.08 -0.05 0.862  0.77 3.28 0.01 0.956 

AnalystRevision 1.99 0.001  0.56 6.34 -0.10 0.381  0.56 6.51 -0.10 0.356 

AnalystValue 0.20 1.000  0.19 1.35 -0.05 0.824  0.21 1.53 -0.03 0.906 

AnnouncementReturn 9.71 0.001  0.91 11.70 -0.24 0.024  0.90 12.49 -0.25 0.015 

AssetGrowth 7.58 0.001  0.44 5.46 -0.47 0.002  0.40 5.08 -0.52 0.001 

BM 4.66 0.001  0.49 2.87 -0.53 0.041  0.44 2.71 -0.59 0.026 

BMdec 1.83 0.001  0.46 4.12 -0.25 0.121  0.45 4.08 -0.26 0.108 

BPEBM 3.30 0.001  0.06 0.94 -0.09 0.335  0.08 1.41 -0.06 0.481 

Beta 0.20 1.000  0.26 1.18 -0.11 0.715  0.22 1.03 -0.15 0.620 

BetaFP 0.17 1.000  0.07 0.30 -0.02 0.958  0.03 0.13 -0.06 0.884 

BetaLiquidityPS 0.13 1.000  0.04 0.39 -0.24 0.125  0.03 0.36 -0.25 0.117 

BetaTailRisk 0.11 1.000  0.44 2.74 0.09 0.657  0.44 2.77 0.09 0.660 

BidAskSpread 2.01 0.001  0.20 1.09 -0.45 0.157  0.09 0.55 -0.55 0.062 

BookLeverage 0.60 1.000  -0.08 -0.93 -0.18 0.210  -0.06 -0.64 -0.15 0.285 

BrandInvest 0.49 0.999  0.27 1.59 -0.15 0.620  0.13 0.75 -0.29 0.301 

CBOperProf 2.15 0.001  0.57 5.54 0.04 0.842  0.58 6.02 0.05 0.784 

CF 0.59 0.999  0.40 3.01 0.03 0.871  0.44 3.29 0.07 0.744 

Cash 0.28 1.000  0.38 2.69 -0.13 0.602  0.37 2.69 -0.14 0.572 

CashProd 1.60 0.001  0.21 1.92 -0.14 0.384  0.19 1.77 -0.15 0.344 

ChAssetTurnover 0.64 0.996  0.26 4.50 0.09 0.228  0.24 4.40 0.07 0.316 

ChEQ 2.37 0.001  0.47 4.95 -0.05 0.715  0.40 4.46 -0.11 0.431 

ChInv 2.87 0.001  0.50 7.78 -0.11 0.274  0.48 7.79 -0.13 0.191 

ChInvIA 3.64 0.001  0.22 3.68 -0.12 0.141  0.19 3.38 -0.15 0.065 

ChNNCOA 0.59 1.000  0.27 5.24 0.05 0.461  0.27 5.50 0.05 0.466 

ChNWC 0.64 0.997  0.26 5.34 0.11 0.078  0.24 5.54 0.09 0.107 

ChTax 5.81 0.001  0.59 6.53 -0.33 0.019  0.60 6.96 -0.31 0.026 

ChangeInRecommendation 1.38 0.011  0.34 3.76 -0.23 0.055  0.35 3.93 -0.22 0.067 

CompEquIss 2.59 0.001  0.57 4.33 0.20 0.244  0.47 3.75 0.10 0.532 

CompositeDebtIssuance 2.68 0.001  0.22 4.12 -0.01 0.869  0.23 4.56 0.00 0.995 

CoskewACX 0.45 1.000  0.29 2.62 -0.07 0.639  0.31 2.80 -0.06 0.694 

Coskewness 0.60 1.000  0.17 2.03 0.10 0.396  0.18 2.09 0.11 0.370 

CustomerMomentum 0.51 0.999  0.88 4.62 0.03 0.919  0.85 4.57 0.00 1.000 

DelBreadth 1.38 0.010  0.29 1.85 -0.27 0.295  0.27 1.77 -0.28 0.264 

DelCOA 4.48 0.001  0.38 5.12 -0.03 0.756  0.36 5.22 -0.04 0.651 

DelCOL 3.25 0.001  0.06 0.87 -0.15 0.097  0.06 0.87 -0.16 0.075 

DelDRC 0.10 1.000  0.27 1.08 0.10 0.778  0.27 1.10 0.10 0.790 

DelEqu 3.33 0.001  0.41 4.12 -0.07 0.649  0.34 3.65 -0.13 0.368 

DelFINL 5.09 0.001  0.36 7.60 -0.14 0.034  0.34 7.58 -0.15 0.017 

DelNetFin 1.10 0.254   0.29 5.71 -0.03 0.687   0.29 6.01 -0.03 0.648 

Continued on next page  
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    Avg.  Median 
 F-stat p (perm.)  ret t diff p (perm.)  ret t diff p (perm.) 

DivYieldST 1.21 0.161  0.30 6.02 -0.25 0.002  0.30 5.92 -0.25 0.002 

DolVol 3.84 0.001  0.46 3.59 -0.28 0.203  0.34 2.85 -0.41 0.057 

EBM 2.87 0.001  0.30 4.08 0.07 0.472  0.26 3.62 0.03 0.738 

EP 0.34 1.000  0.36 3.40 0.05 0.723  0.38 3.57 0.06 0.649 

EarnSupBig 0.50 1.000  0.37 3.43 0.03 0.873  0.37 3.48 0.03 0.840 

EarningsConsistency 1.06 0.347  0.27 3.10 0.00 0.973  0.30 3.71 0.03 0.783 

EarningsForecastDisparity 0.57 0.999  0.40 3.05 -0.04 0.817  0.36 2.83 -0.08 0.641 

EarningsStreak 2.29 0.001  0.80 7.60 -0.18 0.189  0.78 7.95 -0.19 0.145 

EarningsSurprise 9.91 0.001  0.41 6.13 -0.27 0.007  0.43 6.50 -0.25 0.008 

EntMult 1.04 0.389  0.51 4.40 -0.18 0.295  0.50 4.49 -0.18 0.286 

EquityDuration 1.00 0.472  0.48 3.96 0.04 0.823  0.53 4.42 0.09 0.627 

ExclExp 0.37 1.000  0.14 2.22 -0.02 0.829  0.15 2.39 -0.02 0.835 

FEPS 0.32 1.000  0.43 2.02 -0.39 0.208  0.47 2.22 -0.35 0.254 

FR 0.32 1.000  -0.06 -0.52 0.05 0.788  -0.01 -0.05 0.10 0.572 

FirmAge 0.49 1.000  0.03 0.35 0.07 0.493  0.02 0.33 0.07 0.502 

FirmAgeMom 1.66 0.001  1.22 6.47 0.03 0.927  1.26 6.94 0.06 0.821 

ForecastDispersion 0.56 1.000  0.28 1.43 -0.16 0.530  0.26 1.38 -0.18 0.481 

Frontier 5.69 0.001  0.49 2.80 -0.87 0.004  0.45 2.64 -0.91 0.003 

GP 1.27 0.046  0.47 5.25 0.06 0.673  0.45 5.17 0.04 0.762 

GrAdExp 1.46 0.021  0.34 2.74 -0.16 0.375  0.35 2.95 -0.15 0.394 

GrLTNOA 1.64 0.001  0.12 2.00 -0.06 0.474  0.09 1.55 -0.09 0.262 

GrSaleToGrInv 0.50 1.000  0.33 6.15 0.09 0.212  0.33 6.47 0.09 0.202 

GrSaleToGrOverhead 0.33 1.000  0.03 0.47 0.04 0.621  0.03 0.52 0.04 0.609 

Herf 0.62 1.000  0.02 0.31 -0.04 0.673  -0.03 -0.45 -0.09 0.344 

HerfAsset 0.50 1.000  0.03 0.37 -0.01 0.934  0.02 0.26 -0.02 0.865 

HerfBE 0.90 0.764  0.00 0.02 -0.06 0.534  0.00 -0.02 -0.07 0.507 

High52 2.00 0.001  -0.14 -0.64 -0.13 0.663  -0.01 -0.06 0.00 0.998 

IdioRisk 2.56 0.001  0.26 1.47 -0.29 0.281  0.35 2.10 -0.20 0.441 

IdioVol3F 2.36 0.001  0.25 1.39 -0.28 0.290  0.34 2.05 -0.19 0.456 

IdioVolAHT 2.36 0.001  0.03 0.17 -0.16 0.571  0.11 0.61 -0.08 0.741 

Illiquidity 3.35 0.001  0.53 3.64 0.13 0.483  0.42 3.09 0.02 0.923 

IndMom 3.25 0.001  0.38 3.01 0.02 0.888  0.36 2.81 0.00 0.995 

IndRetBig 1.31 0.027  1.49 11.72 0.06 0.736  1.49 11.47 0.05 0.752 

IntMom 1.58 0.001  0.53 3.75 -0.48 0.048  0.55 4.02 -0.46 0.060 

IntanBM 1.32 0.023  0.38 2.08 0.10 0.665  0.43 2.36 0.15 0.530 

IntanCFP 0.25 1.000  0.34 2.32 0.02 0.925  0.35 2.47 0.03 0.893 

IntanEP 0.21 1.000  0.22 1.51 -0.08 0.619  0.24 1.74 -0.06 0.732 

IntanSP 1.38 0.011  0.21 1.28 -0.21 0.336  0.16 1.06 -0.25 0.230 

InvGrowth 2.98 0.001  0.45 6.08 -0.21 0.074  0.42 5.95 -0.24 0.039 

InvestPPEInv 6.82 0.001  0.50 7.00 -0.03 0.747  0.49 6.84 -0.05 0.590 

Investment 1.83 0.001  0.34 5.70 0.19 0.085  0.31 5.97 0.17 0.112 

LRreversal 2.20 0.001  0.43 2.89 -0.26 0.262  0.36 2.55 -0.33 0.157 

Leverage 2.57 0.001  0.36 2.79 -0.03 0.879  0.32 2.53 -0.07 0.681 

MRreversal 1.88 0.001  0.46 3.78 0.03 0.883  0.42 3.56 -0.02 0.915 

 

Continued on next page 

  



 51 

        Avg.   Median 

  F-stat p (perm.)   ret t diff p (perm.)   ret t diff p (perm.) 

MS 0.14 1.000  0.41 4.29 -0.51 0.019  0.40 4.17 -0.52 0.018 

MaxRet 1.17 0.122  0.32 1.94 -0.30 0.263  0.39 2.50 -0.23 0.395 

MeanRankRevGrowth 1.98 0.001  0.11 1.32 -0.11 0.297  0.10 1.23 -0.12 0.242 

Mom12m 1.88 0.001  0.82 4.38 0.07 0.823  0.84 4.67 0.09 0.759 

Mom12mOffSeason 1.83 0.001  0.65 3.72 -0.22 0.449  0.69 4.06 -0.18 0.509 

Mom6m 2.82 0.001  0.44 2.51 -0.10 0.698  0.49 2.96 -0.05 0.848 

Mom6mJunk 1.02 0.418  0.45 1.74 -0.52 0.202  0.51 2.03 -0.46 0.242 

MomOffSeason 4.40 0.001  0.63 5.19 -0.42 0.045  0.59 5.10 -0.46 0.030 

MomOffSeason06YrPlus 1.38 0.013  0.39 5.07 -0.26 0.058  0.36 5.01 -0.28 0.041 

MomOffSeason11YrPlus 0.49 1.000  0.18 2.75 -0.11 0.361  0.16 2.62 -0.13 0.263 

MomOffSeason16YrPlus 0.24 1.000  0.17 2.46 -0.12 0.278  0.16 2.44 -0.13 0.235 

MomSeason 1.16 0.151  0.50 5.82 -0.22 0.126  0.48 5.77 -0.24 0.084 

MomSeason06YrPlus 1.53 0.001  0.55 7.53 -0.12 0.331  0.51 7.29 -0.15 0.194 

MomSeason11YrPlus 1.10 0.223  0.46 7.46 -0.08 0.373  0.45 7.66 -0.09 0.337 

MomSeason16YrPlus 0.63 1.000  0.34 5.43 -0.17 0.072  0.31 5.44 -0.19 0.036 

MomSeasonShort 0.51 1.000  0.56 5.25 -0.29 0.091  0.55 5.35 -0.30 0.077 

MomVol 0.21 1.000  0.38 2.07 -0.59 0.059  0.38 2.09 -0.60 0.053 

NOA 2.75 0.001  0.55 6.99 -0.27 0.063  0.48 6.37 -0.33 0.019 

NetDebtFinance 3.89 0.001  0.35 5.95 -0.31 0.001  0.34 6.17 -0.33 0.001 

NetDebtPrice 0.67 0.994  0.06 0.50 -0.43 0.021  0.10 0.85 -0.39 0.030 

NetEquityFinance 2.86 0.001  0.50 4.45 -0.44 0.026  0.54 4.98 -0.40 0.044 

NetPayoutYield 1.16 0.140  0.31 2.58 -0.38 0.040  0.32 2.70 -0.37 0.044 

NumEarnIncrease 4.03 0.001  0.29 5.21 -0.15 0.051  0.27 4.82 -0.17 0.035 

OPLeverage 0.82 0.889  0.36 3.99 -0.04 0.788  0.33 3.69 -0.07 0.622 

OperProf 0.83 0.884  0.33 2.98 -0.11 0.512  0.36 3.19 -0.08 0.588 

OperProfRD 1.71 0.001  0.37 2.88 -0.05 0.786  0.43 3.56 0.01 0.961 

OptionVolume1 0.37 1.000  0.31 1.66 -0.09 0.755  0.29 1.62 -0.10 0.727 

OptionVolume2 0.18 1.000  0.28 2.61 0.00 1.000  0.23 2.33 -0.05 0.820 

OrderBacklog 0.12 1.000  -0.07 -0.59 -0.15 0.308  -0.06 -0.48 -0.13 0.364 

OrderBacklogChg 1.97 0.001  0.03 0.28 -0.33 0.062  0.03 0.24 -0.34 0.053 

OrgCap 1.43 0.003  0.45 7.29 0.07 0.546  0.39 6.52 0.01 0.897 

PS 1.14 0.169  0.45 2.64 -0.36 0.268  0.49 2.95 -0.32 0.331 

PayoutYield 0.27 1.000  0.12 1.16 -0.13 0.375  0.13 1.25 -0.12 0.398 

PctAcc 2.22 0.001  0.30 3.57 -0.11 0.370  0.33 4.19 -0.08 0.500 

PctTotAcc 1.66 0.001  0.22 2.96 -0.16 0.144  0.22 3.28 -0.15 0.151 

PredictedFE 0.21 1.000  -0.02 -0.12 -0.06 0.826  0.00 -0.02 -0.04 0.874 

PriceDelayRsq 2.36 0.001  0.10 0.96 -0.43 0.027  0.03 0.26 -0.50 0.007 

PriceDelaySlope 0.78 0.946  0.09 1.22 -0.12 0.294  0.08 1.15 -0.12 0.265 

PriceDelayTstat 0.22 1.000  -0.02 -0.34 -0.04 0.667  -0.01 -0.19 -0.03 0.749 

RD 3.04 0.001  0.49 3.81 -0.36 0.074  0.42 3.42 -0.44 0.034 

RDAbility 0.67 0.993  0.23 1.42 0.10 0.641  0.22 1.36 0.08 0.662 

RDS 0.48 1.000  0.23 2.70 -0.06 0.650  0.19 2.34 -0.10 0.474 

RDcap 0.11 1.000  0.41 2.22 0.03 0.900  0.38 2.10 0.01 0.981 

REV6 0.70 0.982   0.36 1.30 -0.31 0.400   0.42 1.64 -0.25 0.473 
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        Avg.   Median 

  F-stat p (perm.)   ret t diff p (perm.)   ret t diff p (perm.) 

RIO_MB 0.47 0.999  0.46 2.80 -0.23 0.311  0.42 2.63 -0.27 0.244 

RIO_Turnover 0.08 1.000  0.28 1.71 -0.08 0.736  0.27 1.63 -0.09 0.715 

RIO_Volatility 0.20 1.000  0.38 1.74 -0.58 0.100  0.37 1.68 -0.59 0.101 

ResidualMomentum 1.42 0.004  0.59 6.68 -0.24 0.086  0.57 6.55 -0.26 0.063 

ReturnSkew 11.31 0.001  0.22 4.61 -0.22 0.008  0.24 5.09 -0.20 0.011 

ReturnSkew3F 10.56 0.001  0.11 2.71 -0.23 0.001  0.13 3.10 -0.22 0.003 

RevenueSurprise 7.74 0.001  0.27 4.23 -0.31 0.001  0.27 4.26 -0.32 0.001 

RoE 0.74 0.967  0.06 0.59 -0.15 0.305  0.10 0.99 -0.11 0.450 

SP 3.14 0.001  0.60 4.29 -0.16 0.398  0.57 4.17 -0.19 0.295 

ShareIss1Y 1.52 0.002  0.39 6.07 -0.08 0.377  0.38 6.05 -0.09 0.359 

ShareIss5Y 1.25 0.046  0.32 4.69 -0.10 0.318  0.30 4.49 -0.12 0.227 

ShortInterest 2.86 0.001  0.41 2.91 -0.42 0.027  0.37 2.69 -0.45 0.019 

SmileSlope 2.97 0.001  1.15 9.62 -0.05 0.762  1.13 9.87 -0.07 0.694 

Tax 0.64 0.997  0.25 3.39 -0.10 0.338  0.30 4.15 -0.06 0.581 

TotalAccruals 1.34 0.015  0.29 4.77 -0.01 0.932  0.25 4.28 -0.06 0.618 

TrendFactor 4.23 0.001  1.39 10.71 -0.11 0.541  1.39 10.88 -0.11 0.550 

VarCF 1.96 0.001  -0.39 -2.54 0.09 0.681  -0.31 -2.12 0.17 0.429 

VolMkt 0.80 0.932  0.05 0.29 -0.21 0.337  0.06 0.33 -0.21 0.340 

VolSD 1.43 0.011  0.33 3.23 0.08 0.595  0.29 2.96 0.04 0.781 

VolumeTrend 1.39 0.010  0.44 4.64 -0.19 0.163  0.42 4.59 -0.21 0.133 

XFIN 3.65 0.001  0.62 4.54 -0.43 0.078  0.63 4.85 -0.41 0.082 

betaVIX 1.33 0.019  0.39 2.91 -0.18 0.429  0.32 2.52 -0.25 0.270 

cfp 1.47 0.002  0.45 3.37 0.09 0.694  0.48 3.68 0.12 0.582 

dNoa 5.88 0.001  0.60 7.98 -0.20 0.081  0.55 7.60 -0.25 0.037 

fgr5yrLag 0.35 1.000  0.09 0.41 -0.06 0.838  0.12 0.55 -0.04 0.901 

grcapx 1.92 0.001  0.34 5.21 -0.01 0.888  0.31 5.07 -0.04 0.629 

grcapx3y 2.21 0.001  0.34 5.12 -0.03 0.742  0.34 5.44 -0.04 0.726 

hire 5.17 0.001  0.28 3.17 -0.18 0.129  0.23 2.75 -0.22 0.050 

price 3.19 0.001  0.49 2.44 -0.31 0.320  0.35 1.89 -0.45 0.141 

realestate 0.33 1.000  0.18 2.72 -0.07 0.586  0.14 2.30 -0.11 0.392 

retConglomerate 3.62 0.001  0.71 4.50 -0.45 0.046  0.66 4.18 -0.50 0.031 

roaq 2.29 0.001  0.44 2.97 -0.74 0.003  0.51 3.60 -0.67 0.005 

sfe 0.36 1.000  0.46 2.48 -0.11 0.738  0.52 2.87 -0.05 0.877 

size 4.71 0.001  0.66 4.02 0.27 0.192  0.52 3.29 0.12 0.546 

skew1 0.69 0.993  0.49 3.60 -0.02 0.931  0.50 3.91 -0.01 0.983 

std_turn 0.43 1.000  0.47 2.76 0.07 0.779  0.47 2.82 0.07 0.767 

strev 14.68 0.001  1.05 7.77 -1.67 0.001  0.99 7.61 -1.72 0.001 

tang 1.18 0.090  0.13 1.37 -0.21 0.159  0.06 0.66 -0.27 0.053 

zerotrade 1.90 0.001  0.36 2.61 -0.14 0.502  0.34 2.52 -0.16 0.451 

zerotradeAlt1 1.88 0.001  0.29 2.05 -0.22 0.294  0.27 1.90 -0.24 0.252 

zerotradeAlt12 2.54 0.001   0.39 3.03 -0.01 0.953   0.37 2.99 -0.03 0.868 

 

 


